51
|
Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 2019; 34:2371-2375. [PMID: 29506021 DOI: 10.1093/bioinformatics/bty113] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Motivation The 16S ribosomal RNA (rRNA) gene is widely used to survey microbial communities. Sequences are often clustered into Operational Taxonomic Units (OTUs) as proxies for species. The canonical clustering threshold is 97% identity, which was proposed in 1994 when few 16S rRNA sequences were available, motivating a reassessment on current data. Results Using a large set of high-quality 16S rRNA sequences from finished genomes, I assessed the correspondence of OTUs to species for five representative clustering algorithms using four accuracy metrics. All algorithms had comparable accuracy when tuned to a given metric. Optimal identity thresholds were ∼99% for full-length sequences and ∼100% for the V4 hypervariable region. Availability and implementation Reference sequences and source code are provided in the Supplementary Material. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
|
52
|
Khojandi N, Haselkorn TS, Eschbach MN, Naser RA, DiSalvo S. Intracellular Burkholderia Symbionts induce extracellular secondary infections; driving diverse host outcomes that vary by genotype and environment. THE ISME JOURNAL 2019; 13:2068-2081. [PMID: 31019270 PMCID: PMC6776111 DOI: 10.1038/s41396-019-0419-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Symbiotic associations impact and are impacted by their surrounding ecosystem. The association between Burkholderia bacteria and the soil amoeba Dictyostelium discoideum is a tractable model to unravel the biology underlying symbiont-endowed phenotypes and their impacts. Several Burkholderia species stably associate with D. discoideum and typically reduce host fitness in food-rich environments while increasing fitness in food-scarce environments. Burkholderia symbionts are themselves inedible to their hosts but induce co-infections with secondary bacteria that can serve as a food source. Thus, Burkholderia hosts are "farmers" that carry food bacteria to new environments, providing a benefit when food is scarce. We examined the ability of specific Burkholderia genotypes to induce secondary co-infections and assessed host fitness under a range of co-infection conditions and environmental contexts. Although all Burkholderia symbionts intracellularly infected Dictyostelium, we found that co-infections are predominantly extracellular, suggesting that farming benefits are derived from extracellular infection of host structures. Furthermore, levels of secondary infection are linked to conditional host fitness; B. agricolaris infected hosts have the highest level of co-infection and have the highest fitness in food-scarce environments. This study illuminates the phenomenon of co-infection induction across Dictyostelium associated Burkholderia species and exemplifies the contextual complexity of these associations.
Collapse
Affiliation(s)
- Niloufar Khojandi
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
- Department of Molecular Microbiology and Immunology, St. Louis University, St. Louis, MO, 63104, USA
| | - Tamara S Haselkorn
- Department of Biology, University of Central Arkansas, 201 Donaghey Avenue, Conway, AR, 72035, USA
| | - Madison N Eschbach
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Rana A Naser
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| |
Collapse
|
53
|
Bos KI, Kühnert D, Herbig A, Esquivel-Gomez LR, Andrades Valtueña A, Barquera R, Giffin K, Kumar Lankapalli A, Nelson EA, Sabin S, Spyrou MA, Krause J. Paleomicrobiology: Diagnosis and Evolution of Ancient Pathogens. Annu Rev Microbiol 2019; 73:639-666. [PMID: 31283430 DOI: 10.1146/annurev-micro-090817-062436] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last century has witnessed progress in the study of ancient infectious disease from purely medical descriptions of past ailments to dynamic interpretations of past population health that draw upon multiple perspectives. The recent adoption of high-throughput DNA sequencing has led to an expanded understanding of pathogen presence, evolution, and ecology across the globe. This genomic revolution has led to the identification of disease-causing microbes in both expected and unexpected contexts, while also providing for the genomic characterization of ancient pathogens previously believed to be unattainable by available methods. In this review we explore the development of DNA-based ancient pathogen research, the specialized methods and tools that have emerged to authenticate and explore infectious disease of the past, and the unique challenges that persist in molecular paleopathology. We offer guidelines to mitigate the impact of these challenges, which will allow for more reliable interpretations of data in this rapidly evolving field of investigation.
Collapse
Affiliation(s)
- Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Luis Roger Esquivel-Gomez
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Aida Andrades Valtueña
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Karen Giffin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Aditya Kumar Lankapalli
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Elizabeth A Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Susanna Sabin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany; .,Faculty of Biological Sciences, Friedrich Schiller University, 07737 Jena, Germany
| |
Collapse
|
54
|
Dann LM, Clanahan M, Paterson JS, Mitchell JG. Distinct niche partitioning of marine and freshwater microbes during colonisation. FEMS Microbiol Ecol 2019; 95:5528309. [DOI: 10.1093/femsec/fiz098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/03/2019] [Indexed: 11/14/2022] Open
Abstract
ABSTRACTBacteria are ubiquitous on the Earth, and many use chemotaxis to colonise favourable microenvironments. The colonisation process is continuous, where animals, plants, protists, viruses and chemical and physical factors frequently remove bacteria from wide volume ranges. Colonisation processes are poorly understood in natural communities. Here, we investigated niche partitioning during colonisation in aquatic microbial communities using bands of bacterial chemotaxis in petri dishes from mixed-species communities. The community partitioned into loiterers, primary and secondary colonisers, each having distinct abundances and taxonomy. Within marine samples, Shewanella dominated the primary colonisers, whilst Enterobacteriaceae dominated this group within the freshwater samples. Whether the success of these specific groups translates to what occurs within natural communities is uncertain, but here we show these taxa have the capacity to colonise new, unexplored environments. A strong negative association existed between the primary colonisers and viral abundance, suggesting that successful colonisers simultaneously move toward areas of heightened resources, which correlated with lower virus-like particles. Here, we show that microbial communities constantly sort themselves into distinct taxonomic groups as they move into new environments. This sorting during colonisation may be fundamental to microbial ecology, industry, technology, and disease development by setting the initial conditions that determine the winners as a community develops.
Collapse
Affiliation(s)
- Lisa M Dann
- College of Science and Engineering at Flinders University, Adelaide, South Australia
| | - Michelle Clanahan
- College of Science and Engineering at Flinders University, Adelaide, South Australia
| | - James S Paterson
- College of Science and Engineering at Flinders University, Adelaide, South Australia
| | - James G Mitchell
- College of Science and Engineering at Flinders University, Adelaide, South Australia
| |
Collapse
|
55
|
Remigi P, Masson-Boivin C, Rocha EP. Experimental Evolution as a Tool to Investigate Natural Processes and Molecular Functions. Trends Microbiol 2019; 27:623-634. [DOI: 10.1016/j.tim.2019.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
|
56
|
Rocha Martin VN, Lacroix C, Killer J, Bunesova V, Voney E, Braegger C, Schwab C. Cutibacterium avidum is phylogenetically diverse with a subpopulation being adapted to the infant gut. Syst Appl Microbiol 2019; 42:506-516. [PMID: 31128887 DOI: 10.1016/j.syapm.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
The infant gut harbors a diverse microbial community consisting of several taxa whose persistence depends on adaptation to the ecosystem. In healthy breast-fed infants, the gut microbiota is dominated by Bifidobacterium spp.. Cutibacterium avidum is among the initial colonizers, however, the phylogenetic relationship of infant fecal isolates to isolates from other body sites, and C. avidum carbon utilization related to the infant gut ecosystem have been little investigated. In this study, we investigated the phylogenetic and phenotypic diversity of 28 C. avidum strains, including 16 strains isolated from feces of healthy infants. We investigated the in vitro capacity of C. avidum infant isolates to degrade and consume carbon sources present in the infant gut, and metabolic interactions of C. avidum with infant associated Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum. Isolates of C. avidum showed genetic heterogeneity. C. avidum consumed d- and l-lactate, glycerol, glucose, galactose, N-acetyl-d-glucosamine and maltodextrins. Alpha-galactosidase- and β-glucuronidase activity were a trait of a group of non-hemolytic strains, which were mostly isolated from infant feces. Beta-glucuronidase activity correlated with the ability to ferment glucuronic acid. Co-cultivation with B. infantis and B. bifidum enhanced C. avidum growth and production of propionate, confirming metabolic cross-feeding. This study highlights the phylogenetic and functional diversity of C. avidum, their role as secondary glycan degraders and propionate producers, and suggests adaptation of a subpopulation to the infant gut.
