51
|
Alakavuklar MA, Heckel BC, Stoner AM, Stembel JA, Fuqua C. Motility control through an anti-activation mechanism in Agrobacterium tumefaciens. Mol Microbiol 2021; 116:1281-1297. [PMID: 34581467 DOI: 10.1111/mmi.14823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
Many bacteria can migrate from a free-living, planktonic state to an attached, biofilm existence. One factor regulating this transition in the facultative plant pathogen Agrobacterium tumefaciens is the ExoR-ChvG-ChvI system. Periplasmic ExoR regulates the activity of the ChvG-ChvI two-component system in response to environmental stress, most notably low pH. ChvI impacts hundreds of genes, including those required for type VI secretion, virulence, biofilm formation, and flagellar motility. Previous studies revealed that activated ChvG-ChvI represses expression of most of class II and class III flagellar biogenesis genes, but not the master motility regulator genes visN, visR, and rem. In this study, we characterized the integration of the ExoR-ChvG-ChvI and VisNR-Rem pathways. We isolated motile suppressors of the non-motile ΔexoR mutant and thereby identified the previously unannotated mirA gene encoding a 76 amino acid protein. We report that the MirA protein interacts directly with the Rem DNA-binding domain, sequestering Rem and preventing motility gene activation. The ChvG-ChvI pathway activates mirA expression and elevated mirA is sufficient to block motility. This study reveals how the ExoR-ChvG-ChvI pathway prevents flagellar motility in A. tumefaciens. MirA is also conserved among other members of the Rhizobiales suggesting similar mechanisms of motility regulation.
Collapse
Affiliation(s)
| | - Brynn C Heckel
- Indiana University, Bloomington, Indiana, USA.,California State University, Dominguez Hills, Carson, California, USA
| | - Ari M Stoner
- Indiana University, Bloomington, Indiana, USA.,Indiana University Medical School, Indianapolis, Indiana, USA
| | - Joseph A Stembel
- Indiana University, Bloomington, Indiana, USA.,University of Washington, Seattle, Washington, USA
| | - Clay Fuqua
- Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
52
|
Putra R, Vandegeer RK, Karan S, Powell JR, Hartley SE, Johnson SN. Silicon enrichment alters functional traits in legumes depending on plant genotype and symbiosis with nitrogen‐fixing bacteria. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rocky Putra
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Rebecca K. Vandegeer
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Shawan Karan
- Technical Support Services and Mass Spectrometry Facility Western Sydney University Campbelltown NSW Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - Susan E. Hartley
- Department of Biology York Environmental Sustainability Institute University of York York UK
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| |
Collapse
|
53
|
Bellabarba A, Bacci G, Decorosi F, Aun E, Azzarello E, Remm M, Giovannetti L, Viti C, Mengoni A, Pini F. Competitiveness for Nodule Colonization in Sinorhizobium meliloti: Combined In Vitro-Tagged Strain Competition and Genome-Wide Association Analysis. mSystems 2021. [PMID: 34313466 DOI: 10.1101/2020.09.15.298034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Associations between leguminous plants and symbiotic nitrogen-fixing rhizobia are a classic example of mutualism between a eukaryotic host and a specific group of prokaryotic microbes. Although this symbiosis is in part species specific, different rhizobial strains may colonize the same nodule. Some rhizobial strains are commonly known as better competitors than others, but detailed analyses that aim to predict rhizobial competitive abilities based on genomes are still scarce. Here, we performed a bacterial genome-wide association (GWAS) analysis to define the genomic determinants related to the competitive capabilities in the model rhizobial species Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP) tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test. Competition data and strain genomic sequences were employed to build a model for GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped on the genomes of four strains showing the highest competition phenotypes (>60% single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically on genes coding for transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism (e.g., fatty acids). The same analysis was performed considering the sum of single and mixed nodules obtained in the competition assays versus BL225C, retrieving k-mers mapped on the genes previously found and on vir genes. Therefore, the competition abilities seem to be linked to multiple genetic determinants and comprise several cellular components. IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is challenging in the study of bacterial social interaction strategies. To date, the single-gene approach has mainly been used to uncover the bases of nodulation, but there is still a knowledge gap regarding the main features that a priori characterize rhizobial strains able to outcompete indigenous rhizobia. Therefore, tracking down which traits make different rhizobial strains able to win the competition for plant infection over other indigenous rhizobia will improve the strain selection process and, consequently, plant yield in sustainable agricultural production systems. We proved that a k-mer-based GWAS approach can efficiently identify the competition determinants of a panel of strains previously analyzed for their plant tissue occupancy using double fluorescent labeling. The reported strategy will be useful for detailed studies on the genomic aspects of the evolution of bacterial symbiosis and for an extensive evaluation of rhizobial inoculants.
Collapse
Affiliation(s)
- Agnese Bellabarba
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Francesca Decorosi
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Erki Aun
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartugrid.10939.32, Tartu, Estonia
| | - Elisa Azzarello
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Maido Remm
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartugrid.10939.32, Tartu, Estonia
| | - Luciana Giovannetti
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Francesco Pini
- Department of Biology, University of Bari Aldo Morogrid.7644.1, Bari, Italy
| |
Collapse
|
54
|
Competitiveness for Nodule Colonization in Sinorhizobium meliloti: Combined In Vitro-Tagged Strain Competition and Genome-Wide Association Analysis. mSystems 2021; 6:e0055021. [PMID: 34313466 PMCID: PMC8407117 DOI: 10.1128/msystems.00550-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Associations between leguminous plants and symbiotic nitrogen-fixing rhizobia are a classic example of mutualism between a eukaryotic host and a specific group of prokaryotic microbes. Although this symbiosis is in part species specific, different rhizobial strains may colonize the same nodule. Some rhizobial strains are commonly known as better competitors than others, but detailed analyses that aim to predict rhizobial competitive abilities based on genomes are still scarce. Here, we performed a bacterial genome-wide association (GWAS) analysis to define the genomic determinants related to the competitive capabilities in the model rhizobial species Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP) tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test. Competition data and strain genomic sequences were employed to build a model for GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped on the genomes of four strains showing the highest competition phenotypes (>60% single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically on genes coding for transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism (e.g., fatty acids). The same analysis was performed considering the sum of single and mixed nodules obtained in the competition assays versus BL225C, retrieving k-mers mapped on the genes previously found and on vir genes. Therefore, the competition abilities seem to be linked to multiple genetic determinants and comprise several cellular components. IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is challenging in the study of bacterial social interaction strategies. To date, the single-gene approach has mainly been used to uncover the bases of nodulation, but there is still a knowledge gap regarding the main features that a priori characterize rhizobial strains able to outcompete indigenous rhizobia. Therefore, tracking down which traits make different rhizobial strains able to win the competition for plant infection over other indigenous rhizobia will improve the strain selection process and, consequently, plant yield in sustainable agricultural production systems. We proved that a k-mer-based GWAS approach can efficiently identify the competition determinants of a panel of strains previously analyzed for their plant tissue occupancy using double fluorescent labeling. The reported strategy will be useful for detailed studies on the genomic aspects of the evolution of bacterial symbiosis and for an extensive evaluation of rhizobial inoculants.
Collapse
|
55
|
Ghosh P, Adolphsen KN, Yurgel SN, Kahn ML. Sinorhizobium medicae WSM419 Genes That Improve Symbiosis between Sinorhizobium meliloti Rm1021 and Medicago truncatula Jemalong A17 and in Other Symbiosis Systems. Appl Environ Microbiol 2021; 87:e0300420. [PMID: 33990306 PMCID: PMC8276806 DOI: 10.1128/aem.03004-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022] Open
Abstract
Some soil bacteria, called rhizobia, can interact symbiotically with legumes, in which they form nodules on the plant roots, where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobium-plant combinations can differ in how successful this symbiosis is: for example, Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17, but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA (increased symbiotic effectiveness), had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split-root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant-induced resistance to rhizobial infection, suggesting an interaction with the plant's regulation of nodule formation. IMPORTANCE Legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle. Symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach identifies new genes that may more generally contribute to symbiotic productivity.
Collapse
Affiliation(s)
- Prithwi Ghosh
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Katie N. Adolphsen
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Svetlana N. Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Michael L. Kahn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
56
|
Wein T, Wang Y, Barz M, Stücker FT, Hammerschmidt K, Dagan T. Essential gene acquisition destabilizes plasmid inheritance. PLoS Genet 2021; 17:e1009656. [PMID: 34252089 PMCID: PMC8297927 DOI: 10.1371/journal.pgen.1009656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/22/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
Extra-chromosomal genetic elements are important drivers of evolutionary transformations and ecological adaptations in prokaryotes with their evolutionary success often depending on their ‘utility’ to the host. Examples are plasmids encoding antibiotic resistance genes, which are known to proliferate in the presence of antibiotics. Plasmids carrying an essential host function are recognized as permanent residents in their host. Essential plasmids have been reported in several taxa where they often encode essential metabolic functions; nonetheless, their evolution remains poorly understood. Here we show that essential genes are rarely encoded on plasmids; evolving essential plasmids in Escherichia coli we further find that acquisition of an essential chromosomal gene by a plasmid can lead to plasmid extinction. A comparative genomics analysis of Escherichia isolates reveals few plasmid-encoded essential genes, yet these are often integrated into plasmid-related functions; an example is the GroEL/GroES chaperonin. Experimental evolution of a chaperonin-encoding plasmid shows that the acquisition of an essential gene reduces plasmid fitness regardless of the stability of plasmid inheritance. Our results suggest that essential plasmid emergence leads to a dose effect caused by gene redundancy. The detrimental effect of essential gene acquisition on plasmid inheritance constitutes a barrier for plasmid-mediated lateral gene transfer and supplies a mechanistic understanding for the rarity of essential genes in extra-chromosomal genetic elements. Mobile genetic elements have been extensively studied due to their role as agents of genetic innovation and rapid adaptation in prokaryotes. Specifically, prokaryotic plasmids have been the focus of investigation in the context of bacterial survival under growth limiting conditions with the prime example of resistance to antibiotics and heavy metals. In contrast, plasmids that encode for functions that are essential to their host viability are rarely described. We investigate the evolution of plasmids that encode for genes previously identified as essential for bacterial life. Our analysis of Escherichia isolates reveals only few plasmid-encoded essential genes, which likely function in the plasmid rather than the host life cycle. Following the evolution of plasmids encoding an essential gene in Escherichia coli in real time, we further find that the acquisition of a chromosomal essential gene may lead to plasmid loss. Our study supplies data and a mechanistic understanding on the rarity of essential genes in mobile genetic elements. We conclude that prokaryotic plasmids are rarely essential for their bacterial host.
