51
|
Wang C, Xiao J, Hu X, Liu Q, Zheng Y, Kang Z, Guo D, Shi L, Liu Y. Liquid Core Nanoparticle with High Deformability Enables Efficient Penetration across Biological Barriers. Adv Healthc Mater 2023; 12:e2201889. [PMID: 36349820 DOI: 10.1002/adhm.202201889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/04/2022] [Indexed: 11/10/2022]
Abstract
Biological barriers significantly limit the delivery efficiency of drug delivery systems, resulting in undesired therapeutic effects. When designing a delivery system with optimized penetration behavior across the biological barriers, mechanical properties, such as deformability, are emerging as important parameters that need to be considered, although they are usually neglected in current research. Herein, a liquid core nanoparticle (LCN) composed of a polymer-encapsulated edible oil droplet is demonstrated. Owing to the unique structure in which the liquid oil core is encapsulated by a layer of highly hydrophilic and cross-linked polymer, the LCN exhibits high mechanical softness, making it deformable under external forces. With high deformability, LCNs can effectively penetrate through several important biological barriers including deep tumor tissue, blood-brain barriers, mucus layers, and bacterial biofilms. Moreover, the potential of the LCN as a drug delivery system is also demonstrated by the loading and release of several clinical drugs. With the capability of penetrating biological barriers and delivering drugs, LCN provides a potential platform for disease treatments, particularly for those suffering from inadequate drug penetration.
Collapse
Affiliation(s)
- Chun Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Jian Xiao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Xinyue Hu
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yadan Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ziyao Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Dongsheng Guo
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
52
|
Mathematical Optimisation of Magnetic Nanoparticle Diffusion in the Brain White Matter. Int J Mol Sci 2023; 24:ijms24032534. [PMID: 36768857 PMCID: PMC9917052 DOI: 10.3390/ijms24032534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Magnetic nanoparticles (MNPs) are a promising drug delivery system to treat brain diseases, as the particle transport trajectory can be manipulated by an external magnetic field. However, due to the complex microstructure of brain tissues, particularly the arrangement of nerve fibres in the white matter (WM), how to achieve desired drug distribution patterns, e.g., uniform distribution, is largely unknown. In this study, by adopting a mathematical model capable of capturing the diffusion trajectories of MNPs, we conducted a pilot study to investigate the effects of key parameters in the MNP delivery on the particle diffusion behaviours in the brain WM microstructures. The results show that (i) a uniform distribution of MNPs can be achieved in anisotropic tissues by adjusting the particle size and magnetic field; (ii) particle size plays a key role in determining MNPs' diffusion behaviours. The magnitude of MNP equivalent diffusivity is reversely correlated to the particle size. The MNPs with a dimension greater than 90 nm cannot reach a uniform distribution in the brain WM even in an external magnitude field; (iii) axon tortuosity may lead to transversely anisotropic MNP transport in the brain WM; however, this effect can be mitigated by applying an external magnetic field perpendicular to the local axon track. This study not only advances understanding to answer the question of how to optimise MNP delivery, but also demonstrates the potential of mathematical modelling to help achieve desired drug distributions in biological tissues with a complex microstructure.
Collapse
|
53
|
Bazi Alahri M, Jibril Ibrahim A, Barani M, Arkaban H, Shadman SM, Salarpour S, Zarrintaj P, Jaberi J, Turki Jalil A. Management of Brain Cancer and Neurodegenerative Disorders with Polymer-Based Nanoparticles as a Biocompatible Platform. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020841. [PMID: 36677899 PMCID: PMC9864049 DOI: 10.3390/molecules28020841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
The blood-brain barrier (BBB) serves as a protective barrier for the central nervous system (CNS) against drugs that enter the bloodstream. The BBB is a key clinical barrier in the treatment of CNS illnesses because it restricts drug entry into the brain. To bypass this barrier and release relevant drugs into the brain matrix, nanotechnology-based delivery systems have been developed. Given the unstable nature of NPs, an appropriate amount of a biocompatible polymer coating on NPs is thought to have a key role in reducing cellular cytotoxicity while also boosting stability. Human serum albumin (HSA), poly (lactic-co-glycolic acid) (PLGA), Polylactide (PLA), poly (alkyl cyanoacrylate) (PACA), gelatin, and chitosan are only a few of the significant polymers mentioned. In this review article, we categorized polymer-coated nanoparticles from basic to complex drug delivery systems and discussed their application as novel drug carriers to the brain.
Collapse
Affiliation(s)
- Mehdi Bazi Alahri
- Department of Clinical Psychology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Alhawarin Jibril Ibrahim
- Department of Chemistry, Faculty of Science, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Correspondence:
| | - Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | | | - Soodeh Salarpour
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Javad Jaberi
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| |
Collapse
|
54
|
Mohammed FS, Omay SB, Sheth KN, Zhou J. Nanoparticle-based drug delivery for the treatment of traumatic brain injury. Expert Opin Drug Deliv 2023; 20:55-73. [PMID: 36420918 PMCID: PMC9983310 DOI: 10.1080/17425247.2023.2152001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Traumatic brain injuries (TBIs) impact the breadth of society and remain without any approved pharmacological treatments. Despite successful Phase II clinical trials, the failure of many Phase III clinical trials may be explained by insufficient drug targeting and retention, preventing the proper attainment of an observable dosage threshold. To address this challenge, nanoparticles can be functionalized to protect pharmacological payloads, improve targeted drug delivery to sites of injury, and can be combined with supportive scaffolding to improve secondary outcomes. AREAS COVERED This review briefly covers the pathophysiology of TBIs and their subtypes, the current pre-clinical and clinical management strategies, explores the common models of focal, diffuse, and mixed traumatic brain injury employed in experimental animals, and surveys the existing literature on nanoparticles developed to treat TBIs. EXPERT OPINION Nanoparticles are well suited to improve secondary outcomes as their multifunctionality and customizability enhance their potential for efficient targeted delivery, payload protection, increased brain penetration, low off-target toxicity, and biocompatibility in both acute and chronic timescales.
Collapse
Affiliation(s)
- Farrah S. Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Sacit Bulent Omay
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Jiangbing Zhou
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
55
|
Zhu S, Li Z, Zheng D, Yu Y, Xiang J, Ma X, Xu D, Qiu J, Yang Z, Wang Z, Li J, Sun H, Chen W, Meng X, Lu Y, Ren Q. A cancer cell membrane coated, doxorubicin and microRNA co-encapsulated nanoplatform for colorectal cancer theranostics. Mol Ther Oncolytics 2022; 28:182-196. [PMID: 36820302 PMCID: PMC9937835 DOI: 10.1016/j.omto.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Endogenous microRNAs (miRNA) in tumors are currently under exhaustive investigation as potential therapeutic agents for cancer treatment. Nevertheless, RNase degradation, inefficient and untargeted delivery, limited biological effect, and currently unclear side effects remain unsettled issues that frustrate clinical application. To address this, a versatile targeted delivery system for multiple therapeutic and diagnostic agents should be adapted for miRNA. In this study, we developed membrane-coated PLGA-b-PEG DC-chol nanoparticles (m-PPDCNPs) co-encapsulating doxorubicin (Dox) and miRNA-190-Cy7. Such a system showed low biotoxicity, high loading efficiency, and superior targeting ability. Systematic delivery of m-PPDCNPs in mouse models showed exceptionally specific tumor accumulation. Sustained release of miR-190 inhibited tumor angiogenesis, tumor growth, and migration by regulating a large group of angiogenic effectors. Moreover, m-PPDCNPs also enhanced the sensitivity of Dox by suppressing TGF-β signal in colorectal cancer cell lines and mouse models. Together, our results demonstrate a stimulating and promising m-PPDCNPs nanoplatform for colorectal cancer theranostics.