Collapse
Affiliation(s)
- Vanesa Natalin Rocha Martin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland; Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Jiri Killer
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Czech Republic
| | - Vera Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol 165 00, Czech Republic
| | - Evelyn Voney
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
57
|
Raina JB, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 2019; 17:284-294. [DOI: 10.1038/s41579-019-0182-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
58
|
O'Brien PA, Webster NS, Miller DJ, Bourne DG. Host-Microbe Coevolution: Applying Evidence from Model Systems to Complex Marine Invertebrate Holobionts. mBio 2019; 10:e02241-18. [PMID: 30723123 PMCID: PMC6428750 DOI: 10.1128/mbio.02241-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Marine invertebrates often host diverse microbial communities, making it difficult to identify important symbionts and to understand how these communities are structured. This complexity has also made it challenging to assign microbial functions and to unravel the myriad of interactions among the microbiota. Here we propose to address these issues by applying evidence from model systems of host-microbe coevolution to complex marine invertebrate microbiomes. Coevolution is the reciprocal adaptation of one lineage in response to another and can occur through the interaction of a host and its beneficial symbiont. A classic indicator of coevolution is codivergence of host and microbe, and evidence of this is found in both corals and sponges. Metabolic collaboration between host and microbe is often linked to codivergence and appears likely in complex holobionts, where microbial symbionts can interact with host cells through production and degradation of metabolic compounds. Neutral models are also useful to distinguish selected microbes against a background population consisting predominately of random associates. Enhanced understanding of the interactions between marine invertebrates and their microbial communities is urgently required as coral reefs face unprecedented local and global pressures and as active restoration approaches, including manipulation of the microbiome, are proposed to improve the health and tolerance of reef species. On the basis of a detailed review of the literature, we propose three research criteria for examining coevolution in marine invertebrates: (i) identifying stochastic and deterministic components of the microbiome, (ii) assessing codivergence of host and microbe, and (iii) confirming the intimate association based on shared metabolic function.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| |
Collapse
|
59
|
Ríhová J, Nováková E, Husník F, Hypša V. Legionella Becoming a Mutualist: Adaptive Processes Shaping the Genome of Symbiont in the Louse Polyplax serrata. Genome Biol Evol 2018; 9:2946-2957. [PMID: 29069349 PMCID: PMC5714129 DOI: 10.1093/gbe/evx217] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
Legionellaceae are intracellular bacteria known as important human pathogens. In the environment, they are mainly found in biofilms associated with amoebas. In contrast to the gammaproteobacterial family Enterobacteriaceae, which established a broad spectrum of symbioses with many insect taxa, the only instance of legionella-like symbiont has been reported from lice of the genus Polyplax. Here, we sequenced the complete genome of this symbiont and compared its main characteristics to other Legionella species and insect symbionts. Based on rigorous multigene phylogenetic analyses, we confirm this bacterium as a member of the genus Legionella and propose the name Candidatus Legionella polyplacis, sp.n. We show that the genome of Ca. Legionella polyplacis underwent massive degeneration, including considerable size reduction (529.746 bp, 484 protein coding genes) and a severe decrease in GC content (23%). We identify several possible constraints underlying the evolution of this bacterium. On one hand, Ca. Legionella polyplacis and the louse symbionts Riesia and Puchtella experienced convergent evolution, perhaps due to adaptation to similar hosts. On the other hand, some metabolic differences are likely to reflect different phylogenetic positions of the symbionts and hence availability of particular metabolic function in the ancestor. This is exemplified by different arrangements of thiamine metabolism in Ca. Legionella polyplacis and Riesia. Finally, horizontal gene transfer is shown to play a significant role in the adaptive and diversification process. Particularly, we show that Ca. L. polyplacis horizontally acquired a complete biotin operon (bioADCHFB) that likely assisted this bacterium when becoming an obligate mutualist.
Collapse
Affiliation(s)
- Jana Ríhová
- Department of Parasitology, University of South Bohemia, Ceské Budejovice, Czech Republic
| | - Eva Nováková
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic.,Biology Centre, Institute of Parasitology, CAS, v.v.i., České Budějovice, Czech Republic
| | - Filip Husník
- Department of Parasitology, University of South Bohemia, Ceské Budejovice, Czech Republic
| | - Václav Hypša
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic.,Biology Centre, Institute of Parasitology, CAS, v.v.i., České Budějovice, Czech Republic
| |
Collapse
|
60
|
Alleman A, Hertweck KL, Kambhampati S. Random Genetic Drift and Selective Pressures Shaping the Blattabacterium Genome. Sci Rep 2018; 8:13427. [PMID: 30194350 PMCID: PMC6128925 DOI: 10.1038/s41598-018-31796-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/21/2018] [Indexed: 01/30/2023] Open
Abstract
Estimates suggest that at least half of all extant insect genera harbor obligate bacterial mutualists. Whereas an endosymbiotic relationship imparts many benefits upon host and symbiont alike, the intracellular lifestyle has profound effects on the bacterial genome. The obligate endosymbiont genome is a product of opposing forces: genes important to host survival are maintained through physiological constraint, contrasted by the fixation of deleterious mutations and genome erosion through random genetic drift. The obligate cockroach endosymbiont, Blattabacterium - providing nutritional augmentation to its host in the form of amino acid synthesis - displays radical genome alterations when compared to its most recent free-living relative Flavobacterium. To date, eight Blattabacterium genomes have been published, affording an unparalleled opportunity to examine the direction and magnitude of selective forces acting upon this group of symbionts. Here, we find that the Blattabacterium genome is experiencing a 10-fold increase in selection rate compared to Flavobacteria. Additionally, the proportion of selection events is largely negative in direction, with only a handful of loci exhibiting signatures of positive selection. These findings suggest that the Blattabacterium genome will continue to erode, potentially resulting in an endosymbiont with an even further reduced genome, as seen in other insect groups such as Hemiptera.
Collapse
Affiliation(s)
- Austin Alleman
- Department of Biology, University of Texas at Tyler, 3900 University Blvd., Tyler, Texas, 75799, United States.
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz, 55128, Germany.
| | - Kate L Hertweck
- Department of Biology, University of Texas at Tyler, 3900 University Blvd., Tyler, Texas, 75799, United States
| | - Srini Kambhampati
- Department of Biology, University of Texas at Tyler, 3900 University Blvd., Tyler, Texas, 75799, United States
| |
Collapse
|
61
|
Casaburi G, Frese SA. Colonization of breastfed infants by Bifidobacterium longum subsp. infantis EVC001 reduces virulence gene abundance. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.humic.2018.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
62
|
García-Salcedo R, Álvarez-Álvarez R, Olano C, Cañedo L, Braña AF, Méndez C, de la Calle F, Salas JA. Characterization of the Jomthonic Acids Biosynthesis Pathway and Isolation of Novel Analogues in Streptomyces caniferus GUA-06-05-006A. Mar Drugs 2018; 16:md16080259. [PMID: 30065171 PMCID: PMC6117699 DOI: 10.3390/md16080259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/20/2022] Open
Abstract
Jomthonic acids (JAs) are a group of natural products (NPs) with adipogenic activity. Structurally, JAs are formed by a modified β-methylphenylalanine residue, whose biosynthesis involves a methyltransferase that in Streptomyces hygroscopicus has been identified as MppJ. Up to date, three JA members (A–C) and a few other natural products containing β-methylphenylalanine have been discovered from soil-derived microorganisms. Herein, we report the identification of a gene (jomM) coding for a putative methyltransferase highly identical to MppJ in the chromosome of the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. In its 5’ region, jomM clusters with two polyketide synthases (PKS) (jomP1, jomP2), a nonribosomal peptide synthetase (NRPS) (jomN) and a thioesterase gene (jomT), possibly conforming a single transcriptional unit. Insertion of a strong constitutive promoter upstream of jomP1 led to the detection of JA A, along with at least two novel JA family members (D and E). Independent inactivation of jomP1, jomN and jomM abolished production of JA A, JA D and JA E, indicating the involvement of these genes in JA biosynthesis. Heterologous expression of the JA biosynthesis cluster in Streptomyces coelicolor M1152 and in Streptomyces albus J1074 led to the production of JA A, B, C and F. We propose a pathway for JAs biosynthesis based on the findings here described.