Collapse
Affiliation(s)
- Tanita Wein
- Institute of General Microbiology, Kiel University, Kiel, Germany
- * E-mail:
| | - Yiqing Wang
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Myriam Barz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Fenna T. Stücker
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | | | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
57
|
Wang L, Xiao Y, Wei X, Pan J, Duanmu D. Highly Efficient CRISPR-Mediated Base Editing in Sinorhizobium meliloti. Front Microbiol 2021; 12:686008. [PMID: 34220774 PMCID: PMC8253261 DOI: 10.3389/fmicb.2021.686008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Rhizobia are widespread gram-negative soil bacteria and indispensable symbiotic partners of leguminous plants that facilitate the most highly efficient biological nitrogen fixation in nature. Although genetic studies in Sinorhizobium meliloti have advanced our understanding of symbiotic nitrogen fixation (SNF), the current methods used for genetic manipulations in Sinorhizobium meliloti are time-consuming and labor-intensive. In this study, we report the development of a few precise gene modification tools that utilize the CRISPR/Cas9 system and various deaminases. By fusing the Cas9 nickase to an adenine deaminase, we developed an adenine base editor (ABE) system that facilitated adenine-to-guanine transitions at one-nucleotide resolution without forming double-strand breaks (DSB). We also engineered a cytidine base editor (CBE) and a guanine base editor (GBE) that catalyze cytidine-to-thymine substitutions and cytidine-to-guanine transversions, respectively, by replacing adenine deaminase with cytidine deaminase and other auxiliary enzymes. All of these base editors are amenable to the assembly of multiple synthetic guide RNA (sgRNA) cassettes using Golden Gate Assembly to simultaneously achieve multigene mutations or disruptions. These CRISPR-mediated base editing tools will accelerate the functional genomics study and genome manipulation of rhizobia.
Collapse
Affiliation(s)
- Longxiang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yuan Xiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaowei Wei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jimin Pan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
58
|
Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, Janczarek M, Vinardell JM. Rhizobial Exopolysaccharides: Genetic Regulation of Their Synthesis and Relevance in Symbiosis with Legumes. Int J Mol Sci 2021; 22:6233. [PMID: 34207734 PMCID: PMC8227245 DOI: 10.3390/ijms22126233] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/11/2022] Open
Abstract
Rhizobia are soil proteobacteria able to engage in a nitrogen-fixing symbiotic interaction with legumes that involves the rhizobial infection of roots and the bacterial invasion of new organs formed by the plant in response to the presence of appropriate bacterial partners. This interaction relies on a complex molecular dialogue between both symbionts. Bacterial N-acetyl-glucosamine oligomers called Nod factors are indispensable in most cases for early steps of the symbiotic interaction. In addition, different rhizobial surface polysaccharides, such as exopolysaccharides (EPS), may also be symbiotically relevant. EPS are acidic polysaccharides located out of the cell with little or no cell association that carry out important roles both in free-life and in symbiosis. EPS production is very complexly modulated and, frequently, co-regulated with Nod factors, but the type of co-regulation varies depending on the rhizobial strain. Many studies point out a signalling role for EPS-derived oligosaccharides in root infection and nodule invasion but, in certain symbiotic couples, EPS can be dispensable for a successful interaction. In summary, the complex regulation of the production of rhizobial EPS varies in different rhizobia, and the relevance of this polysaccharide in symbiosis with legumes depends on the specific interacting couple.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Francisco Fuentes-Romero
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Jose-Enrique Ruiz-Sainz
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - José-María Vinardell
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| |
Collapse
|
59
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
60
|
Minimal gene set from Sinorhizobium ( Ensifer) meliloti pSymA required for efficient symbiosis with Medicago. Proc Natl Acad Sci U S A 2021; 118:2018015118. [PMID: 33384333 DOI: 10.1073/pnas.2018015118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Reduction of N2 gas to ammonia in legume root nodules is a key component of sustainable agricultural systems. Root nodules are the result of a symbiosis between leguminous plants and bacteria called rhizobia. Both symbiotic partners play active roles in establishing successful symbiosis and nitrogen fixation: while root nodule development is mostly controlled by the plant, the rhizobia induce nodule formation, invade, and perform N2 fixation once inside the plant cells. Many bacterial genes involved in the rhizobia-legume symbiosis are known, and there is much interest in engineering the symbiosis to include major nonlegume crops such as corn, wheat, and rice. We sought to identify and combine a minimal bacterial gene complement necessary and sufficient for symbiosis. We analyzed a model rhizobium, Sinorhizobium (Ensifer) meliloti, using a background strain in which the 1.35-Mb symbiotic megaplasmid pSymA was removed. Three regions representing 162 kb of pSymA were sufficient to recover a complete N2-fixing symbiosis with alfalfa, and a targeted assembly of this gene complement achieved high levels of symbiotic N2 fixation. The resulting gene set contained just 58 of 1,290 pSymA protein-coding genes. To generate a platform for future synthetic manipulation, the minimal symbiotic genes were reorganized into three discrete nod, nif, and fix modules. These constructs will facilitate directed studies toward expanding the symbiosis to other plant partners. They also enable forward-type approaches to identifying genetic components that may not be essential for symbiosis, but which modulate the rhizobium's competitiveness for nodulation and the effectiveness of particular rhizobia-plant symbioses.
Collapse
|
61
|
Lineage-Specific Rewiring of Core Pathways Predating Innovation of Legume Nodules Shapes Symbiotic Efficiency. mSystems 2021; 6:6/2/e01299-20. [PMID: 33850043 PMCID: PMC8547004 DOI: 10.1128/msystems.01299-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interkingdom coevolution innovated the rhizobium-legume symbiosis. The application of this nitrogen-fixing system in sustainable agriculture is usually impeded by incompatible interactions between partners. However, the progressive evolution of rhizobium-legume compatibility remains elusive. In this work, deletions of rhcV encoding a structural component of the type three secretion system allow related Sinorhizobium strains to nodulate a previously incompatible soybean cultivar (Glycine max). These rhcV mutants show low to medium to high symbiotic efficiency on the same cultivated soybean while being indistinguishable on wild soybean plants (Glycine soja). The dual pantranscriptomics reveals nodule-specific activation of core symbiosis genes of Sinorhizobium and Glycine genes associated with genome duplication events along the chronogram. Unexpectedly, symbiotic efficiency is in line with lineage-dependent transcriptional profiles of core pathways which predate the diversification of Fabaceae and Sinorhizobium. This is supported by further physiological and biochemical experiments. Particularly, low-efficiency nodules show disordered antioxidant activity and low-energy status, which restrict nitrogen fixation activity. Collectively, the ancient core pathways play a crucial role in optimizing the function of later-evolved mutualistic arsenals in the rhizobium-legume coevolution. IMPORTANCE Significant roles of complex extracellular microbiota in environmental adaptation of eukaryotes in ever-changing circumstances have been revealed. Given the intracellular infection ability, facultative endosymbionts can be considered pioneers within complex extracellular microbiota and are ideal organisms for understanding the early stage of interkingdom adaptation. This work reveals that the later innovation of key symbiotic arsenals and the lineage-specific network rewiring in ancient core pathways, predating the divergence of legumes and rhizobia, underline the progressive evolution of rhizobium-legume compatibility. This insight not only is significant for improving the application benefits of rhizobial inoculants in sustainable agriculture but also advances our general understanding of the interkingdom coevolution which is theoretically explored by all host-microbiota interactions.
Collapse
|
62
|
Saidi S, Cherif-Silini H, Chenari Bouket A, Silini A, Eshelli M, Luptakova L, Alenezi FN, Belbahri L. Improvement of Medicago sativa Crops Productivity by the Co-inoculation of Sinorhizobium meliloti-Actinobacteria Under Salt Stress. Curr Microbiol 2021; 78:1344-1357. [PMID: 33646380 PMCID: PMC7997840 DOI: 10.1007/s00284-021-02394-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/07/2021] [Indexed: 01/22/2023]
Abstract
Biotic and abiotic stresses are severely limiting plant production and productivity. Of notable importance is salt stress that not only limits plant growth and survival, but affects the soil fertility and threatens agricultural ecosystems sustainability. The problem is exacerbated in fragile arid and semi-arid areas where high evaporation, low precipitation and the use of salty water for irrigation is accelerating soil salinization. Legumes, considered very nutritious foods for people and providing essential nutrients for ecosystems are a fundamental element of sustainable agriculture. They can restore soil health by their ability to fix nitrogen in a symbiotic interaction with the rhizobia of the soil. However, salt stress is severely limiting productivity and nitrogen fixation ability in legumes. Plant growth-promoting rhizobacteria (PGPR) and mainly actinobacteria promote plant growth by producing phytohormones, siderophores, antibiotics and antifungal compounds, solubilizing phosphate and providing antagonism to phytopathogenic microorganisms. In addition, actinobacteria have beneficial effects on nodulation and growth of legumes. In this study, actinobacteria isolated from different niches and having PGP activities were used in co-inoculation experiments with rhizobia in Medicago sativa plants rhizosphere submitted to salt stress. The results indicate that drought- and salinity-tolerant Actinobacteria with multiple PGP traits can potentially increase alfalfa growth under saline conditions, in the presence or absence of symbiotic rhizobial bacteria. Actinobacteria discovered in this study can, therefore, be suitable biofertilizers in the formulation of agricultural products improving plant development, health and productivity in saline soils, a necessary alternative for modern agriculture and sustainable development.