Collapse
Affiliation(s)
- Sihao Zhu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ziyuan Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dongye Zheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yue Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Xiang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiao Ma
- Research Group Signal Transduction, Department of Psychiatry, Ludwig Maximilian University of Munich, Nussbaumstr.7, 80336 Munich, Germany
| | - Dongqing Xu
- Department of Pediatric Hematology/Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiajun Qiu
- Department of Otolaryngology Head and Neck Surgery, the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ziyu Yang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiyi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Li
- Laboratory Animal Center, Peking University, Beijing 100871, China
| | - Hongfang Sun
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu Province, China,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, Gansu Province, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing 100142, China,Corresponding author.
| | - Yanye Lu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China,Corresponding author.
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,National Biomedical Imaging Center, Peking University, Beijing 100871, China,Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 5181071, China,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China,Corresponding author.
| |
Collapse
|
56
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
57
|
Das R, Kanjilal P, Medeiros J, Thayumanavan S. What's Next after Lipid Nanoparticles? A Perspective on Enablers of Nucleic Acid Therapeutics. Bioconjug Chem 2022; 33:1996-2007. [PMID: 35377622 PMCID: PMC9530067 DOI: 10.1021/acs.bioconjchem.2c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent success of mRNA-based COVID-19 vaccines have bolstered the strength of nucleic acids as a therapeutic platform. The number of new clinical trial candidates is skyrocketing with the potential to address many unmet clinical needs. Despite advancements in other aspects, the systemic delivery of nucleic acids to target sites remains a major challenge. Thus, nucleic acid based therapy has yet to reach its full potential. In this review, we shed light on a select few prospective technologies that exhibit substantial potential over traditional nanocarrier designs for nucleic acid delivery. We critically analyze these systems with specific attention to the possibilities for clinical translation.
Collapse
Affiliation(s)
- Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pintu Kanjilal
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
58
|
Advancing biomedical applications via manipulating intersystem crossing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
59
|
Liyanage W, Wu T, Kannan S, Kannan RM. Dendrimer-siRNA Conjugates for Targeted Intracellular Delivery in Glioblastoma Animal Models. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46290-46303. [PMID: 36214413 DOI: 10.1021/acsami.2c13129] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Small interfering RNAs (siRNAs) are potent weapons for gene silencing, with an opportunity to correct defective genes and stop the production of undesirable proteins, with many applications in central nervous system (CNS) disorders. However, successful delivery of siRNAs to the brain parenchyma faces obstacles such as the blood-brain barrier (BBB), brain tissue penetration, and targeting of specific cells. In addition, siRNAs are unstable under physiological conditions and are susceptible to protein binding and enzymatic degradation, necessitating a higher dosage to remain effective. To address these issues and advance siRNA delivery, we report the development of covalently conjugated hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimer-siRNA conjugates, demonstrated with a siRNA against GFP (siGFP) conjugate (D-siGFP) utilizing glutathione-sensitive linkers. This allows for precise nucleic acid loading, protects the payload from premature degradation, delivers the siRNA cargo into cells, and achieves significant GFP knockdown in vitro (∼40%) and in vivo (∼30%). Compared to commercially available delivery systems such as RNAi Max and Lipofectamine, D-siGFP retains the potency of the siRNA in vitro. In addition, the dendrimer-siGFP conjugate significantly enhances the half-life of siRNA in the presence of plasma and endonucleases and maintains the passive targeting ability of PAMAM dendrimers to reactive microglia. When administered intratumorally to orthotopic glioblastoma multiform tumors (GBM) in CX3CR-1GFP mice, D-siGFP localizes in tumor-associated macrophages (TAMs) within the tumor parenchyma, minimizing off-target effects in other cell populations. The facile conjugation strategy for dendrimer-siRNA conjugates presented here offers a promising approach for targeted, systemic intracellular delivery of siRNA, serving as a potential bridge for the clinical translation of RNAi therapies.
Collapse
Affiliation(s)
- Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Tony Wu
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute-Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute-Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| |
Collapse
|
60
|
Shi R, Li H, Jin X, Huang X, Ou Z, Zhang X, Luo G, Deng J. Promoting Re-epithelialization in an oxidative diabetic wound microenvironment using self-assembly of a ROS-responsive polymer and P311 peptide micelles. Acta Biomater 2022; 152:425-439. [PMID: 36113723 DOI: 10.1016/j.actbio.2022.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Engineering smart nano-therapeutics for re-epithelialisation of chronic wounds facilitates the wound healing process. However, due to excessive oxidative stress damage and persistent inflammation in diabetic wound microenvironment, the migration of stimulating epidermal cells in diabetic wounds represents a significant challenge. Here we synthesised P311-loaded micelles by self-assembly of P311 peptides and diblock copolymer poly (ethylene glycol)-block-poly (propylene sulfide) (PEG-b-PPS, denoted as PEPS) that have unique ability to transform an oxidative wound microenvironment into a proregenerative one while also providing cues for epidermal cell migration. The P311@PEPS showed an accelerated migration of epidermal cells via activation of the Akt signalling pathway, simultaneously suppressing the unfavourable oxidative wound microenvironment by scavenging reactive oxygen species (ROS), ultimately leading to the induction of an environment conducive to cell migration. Furthermore, the micelles were able to bypass the inhibitory effect of ROS on the Akt signalling pathway, thereby promoting epidermal cell migration. Additionally, we observed that diabetic wounds treated with P311@PEPS showed accelerated chronic wound healing, granulation tissue formation, collagen deposition and re-epithelialisation, thereby suggesting the efficacy of P311@PEPS as a promising nanoplatform for the treatment of chronic wounds. STATEMENT OF SIGNIFICANCE: Based on the unique conditions of the diabetic wound microenvironment, a smart drug delivery system with ROS-responsive nanomaterials has been widely investigated to enhance diabetic wound healing. In our previous studies, we observed that P311 promotes epidermal cell migration to induce wound re-epithelialisation. However, the application of P311 suffers from its instability. Herein, we developed a therapeutic platform with P311-loaded micelles (P311@PEPS), which were synthesized by the self-assembly of P311 peptides and diblock copolymer poly (ethylene glycol)-block-poly (propylene sulfide) (PEG-b-PPS, denoted as PEPS). These micelles provide continuous migration signals for epidermal cells by ROS-trigged P311 release. Additionally, P311@PEPS scavenges excess ROS and provides a microenvironment that reduces inflammation, which could protect P311 from enzymatic degradation and improve the bioavailability of P311.