Collapse
Affiliation(s)
- Raúl García-Salcedo
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - Rubén Álvarez-Álvarez
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Carlos Olano
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Librada Cañedo
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - Alfredo F Braña
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Carmen Méndez
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Fernando de la Calle
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - José A Salas
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| |
Collapse
|
63
|
Parallels between experimental and natural evolution of legume symbionts. Nat Commun 2018; 9:2264. [PMID: 29891837 PMCID: PMC5995829 DOI: 10.1038/s41467-018-04778-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
The emergence of symbiotic interactions has been studied using population genomics in nature and experimental evolution in the laboratory, but the parallels between these processes remain unknown. Here we compare the emergence of rhizobia after the horizontal transfer of a symbiotic plasmid in natural populations of Cupriavidus taiwanensis, over 10 MY ago, with the experimental evolution of symbiotic Ralstonia solanacearum for a few hundred generations. In spite of major differences in terms of time span, environment, genetic background, and phenotypic achievement, both processes resulted in rapid genetic diversification dominated by purifying selection. We observe no adaptation in the plasmid carrying the genes responsible for the ecological transition. Instead, adaptation was associated with positive selection in a set of genes that led to the co-option of the same quorum-sensing system in both processes. Our results provide evidence for similarities in experimental and natural evolutionary transitions and highlight the potential of comparisons between both processes to understand symbiogenesis. It is unclear if experimental evolution is a good model for natural processes. Here, Clerissi et al. find parallels between the evolution of symbiosis in rhizobia after horizontal transfer of a plasmid over 10 million years ago and experimentally evolved symbionts.
Collapse
|
64
|
Hamada M, Schröder K, Bathia J, Kürn U, Fraune S, Khalturina M, Khalturin K, Shinzato C, Satoh N, Bosch TC. Metabolic co-dependence drives the evolutionarily ancient Hydra-Chlorella symbiosis. eLife 2018; 7:35122. [PMID: 29848439 PMCID: PMC6019070 DOI: 10.7554/elife.35122] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/26/2018] [Indexed: 11/13/2022] Open
Abstract
Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Ushimado Marine Institute, Okayama University, Okayama, Japan
| | - Katja Schröder
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Jay Bathia
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Ulrich Kürn
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Sebastian Fraune
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Mariia Khalturina
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Konstantin Khalturin
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Thomas Cg Bosch
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| |
Collapse
|
65
|
Stump SM, Johnson EC, Sun Z, Klausmeier CA. How spatial structure and neighbor uncertainty promote mutualists and weaken black queen effects. J Theor Biol 2018; 446:33-60. [PMID: 29499252 DOI: 10.1016/j.jtbi.2018.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/17/2018] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Abstract
The ubiquity of cooperative cross-feeding (a resource-exchange mutualism) raises two related questions: Why is cross-feeding favored over self-sufficiency, and how are cross-feeders protected from non-producing cheaters? The Black Queen Hypothesis suggests that if leaky resources are costly, then there should be selection for either gene loss or self-sufficiency, but selection against mutualistic inter-dependency. Localized interactions have been shown to protect mutualists against cheaters, though their effects in the presence of self-sufficient organisms are not well understood. Here we develop a stochastic spatial model to examine how spatial effects alter the predictions of the Black Queen Hypothesis. Microbes need two essential resources to reproduce, which they can produce themselves (at a cost) or take up from neighbors. Additionally, microbes need empty sites to give birth into. Under well mixed mean-field conditions, the cross-feeders will always be displaced by a non-producer and a self-sufficient microbe. However, localized interactions have two effects that favor production. First, a microbe that interacts with a small number of neighbors will not always receive the essential resources it needs; this effect slightly harms cross-feeders but greatly harms non-producers. Second, microbes tend to displace other microbes that produce resources they need; this effect also slightly harms cross-feeders but greatly harms non-producers. Our work therefore suggests localized interactions produce an accelerating cost of non-production. Thus, the right trade-off between the cost of producing resources and the cost of sometimes being resource-limited can favor mutualistic inter-dependence over both self-sufficiency and non-production.
Collapse
Affiliation(s)
- Simon Maccracken Stump
- W. K. Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA.
| | - Evan Curtis Johnson
- W. K. Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA; Population Biology Graduate Group, University of California, Davis, 2320 Storer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Zepeng Sun
- W. K. Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA
| | - Christopher A Klausmeier
- W. K. Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA; Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824-1312, USA; Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI 48824-1312, USA
| |
Collapse
|
66
|
|
67
|
Zhong C, Han M, Yu S, Yang P, Li H, Ning K. Pan-genome analyses of 24 Shewanella strains re-emphasize the diversification of their functions yet evolutionary dynamics of metal-reducing pathway. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:193. [PMID: 30026808 PMCID: PMC6048853 DOI: 10.1186/s13068-018-1201-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/10/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Shewanella strains are important dissimilatory metal-reducing bacteria which are widely distributed in diverse habitats. Despite efforts to genomically characterize Shewanella, knowledge of the molecular components, functional information and evolutionary patterns remain lacking, especially for their compatibility in the metal-reducing pathway. The increasing number of genome sequences of Shewanella strains offers a basis for pan-genome studies. RESULTS A comparative pan-genome analysis was conducted to study genomic diversity and evolutionary relationships among 24 Shewanella strains. Results revealed an open pan-genome of 13,406 non-redundant genes and a core-genome of 1878 non-redundant genes. Selective pressure acted on the invariant members of core genome, in which purifying selection drove evolution in the housekeeping mechanisms. Shewanella strains exhibited extensive genome variability, with high levels of gene gain and loss during the evolution, which affected variable gene sets and facilitated the rapid evolution. Additionally, genes related to metal reduction were diversely distributed in Shewanella strains and evolved under purifying selection, which highlighted the basic conserved functionality and specificity of respiratory systems. CONCLUSIONS The diversity of genes present in the accessory and specific genomes of Shewanella strains indicates that each strain uses different strategies to adapt to diverse environments. Horizontal gene transfer is an important evolutionary force in shaping Shewanella genomes. Purifying selection plays an important role in the stability of the core-genome and also drives evolution in mtr-omc cluster of different Shewanella strains.
Collapse
Affiliation(s)
- Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| | - Shaojun Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| | - Hongjun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 Hubei China
| |
Collapse
|
68
|
Carda-Diéguez M, Ghai R, Rodríguez-Valera F, Amaro C. Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution. MICROBIOME 2017; 5:162. [PMID: 29268781 PMCID: PMC5740887 DOI: 10.1186/s40168-017-0376-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Fish skin mucosal surfaces (SMS) are quite similar in composition and function to some mammalian MS and, in consequence, could constitute an adequate niche for the evolution of mucosal aquatic pathogens in natural environments. We aimed to test this hypothesis by searching for metagenomic and genomic evidences in the SMS-microbiome of a model fish species (Anguilla Anguilla or eel), from different ecosystems (four natural environments of different water salinity and one eel farm) as well as the water microbiome (W-microbiome) surrounding the host. RESULTS Remarkably, potentially pathogenic Vibrio monopolized wild eel SMS-microbiome from natural ecosystems, Vibrio anguillarum/Vibrio vulnificus and Vibrio cholerae/Vibrio metoecus being the most abundant ones in SMS from estuary and lake, respectively. Functions encoded in the SMS-microbiome differed significantly from those in the W-microbiome and allowed us to predict that successful mucus colonizers should have specific genes for (i) attachment (mainly by forming biofilms), (ii) bacterial competence and communication, and (iii) resistance to mucosal innate immunity, predators (amoeba), and heavy metals/drugs. In addition, we found several mobile genetic elements (mainly integrative conjugative elements) as well as a series of evidences suggesting that bacteria exchange DNA in SMS. Further, we isolated and sequenced a V. metoecus strain from SMS. This isolate shares pathogenicity islands with V. cholerae O1 from intestinal infections that are absent in the rest of sequenced V. metoecus strains, all of them from water and extra-intestinal infections. CONCLUSIONS We have obtained metagenomic and genomic evidence in favor of the hypothesis on the role of fish mucosal surfaces as a specialized habitat selecting microbes capable of colonizing and persisting on other comparable mucosal surfaces, e.g., the human intestine.