Collapse
Affiliation(s)
- Samira Saidi
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas Setif, Sétif, Algeria
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas Setif, Sétif, Algeria
| | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
| | - Allaoua Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas Setif, Sétif, Algeria
| | - Manal Eshelli
- Food Science and Technology Department, Faculty of Agriculture, University of Tripoli, Tripoli, Libya
| | - Lenka Luptakova
- Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Faizah N Alenezi
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, Agareb, Tunisia.
- Laboratory of Soil Biology, University of Neuchatel, Neuchâtel, Switzerland.
| |
Collapse
|
63
|
Pirhanov A, Bridges CM, Goodwin RA, Guo YS, Furrer J, Shor LM, Gage DJ, Cho YK. Optogenetics in Sinorhizobium meliloti Enables Spatial Control of Exopolysaccharide Production and Biofilm Structure. ACS Synth Biol 2021; 10:345-356. [PMID: 33465305 DOI: 10.1021/acssynbio.0c00498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microorganisms play a vital role in shaping the soil environment and enhancing plant growth by interacting with plant root systems. Because of the vast diversity of cell types involved, combined with dynamic and spatial heterogeneity, identifying the causal contribution of a defined factor, such as a microbial exopolysaccharide (EPS), remains elusive. Synthetic approaches that enable orthogonal control of microbial pathways are a promising means to dissect such complexity. Here we report the implementation of a synthetic, light-activated, transcriptional control platform using the blue-light responsive DNA binding protein EL222 in the nitrogen fixing soil bacterium Sinorhizobium meliloti. By fine-tuning the system, we successfully achieved optical control of an EPS production pathway without significant basal expression under noninducing (dark) conditions. Optical control of EPS recapitulated important behaviors such as a mucoid plate phenotype and formation of structured biofilms, enabling spatial control of biofilm structures in S. meliloti. The successful implementation of optically controlled gene expression in S. meliloti enables systematic investigation of how genotype and microenvironmental factors together shape phenotype in situ.
Collapse
Affiliation(s)
- Azady Pirhanov
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Charles M. Bridges
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Reed A. Goodwin
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yi-Syuan Guo
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jessica Furrer
- Department of Computer Science, Physics, and Engineering, Benedict College, Columbia, South Carolina 29204, United States
| | - Leslie M. Shor
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Daniel J. Gage
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yong Ku Cho
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
64
|
Rosselli R, La Porta N, Muresu R, Stevanato P, Concheri G, Squartini A. Pangenomics of the Symbiotic Rhizobiales. Core and Accessory Functions Across a Group Endowed with High Levels of Genomic Plasticity. Microorganisms 2021; 9:microorganisms9020407. [PMID: 33669391 PMCID: PMC7920277 DOI: 10.3390/microorganisms9020407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Pangenome analyses reveal major clues on evolutionary instances and critical genome core conservation. The order Rhizobiales encompasses several families with rather disparate ecological attitudes. Among them, Rhizobiaceae, Bradyrhizobiaceae, Phyllobacteriacreae and Xanthobacteriaceae, include members proficient in mutualistic symbioses with plants based on the bacterial conversion of N2 into ammonia (nitrogen-fixation). The pangenome of 12 nitrogen-fixing plant symbionts of the Rhizobiales was analyzed yielding total 37,364 loci, with a core genome constituting 700 genes. The percentage of core genes averaged 10.2% over single genomes, and between 5% to 7% were found to be plasmid-associated. The comparison between a representative reference genome and the core genome subset, showed the core genome highly enriched in genes for macromolecule metabolism, ribosomal constituents and overall translation machinery, while membrane/periplasm-associated genes, and transport domains resulted under-represented. The analysis of protein functions revealed that between 1.7% and 4.9% of core proteins could putatively have different functions.
Collapse
Affiliation(s)
- Riccardo Rosselli
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, NL-1790 AB Den Burg, The Netherlands;
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 Alicante, Spain
| | - Nicola La Porta
- Department of Sustainable Agrobiosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy;
- MOUNTFOR Project Centre, European Forest Institute, 38098 San Michele all’Adige, Italy
| | - Rosella Muresu
- Institute of Animal Production Systems in Mediterranean Environments-National Research Council, 07040 Sassari, Italy;
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
- Correspondence: ; Tel.: +39-049-8272-923
| |
Collapse
|
65
|
Multiple sensors provide spatiotemporal oxygen regulation of gene expression in a Rhizobium-legume symbiosis. PLoS Genet 2021; 17:e1009099. [PMID: 33539353 PMCID: PMC7888657 DOI: 10.1371/journal.pgen.1009099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/17/2021] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
Regulation by oxygen (O2) in rhizobia is essential for their symbioses with plants and involves multiple O2 sensing proteins. Three sensors exist in the pea microsymbiont Rhizobium leguminosarum Rlv3841: hFixL, FnrN and NifA. At low O2 concentrations (1%) hFixL signals via FxkR to induce expression of the FixK transcription factor, which activates transcription of downstream genes. These include fixNOQP, encoding the high-affinity cbb3-type terminal oxidase used in symbiosis. In free-living Rlv3841, the hFixL-FxkR-FixK pathway was active at 1% O2, and confocal microscopy showed hFixL-FxkR-FixK activity in the earliest stages of Rlv3841 differentiation in nodules (zones I and II). Work on Rlv3841 inside and outside nodules showed that the hFixL-FxkR-FixK pathway also induces transcription of fnrN at 1% O2 and in the earliest stages of Rlv3841 differentiation in nodules. We confirmed past findings suggesting a role for FnrN in fixNOQP expression. However, unlike hFixL-FxkR-FixK, Rlv3841 FnrN was only active in the near-anaerobic zones III and IV of pea nodules. Quantification of fixNOQP expression in nodules showed this was driven primarily by FnrN, with minimal direct hFixL-FxkR-FixK induction. Thus, FnrN is key for full symbiotic expression of fixNOQP. Without FnrN, nitrogen fixation was reduced by 85% in Rlv3841, while eliminating hFixL only reduced fixation by 25%. The hFixL-FxkR-FixK pathway effectively primes the O2 response by increasing fnrN expression in early differentiation (zones I-II). In zone III of mature nodules, near-anaerobic conditions activate FnrN, which induces fixNOQP transcription to the level required for wild-type nitrogen fixation activity. Modelling and transcriptional analysis indicates that the different O2 sensitivities of hFixL and FnrN lead to a nuanced spatiotemporal pattern of gene regulation in different nodule zones in response to changing O2 concentration. Multi-sensor O2 regulation is prevalent in rhizobia, suggesting the fine-tuned control this enables is common and maximizes the effectiveness of the symbioses. Rhizobia are soil bacteria that form a symbiosis with legume plants. In exchange for shelter from the plant, rhizobia provide nitrogen fertilizer, produced by nitrogen fixation. Fixation is catalysed by the nitrogenase enzyme, which is inactivated by oxygen. To prevent this, plants house rhizobia in root nodules, which create a low oxygen environment. However, rhizobia need oxygen, and must adapt to survive the low oxygen concentration in the nodule. Key to this is regulating their genes based on oxygen concentration. We studied one Rhizobium species which uses three different protein sensors of oxygen, each turning on at a different oxygen concentration. As the bacteria get deeper inside the plant nodule and the oxygen concentration drops, each sensor switches on in turn. Our results also show that the first sensor to turn on, hFixL, primes the second sensor, FnrN. This prepares the rhizobia for the core region of the nodule where oxygen concentration is lowest and most nitrogen fixation takes place. If both sensors are removed, the bacteria cannot fix nitrogen. Many rhizobia have several oxygen sensing proteins, so using multiple sensors is likely a common strategy enabling rhizobia to adapt to low oxygen precisely and in stages during symbiosis.
Collapse
|
66
|
Albicoro FJ, Draghi WO, Martini MC, Salas ME, Torres Tejerizo GA, Lozano MJ, López JL, Vacca C, Cafiero JH, Pistorio M, Bednarz H, Meier D, Lagares A, Niehaus K, Becker A, Del Papa MF. The two-component system ActJK is involved in acid stress tolerance and symbiosis in Sinorhizobium meliloti. J Biotechnol 2021; 329:80-91. [PMID: 33539896 DOI: 10.1016/j.jbiotec.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023]
Abstract
The nitrogen-fixing α-proteobacterium Sinorhizobium meliloti genome codifies at least 50 response regulator (RR) proteins mediating different and, in many cases, unknown processes. RR-mutant library screening allowed us to identify genes potentially implicated in survival to acid conditions. actJ mutation resulted in a strain with reduced growth rate under mildly acidic conditions as well as a lower capacity to tolerate a sudden shift to lethal acidic conditions compared with the parental strain. Mutation of the downstream gene actK, which encodes for a histidine kinase, showed a similar phenotype in acidic environments suggesting a functional two-component system. Interestingly, even though nodulation kinetics, quantity, and macroscopic morphology of Medicago sativa nodules were not affected in actJ and actK mutants, ActK was required to express the wild-type nitrogen fixation phenotype and ActJK was necessary for full bacteroid development and nodule occupancy. The actJK regulatory system presented here provides insights into an evolutionary process in rhizobium adaptation to acidic environments and suggests that actJK-controlled functions are crucial for optimal symbiosis development.