Collapse
Affiliation(s)
- Rong Shi
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Plastic Surgery, Lanzhou University Second Hospital. Lanzhou, Gansu 730000, China; Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730030, China
| | - Haisheng Li
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xin Jin
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xue Huang
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zelin Ou
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xuanfen Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital. Lanzhou, Gansu 730000, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jun Deng
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
61
|
Yin S, Song J, Liu D, Wang K, Qi J. NIR-II AIEgens with Photodynamic Effect for Advanced Theranostics. Molecules 2022; 27:6649. [PMID: 36235186 PMCID: PMC9573674 DOI: 10.3390/molecules27196649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Phototheranostics that concurrently integrates accurate diagnosis (e.g., fluorescence and photoacoustic (PA) imaging) and in situ therapy (e.g., photodynamic therapy (PDT) and photothermal therapy (PTT)) into one platform represents an attractive approach for accelerating personalized and precision medicine. The second near-infrared window (NIR-II, 1000-1700 nm) has attracted considerable attention from both the scientific community and clinical doctors for improved penetration depth and excellent spatial resolution. NIR-II agents with a PDT property as well as other functions are recently emerging as a powerful tool for boosting the phototheranostic outcome. In this minireview, we summarize the recent advances of photodynamic NIR-II aggregation-induced emission luminogens (AIEgens) for biomedical applications. The molecular design strategies for tuning the electronic bandgaps and photophysical energy transformation processes are discussed. We also highlight the biomedical applications, such as image-guided therapy of both subcutaneous and orthotopic tumors, and multifunctional theranostics in combination with other treatment methods, including chemotherapy and immunotherapy; and the precise treatment of both tumor and bacterial infection. This review aims to provide guidance for PDT agents with long-wavelength emissions to improve the imaging precision and treatment efficacy. We hope it will provide a comprehensive understanding about the chemical structure-photophysical property-biomedical application relationship of NIR-II luminogens.
Collapse
Affiliation(s)
- Shuai Yin
- School of Pharmacy, Nantong University, Nantong 226001, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dongfang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
62
|
Wei S, Chiang J, Wang H, Lei F, Huang Y, Wang C, Cho D, Hsieh C. Hypoxia-induced CXC chemokine ligand 14 expression drives protumorigenic effects through activation of insulin-like growth factor-1 receptor signaling in glioblastoma. Cancer Sci 2022; 114:174-186. [PMID: 36106406 PMCID: PMC9807529 DOI: 10.1111/cas.15587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/04/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023] Open
Abstract
Hypoxic tumor microenvironment (HTM) promotes a more aggressive and malignant state in glioblastoma. However, little is known about the role and mechanism of CXC chemokine ligand 14 (CXCL14) in HTM-mediated glioblastoma progression. In this study, we report that CXCL14 expression correlated with poor outcomes, tumor grade, and hypoxia-inducible factor (HIF) expression in patients with glioblastoma. CXCL14 was upregulated in tumor cells within the hypoxic areas of glioblastoma. Hypoxia induced HIF-dependent expression of CXCL14, which promoted glioblastoma tumorigenicity and invasiveness in vitro and in vivo. Moreover, CXCL14 gain-of-function in glioblastoma cells activated insulin-like growth factor-1 receptor (IGF-1R) signal transduction to regulate the growth, invasiveness, and neurosphere formation of glioblastoma. Finally, systemic delivery of CXCL14 siRNA nanoparticles (NPs) with polysorbate 80 coating significantly suppressed tumor growth in vivo and extended the survival time in patient-derived glioblastoma xenografts. Together, these findings suggest that HIF-dependent CXCL14 expression contributes to HTM-promoted glioblastoma tumorigenicity and invasiveness through activation of the IGF-1R signaling pathway. CXCL14 siRNA NPs as an oligonucleotide drug can inhibit glioblastoma progression and constitute a translational path for the clinical treatment of glioblastoma patients.
Collapse
Affiliation(s)
- Sung‐Tai Wei
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Division of Neurosurgery, Department of Surgery, An Nan HospitalChina Medical UniversityTainanTaiwan
| | - Jung‐Ying Chiang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Department of NeurosurgeryChina Medical University Hsinchu HospitalHsinchuTaiwan
| | - Hwai‐Lee Wang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Fu‐Ju Lei
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Yen‐Chih Huang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Department of Medical ImagingChina Medical University and HospitalTaichungTaiwan
| | - Chi‐Chung Wang
- Graduate Institute of Biomedical and Pharmaceutical ScienceFu Jen Catholic UniversityNew TaipeiTaiwan
| | - Der‐Yang Cho
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Division of Neurosurgery, Department of Surgery, An Nan HospitalChina Medical UniversityTainanTaiwan
| | - Chia‐Hung Hsieh
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan,Department of Medical ResearchChina Medical University HospitalTaichungTaiwan,Department of Biomedical InformaticsAsia UniversityTaichungTaiwan
| |
Collapse
|
63
|
Chen W, Wang J, Yang H, Sun Y, Chen B, Liu Y, Han Y, Shan M, Zhan J. Interleukin 22 and its association with neurodegenerative disease activity. Front Pharmacol 2022; 13:958022. [PMID: 36176437 PMCID: PMC9514046 DOI: 10.3389/fphar.2022.958022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
It is worth noting that neuroinflammation is well recognized as a symptom of neurodegenerative diseases (NDs). The regulation of neuroinflammation becomes an attractive focus for innovative ND treatment technologies. There is evidence that IL-22 is associated with the development and progression of a wide assortment of NDs. For example, IL-22 can activate glial cells, causing them to generate pro-inflammatory cytokines and encourage lymphocyte infiltration in the brain. IL-22 mRNA is highly expressed in Alzheimer's disease (AD) patients, and a high expression of IL-22 has also been detected in the brains of patients with other NDs. We examine the role of IL-22 in the development and treatment of NDs in this review, and we believe that IL-22 has therapeutic potential in these diseases.