Collapse
Affiliation(s)
- Miguel Carda-Diéguez
- Department of Microbiology and Ecology abd Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Valencia, Spain
| | - Rohit Ghai
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Center of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Francisco Rodríguez-Valera
- Evolutionary Genomics Group, Department de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Carmen Amaro
- Department of Microbiology and Ecology abd Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Valencia, Spain.
| |
Collapse
|
69
|
Schuelke TA, Wu G, Westbrook A, Woeste K, Plachetzki DC, Broders K, MacManes MD. Comparative Genomics of Pathogenic and Nonpathogenic Beetle-Vectored Fungi in the Genus Geosmithia. Genome Biol Evol 2017; 9:3312-3327. [PMID: 29186370 PMCID: PMC5737690 DOI: 10.1093/gbe/evx242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 12/29/2022] Open
Abstract
Geosmithia morbida is an emerging fungal pathogen which serves as a model for examining the evolutionary processes behind pathogenicity because it is one of two known pathogens within a genus of mostly saprophytic, beetle-associated, fungi. This pathogen causes thousand cankers disease in black walnut trees and is vectored into the host via the walnut twig beetle. Geosmithia morbida was first detected in western United States and currently threatens the timber industry concentrated in eastern United States. We sequenced the genomes of G. morbida in a previous study and two nonpathogenic Geosmithia species in this work and compared these species to other fungal pathogens and nonpathogens to identify genes under positive selection in G. morbida that may be associated with pathogenicity. Geosmithia morbida possesses one of the smallest genomes among the fungal species observed in this study, and one of the smallest fungal pathogen genomes to date. The enzymatic profile in this pathogen is very similar to its nonpathogenic relatives. Our findings indicate that genome reduction or retention of a smaller genome may be an important adaptative force during the evolution of a specialized lifestyle in fungal species that occupy a specificniche, such as beetle vectored tree pathogens. We also present potential genes under selection in G. morbida that could be important for adaptation to a pathogenic lifestyle.
Collapse
Affiliation(s)
- Taruna A Schuelke
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire
| | - Guangxi Wu
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| | | | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural Resources, Purdue University
| | - David C Plachetzki
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire
| | - Kirk Broders
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| | - Matthew D MacManes
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire
| |
Collapse
|
70
|
Lee JY, Han GG, Kim EB, Choi YJ. Comparative genomics of Lactobacillus salivarius strains focusing on their host adaptation. Microbiol Res 2017; 205:48-58. [DOI: 10.1016/j.micres.2017.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/25/2017] [Accepted: 08/12/2017] [Indexed: 01/15/2023]
|
71
|
Capela D, Marchetti M, Clérissi C, Perrier A, Guetta D, Gris C, Valls M, Jauneau A, Cruveiller S, Rocha EPC, Masson-Boivin C. Recruitment of a Lineage-Specific Virulence Regulatory Pathway Promotes Intracellular Infection by a Plant Pathogen Experimentally Evolved into a Legume Symbiont. Mol Biol Evol 2017; 34:2503-2521. [PMID: 28535261 DOI: 10.1093/molbev/msx165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ecological transitions between different lifestyles, such as pathogenicity, mutualism and saprophytism, have been very frequent in the course of microbial evolution, and often driven by horizontal gene transfer. Yet, how genomes achieve the ecological transition initiated by the transfer of complex biological traits remains poorly known. Here, we used experimental evolution, genomics, transcriptomics and high-resolution phenotyping to analyze the evolution of the plant pathogen Ralstonia solanacearum into legume symbionts, following the transfer of a natural plasmid encoding the essential mutualistic genes. We show that a regulatory pathway of the recipient R. solanacearum genome involved in extracellular infection of natural hosts was reused to improve intracellular symbiosis with the Mimosa pudica legume. Optimization of intracellular infection capacity was gained through mutations affecting two components of a new regulatory pathway, the transcriptional regulator efpR and a region upstream from the RSc0965-0967 genes of unknown functions. Adaptive mutations caused the downregulation of efpR and the over-expression of a downstream regulatory module, the three unknown genes RSc3146-3148, two of which encoding proteins likely associated to the membrane. This over-expression led to important metabolic and transcriptomic changes and a drastic qualitative and quantitative improvement of nodule intracellular infection. In addition, these adaptive mutations decreased the virulence of the original pathogen. The complete efpR/RSc3146-3148 pathway could only be identified in the genomes of the pathogenic R. solanacearum species complex. Our findings illustrate how the rewiring of a genetic network regulating virulence allows a radically different type of symbiotic interaction and contributes to ecological transitions and trade-offs.
Collapse
Affiliation(s)
- Delphine Capela
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marta Marchetti
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Camille Clérissi
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.,Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Anthony Perrier
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Dorian Guetta
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Carine Gris
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marc Valls
- Department of Genetics, University of Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, Spain
| | - Alain Jauneau
- Fédération de Recherches Agrobiosciences, Interactions, Biodiversity, Plateforme d'Imagerie TRI, CNRS, UPS, Castanet-Tolosan, France
| | - Stéphane Cruveiller
- CNRS-UMR8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DRF/IG/GEN LABGeM, Evry, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | | |
Collapse
|
72
|
Andrades Valtueña A, Mittnik A, Key FM, Haak W, Allmäe R, Belinskij A, Daubaras M, Feldman M, Jankauskas R, Janković I, Massy K, Novak M, Pfrengle S, Reinhold S, Šlaus M, Spyrou MA, Szécsényi-Nagy A, Tõrv M, Hansen S, Bos KI, Stockhammer PW, Herbig A, Krause J. The Stone Age Plague and Its Persistence in Eurasia. Curr Biol 2017; 27:3683-3691.e8. [PMID: 29174893 DOI: 10.1016/j.cub.2017.10.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/31/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
Yersinia pestis, the etiologic agent of plague, is a bacterium associated with wild rodents and their fleas. Historically it was responsible for three pandemics: the Plague of Justinian in the 6th century AD, which persisted until the 8th century [1]; the renowned Black Death of the 14th century [2, 3], with recurrent outbreaks until the 18th century [4]; and the most recent 19th century pandemic, in which Y. pestis spread worldwide [5] and became endemic in several regions [6]. The discovery of molecular signatures of Y. pestis in prehistoric Eurasian individuals and two genomes from Southern Siberia suggest that Y. pestis caused some form of disease in humans prior to the first historically documented pandemic [7]. Here, we present six new European Y. pestis genomes spanning the Late Neolithic to the Bronze Age (LNBA; 4,800 to 3,700 calibrated years before present). This time period is characterized by major transformative cultural and social changes that led to cross-European networks of contact and exchange [8, 9]. We show that all known LNBA strains form a single putatively extinct clade in the Y. pestis phylogeny. Interpreting our data within the context of recent ancient human genomic evidence that suggests an increase in human mobility during the LNBA, we propose a possible scenario for the early spread of Y. pestis: the pathogen may have entered Europe from Central Eurasia following an expansion of people from the steppe, persisted within Europe until the mid-Bronze Age, and moved back toward Central Eurasia in parallel with human populations.
Collapse
Affiliation(s)
| | - Alissa Mittnik
- Max Planck Institute for the Science of Human History, Jena, Germany; Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Felix M Key
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Wolfgang Haak
- Max Planck Institute for the Science of Human History, Jena, Germany; School of Biological Sciences, The University of Adelaide, Adelaide SA 5005, South Australia, Australia
| | - Raili Allmäe
- Archaeological Research Collection, Tallinn University, Tallinn, Estonia
| | | | - Mantas Daubaras
- Department of Archaeology, Lithuanian Institute of History, Vilnius, Lithuania
| | - Michal Feldman
- Max Planck Institute for the Science of Human History, Jena, Germany; Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Rimantas Jankauskas
- Department of Anatomy, Histology and Anthropology, Vilnius University, Vilnius, Lithuania
| | - Ivor Janković
- Institute for Anthropological Research, Zagreb, Croatia; Department of Anthropology, University of Wyoming, Laramie, WY, USA
| | - Ken Massy
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig-Maximilians-University Munich, Munich, Germany; Heidelberg Academy of Sciences, Heidelberg, Germany
| | - Mario Novak
- Institute for Anthropological Research, Zagreb, Croatia
| | - Saskia Pfrengle
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Mario Šlaus
- Anthropological Center, Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Maria A Spyrou
- Max Planck Institute for the Science of Human History, Jena, Germany; Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Anna Szécsényi-Nagy
- Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest 1097, Hungary
| | - Mari Tõrv
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu, Estonia
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Jena, Germany; Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Philipp W Stockhammer
- Max Planck Institute for the Science of Human History, Jena, Germany; Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany; Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany.