Collapse
Affiliation(s)
- Francisco J Albicoro
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter O Draghi
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María C Martini
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María E Salas
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - G A Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - José L López
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan H Cafiero
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hanna Bednarz
- CeBiTec, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Doreen Meier
- CeBiTec, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Karsten Niehaus
- CeBiTec, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - M F Del Papa
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
67
|
Fagorzi C, Bacci G, Huang R, Cangioli L, Checcucci A, Fini M, Perrin E, Natali C, diCenzo GC, Mengoni A. Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021. [PMID: 33436514 DOI: 10.1101/2020.06.15.152710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Rui Huang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Lisa Cangioli
- Department of Biology, University of Florence, Florence, Italy
| | - Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Florence, Italy
| | - Elena Perrin
- Department of Biology, University of Florence, Florence, Italy
| | - Chiara Natali
- Department of Biology, University of Florence, Florence, Italy
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
68
|
Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021; 6:6/1/e00974-20. [PMID: 33436514 PMCID: PMC7901481 DOI: 10.1128/msystems.00974-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
|
69
|
Cao Y, Jiang G, Li M, Fang X, Zhu D, Qiu W, Zhu J, Yu D, Xu Y, Zhong Z, Zhu J. Glutaredoxins Play an Important Role in the Redox Homeostasis and Symbiotic Capacity of Azorhizobium caulinodans ORS571. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1381-1393. [PMID: 32970520 DOI: 10.1094/mpmi-04-20-0098-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glutaredoxin (GRX) plays an essential role in the control of the cellular redox state and related pathways in many organisms. There is limited information on GRXs from the model nitrogen (N2)-fixing bacterium Azorhizobium caulinodans. In the present work, we identified and performed functional analyses of monothiol and dithiol GRXs in A. caulinodans in the free-living state and during symbiosis with Sesbania rostrata. Our data show that monothiol GRXs may be very important for bacterial growth under normal conditions and in response to oxidative stress due to imbalance of the redox state in grx mutants of A. caulinodans. Functional redundancies were also observed within monothiol and dithiol GRXs in terms of different physiological functions. The changes in catalase activity and iron content in grx mutants were assumed to favor the maintenance of bacterial resistance against oxidants, nodulation, and N2 fixation efficiency in this bacterium. Furthermore, the monothiol GRX12 and dithiol GRX34 play a collective role in symbiotic associations between A. caulinodans and Sesbania rostrata. Our study provided systematic evidence that further investigations are required to understand the importance of glutaredoxins in A. caulinodans and other rhizobia.
Collapse
Affiliation(s)
- Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Mingxu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Xingxing Fang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Dan Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Wei Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Juanjuan Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Daogeng Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, 571737 Danzhou, Hainan, PR China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, PR China
| |
Collapse
|
70
|
Bamba M, Aoki S, Kajita T, Setoguchi H, Watano Y, Sato S, Tsuchimatsu T. Massive rhizobial genomic variation associated with partner quality in Lotus-Mesorhizobium symbiosis. FEMS Microbiol Ecol 2020; 96:5917975. [PMID: 33016310 DOI: 10.1093/femsec/fiaa202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/29/2020] [Indexed: 11/14/2022] Open
Abstract
Variation in partner quality is commonly observed in diverse cooperative relationships, despite the theoretical prediction that selection favoring high-quality partners should eliminate such variation. Here, we investigated how genetic variation in partner quality could be maintained in the nitrogen-fixing mutualism between Lotus japonicus and Mesorhizobium bacteria. We reconstructed de novo assembled full-genome sequences from nine rhizobial symbionts, finding massive variation in the core genome and the similar symbiotic islands, indicating recent horizontal gene transfer (HGT) of the symbiosis islands into diverse Mesorhizobium lineages. A cross-inoculation experiment using 9 sequenced rhizobial symbionts and 15 L. japonicus accessions revealed extensive quality variation represented by plant growth phenotypes, including genotype-by-genotype interactions. Variation in quality was not associated with the presence/absence variation in known symbiosis-related genes in the symbiosis island; rather, it showed significant correlation with the core genome variation. Given the recurrent HGT of the symbiosis islands into diverse Mesorhizobium strains, local Mesorhizobium communities could serve as a major source of variation for core genomes, which might prevent variation in partner quality from fixing, even in the presence of selection favoring high-quality partners. These findings highlight the novel role of HGT of symbiosis islands in maintaining partner quality variation in the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Masaru Bamba
- Department of Biology (Frontier Science Program), Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.,Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Seishiro Aoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, The University of the Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Takashi Tsuchimatsu
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
71
|
Jiao J, Tian CF. Ancestral zinc-finger bearing protein MucR in alpha-proteobacteria: A novel xenogeneic silencer? Comput Struct Biotechnol J 2020; 18:3623-3631. [PMID: 33304460 PMCID: PMC7710501 DOI: 10.1016/j.csbj.2020.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
The MucR/Ros family protein is conserved in alpha-proteobacteria and characterized by its zinc-finger motif that has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure evolved. In the past decades, accumulated evidences have revealed MucR as a pleiotropic transcriptional regulator that integrating multiple functions such as virulence, symbiosis, cell cycle and various physiological processes. Scattered reports indicate that MucR mainly acts as a repressor, through oligomerization and binding to multiple sites of AT-rich target promoters. The N-terminal region and zinc-finger bearing C-terminal region of MucR mediate oligomerization and DNA-binding, respectively. These features are convergent to those of xenogeneic silencers such as H-NS, MvaT, Lsr2 and Rok, which are mainly found in other lineages. Phylogenetic analysis of MucR homologs suggests an ancestral origin of MucR in alpha- and delta-proteobacteria. Multiple independent duplication and lateral gene transfer events contribute to the diversity and phyletic distribution of MucR. Finally, we posed questions which remain unexplored regarding the putative roles of MucR as a xenogeneic silencer and a general manager in balancing adaptation and regulatory integration in the pangenome context.
Collapse
Affiliation(s)
- Jian Jiao
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.,MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.,MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
72
|
Batstone RT, O’Brien AM, Harrison TL, Frederickson ME. Experimental evolution makes microbes more cooperative with their local host genotype. Science 2020; 370:476-478. [DOI: 10.1126/science.abb7222] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rebecca T. Batstone
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Anna M. O’Brien
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Tia L. Harrison
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Megan E. Frederickson
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON M5S 3B2, Canada
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
73
|
Arginine-Rich Small Proteins with a Domain of Unknown Function, DUF1127, Play a Role in Phosphate and Carbon Metabolism of Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00309-20. [PMID: 33093235 DOI: 10.1128/jb.00309-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
In any given organism, approximately one-third of all proteins have a yet-unknown function. A widely distributed domain of unknown function is DUF1127. Approximately 17,000 proteins with such an arginine-rich domain are found in 4,000 bacteria. Most of them are single-domain proteins, and a large fraction qualifies as small proteins with fewer than 50 amino acids. We systematically identified and characterized the seven DUF1127 members of the plant pathogen Agrobacterium tumefaciens They all give rise to authentic proteins and are differentially expressed as shown at the RNA and protein levels. The seven proteins fall into two subclasses on the basis of their length, sequence, and reciprocal regulation by the LysR-type transcription factor LsrB. The absence of all three short DUF1127 proteins caused a striking phenotype in later growth phases and increased cell aggregation and biofilm formation. Protein profiling and transcriptome sequencing (RNA-seq) analysis of the wild type and triple mutant revealed a large number of differentially regulated genes in late exponential and stationary growth. The most affected genes are involved in phosphate uptake, glycine/serine homeostasis, and nitrate respiration. The results suggest a redundant function of the small DUF1127 paralogs in nutrient acquisition and central carbon metabolism of A. tumefaciens They may be required for diauxic switching between carbon sources when sugar from the medium is depleted. We end by discussing how DUF1127 might confer such a global impact on cell physiology and gene expression.IMPORTANCE Despite being prevalent in numerous ecologically and clinically relevant bacterial species, the biological role of proteins with a domain of unknown function, DUF1127, is unclear. Experimental models are needed to approach their elusive function. We used the phytopathogen Agrobacterium tumefaciens, a natural genetic engineer that causes crown gall disease, and focused on its three small DUF1127 proteins. They have redundant and pervasive roles in nutrient acquisition, cellular metabolism, and biofilm formation. The study shows that small proteins have important previously missed biological functions. How small basic proteins can have such a broad impact is a fascinating prospect of future research.
Collapse
|
74
|
Segregation of four Agrobacterium tumefaciens replicons during polar growth: PopZ and PodJ control segregation of essential replicons. Proc Natl Acad Sci U S A 2020; 117:26366-26373. [PMID: 33024016 DOI: 10.1073/pnas.2014371117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium tumefaciens C58 contains four replicons, circular chromosome (CC), linear chromosome (LC), cryptic plasmid (pAt), and tumor-inducing plasmid (pTi), and grows by polar growth from a single growth pole (GP), while the old cell compartment and its old pole (OP) do not elongate. We monitored the replication and segregation of these four genetic elements during polar growth. The three largest replicons (CC, LC, pAt) reside in the OP compartment prior to replication; post replication one copy migrates to the GP prior to division. CC resides at a fixed location at the OP and replicates first. LC does not stay fixed at the OP once the cell cycle begins and replicates from varied locations 20 min later than CC. pAt localizes similarly to LC prior to replication, but replicates before the LC and after the CC. pTi does not have a fixed location, and post replication it segregates randomly throughout old and new cell compartments, while undergoing one to three rounds of replication during a single cell cycle. Segregation of the CC and LC is dependent on the GP and OP identity factors PopZ and PodJ, respectively. Without PopZ, replicated CC and LC do not efficiently partition, resulting in sibling cells without CC or LC. Without PodJ, the CC and LC exhibit abnormal localization to the GP at the beginning of the cell cycle and replicate from this position. These data reveal PodJ plays an essential role in CC and LC tethering to the OP during early stages of polar growth.