Collapse
Affiliation(s)
- Wenjian Chen
- Department of Orthopaedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Jianpeng Wang
- School of First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Huaizhi Yang
- School of First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yuankai Sun
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuchen Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanxun Han
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Shan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Junfeng Zhan
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
64
|
Zou G, Xia J, Luo H, Xiao D, Jin J, Miao C, Zuo X, Gao Q, Zhang Z, Xue T, You Y, Zhang Y, Zhang L, Xiong W. Combined alcohol and cannabinoid exposure leads to synergistic toxicity by affecting cerebellar Purkinje cells. Nat Metab 2022; 4:1138-1149. [PMID: 36109623 DOI: 10.1038/s42255-022-00633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Combined use of cannabis and alcohol results in greater psychoactive toxicity than either substance alone, but the underlying central mechanisms behind this worsened outcome remain unclear. Here we show that the synergistic effect of Δ9-tetrahydrocannabinol (THC) and ethanol on motor incoordination in mice is achieved by activating presynaptic type 1 cannabinoid receptors (CB1R) and potentiating extrasynaptic glycine receptors (GlyR) within cerebellar Purkinje cells (PCs). The combination of ethanol and THC significantly reduces miniature excitatory postsynaptic current frequency in a CB1R-dependent manner, while increasing the extrasynaptic GlyR-mediated chronic chloride current, both leading to decreased PC activity. Ethanol enhances THC actions by boosting the blood-brain-barrier permeability of THC and enriching THC in the cell membrane. Di-desoxy-THC, a designed compound that specifically disrupts THC-GlyR interaction without affecting the basic functions of CB1R and GlyR, is able to restore PC function and motor coordination in mice. Our findings provide potential therapeutic strategies for overcoming the synergistic toxicity caused by combining cannabis and alcohol use.
Collapse
Affiliation(s)
- Guichang Zou
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Jing Xia
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Heyi Luo
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dan Xiao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jin Jin
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenjian Miao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Zuo
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qianqian Gao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xue
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Wei Xiong
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, China.
| |
Collapse
|
65
|
Sun D, Liu K, Li Y, Xie T, Zhang M, Liu Y, Tong H, Guo Y, Zhang Q, Liu H, Fang J, Chen X. Intrinsically Bioactive Manganese-Eumelanin Nanocomposites Mediated Antioxidation and Anti-Neuroinflammation for Targeted Theranostics of Traumatic Brain Injury. Adv Healthc Mater 2022; 11:e2200517. [PMID: 35695187 DOI: 10.1002/adhm.202200517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Indexed: 01/24/2023]
Abstract
Overproduced reactive oxygen species and the induced oxidative stress and neuroinflammation often result in secondary injury, which is associated with unfavorable prognosis in traumatic brain injury (TBI). Unfortunately, current medications cannot effectively ameliorate the secondary injury at traumatic sites. Here, it is reported that intrinsically bioactive multifunctional nanocomposites (ANG-MnEMNPs-Cur, AMEC) mediate antioxidation and anti-neuroinflammation for targeted TBI theranostics, which are engineered by loading the neuroprotective agent curcumin on angiopep-2 functionalized and manganese doped eumelanin-like nanoparticles. After intravenous delivery, efficient AMEC accumulation is observed in lesions of TBI mice models established by controlled cortical impact method, evidenced by T1 -T2 magnetic resonance and photoacoustic dual-modal imaging. Therapeutically, AMEC effectively alleviates neuroinflammation, protects blood-brain barrier integrity, relieves brain edema, reduces brain tissue loss, and improves the cognition of TBI mice. Mechanistically, following the penetration into the traumatic tissues via angiopep-2 mediated targeting effect, the efficacy of AMEC is synergistically improved by combined functional moieties of curcumin and eumelanin. This is achieved by the alleviation of oxidative stress, inhibition of neuroinflammation via M1-to-M2 macrophage reprogramming, and promotion of neuronal regeneration. The as-developed AMEC with well-defined mechanisms of action may represent a promising targeted theranostics strategy for TBI and other neuroinflammation-associated intracranial diseases.
Collapse
Affiliation(s)
- Duo Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.,Department of Medical Imaging, Air Force Hospital of Western Theater Command, Chengdu, 610044, China
| | - Tian Xie
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mi Zhang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu Liu
- Beijing Advanced Innovation Center for Big Data Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
| | - Haipeng Tong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qianhui Zhang
- Department of Foreign Languages, Army Medical University, Chongqing, 400039, China
| | - Heng Liu
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China
| |
Collapse
|
66
|
Wu MS, Li XJ, Liu CY, Xu Q, Huang JQ, Gu S, Chen JX. Effects of Histone Modification in Major Depressive Disorder. Curr Neuropharmacol 2022; 20:1261-1277. [PMID: 34551699 PMCID: PMC9881074 DOI: 10.2174/1570159x19666210922150043] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Major depressive disorder (MDD) is a disease associated with many factors; specifically, environmental, genetic, psychological, and biological factors play critical roles. Recent studies have demonstrated that histone modification may occur in the human brain in response to severely stressful events, resulting in transcriptional changes and the development of MDD. In this review, we discuss five different histone modifications, histone methylation, histone acetylation, histone phosphorylation, histone crotonylation and histone β-hydroxybutyrylation, and their relationships with MDD. The utility of histone deacetylase (HDAC) inhibitors (HDACis) for MDD treatment is also discussed. As a large number of MDD patients in China have been treated with traditional Chineses medicine (TCM), we also discuss some TCM therapies, such as Xiaoyaosan (XYS), and their effects on histone modification. In summary, targeting histone modification may be a new strategy for elucidating the mechanism of MDD and a new direction for MDD treatment.
Collapse
Affiliation(s)
- Man-Si Wu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China;
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China;
| | - Chen-Yue Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China;
| | - Qiuyue Xu
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China;
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China;
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; ,Address correspondence to this author at the Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; E-mail:
| |
Collapse
|
67
|
Fu S, Zhao S, Chen H, Yang W, Xia X, Xu X, Liang Z, Feng X, Wang Z, Ai P, Ding L, Cai Q, Wang Y, Zhang Y, Zhu J, Zhang B, Zheng JC. Insulin-incubated palladium clusters promote recovery after brain injury. J Nanobiotechnology 2022; 20:299. [PMID: 35752849 PMCID: PMC9233827 DOI: 10.1186/s12951-022-01495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/04/2022] [Indexed: 11/10/2022] Open
Abstract
Traumatic brain injury (TBI) is a cause of disability and death worldwide, but there are currently no specific treatments for this condition. Release of excess reactive oxygen species (ROS) in the injured brain leads to a series of pathological changes; thus, eliminating ROS could be a potential therapeutic strategy. Herein, we synthesized insulin-incubated ultrasmall palladium (Pd@insulin) clusters via green biomimetic chemistry. The Pd@insulin clusters, which were 3.2 nm in diameter, exhibited marked multiple ROS-scavenging ability testified by the theoretical calculation. Pd@insulin could be rapidly excreted via kidney-urine metabolism and induce negligible adverse effects after a long-time treatment in vivo. In a TBI mouse model, intravenously injected Pd@insulin clusters aggregated in the injured cortex, effectively suppressed excessive ROS production, and significantly rescued motor function, cognition and spatial memory. We found that the positive therapeutic effects of the Pd@insulin clusters were mainly attributed to their ROS-scavenging ability, as they inhibited excessive neuroinflammation, reduced cell apoptosis, and prevented neuronal loss. Therefore, the ability of Pd@insulin clusters to effectively eliminate ROS, as well as their simple structure, easy synthesis, low toxicity, and rapid metabolism may facilitate their clinical translation for TBI treatment.