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany; Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
73
|
Vidakovic L, Singh PK, Hartmann R, Nadell CD, Drescher K. Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat Microbiol 2017; 3:26-31. [PMID: 29085075 PMCID: PMC5739289 DOI: 10.1038/s41564-017-0050-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/29/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Lucia Vidakovic
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carey D Nadell
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany. .,Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany. .,Department of Physics, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
74
|
Weinert LA, Welch JJ. Why Might Bacterial Pathogens Have Small Genomes? Trends Ecol Evol 2017; 32:936-947. [PMID: 29054300 DOI: 10.1016/j.tree.2017.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
Abstract
Bacteria that cause serious disease often have smaller genomes, and fewer genes, than their nonpathogenic, or less pathogenic relatives. Here, we review evidence for the generality of this association, and summarise the various reasons why the association might hold. We focus on the population genetic processes that might lead to reductive genome evolution, and show how several of these could be connected to pathogenicity. We find some evidence for most of the processes having acted in bacterial pathogens, including several different modes of genome reduction acting in the same lineage. We argue that predictable processes of genome evolution might not reflect any common underlying process.
Collapse
Affiliation(s)
- Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
75
|
Bobay LM, Ochman H. The Evolution of Bacterial Genome Architecture. Front Genet 2017; 8:72. [PMID: 28611826 PMCID: PMC5447742 DOI: 10.3389/fgene.2017.00072] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/12/2017] [Indexed: 11/15/2022] Open
Abstract
The genome architecture of bacteria and eukaryotes evolves in opposite directions when subject to genetic drift, a difference that can be ascribed to the fact that bacteria exhibit a mutational bias that deletes superfluous sequences, whereas eukaryotes are biased toward large insertions. Expansion of eukaryotic genomes occurs through the addition of non-functional sequences, such as repetitive sequences and transposable elements, whereas variation in bacterial genome size is largely due to the acquisition and loss of functional accessory genes. These properties create the situation in which eukaryotes with very similar numbers of genes can have vastly different genome sizes, while in bacteria, gene number scales linearly with genome size. Some bacterial genomes, however, particularly those of species that undergo bottlenecks due to recent association with hosts, accumulate pseudogenes and mobile elements, conferring them a low gene content relative to their genome size. These non-functional sequences are gradually eroded and eliminated after long-term association with hosts, with the result that obligate symbionts have the smallest genomes of any cellular organism. The architecture of bacterial genomes is shaped by complex and diverse processes, but for most bacterial species, genome size is governed by a non-adaptive process, i.e., genetic drift coupled with a mutational bias toward deletions. Thus, bacteria with small effective population sizes typically have the smallest genomes. Some marine bacteria counter this near-universal trend: despite having immense population sizes, selection, not drift, acts to reduce genome size in response to metabolic constraints in their nutrient-limited environment.
Collapse
Affiliation(s)
- Louis-Marie Bobay
- Department of Integrative Biology, University of Texas, AustinTX, United States
| | - Howard Ochman
- Department of Integrative Biology, University of Texas, AustinTX, United States
| |
Collapse
|
76
|
Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol 2017; 35:640-646. [PMID: 28553940 PMCID: PMC5531050 DOI: 10.1038/nbt.3880] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.
Collapse
|
77
|
Moses AS, Millar JA, Bonazzi M, Beare PA, Raghavan R. Horizontally Acquired Biosynthesis Genes Boost Coxiella burnetii's Physiology. Front Cell Infect Microbiol 2017; 7:174. [PMID: 28540258 PMCID: PMC5423948 DOI: 10.3389/fcimb.2017.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/21/2017] [Indexed: 01/21/2023] Open
Abstract
Coxiella burnetii, the etiologic agent of acute Q fever and chronic endocarditis, has a unique biphasic life cycle, which includes a metabolically active intracellular form that occupies a large lysosome-derived acidic vacuole. C. burnetii is the only bacterium known to thrive within such an hostile intracellular niche, and this ability is fundamental to its pathogenicity; however, very little is known about genes that facilitate Coxiella's intracellular growth. Recent studies indicate that C. burnetii evolved from a tick-associated ancestor and that the metabolic capabilities of C. burnetii are different from that of Coxiella-like bacteria found in ticks. Horizontally acquired genes that allow C. burnetii to infect and grow within mammalian cells likely facilitated the host shift; however, because of its obligate intracellular replication, C. burnetii would have lost most genes that have been rendered redundant due to the availability of metabolites within the host cell. Based on these observations, we reasoned that horizontally derived biosynthetic genes that have been retained in the reduced genome of C. burnetii are ideal candidates to begin to uncover its intracellular metabolic requirements. Our analyses identified a large number of putative foreign-origin genes in C. burnetii, including tRNAGlu2 that is potentially required for heme biosynthesis, and genes involved in the production of lipopolysaccharide—a virulence factor, and of critical metabolites such as fatty acids and biotin. In comparison to wild-type C. burnetii, a strain that lacks tRNAGlu2 exhibited reduced growth, indicating its importance to Coxiella's physiology. Additionally, by using chemical agents that block heme and biotin biosyntheses, we show that these pathways are promising targets for the development of new anti-Coxiella therapies.
Collapse
Affiliation(s)
- Abraham S Moses
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortland, OR, USA
| | - Jess A Millar
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortland, OR, USA
| | - Matteo Bonazzi
- Centre National de la Recherche Scientifique, Formation de Recherche en Évolution 3689, Centre d'Études d'Agents Pathogènes et Biotechnologies Pour la Santé, Université MontpellierMontpellier, France
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of HealthHamilton, MT, USA
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State UniversityPortland, OR, USA
| |
Collapse
|
78
|
Renoz F, Champagne A, Degand H, Faber AM, Morsomme P, Foray V, Hance T. Toward a better understanding of the mechanisms of symbiosis: a comprehensive proteome map of a nascent insect symbiont. PeerJ 2017; 5:e3291. [PMID: 28503376 PMCID: PMC5426354 DOI: 10.7717/peerj.3291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022] Open
Abstract
Symbiotic bacteria are common in insects and can affect various aspects of their hosts’ biology. Although the effects of insect symbionts have been clarified for various insect symbiosis models, due to the difficulty of cultivating them in vitro, there is still limited knowledge available on the molecular features that drive symbiosis. Serratia symbiotica is one of the most common symbionts found in aphids. The recent findings of free-living strains that are considered as nascent partners of aphids provide the opportunity to examine the molecular mechanisms that a symbiont can deploy at the early stages of the symbiosis (i.e., symbiotic factors). In this work, a proteomic approach was used to establish a comprehensive proteome map of the free-living S. symbiotica strain CWBI-2.3T. Most of the 720 proteins identified are related to housekeeping or primary metabolism. Of these, 76 were identified as candidate proteins possibly promoting host colonization. Our results provide strong evidence that S. symbiotica CWBI-2.3T is well-armed for invading insect host tissues, and suggest that certain molecular features usually harbored by pathogenic bacteria are no longer present. This comprehensive proteome map provides a series of candidate genes for further studies to understand the molecular cross-talk between insects and symbiotic bacteria.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Reasearch Center, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Antoine Champagne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anne-Marie Faber
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Vincent Foray
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Montpellier, France
| | - Thierry Hance
- Biodiversity Reasearch Center, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
79
|
Pankey MS, Foxall RL, Ster IM, Perry LA, Schuster BM, Donner RA, Coyle M, Cooper VS, Whistler CA. Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. eLife 2017; 6:e24414. [PMID: 28447935 PMCID: PMC5466423 DOI: 10.7554/elife.24414] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/23/2017] [Indexed: 01/14/2023] Open
Abstract
Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene, which conferred an exceptional selective advantage that could be demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that were mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations.