Collapse
|
75
|
Brown SP, Grillo MA, Podowski JC, Heath KD. Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. MICROBIOME 2020; 8:139. [PMID: 32988416 PMCID: PMC7523075 DOI: 10.1186/s40168-020-00915-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Understanding the genetic and environmental factors that structure plant microbiomes is necessary for leveraging these interactions to address critical needs in agriculture, conservation, and sustainability. Legumes, which form root nodule symbioses with nitrogen-fixing rhizobia, have served as model plants for understanding the genetics and evolution of beneficial plant-microbe interactions for decades, and thus have added value as models of plant-microbiome interactions. Here we use a common garden experiment with 16S rRNA gene amplicon and shotgun metagenomic sequencing to study the drivers of microbiome diversity and composition in three genotypes of the model legume Medicago truncatula grown in two native soil communities. RESULTS Bacterial diversity decreased between external (rhizosphere) and internal plant compartments (root endosphere, nodule endosphere, and leaf endosphere). Community composition was shaped by strong compartment × soil origin and compartment × plant genotype interactions, driven by significant soil origin effects in the rhizosphere and significant plant genotype effects in the root endosphere. Nevertheless, all compartments were dominated by Ensifer, the genus of rhizobia that forms root nodule symbiosis with M. truncatula, and additional shotgun metagenomic sequencing suggests that the nodulating Ensifer were not genetically distinguishable from those elsewhere in the plant. We also identify a handful of OTUs that are common in nodule tissues, which are likely colonized from the root endosphere. CONCLUSIONS Our results demonstrate strong host filtering effects, with rhizospheres driven by soil origin and internal plant compartments driven by host genetics, and identify several key nodule-inhabiting taxa that coexist with rhizobia in the native range. Our results set the stage for future functional genetic experiments aimed at expanding our pairwise understanding of legume-rhizobium symbiosis toward a more mechanistic understanding of plant microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Shawn P. Brown
- Department of Plant Biology, University of Illinois, 505 S. Goodwin Ave, Urbana, IL 61801 USA
- Department of Biological Sciences, The University of Memphis, 3774 Walker Ave, Memphis, TN 38152 USA
- Center for Biodiversity Research, The University of Memphis, 3774 Walker Ave, Memphis, TN 38152 USA
| | - Michael A. Grillo
- Department of Plant Biology, University of Illinois, 505 S. Goodwin Ave, Urbana, IL 61801 USA
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60618 USA
| | - Justin C. Podowski
- Department of Plant Biology, University of Illinois, 505 S. Goodwin Ave, Urbana, IL 61801 USA
- Department of Geophysical Sciences, University of Chicago, 5734 S Ellis Ave, Chicago, IL 60637 USA
| | - Katy D. Heath
- Department of Plant Biology, University of Illinois, 505 S. Goodwin Ave, Urbana, IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Dr, Urbana, IL 61801 USA
| |
Collapse
|
76
|
Ben-Chetrit E, Assous MV, Wiener-Well Y, Katz DE, Kashat L, Zeevi DA, Hadelsberg UP, Gonen L, Margalit N, Shahar T. When a Root Is the Cause of Infection. World Neurosurg 2020; 144:258-261.e1. [PMID: 32889191 DOI: 10.1016/j.wneu.2020.08.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/23/2020] [Accepted: 08/23/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sinorhizobium meliloti is a phytobacterium found in the root nodules of plants, where it is involved in fixing nitrogen for delivery to the roots in exchange for a photosynthate carbon source. There have been no reported cases of S. meliloti infection in humans. We conducted a retrospective review of clinical records and diagnostic tests. CASE DESCRIPTION An 81-year-old woman who presented to the emergency department with a 1-day history of progressive decline in her level of consciousness following a head injury and deep scalp laceration. Her medical history was significant for a ventriculoperitoneal shunt due to normal pressure hydrocephalus. Imaging studies revealed hydrocephalus and a tear in the shunt catheter. Cerebrospinal fluid analysis was not suggestive for meningitis. Cerebrospinal fluid culture revealed an unfamiliar organism, identified as S. meliloti following sequencing of its entire genome, which was considered a contaminant. The patient subsequently developed peritonitis, and the same pathogen was detected in the peritoneal fluid, suggesting distal shunt infection. Symptoms resolved after shunt removal and antibiotic treatment. Thorough history taking revealed that the patient had fallen and struck her head against a flowerpot. CONCLUSIONS S. meliloti is a phytopathogen that should not be easily disregarded as a contaminant when isolated from human sterile fluids or tissues. Aggressive management including removal of infected hardware, if present, is required to ensure resolution of infection. It emphasizes the importance of thorough history taking.
Collapse
Affiliation(s)
- Eli Ben-Chetrit
- Infectious Diseases Unit, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Marc V Assous
- Clinical Microbiology Laboratory, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Yonit Wiener-Well
- Infectious Diseases Unit, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - David E Katz
- Internal Medicine Department, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Livnat Kashat
- Clinical Microbiology Laboratory, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - David A Zeevi
- Medical Genetics Institute, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Uri P Hadelsberg
- Department of Neurosurgery, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Lior Gonen
- Department of Neurosurgery, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nevo Margalit
- Department of Neurosurgery, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Tal Shahar
- Department of Neurosurgery, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
77
|
Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol 2020; 13:1314-1335. [PMID: 31797528 PMCID: PMC7415380 DOI: 10.1111/1751-7915.13517] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/01/2022] Open
Abstract
Biological nitrogen fixation in rhizobia occurs primarily in root or stem nodules and is induced by the bacteria present in legume plants. This symbiotic process has fascinated researchers for over a century, and the positive effects of legumes on soils and their food and feed value have been recognized for thousands of years. Symbiotic nitrogen fixation uses solar energy to reduce the inert N2 gas to ammonia at normal temperature and pressure, and is thus today, especially, important for sustainable food production. Increased productivity through improved effectiveness of the process is seen as a major research and development goal. The interaction between rhizobia and their legume hosts has thus been dissected at agronomic, plant physiological, microbiological and molecular levels to produce ample information about processes involved, but identification of major bottlenecks regarding efficiency of nitrogen fixation has proven to be complex. We review processes and results that contributed to the current understanding of this fascinating system, with focus on effectiveness of nitrogen fixation in rhizobia.
Collapse
Affiliation(s)
- Kristina Lindström
- Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiFI‐00014HelsinkiFinland
| | - Seyed Abdollah Mousavi
- Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiFI‐00014HelsinkiFinland
| |
Collapse
|
78
|
Arapov TD, Saldaña RC, Sebastian AL, Ray WK, Helm RF, Scharf BE. Cellular Stoichiometry of Chemotaxis Proteins in Sinorhizobium meliloti. J Bacteriol 2020; 202:e00141-20. [PMID: 32393521 PMCID: PMC7317046 DOI: 10.1128/jb.00141-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 11/20/2022] Open
Abstract
Chemotaxis systems enable microbes to sense their immediate environment, moving toward beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti, a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to various degrees. The 10-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that consist of only CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti, instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti, which utilizes a phosphate sink mechanism based on CheA retrophosphorylation to inactivate the motor response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased compared to CheA, indicative of variations in the adaptation system of S. meliloti Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems.IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in Escherichia coli and Bacillus subtilis In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism.
Collapse
Affiliation(s)
- Timofey D Arapov
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Amanda L Sebastian
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
79
|
Flores-Tinoco CE, Tschan F, Fuhrer T, Margot C, Sauer U, Christen M, Christen B. Co-catabolism of arginine and succinate drives symbiotic nitrogen fixation. Mol Syst Biol 2020; 16:e9419. [PMID: 32490601 PMCID: PMC7268258 DOI: 10.15252/msb.20199419] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
Biological nitrogen fixation emerging from the symbiosis between bacteria and crop plants holds promise to increase the sustainability of agriculture. One of the biggest hurdles for the engineering of nitrogen-fixing organisms is an incomplete knowledge of metabolic interactions between microbe and plant. In contrast to the previously assumed supply of only succinate, we describe here the CATCH-N cycle as a novel metabolic pathway that co-catabolizes plant-provided arginine and succinate to drive the energy-demanding process of symbiotic nitrogen fixation in endosymbiotic rhizobia. Using systems biology, isotope labeling studies and transposon sequencing in conjunction with biochemical characterization, we uncovered highly redundant network components of the CATCH-N cycle including transaminases that interlink the co-catabolism of arginine and succinate. The CATCH-N cycle uses N2 as an additional sink for reductant and therefore delivers up to 25% higher yields of nitrogen than classical arginine catabolism-two alanines and three ammonium ions are secreted for each input of arginine and succinate. We argue that the CATCH-N cycle has evolved as part of a synergistic interaction to sustain bacterial metabolism in the microoxic and highly acid environment of symbiosomes. Thus, the CATCH-N cycle entangles the metabolism of both partners to promote symbiosis. Our results provide a theoretical framework and metabolic blueprint for the rational design of plants and plant-associated organisms with new properties to improve nitrogen fixation.