Collapse
Affiliation(s)
- Shengyang Fu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Shu Zhao
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Huili Chen
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Weitao Yang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, Shanghai, 200120, China.,The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai, 200331, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai, 200331, China. .,Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China. .,Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China.
| | - Xiaonan Xu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhanping Liang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xuanran Feng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhuo Wang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pu Ai
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.,Wuxi Clinical College of Anhui Medical University, Hefei, 230022, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qingyuan Cai
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.,Franklin & Marshall College, Lancaster, PA, 17603, United States
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Yangzhi Rehabilitation Hospital affiliated to Tongji University, Shanghai, 200065, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Bingbo Zhang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, Shanghai, 200120, China. .,The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai, 200331, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai, 200331, China. .,Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China. .,Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China.
| |
Collapse
|
68
|
Peptidomimetic Lipid-Nanoparticle-Mediated Knockdown of TLR4 in CNS Protects against Cerebral Ischemia/Reperfusion Injury in Mice. NANOMATERIALS 2022; 12:nano12122072. [PMID: 35745411 PMCID: PMC9228890 DOI: 10.3390/nano12122072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/31/2023]
Abstract
Ischemic stroke activates toll-like receptor 4 (TLR4) signaling, resulting in proinflammatory polarization of microglia and secondary neuronal damage. Herein, we report a novel lipid-nanoparticle (LNP)-mediated knockdown of TLR4 in microglia and amelioration of neuroinflammation in a mouse model of transient middle cerebral artery occlusion (tMCAO). siRNA against TLR4 (siTLR4) complexed to the novel LNP (siTLR4/DoGo310), which was based on a dioleoyl-conjugated short peptidomimetic (denote DoGo310), was readily internalized by the oxygen–glucose-deprived (OGD) mouse primary microglia, knocked-down TLR4, and polarized the cell to the anti-inflammatory phenotype in vitro. Systemic administration of siTLR4/DoGo310 LNPs in the tMCAO mice model resulted in the accumulation of siRNA mainly in the Iba1 positive cells in the peri-infarct. Analysis of the peri-infarct brain tissue revealed that a single injection of siTLR4/DoGo310 LNPs led to significant knockdown of TLR4 gene expression, reversing the pattern of cytokines expression, and improving the neurological functions in tMCAO model mice. Our data demonstrate that DoGo310 LNPs could be a promising nanocarrier for CNS-targeted siRNA delivery for the treatment of CNS disorders.
Collapse
|
69
|
Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Farjami A, Farjami A, Mahmoudian M, Salatin S. The therapeutic benefits of intravenously administrated nanoparticles in stroke and age-related neurodegenerative diseases. Curr Pharm Des 2022; 28:1985-2000. [PMID: 35676838 DOI: 10.2174/1381612828666220608093639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
The mean global lifetime risk of neurological disorders such as stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) has shown a large effect on economy and society.Researchersare stillstruggling to find effective drugs to treatneurological disordersand drug delivery through the blood-brain barrier (BBB) is a major challenge to be overcome. The BBB is a specialized multicellular barrier between the peripheral blood circulation and the neural tissue. Unique and selective features of the BBB allow it to tightly control brain homeostasis as well as the movement of ions and molecules. Failure in maintaining any of these substances causes BBB breakdown and subsequently enhances neuroinflammation and neurodegeneration.BBB disruption is evident in many neurologicalconditions.Nevertheless, the majority of currently available therapies have tremendous problems for drug delivery into the impaired brain. Nanoparticle (NP)-mediated drug delivery has been considered as a profound substitute to solve this problem. NPs are colloidal systems with a size range of 1-1000 nm whichcan encapsulate therapeutic payloads, improve drug passage across the BBB, and target specific brain areas in neurodegenerative/ischemic diseases. A wide variety of NPs has been displayed for the efficient brain delivery of therapeutics via intravenous administration, especially when their surfaces are coated with targeting moieties. Here, we discuss recent advances in the development of NP-based therapeutics for the treatment of stroke, PD, and AD as well as the factors affecting their efficacy after systemic administration.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
70
|
Zha S, Wong K, All AH. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv Healthc Mater 2022; 11:e2102610. [PMID: 35166052 DOI: 10.1002/adhm.202102610] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Intravenous delivery of nanomaterials containing therapeutic agents and various cargos for treating neurological disorders is often constrained by low delivery efficacy due to difficulties in passing the blood-brain barrier (BBB). Nanoparticles (NPs) administered intranasally can move along olfactory and trigeminal nerves so that they do not need to pass through the BBB, allowing non-invasive, direct access to selective neural pathways within the brain. Hence, intranasal (IN) administration of NPs can effectively deliver drugs and genes into targeted regions of the brain, holding potential for efficacious disease treatment in the central nervous system (CNS). In this review, current methods for delivering conjugated NPs to the brain are primarily discussed. Distinctive potential mechanisms of therapeutic nanocomposites delivered via IN pathways to the brain are then discussed. Recent progress in developing functional NPs for applications in multimodal bioimaging, drug delivery, diagnostics, and therapeutics is also reviewed. This review is then concluded by discussing existing challenges, new directions, and future perspectives in IN delivery of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zha
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR 000000 P. R. China
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| | - Angelo H. All
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| |
Collapse
|
71
|
Evaluation of liver specific ionizable lipid nanocarrierin the delivery of siRNA. Chem Phys Lipids 2022; 246:105207. [PMID: 35623403 DOI: 10.1016/j.chemphyslip.2022.105207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022]
Abstract
Hepcidin, a key regulator of iron homeostasis, has been implicated in the pathogenesis of various iron-related diseases. Although small interfering RNA (siRNA) are potent to modulate the expression of hepcidin, their bioavailability remains a major issue. The β-galactopyranoside-conjugated liposomes (GAL-liposome) targeting liver synthesized hepcidin were prepared by thin lipid film hydration method to encapsulate siRNA and the conjugation of β-galactopyranoside to the lipid nanocarrier was achieved by covalent chemistry. The prepared siRNA loaded GAL-lip were spherical with around 50 nm radius in size as observed by HR-TEM. The zeta potential and polydispersity index of the prepared liposomes were -19.9±0.96 mV and 0.44±0.05, respectively. The encapsulation efficiency as determined by dialysis bag method was around 91.76±1.74%. The cell viability and cellular uptake analysis was examined in HepG2 cells by MTT assay and flow cytometry, respectively. The stability and cumulative release of siRNA was also assessed. The hepcidin mRNA expression on administration of siRNA loaded GAL-lip was determined in HepG2 cells and in lipopolysaccharide-induced mice model followed by examining itsin vivo biodistribution by fluorescence microscopy. The results suggested thatsiRNA loaded GAL-lip reduced the hepcidin levels, thus, highlighting a novel ligand conjugated ionizable lipid-based nanocarrier for inducing RNA interference.