Collapse
Affiliation(s)
- M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Randi L Foxall
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Ian M Ster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
- Graduate Program in Biochemistry, University of New Hampshire, Durham, United States
| | - Lauren A Perry
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Brian M Schuster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Rachel A Donner
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Matthew Coyle
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Vaughn S Cooper
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Cheryl A Whistler
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| |
Collapse
|
80
|
Choudoir MJ, Panke-Buisse K, Andam CP, Buckley DH. Genome Surfing As Driver of Microbial Genomic Diversity. Trends Microbiol 2017; 25:624-636. [PMID: 28283403 DOI: 10.1016/j.tim.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 01/20/2023]
Abstract
Historical changes in population size, such as those caused by demographic range expansions, can produce nonadaptive changes in genomic diversity through mechanisms such as gene surfing. We propose that demographic range expansion of a microbial population capable of horizontal gene exchange can result in genome surfing, a mechanism that can cause widespread increase in the pan-genome frequency of genes acquired by horizontal gene exchange. We explain that patterns of genetic diversity within Streptomyces are consistent with genome surfing, and we describe several predictions for testing this hypothesis both in Streptomyces and in other microorganisms.
Collapse
Affiliation(s)
- Mallory J Choudoir
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850 USA
| | - Kevin Panke-Buisse
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850 USA
| | - Cheryl P Andam
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham NH 03824, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850 USA.
| |
Collapse
|
81
|
Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. ISME JOURNAL 2017; 11:1232-1244. [PMID: 28234349 PMCID: PMC5437933 DOI: 10.1038/ismej.2016.201] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 12/25/2022]
Abstract
The genus Bartonella comprises facultative intracellular bacteria with a unique lifestyle. After transmission by blood-sucking arthropods they colonize the erythrocytes of mammalian hosts causing acute and chronic infectious diseases. Although the pathogen–host interaction is well understood, little is known about the evolutionary origin of the infection strategy manifested by Bartonella species. Here we analyzed six genomes of Bartonella apis, a honey bee gut symbiont that to date represents the closest relative of pathogenic Bartonella species. Comparative genomics revealed that B. apis encodes a large set of vertically inherited genes for amino acid and cofactor biosynthesis and nitrogen metabolism. Most pathogenic bartonellae have lost these ancestral functions, but acquired specific virulence factors and expanded a vertically inherited gene family for harvesting cofactors from the blood. However, the deeply rooted pathogen Bartonella tamiae has retained many of the ancestral genome characteristics reflecting an evolutionary intermediate state toward a host-restricted intraerythrocytic lifestyle. Our findings suggest that the ancestor of the pathogen Bartonella was a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream. This study highlights the importance of comparative genomics among pathogens and non-pathogenic relatives to understand disease emergence within an evolutionary-ecological framework.
Collapse
|
82
|
Nazir R, Mazurier S, Yang P, Lemanceau P, van Elsas JD. The Ecological Role of Type Three Secretion Systems in the Interaction of Bacteria with Fungi in Soil and Related Habitats Is Diverse and Context-Dependent. Front Microbiol 2017; 8:38. [PMID: 28197129 PMCID: PMC5282467 DOI: 10.3389/fmicb.2017.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
Bacteria and fungi constitute important organisms in many ecosystems, in particular terrestrial ones. Both organismal groups contribute significantly to biogeochemical cycling processes. Ecological theory postulates that bacteria capable of receiving benefits from host fungi are likely to evolve efficient association strategies. The purpose of this review is to examine the mechanisms that underpin the bacterial interactions with fungi in soil and other systems, with special focus on the type III secretion system (T3SS). Starting with a brief description of the versatility of the T3SS as an interaction system with diverse eukaryotic hosts, we subsequently examine the recent advances made in our understanding of its contribution to interactions with soil fungi. The analysis used data sets ranging from circumstantial evidence to gene-knockout-based experimental data. The initial finding that the abundance of T3SSs in microbiomes is often enhanced in fungal-affected habitats like the mycosphere and the mycorrhizosphere is now substantiated with in-depth knowledge of the specific systems involved. Different fungal–interactive bacteria, in positive or negative associations with partner fungi, harbor and express T3SSs, with different ecological outcomes. In some particular cases, bacterial T3SSs have been shown to modulate the physiology of its fungal partner, affecting its ecological characteristics and consequently shaping its own habitat. Overall, the analyses of the collective data set revealed that diverse T3SSs have assumed diverse roles in the interactions of bacteria with host fungi, as driven by ecological and evolutionary niche requirements.
Collapse
Affiliation(s)
- Rashid Nazir
- Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan; Department of Soil Environmental Science, Research Centre for Eco-environmental Sciences - Chinese Academy of SciencesBeijing, China
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté Dijon, France
| | - Pu Yang
- Department of Microbial Ecology, GELIFES, University of Groningen Groningen, Netherlands
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté Dijon, France
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, GELIFES, University of Groningen Groningen, Netherlands
| |
Collapse
|
83
|
Karlsson M, Stenlid J, Olson Å. Two hydrophobin genes from the conifer pathogen Heterobasidion annosum are expressed in aerial hyphae. Mycologia 2017. [DOI: 10.1080/15572536.2007.11832582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Åke Olson
- Department of Forest Mycology & Pathology, Swedish University of Agricultural Sciences, P.O. 7026, SE-750 07, Uppsala, Sweden
| |
Collapse
|
84
|
Rijavec T, Lapanje A. Cyanogenic Pseudomonas spp. strains are concentrated in the rhizosphere of alpine pioneer plants. Microbiol Res 2017; 194:20-28. [DOI: 10.1016/j.micres.2016.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/11/2016] [Accepted: 09/10/2016] [Indexed: 10/20/2022]
|
85
|
Origins of pandemic Vibrio cholerae from environmental gene pools. Nat Microbiol 2016; 2:16240. [DOI: 10.1038/nmicrobiol.2016.240] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/27/2016] [Indexed: 11/08/2022]
|
86
|
Gonçalves IR, Brouillet S, Soulié MC, Gribaldo S, Sirven C, Charron N, Boccara M, Choquer M. Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evol Biol 2016; 16:252. [PMID: 27881071 PMCID: PMC5122149 DOI: 10.1186/s12862-016-0815-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chitin, the second most abundant biopolymer on earth after cellulose, is found in probably all fungi, many animals (mainly invertebrates), several protists and a few algae, playing an essential role in the development of many of them. This polysaccharide is produced by type 2 glycosyltransferases, called chitin synthases (CHS). There are several contradictory classifications of CHS isoenzymes and, as regards their evolutionary history, their origin and diversity is still a matter of debate. RESULTS A genome-wide analysis resulted in the detection of more than eight hundred putative chitin synthases in proteomes associated with about 130 genomes. Phylogenetic analyses were performed with special care to avoid any pitfalls associated with the peculiarities of these sequences (e.g. highly variable regions, truncated or recombined sequences, long-branch attraction). This allowed us to revise and unify the fungal CHS classification and to study the evolutionary history of the CHS multigenic family. This update has the advantage of being user-friendly due to the development of a dedicated website ( http://wwwabi.snv.jussieu.fr/public/CHSdb ), and it includes any correspondences with previously published classifications and mutants. Concerning the evolutionary history of CHS, this family has mainly evolved via duplications and losses. However, it is likely that several horizontal gene transfers (HGT) also occurred in eukaryotic microorganisms and, even more surprisingly, in bacteria. CONCLUSIONS This comprehensive multi-species analysis contributes to the classification of fungal CHS, in particular by optimizing its robustness, consensuality and accessibility. It also highlights the importance of HGT in the evolutionary history of CHS and describes bacterial chs genes for the first time. Many of the bacteria that have acquired a chitin synthase are plant pathogens (e.g. Dickeya spp; Pectobacterium spp; Brenneria spp; Agrobacterium vitis and Pseudomonas cichorii). Whether they are able to produce a chitin exopolysaccharide or secrete chitooligosaccharides requires further investigation.
Collapse
Affiliation(s)
- Isabelle R Gonçalves
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Microbiologie Adaptation et Pathogénie, Bâtiment André Lwoff, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France. .,BAYER S.A.S., Centre de Recherche de la Dargoire, F-69263, Lyon, France.
| | - Sophie Brouillet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7205 (MNHN, UPMC, CNRS, EPHE), Atelier de Bioinformatique, F-75231, Paris, Cedex 05, France
| | - Marie-Christine Soulié
- Sorbonne Universités, UPMC Univ Paris 06, INRA-AgroParisTech UMR1318, F-78026, Versailles, France
| | - Simonetta Gribaldo
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Docteur Roux, F-75015, Paris, France
| | - Catherine Sirven
- BAYER S.A.S., Centre de Recherche de la Dargoire, F-69263, Lyon, France
| | - Noémie Charron
- BAYER S.A.S., Centre de Recherche de la Dargoire, F-69263, Lyon, France
| | - Martine Boccara
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7205 (MNHN, UPMC, CNRS, EPHE), Atelier de Bioinformatique, F-75231, Paris, Cedex 05, France
| | - Mathias Choquer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Microbiologie Adaptation et Pathogénie, Bâtiment André Lwoff, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France.,BAYER S.A.S., Centre de Recherche de la Dargoire, F-69263, Lyon, France
| |
Collapse
|
87
|
Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A 2016; 113:13875-13880. [PMID: 27849579 DOI: 10.1073/pnas.1615121113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICEAc) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICEAc-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.