Collapse
Affiliation(s)
| | - Flavia Tschan
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Céline Margot
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Matthias Christen
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Beat Christen
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
80
|
diCenzo GC, Tesi M, Pfau T, Mengoni A, Fondi M. Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nat Commun 2020; 11:2574. [PMID: 32444627 PMCID: PMC7244743 DOI: 10.1038/s41467-020-16484-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
The mutualistic association between leguminous plants and endosymbiotic rhizobial bacteria is a paradigmatic example of a symbiosis driven by metabolic exchanges. Here, we report the reconstruction and modelling of a genome-scale metabolic network of Medicago truncatula (plant) nodulated by Sinorhizobium meliloti (bacterium). The reconstructed nodule tissue contains five spatially distinct developmental zones and encompasses the metabolism of both the plant and the bacterium. Flux balance analysis (FBA) suggests that the metabolic costs associated with symbiotic nitrogen fixation are primarily related to supporting nitrogenase activity, and increasing N2-fixation efficiency is associated with diminishing returns in terms of plant growth. Our analyses support that differentiating bacteroids have access to sugars as major carbon sources, ammonium is the main nitrogen export product of N2-fixing bacteria, and N2 fixation depends on proton transfer from the plant cytoplasm to the bacteria through acidification of the peribacteroid space. We expect that our model, called 'Virtual Nodule Environment' (ViNE), will contribute to a better understanding of the functioning of legume nodules, and may guide experimental studies and engineering of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Michelangelo Tesi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Thomas Pfau
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
81
|
Putra R, Powell JR, Hartley SE, Johnson SN. Is it time to include legumes in plant silicon research? Funct Ecol 2020. [DOI: 10.1111/1365-2435.13565] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rocky Putra
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Susan E. Hartley
- York Environmental Sustainability Institute, Department of Biology University of York York UK
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| |
Collapse
|
82
|
Botou M, Yalelis V, Lazou P, Zantza I, Papakostas K, Charalambous V, Mikros E, Flemetakis E, Frillingos S. Specificity profile of NAT/NCS2 purine transporters in
Sinorhizobium
(
Ensifer
)
meliloti. Mol Microbiol 2020; 114:151-171. [DOI: 10.1111/mmi.14503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Botou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Vassilis Yalelis
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Panayiota Lazou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Iliana Zantza
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Konstantinos Papakostas
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Vassiliki Charalambous
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology Department of Biotechnology Agricultural University of Athens Athens Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| |
Collapse
|
83
|
Cavassim MIA, Moeskjær S, Moslemi C, Fields B, Bachmann A, Vilhjálmsson BJ, Schierup MH, W. Young JP, Andersen SU. Symbiosis genes show a unique pattern of introgression and selection within a Rhizobium leguminosarum species complex. Microb Genom 2020; 6:e000351. [PMID: 32176601 PMCID: PMC7276703 DOI: 10.1099/mgen.0.000351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Rhizobia supply legumes with fixed nitrogen using a set of symbiosis genes. These can cross rhizobium species boundaries, but it is unclear how many other genes show similar mobility. Here, we investigate inter-species introgression using de novo assembly of 196 Rhizobium leguminosarum sv. trifolii genomes. The 196 strains constituted a five-species complex, and we calculated introgression scores based on gene-tree traversal to identify 171 genes that frequently cross species boundaries. Rather than relying on the gene order of a single reference strain, we clustered the introgressing genes into four blocks based on population structure-corrected linkage disequilibrium patterns. The two largest blocks comprised 125 genes and included the symbiosis genes, a smaller block contained 43 mainly chromosomal genes, and the last block consisted of three genes with variable genomic location. All introgression events were likely mediated by conjugation, but only the genes in the symbiosis linkage blocks displayed overrepresentation of distinct, high-frequency haplotypes. The three genes in the last block were core genes essential for symbiosis that had, in some cases, been mobilized on symbiosis plasmids. Inter-species introgression is thus not limited to symbiosis genes and plasmids, but other cases are infrequent and show distinct selection signatures.
Collapse
Affiliation(s)
- Maria Izabel A. Cavassim
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Sara Moeskjær
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Camous Moslemi
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Asger Bachmann
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | | | | | | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
84
|
Riboregulation in Nitrogen-Fixing Endosymbiotic Bacteria. Microorganisms 2020; 8:microorganisms8030384. [PMID: 32164262 PMCID: PMC7143759 DOI: 10.3390/microorganisms8030384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/21/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are ubiquitous components of bacterial adaptive regulatory networks underlying stress responses and chronic intracellular infection of eukaryotic hosts. Thus, sRNA-mediated regulation of gene expression is expected to play a major role in the establishment of mutualistic root nodule endosymbiosis between nitrogen-fixing rhizobia and legume plants. However, knowledge about this level of genetic regulation in this group of plant-interacting bacteria is still rather scarce. Here, we review insights into the rhizobial non-coding transcriptome and sRNA-mediated post-transcriptional regulation of symbiotic relevant traits such as nutrient uptake, cell cycle, quorum sensing, or nodule development. We provide details about the transcriptional control and protein-assisted activity mechanisms of the functionally characterized sRNAs involved in these processes. Finally, we discuss the forthcoming research on riboregulation in legume symbionts.
Collapse
|
85
|
Tong W, Li X, Wang E, Cao Y, Chen W, Tao S, Wei G. Genomic insight into the origins and evolution of symbiosis genes in Phaseolus vulgaris microsymbionts. BMC Genomics 2020; 21:186. [PMID: 32106817 PMCID: PMC7047383 DOI: 10.1186/s12864-020-6578-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/13/2020] [Indexed: 01/02/2023] Open
Abstract
Background Phaseolus vulgaris (common bean) microsymbionts belonging to the bacterial genera Rhizobium, Bradyrhizobium, and Ensifer (Sinorhizobium) have been isolated across the globe. Individual symbiosis genes (e.g., nodC) of these rhizobia can be different within each genus and among distinct genera. Little information is available about the symbiotic structure of indigenous Rhizobium strains nodulating introduced bean plants or the emergence of a symbiotic ability to associate with bean plants in Bradyrhizobium and Ensifer strains. Here, we sequenced the genomes of 29 representative bean microsymbionts (21 Rhizobium, four Ensifer, and four Bradyrhizobium) and compared them with closely related reference strains to estimate the origins of symbiosis genes among these Chinese bean microsymbionts. Results Comparative genomics demonstrated horizontal gene transfer exclusively at the plasmid level, leading to expanded diversity of bean-nodulating Rhizobium strains. Analysis of vertically transferred genes uncovered 191 (out of the 2654) single-copy core genes with phylogenies strictly consistent with the taxonomic status of bacterial species, but none were found on symbiosis plasmids. A common symbiotic region was wholly conserved within the Rhizobium genus yet different from those of the other two genera. A single strain of Ensifer and two Bradyrhizobium strains shared similar gene content with soybean microsymbionts in both chromosomes and symbiotic regions. Conclusions The 19 native bean Rhizobium microsymbionts were assigned to four defined species and six putative novel species. The symbiosis genes of R. phaseoli, R. sophoriradicis, and R. esperanzae strains that originated from Mexican bean-nodulating strains were possibly introduced alongside bean seeds. R. anhuiense strains displayed distinct host ranges, indicating transition into bean microsymbionts. Among the six putative novel species exclusive to China, horizontal transfer of symbiosis genes suggested symbiosis with other indigenous legumes and loss of originally symbiotic regions or non-symbionts before the introduction of common bean into China. Genome data for Ensifer and Bradyrhizobium strains indicated symbiotic compatibility between microsymbionts of common bean and other hosts such as soybean.
Collapse
Affiliation(s)
- Wenjun Tong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiangchen Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.,Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, México D.F, Mexico
| | - Ying Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Shiheng Tao
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
86
|
Liu R, Li L, Li Z, Wang W. Impact of Hydrogen on the Transcriptome of Sinorhizobium meliloti 1021 Using RNA-sequencing Technology. Pol J Microbiol 2020; 69:1-10. [PMID: 32067442 PMCID: PMC7256871 DOI: 10.33073/pjm-2020-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 11/05/2022] Open
Abstract
Hydrogen formed during nitrogen fixation in legumes can enter the surrounding soil and confer multiple benefits to crops. Here, we used Sinorhizobium meliloti 1021, whose genome was sequenced in 2001, as a model bacterium to study the relationship between the bacterium and legume. We investigated the effects of hydrogen on the gene expression in S. meliloti using RNA-sequencing technology. We identified 43 genes whose expression was altered by hydrogen treatment; among these, 39 were downregulated, and 4 were upregulated. These genes accounted for 1.5% of the total 2941 annotated genes of the S. meliloti genome. Gene ontology and pathway analyses revealed that the hydrogen-regulated genes were associated with catalytic activity and binding. Further, these genes were primarily involved in arginine, proline, and β-alanine metabolism. Real-time PCR revealed that the transcription levels of SMc02983, cyoB, cyoC, and cyoD were reduced after hydrogen treatment. These results provide a theoretical framework for exploring new metabolic pathways of S. meliloti.
Collapse
Affiliation(s)
- Ruirui Liu
- The College of Life Sciences , Northwest University , Xi'an, P.R. China Key Laboratory of Resource Biology and Biotechnology in Western China , Northwest University , Xi'an , P.R. China
| | - Lulu Li
- The College of Life Sciences , Northwest University , Xi'an, P.R. China Key Laboratory of Resource Biology and Biotechnology in Western China , Northwest University , Xi'an , P.R. China
| | - Zhiying Li
- The College of Life Sciences , Northwest University , Xi'an, P.R. China Key Laboratory of Resource Biology and Biotechnology in Western China , Northwest University , Xi'an , P.R. China
| | - Weiwei Wang
- The College of Life Sciences , Northwest University , Xi'an, P.R. China Key Laboratory of Resource Biology and Biotechnology in Western China , Northwest University , Xi'an , P.R. China
| |
Collapse
|
87
|
Current Progress in Nitrogen Fixing Plants and Microbiome Research. PLANTS 2020; 9:plants9010097. [PMID: 31940996 PMCID: PMC7020401 DOI: 10.3390/plants9010097] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
In agroecosystems, nitrogen is one of the major nutrients limiting plant growth. To meet the increased nitrogen demand in agriculture, synthetic fertilizers have been used extensively in the latter part of the twentieth century, which have led to environmental challenges such as nitrate pollution. Biological nitrogen fixation (BNF) in plants is an essential mechanism for sustainable agricultural production and healthy ecosystem functioning. BNF by legumes and associative, endosymbiotic, and endophytic nitrogen fixation in non-legumes play major roles in reducing the use of synthetic nitrogen fertilizer in agriculture, increased plant nutrient content, and soil health reclamation. This review discusses the process of nitrogen-fixation in plants, nodule formation, the genes involved in plant-rhizobia interaction, and nitrogen-fixing legume and non-legume plants. This review also elaborates on current research efforts involved in transferring nitrogen-fixing mechanisms from legumes to non-legumes, especially to economically important crops such as rice, maize, and wheat at the molecular level and relevant other techniques involving the manipulation of soil microbiome for plant benefits in the non-legume root environment.