Collapse
|
72
|
Ahmed T, Liu FCF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022; 19:1722-1765. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Elliya Park
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Amin Ghavaminejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
73
|
Wang R, Yang S, Xiao P, Sun Y, Li J, Jiang X, Wu W. Fluorination and Betaine Modification Augment the Blood-Brain Barrier-Crossing Ability of Cylindrical Polymer Brushes. Angew Chem Int Ed Engl 2022; 61:e202201390. [PMID: 35143085 DOI: 10.1002/anie.202201390] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/25/2022]
Abstract
Blood-brain barrier (BBB)-crossing ability of drugs is of paramount importance for the treatments of central nervous system diseases. However, the known methods for drug transport across the BBB are generally complicated and inefficient, and exhibit serious side effects in some cases. Herein, we report an exciting finding that fluorination and betaine modification can significantly augment the BBB-crossing ability of cylindrical polymer brushes (CPBs), which was demonstrated by the comparison with the CPBs modified with alkyl and poly(ethylene glycol) chains, respectively. We surmise that fluorination enhances the BBB penetration of the CPBs by increasing the hydrophobicity and reducing the surface energy, and betaine medication achieves this function via a betaine transporter BGT1 expressed on brain capillaries. By means of an in vitro BBB model, we demonstrated that the CPBs penetrated the BBB through transendothelial transport. This work provides a novel strategy for enhancing the BBB-crossing ability of nanomaterials.
Collapse
Affiliation(s)
- Ruonan Wang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuo Yang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Panpan Xiao
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Sun
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
74
|
Khalin I, Adarsh N, Schifferer M, Wehn A, Groschup B, Misgeld T, Klymchenko A, Plesnila N. Size-Selective Transfer of Lipid Nanoparticle-Based Drug Carriers Across the Blood Brain Barrier Via Vascular Occlusions Following Traumatic Brain Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200302. [PMID: 35384294 DOI: 10.1002/smll.202200302] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The current lack of understanding about how nanocarriers cross the blood-brain barrier (BBB) in the healthy and injured brain is hindering the clinical translation of nanoscale brain-targeted drug-delivery systems. Here, the bio-distribution of lipid nano-emulsion droplets (LNDs) of two sizes (30 and 80 nm) in the mouse brain after traumatic brain injury (TBI) is investigated. The highly fluorescent LNDs are prepared by loading them with octadecyl rhodamine B and a bulky hydrophobic counter-ion, tetraphenylborate. Using in vivo two-photon and confocal imaging, the circulation kinetics and bio-distribution of LNDs in the healthy and injured mouse brain are studied. It is found that after TBI, LNDs of both sizes accumulate at vascular occlusions, where specifically 30 nm LNDs extravasate into the brain parenchyma and reach neurons. The vascular occlusions are not associated with bleedings, but instead are surrounded by processes of activated microglia, suggesting a specific opening of the BBB. Finally, correlative light-electron microscopy reveals 30 nm LNDs in endothelial vesicles, while 80 nm particles remain in the vessel lumen, indicating size-selective vesicular transport across the BBB via vascular occlusions. The data suggest that microvascular occlusions serve as "gates" for the transport of nanocarriers across the BBB.
Collapse
Affiliation(s)
- Igor Khalin
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
- Cluster for Systems Neurology, Munich, Germany
| | - Nagappanpillai Adarsh
- Laboratory de Biophotonique et Pharmacologie, University of Strasbourg, Strasbourg, 67401, France
- Department of Polymer Chemistry, Government College Attingal, Kerala, 695101, India
| | - Martina Schifferer
- Cluster for Systems Neurology, Munich, Germany
- German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
| | - Bernhard Groschup
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
| | - Thomas Misgeld
- Cluster for Systems Neurology, Munich, Germany
- German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Institute of Neuronal Cell Biology, School of Medicine, Technical University of Munich, 80802, Munich, Germany
| | - Andrey Klymchenko
- Laboratory de Biophotonique et Pharmacologie, University of Strasbourg, Strasbourg, 67401, France
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
- Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
75
|
Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A, Conde J. Nanodelivery of nucleic acids. NATURE REVIEWS. METHODS PRIMERS 2022; 2:24. [PMID: 35480987 PMCID: PMC9038125 DOI: 10.1038/s43586-022-00104-y] [Citation(s) in RCA: 293] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
There is growing need for a safe, efficient, specific and non-pathogenic means for delivery of gene therapy materials. Nanomaterials for nucleic acid delivery offer an unprecedented opportunity to overcome these drawbacks; owing to their tunability with diverse physico-chemical properties, they can readily be functionalized with any type of biomolecules/moieties for selective targeting. Nucleic acid therapeutics such as antisense DNA, mRNA, small interfering RNA (siRNA) or microRNA (miRNA) have been widely explored to modulate DNA or RNA expression Strikingly, gene therapies combined with nanoscale delivery systems have broadened the therapeutic and biomedical applications of these molecules, such as bioanalysis, gene silencing, protein replacement and vaccines. Here, we overview how to design smart nucleic acid delivery methods, which provide functionality and efficacy in the layout of molecular diagnostics and therapeutic systems. It is crucial to outline some of the general design considerations of nucleic acid delivery nanoparticles, their extraordinary properties and the structure-function relationships of these nanomaterials with biological systems and diseased cells and tissues.
Collapse
Affiliation(s)
- Bárbara B Mendes
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Aviram Avital
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Dongbao Yao
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Xiang Zhou
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Noga Sharf-Pauker
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Omer Adir
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Haojun Liang
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Avi Schroeder
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
76
|
Yuan Q, Bao B, Li M, Tang Y. Bioactive Composite Nanoparticles for Effective Microenvironment Regulation, Neuroprotection, and Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15623-15631. [PMID: 35322659 DOI: 10.1021/acsami.2c00579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brain injuries typically result in neural tissue damage and trigger a permanent neurologic deficit. Current methods exhibit limited effects due to the harsh microenvironment of injury regions rich in reactive oxygen species (ROS). Herein, a microenvironment regulation combined with cellular differentiation strategy is designed for repairing injured nerves. We prepare PMNT/F@D-NP nanoparticles comprising a bioactive polythiophene derivative (PMNT) and fullerenol as a multifunctional theranostic nanoplatform. PMNT/F@D-NPs can significantly reduce the accumulation of ROS in the simulated ischemic brain injury trial and inhibit cell apoptosis due to the effective free radical scavenging ability of fullerenol. Interestingly, the bioactive PMNT/F@D-NPs can promote the proliferation and differentiation of neurons, confirmed by immunofluorescence and western blotting studies. This newly developed strategy exhibits a combinatorial therapeutic effect by promoting nerve cell survival and differentiation while improving the microenvironment in the damaged area, which paves the way for the rational design of multifunctional agents for brain injury therapy.