Collapse
|
88
|
Lewandowska M, Jędrychowska-Dańska K, Zamerska A, Płoszaj T, Witas HW. The genetic profile of susceptibility to infectious diseases in Roman-Period populations from Central Poland. INFECTION GENETICS AND EVOLUTION 2016; 47:1-8. [PMID: 27847329 DOI: 10.1016/j.meegid.2016.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/13/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022]
Abstract
For thousands of years human beings have resisted life-threatening pathogens. This ongoing battle is considered to be the major force shaping our gene pool as every micro-evolutionary process provokes specific shifts in the genome, both that of the host and the pathogen. Past populations were more susceptible to changes in allele frequencies not only due to selection pressure, but also as a result of genetic drift, migration and inbreeding. In the present study we have investigated the frequency of five polymorphisms within innate immune-response genes (SLC11A1 D543N, MBL2 G161A, P2RX7 A1513C, IL10 A-1082G, TLR2 -196 to -174 ins/del) related to susceptibility to infections in humans. The DNA of individuals from two early Roman-Period populations of Linowo and Rogowo was analysed. The distribution of three mutations varied significantly when compared to the modern Polish population. The TAFT analysis suggests that the decreased frequency of SLC11A1 D543N in modern Poles as compared to 2nd century Linowo samples is the result of non-stochastic mechanisms, such as purifying or balancing selection. The disparity in frequency of other mutations is most likely the result of genetic drift, an evolutionary force which is remarkably amplified in low-size groups. Together with the FST analysis, mtDNA haplotypes' distribution and deviation from the Hardy-Weinberg equilibrium, we suggest that the two populations were not interbreeding (despite the close proximity between them), but rather inbreeding, the results of which are particularly pronounced among Rogowo habitants.
Collapse
Affiliation(s)
- Magda Lewandowska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland.
| | - Krystyna Jędrychowska-Dańska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| | - Alicja Zamerska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| | - Tomasz Płoszaj
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| | - Henryk W Witas
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| |
Collapse
|
89
|
D’Souza G, Kost C. Experimental Evolution of Metabolic Dependency in Bacteria. PLoS Genet 2016; 12:e1006364. [PMID: 27814362 PMCID: PMC5096674 DOI: 10.1371/journal.pgen.1006364] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022] Open
Abstract
Bacteria frequently lose biosynthetic genes, thus making them dependent on an environmental uptake of the corresponding metabolite. Despite the ubiquity of this ‘genome streamlining’, it is generally unclear whether the concomitant loss of biosynthetic functions is favored by natural selection or rather caused by random genetic drift. Here we demonstrate experimentally that a loss of metabolic functions is strongly selected for when the corresponding metabolites can be derived from the environment. Serially propagating replicate populations of the bacterium Escherichia coli in amino acid-containing environments revealed that auxotrophic genotypes rapidly evolved in less than 2,000 generations in almost all replicate populations. Moreover, auxotrophs also evolved in environments lacking amino acids–yet to a much lesser extent. Loss of these biosynthetic functions was due to mutations in both structural and regulatory genes. In competition experiments performed in the presence of amino acids, auxotrophic mutants gained a significant fitness advantage over the evolutionary ancestor, suggesting their emergence was selectively favored. Interestingly, auxotrophic mutants derived amino acids not only via an environmental uptake, but also by cross-feeding from coexisting strains. Our results show that adaptive fitness benefits can favor biosynthetic loss-of-function mutants and drive the establishment of intricate metabolic interactions within microbial communities. Bacteria frequently lose seemingly essential genes from their genomes that are required to autonomously biosynthesize building block metabolites such as amino acids. It is generally unclear whether these losses are due to chance events in small populations or favored by selection, because loss-of-function mutants may save production cost when utilizing metabolites from the environment. We discovered that populations of Escherichia coli that evolved in amino acid-replete environments rapidly lost the ability to autonomously produce several amino acids, which was beneficial when amino acids were present in the environment. Interestingly, these mutants derived amino acids not just from the growth medium, but also from other, co-occurring strains. Our findings show that nutrient-containing environments drive the loss of biosynthetic genes from bacterial genomes and facilitate the establishment of metabolic cross-feeding interactions among bacteria.
Collapse
Affiliation(s)
- Glen D’Souza
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
- * E-mail:
| |
Collapse
|
90
|
Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol 2016; 241:236-250. [PMID: 27659608 PMCID: PMC5215404 DOI: 10.1002/path.4809] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/30/2022]
Abstract
Mitochondria are double-membrane-bound organelles that are present in all nucleated eukaryotic cells and are responsible for the production of cellular energy in the form of ATP. Mitochondrial function is under dual genetic control - the 16.6-kb mitochondrial genome, with only 37 genes, and the nuclear genome, which encodes the remaining ∼1300 proteins of the mitoproteome. Mitochondrial dysfunction can arise because of defects in either mitochondrial DNA or nuclear mitochondrial genes, and can present in childhood or adulthood in association with vast clinical heterogeneity, with symptoms affecting a single organ or tissue, or multisystem involvement. There is no cure for mitochondrial disease for the vast majority of mitochondrial disease patients, and a genetic diagnosis is therefore crucial for genetic counselling and recurrence risk calculation, and can impact on the clinical management of affected patients. Next-generation sequencing strategies are proving pivotal in the discovery of new disease genes and the diagnosis of clinically affected patients; mutations in >250 genes have now been shown to cause mitochondrial disease, and the biochemical, histochemical, immunocytochemical and neuropathological characterization of these patients has led to improved diagnostic testing strategies and novel diagnostic techniques. This review focuses on the current genetic landscape associated with mitochondrial disease, before focusing on advances in studying associated mitochondrial pathology in two, clinically relevant organs - skeletal muscle and brain. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Mariana C Rocha
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Nichola Z Lax
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
91
|
Li P, Wang D, Yan J, Zhou J, Deng Y, Jiang Z, Cao B, He Z, Zhang L. Genomic Analysis of Phylotype I Strain EP1 Reveals Substantial Divergence from Other Strains in the Ralstonia solanacearum Species Complex. Front Microbiol 2016; 7:1719. [PMID: 27833603 PMCID: PMC5080846 DOI: 10.3389/fmicb.2016.01719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/13/2016] [Indexed: 11/13/2022] Open
Abstract
Ralstonia solanacearum species complex is a devastating group of phytopathogens with an unusually wide host range and broad geographical distribution. R. solanacearum isolates may differ considerably in various properties including host range and pathogenicity, but the underlying genetic bases remain vague. Here, we conducted the genome sequencing of strain EP1 isolated from Guangdong Province of China, which belongs to phylotype I and is highly virulent to a range of solanaceous crops. Its complete genome contains a 3.95-Mb chromosome and a 2.05-Mb mega-plasmid, which is considerably bigger than reported genomes of other R. solanacearum strains. Both the chromosome and the mega-plasmid have essential house-keeping genes and many virulence genes. Comparative analysis of strain EP1 with other 3 phylotype I and 3 phylotype II, III, IV strains unveiled substantial genome rearrangements, insertions and deletions. Genome sequences are relatively conserved among the 4 phylotype I strains, but more divergent among strains of different phylotypes. Moreover, the strains exhibited considerable variations in their key virulence genes, including those encoding secretion systems and type III effectors. Our results provide valuable information for further elucidation of the genetic basis of diversified virulences and host range of R. solanacearum species.