Collapse
|
88
|
Complete Genome Sequence of Sinorhizobium meliloti Strain AK21, a Salt-Tolerant Isolate from the Aral Sea Region. Microbiol Resour Announc 2020; 9:9/2/e01432-19. [PMID: 31919182 PMCID: PMC6952668 DOI: 10.1128/mra.01432-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We report here the complete genome sequence of the salt-tolerant Sinorhizobium meliloti strain AK21, isolated from nodules of Medicago sativa L. subsp. ambigua inhabiting the northern Aral Sea Region. This genome (7.36 Mb) consists of a chromosome and four accessory plasmids, two of which are the symbiotic megaplasmids pSymA and pSymB. We report here the complete genome sequence of the salt-tolerant Sinorhizobium meliloti strain AK21, isolated from nodules of Medicago sativa L. subsp. ambigua inhabiting the northern Aral Sea Region. This genome (7.36 Mb) consists of a chromosome and four accessory plasmids, two of which are the symbiotic megaplasmids pSymA and pSymB.
Collapse
|
89
|
Yan Y, Chen J, Galván AE, Garbinski LD, Zhu YG, Rosen BP, Yoshinaga M. Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont Sinorhizobium meliloti. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13648-13656. [PMID: 31682413 DOI: 10.1021/acs.est.9b04026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Massive amounts of methyl [e.g., methylarsenate, MAs(V)] and aromatic arsenicals [e.g., roxarsone (4-hydroxy-3-nitrophenylarsonate, Rox(V)] have been utilized as herbicides for weed control and growth promotors for poultry and swine, respectively. The majority of these organoarsenicals degrade into more toxic inorganic species. Here, we demonstrate that the legume symbiont Sinorhizobium meliloti both reduces MAs(V) to MAs(III) and catalyzes sequential two-step reduction of nitro and arsenate groups in Rox(V), producing the highly toxic trivalent amino aromatic derivative 4-hydroxy-3-aminophenylarsenite (HAPA(III)). The existence of this process suggests that S. meliloti possesses the ability to transform pentavalent methyl and aromatic arsenicals into antibiotics to provide a competitive advantage over other microbes, which would be a critical process for the synthetic aromatic arsenicals to function as antimicrobial growth promoters. The activated trivalent aromatic arsenicals are degraded into less-toxic inorganic species by an MAs(III)-demethylating aerobe, suggesting that environmental aromatic arsenicals also undergo a multiple-step degradation pathway, in analogy with the previously reported demethylation pathway of the methylarsenate herbicide. We further show that an FAD-NADPH-dependent nitroreductase encoded by mdaB gene catalyzes nitroreduction of roxarsone both in vivo and in vitro. Our results demonstrate that environmental organoarsenicals trigger competition between members of microbial communities, resulting in gradual degradation of organoarsenicals and contamination by inorganic arsenic.
Collapse
Affiliation(s)
- Yu Yan
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen 361021 , Fujian , China
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Luis D Garbinski
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , Fujian , China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environ-mental Sciences , Chinese Academy of Sciences , Beijing 100085 , Hebei , China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| |
Collapse
|
90
|
Defez R, Andreozzi A, Romano S, Pocsfalvi G, Fiume I, Esposito R, Angelini C, Bianco C. Bacterial IAA-Delivery into Medicago Root Nodules Triggers a Balanced Stimulation of C and N Metabolism Leading to a Biomass Increase. Microorganisms 2019; 7:microorganisms7100403. [PMID: 31569530 PMCID: PMC6843515 DOI: 10.3390/microorganisms7100403] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Indole-3-acetic acid (IAA) is the main auxin acting as a phytohormone in many plant developmental processes. The ability to synthesize IAA is widely associated with plant growth-promoting rhizobacteria (PGPR). Several studies have been published on the potential application of PGPR to improve plant growth through the enhancement of their main metabolic processes. In this study, the IAA-overproducing Ensifer meliloti strain RD64 and its parental strain 1021 were used to inoculate Medicago sativa plants. After verifying that the endogenous biosynthesis of IAA did not lead to genomic changes during the initial phases of the symbiotic process, we analyzed whether the overproduction of bacterial IAA inside root nodules influenced, in a coordinated manner, the activity of the nitrogen-fixing apparatus and the photosynthetic function, which are the two processes playing a key role in legume plant growth and productivity. Higher nitrogen-fixing activity and a greater amount of total nitrogen (N), carbon (C), Rubisco, nitrogen-rich amino acids, soluble sugars, and organic acids were measured for RD64-nodulated plants compared to the plants nodulated by the wild-type strain 1021. Furthermore, the RD64-nodulated plants showed a biomass increase over time, with the highest increment (more than 60%) being reached at six weeks after infection. Our findings show that the RD64-nodulated plants need more substrate derived from photosynthesis to generate the ATP required for their increased nitrogenase activity. This high carbohydrate demand further stimulates the photosynthetic function with the production of molecules that can be used to promote plant growth. We thus speculate that the use of PGPR able to stimulate both C and N metabolism with a balanced C/N ratio represents an efficient strategy to obtain substantial gains in plant productivity.
Collapse
Affiliation(s)
- Roberto Defez
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Anna Andreozzi
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Silvia Romano
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Immacolata Fiume
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Roberta Esposito
- Institute of Genetics and Biophysics "A.B.T.", CNR, via P. Castellino 111, 80131 Naples, Italy.
| | - Claudia Angelini
- Institute for Applied Mathematics "Mauro Picone" IAC, CNR, via P. Castellino 111, 80131 Naples, Italy.
| | - Carmen Bianco
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
91
|
Defez R, Valenti A, Andreozzi A, Romano S, Ciaramella M, Pesaresi P, Forlani S, Bianco C. New Insights into Structural and Functional Roles of Indole-3-acetic acid (IAA): Changes in DNA Topology and Gene Expression in Bacteria. Biomolecules 2019; 9:biom9100522. [PMID: 31547634 PMCID: PMC6843775 DOI: 10.3390/biom9100522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
: Indole-3-acetic acid (IAA) is a major plant hormone that affects many cellular processes in plants, bacteria, yeast, and human cells through still unknown mechanisms. In this study, we demonstrated that the IAA-treatment of two unrelated bacteria, the Ensifer meliloti 1021 and Escherichia coli, harboring two different host range plasmids, influences the supercoiled state of the two plasmid DNAs in vivo. Results obtained from in vitro assays show that IAA interacts with DNA, leading to DNA conformational changes commonly induced by intercalating agents. We provide evidence that IAA inhibits the activity of the type IA topoisomerase, which regulates the DNA topological state in bacteria, through the relaxation of the negative supercoiled DNA. In addition, we demonstrate that the treatment of E. meliloti cells with IAA induces the expression of some genes, including the ones related to nitrogen fixation. In contrast, these genes were significantly repressed by the treatment with novobiocin, which reduces the DNA supercoiling in bacterial cells. Taking into account the overall results reported, we hypothesize that the IAA action and the DNA structure/function might be correlated and involved in the regulation of gene expression. This work points out that checking whether IAA influences the DNA topology under physiological conditions could be a useful strategy to clarify the mechanism of action of this hormone, not only in plants but also in other unrelated organisms.
Collapse
Affiliation(s)
- Roberto Defez
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Anna Valenti
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Anna Andreozzi
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Silvia Romano
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Maria Ciaramella
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | - Sara Forlani
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | - Carmen Bianco
- Istituto di Bioscienze e BioRisorse, via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
92
|
Bouznif B, Guefrachi I, Rodríguez de la Vega RC, Hungria M, Mars M, Alunni B, Shykoff JA. Phylogeography of the Bradyrhizobium spp. Associated With Peanut, Arachis hypogaea: Fellow Travelers or New Associations? Front Microbiol 2019; 10:2041. [PMID: 31551977 PMCID: PMC6737463 DOI: 10.3389/fmicb.2019.02041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
Legume plants have colonized almost all terrestrial biotopes. Their ecological success is partly due to the selective advantage provided by their symbiotic association with nitrogen-fixing bacteria called rhizobia, which allow legumes to thrive on marginal lands and nitrogen depleted soils where non-symbiotic plants cannot grow. Additionally, their symbiotic capacities result in a high protein content in their aerial parts and seeds. This interesting nutritional value has led to the domestication and agricultural exploitation of several legumes grown for seeds and/or fodder for human and domestic animal consumption. Several cultivated legume species are thus grown far beyond their natural geographic range. Other legume species have become invasives, spreading into new habitats. The cultivation and establishment of legume species outside of their original range requires either that they are introduced or cultivated along with their original symbiotic partner or that they find an efficient symbiotic partner in their introduced habitat. The peanut, Arachis hypogaea, a native of South America, is now cultivated throughout the world. This species forms root nodules with Bradyrhizobium, but it is unclear whether these came with the seeds from their native range or were acquired locally. Here we propose to investigate the phylogeography of Bradyrhizobium spp. associated with a number of different wild and cultivated legume species from a range of geographical areas, including numerous strains isolated from peanut roots across the areas of peanut cultivation. This will allow us to address the question of whether introduced/cultivated peanuts associate with bacteria from their original geographic range, i.e., were introduced together with their original bacterial symbionts, or whether they acquired their current associations de novo from the bacterial community within the area of introduction. We will base the phylogenetic analysis on sequence data from both housekeeping and core genes and a symbiotic gene (nif). Differences between the phylogenetic signal of symbiotic and non-symbiotic genes could result from horizontal transfer of symbiosis capacity. Thus this study will also allow us to elucidate the processes by which this symbiotic association has evolved within this group of Bradyrhizobium spp.