Collapse
Affiliation(s)
- Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
77
|
Yuan T, Gao L, Zhan W, Dini D. Effect of Particle Size and Surface Charge on Nanoparticles Diffusion in the Brain White Matter. Pharm Res 2022; 39:767-781. [PMID: 35314997 PMCID: PMC9090877 DOI: 10.1007/s11095-022-03222-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
Purpose Brain disorders have become a serious problem for healthcare worldwide. Nanoparticle-based drugs are one of the emerging therapies and have shown great promise to treat brain diseases. Modifications on particle size and surface charge are two efficient ways to increase the transport efficiency of nanoparticles through brain-blood barrier; however, partly due to the high complexity of brain microstructure and limited visibility of Nanoparticles (NPs), our understanding of how these two modifications can affect the transport of NPs in the brain is insufficient. Methods In this study, a framework, which contains a stochastic geometric model of brain white matter (WM) and a mathematical particle tracing model, was developed to investigate the relationship between particle size/surface charge of the NPs and their effective diffusion coefficients (D) in WM. Results The predictive capabilities of this method have been validated using published experimental tests. For negatively charged NPs, both particle size and surface charge are positively correlated with D before reaching a size threshold. When Zeta potential (Zp) is less negative than -10 mV, the difference between NPs’ D in WM and pure interstitial fluid (IF) is limited. Conclusion A deeper understanding on the relationships between particle size/surface charge of NPs and their D in WM has been obtained. The results from this study and the developed modelling framework provide important tools for the development of nano-drugs and nano-carriers to cure brain diseases.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Ling Gao
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, SE1 7EH, UK
| | - Wenbo Zhan
- School of Engineering, King's College, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
78
|
Hou Q, Zhu L, Wang L, Liu X, Xiao F, Xie Y, Zheng W, Jiang X. Screening on-chip fabricated nanoparticles for penetrating the blood-brain barrier. NANOSCALE 2022; 14:3234-3241. [PMID: 35156984 DOI: 10.1039/d1nr05825h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The inability of drugs to cross the blood-brain barrier (BBB) makes it difficult to treat diseases in the central nervous system. It is known that peptides with or without specific receptors on the BBB showed different or even controversial neuron targeting capability in different reports. So, it is necessary to clarify how these peptides work as targeting molecules in the central nervous system. Herein, we evaluate and compare the performance of 6 kinds of peptides with (T7, D-T7, and GSH) or without (TGN, CGN, and TAT) BBB-specific receptors by conjugating these peptides on lipids to serve as a shell to encapsulate a core of PLGA and lamotrigine to form nanoparticles for targeted epilepsy therapy. In vitro assay shows that the TAT-modified nanoparticles show the highest internalization efficacy in the BBB model cell line bEnd·3 cells and hippocampal neurons. By contrast, experiments in mice show that the D-T7-modified nanoparticles have the highest brain targeting and epilepsy therapeutic efficiency. Thus, our experiments uncover the different performances of the 6 peptides at different levels (in vitro and in vivo), which is insightful for developing novel delivery systems for treating diseases in the central nervous system.
Collapse
Affiliation(s)
- Qinghong Hou
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China.
| | - Lina Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
| | - Le Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Xiaoyan Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Feng Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Yangzhouyun Xie
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Wenfu Zheng
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China.
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| |
Collapse
|
79
|
Aday S, Li W, Karp JM, Joshi N. An in vitro Blood-brain Barrier Model to Study the Penetration of Nanoparticles. Bio Protoc 2022; 12:e4334. [PMID: 35340294 PMCID: PMC8899545 DOI: 10.21769/bioprotoc.4334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/02/2021] [Accepted: 01/16/2022] [Indexed: 05/02/2025] Open
Abstract
The blood-brain barrier (BBB), a crucial protection mechanism in the central nervous system (CNS), is a selective barrier comprised of endothelial cells. It hampers the development of therapeutic and diagnostic tools for neurological diseases due to the poor penetration of most of these agents. Rationally engineered nanoparticles (NP) can facilitate the transport of therapeutic and diagnostic agents across the BBB. However, evaluating BBB penetration by NP majorly relies on the use of expensive and time-consuming animal experiments with low throughput. In vitro BBB models composed of brain endothelial cells can be a useful tool to rapidly screen multiple NP formulations to compare their BBB penetration ability and identify optimal formulations for in vivo validation. In this protocol, we present an in vitro model of BBB developed using murine cerebral cortex endothelial cells (bEnd.3). bEnd.3 is a commercially available, easy to manipulate cell line that forms tight junctions with potent paracellular barrier property. The protocol includes culturing of bEnd.3 cells, establishment of the in vitro model, and assessing NP permeability. We believe that, due to its simplicity and consistency, this step-by-step protocol can be easily used by researchers to screen NP-based drug delivery systems for BBB penetration. Graphic abstract.
Collapse
Affiliation(s)
- Sezin Aday
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Wen Li
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
80
|
Wang R, Yang S, Xiao P, Sun Y, Li J, Jiang X, Wu W. Fluorination and Betaine Modification Augment the Blood‐Brain Barrier‐Crossing Ability of Cylindrical Polymer Brushes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruonan Wang
- Nanjing University Department of Polymer Science & Engineering CHINA
| | - Shuo Yang
- Nanjing University Department of Polymer Science & Engineering CHINA
| | - Panpan Xiao
- Nanjing University Department of Polymer Science & Engineering CHINA
| | - Ying Sun
- Nanjing University Department of Polymer Science & Engineering CHINA
| | - Jia Li
- Nanjing University Department of Polymer Science & Engineering CHINA
| | - Xiqun Jiang
- Nanjing University Department of Polymer Science & Engineering CHINA
| | - Wei Wu
- Nanjing University Department of Polymer Science & Engineering 163 Xianlin Road, Qixia District, Nanjing, Jiangsu Province, 210023 CHINA
| |
Collapse
|
81
|
Hauck ES, Hecker JG. Non-Viral Delivery of RNA Gene Therapy to the Central Nervous System. Pharmaceutics 2022; 14:165. [PMID: 35057059 PMCID: PMC8779867 DOI: 10.3390/pharmaceutics14010165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 02/05/2023] Open
Abstract
Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Lipid-mediated nucleic acid delivery is an alternative to viral vector-mediated gene delivery and has the following advantages. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, since transit across the nuclear membrane is not necessary, and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Delivery of RNA to target organ(s) has previously been challenging due to RNA's rapid degradation in biological systems, but cationic lipids complexed with RNA, as well as lipid nanoparticles (LNPs), have allowed for delivery and expression of the complexed RNA both in vitro and in vivo. This review will focus on the non-viral lipid-mediated delivery of RNAs, including mRNA, siRNA, shRNA, and microRNA, to the central nervous system (CNS), an organ with at least two unique challenges. The CNS contains a large number of slowly dividing or non-dividing cell types and is protected by the blood brain barrier (BBB). In non-dividing cells, RNA-lipid complexes demonstrated increased transfection efficiency relative to DNA transfection. The efficiency, timing of the onset, and duration of expression after transfection may determine which nucleic acid is best for which proposed therapy. Expression can be seen as soon as 1 h after RNA delivery, but duration of expression has been limited to 5-7 h. In contrast, transfection with a DNA lipoplex demonstrates protein expression within 5 h and lasts as long as several weeks after transfection.