Collapse
Affiliation(s)
- Peng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University Guangzhou, China
| | - Dechen Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University Guangzhou, China
| | - Jinli Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University Guangzhou, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University Guangzhou, China
| | - Yinyue Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural UniversityGuangzhou, China; Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, College of Agriculture, South China Agricultural UniversityGuangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University Guangzhou, China
| | - Bihao Cao
- Department of Vegetables, College of Horticulture, South China Agricultural University Guangzhou, China
| | - Zifu He
- Plant Protection Research Institute Guangdong Academy of Agriculture Sciences Guangzhou, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural UniversityGuangzhou, China; Institute of Molecular and Cell BiologySingapore, Singapore
| |
Collapse
|
92
|
|
93
|
Gillings MR. Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Ann N Y Acad Sci 2016; 1389:20-36. [DOI: 10.1111/nyas.13213] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R. Gillings
- Genes to Geoscience Research Centre, Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| |
Collapse
|
94
|
Di Martino ML, Falconi M, Micheli G, Colonna B, Prosseda G. The Multifaceted Activity of the VirF Regulatory Protein in the Shigella Lifestyle. Front Mol Biosci 2016; 3:61. [PMID: 27747215 PMCID: PMC5041530 DOI: 10.3389/fmolb.2016.00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the sum of the complex action of a large number of bacterial virulence factors mainly located on a large virulence plasmid (pINV). The expression of pINV genes is controlled by multiple environmental stimuli through a regulatory cascade involving proteins and sRNAs encoded by both the pINV and the chromosome. The primary regulator of the virulence phenotype is VirF, a DNA-binding protein belonging to the AraC family of transcriptional regulators. The virF gene, located on the pINV, is expressed only within the host, mainly in response to the temperature transition occurring when the bacterium transits from the outer environment to the intestinal milieu. VirF then acts as anti-H-NS protein and directly activates the icsA and virB genes, triggering the full expression of the invasion program of Shigella. In this review we will focus on the structure of VirF, on its sophisticated regulation, and on its role as major player in the path leading from the non-invasive to the invasive phenotype of Shigella. We will address also the involvement of VirF in mechanisms aimed at withstanding adverse conditions inside the host, indicating that this protein is emerging as a global regulator whose action is not limited to virulence systems. Finally, we will discuss recent observations conferring VirF the potential of a novel antibacterial target for shigellosis.
Collapse
Affiliation(s)
- Maria Letizia Di Martino
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Maurizio Falconi
- Laboratorio di Genetica Molecolare e dei Microrganismi, Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino Camerino, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consilglio Nazionale Delle Richerche Roma, Italy
| | - Bianca Colonna
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Gianni Prosseda
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| |
Collapse
|
95
|
Chistoserdova L. Wide Distribution of Genes for Tetrahydromethanopterin/Methanofuran-Linked C1 Transfer Reactions Argues for Their Presence in the Common Ancestor of Bacteria and Archaea. Front Microbiol 2016; 7:1425. [PMID: 27679616 PMCID: PMC5020050 DOI: 10.3389/fmicb.2016.01425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
|
96
|
Hoang KL, Morran LT, Gerardo NM. Experimental Evolution as an Underutilized Tool for Studying Beneficial Animal-Microbe Interactions. Front Microbiol 2016; 7:1444. [PMID: 27679620 PMCID: PMC5020044 DOI: 10.3389/fmicb.2016.01444] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022] Open
Abstract
Microorganisms play a significant role in the evolution and functioning of the eukaryotes with which they interact. Much of our understanding of beneficial host–microbe interactions stems from studying already established associations; we often infer the genotypic and environmental conditions that led to the existing host–microbe relationships. However, several outstanding questions remain, including understanding how host and microbial (internal) traits, and ecological and evolutionary (external) processes, influence the origin of beneficial host–microbe associations. Experimental evolution has helped address a range of evolutionary and ecological questions across different model systems; however, it has been greatly underutilized as a tool to study beneficial host–microbe associations. In this review, we suggest ways in which experimental evolution can further our understanding of the proximate and ultimate mechanisms shaping mutualistic interactions between eukaryotic hosts and microbes. By tracking beneficial interactions under defined conditions or evolving novel associations among hosts and microbes with little prior evolutionary interaction, we can link specific genotypes to phenotypes that can be directly measured. Moreover, this approach will help address existing puzzles in beneficial symbiosis research: how symbioses evolve, how symbioses are maintained, and how both host and microbe influence their partner’s evolutionary trajectories. By bridging theoretical predictions and empirical tests, experimental evolution provides us with another approach to test hypotheses regarding the evolution of beneficial host–microbe associations.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| | - Levi T Morran
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| | - Nicole M Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| |
Collapse
|
97
|
Gawor J, Grzesiak J, Sasin-Kurowska J, Borsuk P, Gromadka R, Górniak D, Świątecki A, Aleksandrzak-Piekarczyk T, Zdanowski MK. Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles 2016; 20:403-13. [PMID: 27097637 PMCID: PMC4921121 DOI: 10.1007/s00792-016-0831-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/05/2016] [Indexed: 10/26/2022]
Abstract
Polaromonas is one of the most abundant genera found on glacier surfaces, yet its ecology remains poorly described. Investigations made to date point towards a uniform distribution of Polaromonas phylotypes across the globe. We compared 43 Polaromonas isolates obtained from surfaces of Arctic and Antarctic glaciers to address this issue. 16S rRNA gene sequences, intergenic transcribed spacers (ITS) and metabolic fingerprinting showed great differences between hemispheres but also between neighboring glaciers. Phylogenetic distance between Arctic and Antarctic isolates indicated separate species. The Arctic group clustered similarly, when constructing dendrograms based on 16S rRNA gene and ITS sequences, as well as metabolic traits. The Antarctic strains, although almost identical considering 16S rRNA genes, diverged into 2 groups based on the ITS sequences and metabolic traits, suggesting recent niche separation. Certain phenotypic traits pointed towards cell adaptation to specific conditions on a particular glacier, like varying pH levels. Collected data suggest, that seeding of glacial surfaces with Polaromonas cells transported by various means, is of greater efficiency on local than global scales. Selection mechanisms present of glacial surfaces reduce the deposited Polaromonas diversity, causing subsequent adaptation to prevailing environmental conditions. Furthermore, interactions with other supraglacial microbiota, like algae cells may drive postselectional niche separation and microevolution within the Polaromonas genus.
Collapse
Affiliation(s)
- Jan Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jakub Grzesiak
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna Sasin-Kurowska
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Piotr Borsuk
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Robert Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Dorota Górniak
- Department of Microbiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Aleksander Świątecki
- Department of Microbiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Tamara Aleksandrzak-Piekarczyk
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marek K Zdanowski
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
98
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
99
|
Abstract
Genome sequences have become the new phenotype for microbial evolutionists. The patterns of diversity revealed in the first 100 bacterial genomes fostered development of a comprehensive framework that can explain their contents, organization, and evolution.
Collapse
Affiliation(s)
- Howard Ochman
- Department of Integrative Biology, University of Texas, Austin, Texas 78712
| |
Collapse
|
100
|
Metabolic Adaptations of Intracellullar Bacterial Pathogens and their Mammalian Host Cells during Infection ("Pathometabolism"). Microbiol Spectr 2016; 3. [PMID: 26185075 DOI: 10.1128/microbiolspec.mbp-0002-2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several bacterial pathogens that cause severe infections in warm-blooded animals, including humans, have the potential to actively invade host cells and to efficiently replicate either in the cytosol or in specialized vacuoles of the mammalian cells. The interaction between these intracellular bacterial pathogens and the host cells always leads to multiple physiological changes in both interacting partners, including complex metabolic adaptation reactions aimed to promote proliferation of the pathogen within different compartments of the host cells. In this chapter, we discuss the necessary nutrients and metabolic pathways used by some selected cytosolic and vacuolar intracellular pathogens and--when available--the links between the intracellular bacterial metabolism and the expression of the virulence genes required for the intracellular bacterial replication cycle. Furthermore, we address the growing evidence that pathogen-specific factors may also trigger metabolic responses of the infected mammalian cells affecting the carbon and nitrogen metabolism as well as defense reactions. We also point out that many studies on the metabolic host cell responses induced by the pathogens have to be scrutinized due to the use of established cell lines as model host cells, as these cells are (in the majority) cancer cells that exhibit a dysregulated primary carbon metabolism. As the exact knowledge of the metabolic host cell responses may also provide new concepts for antibacterial therapies, there is undoubtedly an urgent need for host cell models that more closely reflect the in vivo infection conditions.
Collapse
|