Collapse
Affiliation(s)
- Ellen S. Hauck
- Department of Anesthesiology, Lewis Katz School of Medicine, Temple University, 3401 N Broad St., Philadelphia, PA 19140, USA
| | - James G. Hecker
- Department of Anesthesiology, Harborview Medical Center, University of Washington, P.O. Box 359724, 329 Ninth Ave, Seattle, WA 98104, USA;
| |
Collapse
|
82
|
Achar A, Myers R, Ghosh C. Drug Delivery Challenges in Brain Disorders across the Blood-Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 2021; 9:1834. [PMID: 34944650 PMCID: PMC8698904 DOI: 10.3390/biomedicines9121834] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the physiological and structural properties of the blood-brain barrier (BBB), the delivery of drugs to the brain poses a unique challenge in patients with central nervous system (CNS) disorders. Several strategies have been investigated to circumvent the barrier for CNS therapeutics such as in epilepsy, stroke, brain cancer and traumatic brain injury. In this review, we summarize current and novel routes of drug interventions, discuss pharmacokinetics and pharmacodynamics at the neurovascular interface, and propose additional factors that may influence drug delivery. At present, both technological and mechanistic tools are devised to assist in overcoming the BBB for more efficient and improved drug bioavailability in the treatment of clinically devastating brain disorders.
Collapse
Affiliation(s)
- Aneesha Achar
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Rosemary Myers
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Chaitali Ghosh
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
83
|
Mu X, Wang J, He H, Li Q, Yang B, Wang J, Liu H, Gao Y, Ouyang L, Sun S, Ren Q, Shi X, Hao W, Fei Q, Yang J, Li L, Vest R, Wyss-Coray T, Luo J, Zhang XD. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. SCIENCE ADVANCES 2021; 7:eabk1210. [PMID: 34757781 PMCID: PMC8580303 DOI: 10.1126/sciadv.abk1210] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Artificial enzymes have attracted wide interest in disease diagnosis and biotechnology due to high stability, easy synthesis, and cost effectiveness. Unfortunately, their catalytic rate is limited to surface electron transfer, affecting the catalytic and biological activity. Here, we report an oligomeric nanozyme (O-NZ) with ultrafast electron transfer, achieving ultrahigh catalytic activity. O-NZ shows electron transfer of 1.8 nanoseconds in internal cores and 1.2 picoseconds between core and ligand molecule, leading to ultrahigh superoxidase dismutase–like and glutathione peroxidase–like activity (comparable with natural enzyme, Michaelis constant = 0.87 millimolars). Excitingly, O-NZ can improve the 1-month survival rate of mice with acute brain trauma from 50 to 90% and promote the recovery of long-term neurocognition. Biochemical experiments show that O-NZ can decrease harmful peroxide and superoxide via in vivo catalytic chain reaction and reduce acute neuroinflammation via nuclear factor erythroid-2 related factor 2–mediated up-regulation of heme oxygenase-1 expression.
Collapse
Affiliation(s)
- Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Junying Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Qifeng Li
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bing Yang
- Department of Cellular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yalong Gao
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lufei Ouyang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Qinjuan Ren
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xinjian Shi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenting Hao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qiaoman Fei
- Department of Cellular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Lulin Li
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ryan Vest
- Department of Chemical Engineering, School of Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Corresponding author.
| |
Collapse
|
84
|
Polysorbate-Based Drug Formulations for Brain-Targeted Drug Delivery and Anticancer Therapy. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199336] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polysorbates (PSs) are synthetic nonionic surfactants consisting of polyethoxy sorbitan fatty acid esters. PSs have been widely employed as emulsifiers and stabilizers in various drug formulations and food additives. Recently, various PS-based formulations have been developed for safe and efficient drug delivery. This review introduces the general features of PSs and PS-based drug carriers, summarizes recent progress in the development of PS-based drug formulations, and discusses the physicochemical properties, biological safety, P-glycoprotein inhibitory properties, and therapeutic applications of PS-based drug formulations. Additionally, recent advances in brain-targeted drug delivery using PS-based drug formulations have been highlighted. This review will help researchers understand the potential of PSs as effective drug formulation agents.
Collapse
|
85
|
Eyford BA, Singh CSB, Abraham T, Munro L, Choi KB, Hill T, Hildebrandt R, Welch I, Vitalis TZ, Gabathuler R, Gordon JA, Adomat H, Guns ES, Lu CJ, Pfeifer CG, Tian MM, Jefferies WA. A Nanomule Peptide Carrier Delivers siRNA Across the Intact Blood-Brain Barrier to Attenuate Ischemic Stroke. Front Mol Biosci 2021; 8:611367. [PMID: 33869275 PMCID: PMC8044710 DOI: 10.3389/fmolb.2021.611367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of neuroinflammation (NI) of the central nervous system. A twelve-amino acid peptide that transcytoses the BBB, termed MTfp, was chemically conjugated to siRNA to create a novel peptide-oligonucleotide conjugate (POC), directed to downregulate NOX4, a gene thought responsible for oxidative stress in ischemic stroke. The MTfp-NOX4 POC has the ability to cross the intact BBB and knockdown NOX4 expression in the brain. Following induction of ischemic stroke, animals pretreated with the POC exhibited significantly smaller infarcts; accompanied by increased protection against neurological deterioration and improved recovery. The data demonstrates that the MTfp can act as a nanomule to facilitate BBB transcytosis of siRNAs; where the NOX-4 specific siRNA moiety can elicit effective therapeutic knockdown of a gene responsible for oxidative stress in the central nervous system. This study is the first to conclusively demonstrate both siRNA-carrier delivery and therapeutic efficacy in any CNS disease model where the BBB remains intact and thus offers new avenues for potential treatments of oxidative stress underlying neuroinflammation in a variety of neuropathologies that are currently refractory to existing therapies.
Collapse
Affiliation(s)
- Brett A. Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chaahat S. B. Singh
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Abraham
- Department of Neural and Behavioral Sciences and Microscopy Imaging Core Lab, Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Kyung Bok Choi
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Tracy Hill
- Centre for Comparative Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rhonda Hildebrandt
- Centre for Comparative Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ian Welch
- Centre for Comparative Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Reinhard Gabathuler
- Bioasis Technologies Inc., Guilford, CT, United States
- King’s College London, London, United Kingdom
| | - Jacob A. Gordon
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hans Adomat
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Emma S.T. Guns
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Chieh-Ju Lu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mei Mei Tian
- Bioasis Technologies Inc., Guilford, CT, United States
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|