Collapse
Affiliation(s)
- Besma Bouznif
- Écologie, Systématique et Évolution, CNRS, University Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
- Institute for Integrative Biology of the Cell, UMR 9198, CNRS/Université Paris-Sud/CEA, Gif-sur-Yvette, France
- Research Unit Biodiversity and Valorization of Arid Areas Bioressources (BVBAA), Faculty of Sciences, Gabès, Tunisia
| | - Ibtissem Guefrachi
- Écologie, Systématique et Évolution, CNRS, University Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
- Institute for Integrative Biology of the Cell, UMR 9198, CNRS/Université Paris-Sud/CEA, Gif-sur-Yvette, France
| | | | | | - Mohamed Mars
- Research Unit Biodiversity and Valorization of Arid Areas Bioressources (BVBAA), Faculty of Sciences, Gabès, Tunisia
| | - Benoit Alunni
- Institute for Integrative Biology of the Cell, UMR 9198, CNRS/Université Paris-Sud/CEA, Gif-sur-Yvette, France
| | - Jacqui Anne Shykoff
- Écologie, Systématique et Évolution, CNRS, University Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
93
|
Lemos LN, Medeiros JD, Dini-Andreote F, Fernandes GR, Varani AM, Oliveira G, Pylro VS. Genomic signatures and co-occurrence patterns of the ultra-small Saccharimonadia (phylum CPR/Patescibacteria) suggest a symbiotic lifestyle. Mol Ecol 2019; 28:4259-4271. [PMID: 31446647 DOI: 10.1111/mec.15208] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/29/2019] [Indexed: 01/31/2023]
Abstract
The size of bacterial genomes is often associated with organismal metabolic capabilities determining ecological breadth and lifestyle. The recently proposed Candidate Phyla Radiation (CPR)/Patescibacteria encompasses mostly unculturable bacterial taxa with relatively small genome sizes with potential for co-metabolism interdependencies. As yet, little is known about the ecology and evolution of CPR, particularly with respect to how they might interact with other taxa. Here, we reconstructed two novel genomes (namely, Candidatus Saccharibacter sossegus and Candidatus Chaer renensis) of taxa belonging to the class Saccharimonadia within the CPR/Patescibacteria using metagenomes obtained from acid mine drainage (AMD). By testing the hypothesis of genome streamlining or symbiotic lifestyle, our results revealed clear signatures of gene losses in these genomes, such as those associated with de novo biosynthesis of essential amino acids, nucleotides, fatty acids and cofactors. In addition, co-occurrence analysis provided evidence supporting potential symbioses of these organisms with Hydrotalea sp. in the AMD system. Together, our findings provide a better understanding of the ecology and evolution of CPR/Patescibacteria and highlight the importance of genome reconstruction for studying metabolic interdependencies between unculturable Saccharimonadia representatives.
Collapse
Affiliation(s)
- Leandro N Lemos
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of São Paulo USP, Piracicaba, Brazil
| | - Julliane D Medeiros
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Francisco Dini-Andreote
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Gabriel R Fernandes
- Biosystems Informatics and Genomics Group, René Rachou Institute, FIOCRUZ-Minas, Belo Horizonte, Brazil
| | - Alessandro M Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, Brazil
| | | | - Victor S Pylro
- Microbial Ecology and Bioinformatics Laboratory, Department of Biology, Federal University of Lavras (UFLA), Lavras, Brazil
| |
Collapse
|
94
|
Baena I, Pérez-Mendoza D, Sauviac L, Francesch K, Martín M, Rivilla R, Bonilla I, Bruand C, Sanjuán J, Lloret J. A partner-switching system controls activation of mixed-linkage β-glucan synthesis by c-di-GMP in Sinorhizobium meliloti. Environ Microbiol 2019; 21:3379-3391. [PMID: 30963697 DOI: 10.1111/1462-2920.14624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/06/2019] [Indexed: 11/29/2022]
Abstract
Sinorhizobium meliloti synthesizes a linear mixed-linkage (1 → 3)(1 → 4)-β-d-glucan (ML β-glucan, MLG) in response to high levels of cyclic diguanylate (c-di-GMP). Two proteins BgsA and BgsB are required for MLG synthesis, BgsA being the glucan synthase which is activated upon c-di-GMP binding to its C-terminal domain. Here we report that the product of bgrR (SMb20447) is a diguanylate cyclase (DGC) that provides c-di-GMP for the synthesis of MLG by BgsA. bgrR is the first gene of a hexacistronic bgrRSTUWV operon, likely encoding a partner-switching regulatory network where BgrR is the final target. Using different approaches, we have determined that the products of genes bgrU (containing a putative PP2C serine phosphatase domain) and bgrW (with predicted kinase effector domain), modulate the phosphorylation status and the activity of the STAS domain protein BgrV. We propose that unphosphorylated BgrV inhibits BgrR DGC activity, perhaps through direct protein-protein interactions as established for other partner switchers. A bgrRSTUWV operon coexists with MLG structural bgsBA genes in many rhizobial genomes but is also present in some MLG non-producers, suggesting a role of this partner-switching system in other processes besides MLG biosynthesis.
Collapse
Affiliation(s)
- Irene Baena
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Pérez-Mendoza
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Laurent Sauviac
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Kevin Francesch
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Claude Bruand
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Juan Sanjuán
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Javier Lloret
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
95
|
Bamba M, Aoki S, Kajita T, Setoguchi H, Watano Y, Sato S, Tsuchimatsu T. Exploring Genetic Diversity and Signatures of Horizontal Gene Transfer in Nodule Bacteria Associated with Lotus japonicus in Natural Environments. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1110-1120. [PMID: 30880586 DOI: 10.1094/mpmi-02-19-0039-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To investigate the genetic diversity and understand the process of horizontal gene transfer (HGT) in nodule bacteria associated with Lotus japonicus, we analyzed sequences of three housekeeping and five symbiotic genes using samples from a geographically wide range in Japan. A phylogenetic analysis of the housekeeping genes indicated that L. japonicus in natural environments was associated with diverse lineages of Mesorhizobium spp., whereas the sequences of symbiotic genes were highly similar between strains, resulting in remarkably low nucleotide diversity at both synonymous and nonsynonymous sites. Guanine-cytosine content values were lower in symbiotic genes, and relative frequencies of recombination between symbiotic genes were also lower than those between housekeeping genes. An analysis of molecular variance showed significant genetic differentiation among populations in both symbiotic and housekeeping genes. These results confirm that the Mesorhizobium genes required for symbiosis with L. japonicus behave as a genomic island (i.e., a symbiosis island) and suggest that this island has spread into diverse genomic backgrounds of Mesorhizobium via HGT events in natural environments. Furthermore, our data compilation revealed that the genetic diversity of symbiotic genes in L. japonicus-associated symbionts was among the lowest compared with reports of other species, which may be related to the recent population expansion proposed in Japanese populations of L. japonicus.
Collapse
Affiliation(s)
- Masaru Bamba
- Department of Biology (Frontier Science Program), Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Seishiro Aoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, the University of Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshidanihonmatsu-cho, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | | |
Collapse
|
96
|
Dang X, Xie Z, Liu W, Sun Y, Liu X, Zhu Y, Staehelin C. The genome of Ensifer alkalisoli YIC4027 provides insights for host specificity and environmental adaptations. BMC Genomics 2019; 20:643. [PMID: 31405380 PMCID: PMC6689892 DOI: 10.1186/s12864-019-6004-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ensifer alkalisoli YIC4027, a recently characterized nitrogen-fixing bacterium of the genus Ensifer, has been isolated from root nodules of the host plant Sesbania cannabina. This plant is widely used as green manure and for soil remediation. E. alkalisoli YIC4027 can grow in saline-alkaline soils and is a narrow-host-range strain that establishes a symbiotic relationship with S. cannabina. The complete genome of this strain was sequenced to better understand the genetic basis of host specificity and adaptation to saline-alkaline soils. Results E. alkalisoli YIC4027 was found to possess a 6.1-Mb genome consisting of three circular replicons: one chromosome (3.7 Mb), a chromid (1.9 Mb) and a plasmid (0.46 Mb). Genome comparisons showed that strain YIC4027 is phylogenetically related to broad-host-range Ensifer fredii strains. Synteny analysis revealed a strong collinearity between chromosomes of E. alkalisoli YIC4027 and those of the E. fredii NGR234 (3.9 Mb), HH103 (4.3 Mb) and USDA257 (6.48 Mb) strains. Notable differences were found for genes required for biosynthesis of nodulation factors and protein secretion systems, suggesting a role of these genes in host-specific nodulation. In addition, the genome analysis led to the identification of YIC4027 genes that are presumably related to adaptation to saline-alkaline soils, rhizosphere colonization and nodulation competitiveness. Analysis of chemotaxis cluster genes and nodulation tests with constructed che gene mutants indicated a role of chemotaxis and flagella-mediated motility in the symbiotic association between YIC4027 and S. cannabina. Conclusions This study provides a basis for a better understanding of host specific nodulation and of adaptation to a saline-alkaline rhizosphere. This information offers the perspective to prepare optimal E. alkalisoli inocula for agriculture use and soil remediation. Electronic supplementary material The online version of this article (10.1186/s12864-019-6004-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoxiao Dang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Zhihong Xie
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China. .,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China.
| | - Wei Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Yu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Xiaolin Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
97
|
Burghardt LT, Epstein B, Tiffin P. Legacy of prior host and soil selection on rhizobial fitness in planta. Evolution 2019; 73:2013-2023. [PMID: 31334838 DOI: 10.1111/evo.13807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/03/2023]
Abstract
Measuring selection acting on microbial populations in natural or even seminatural environments is challenging because many microbial populations experience variable selection. The majority of rhizobial bacteria are found in the soil. However, they also live symbiotically inside nodules of legume hosts and each nodule can release thousands of daughter cells back into the soil. We tested how past selection (i.e., legacies) by two plant genotypes and by the soil alone affected selection and genetic diversity within a population of 101 strains of Ensifer meliloti. We also identified allelic variants most strongly associated with soil- and host-dependent fitness. In addition to imposing direct selection on rhizobia populations, soil and host environments had lasting effects across host generations. Host presence and genotype during the legacy period explained 22% and 12% of the variance in the strain composition of nodule communities in the second cohort, respectively. Although strains with high host fitness in the legacy cohort tended to be enriched in the second cohort, the diversity of the strain community was greater when the second cohort was preceded by host rather than soil legacies. Our results indicate the potential importance of soil selection driving the evolution of these plant-associated microbes.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108
| |
Collapse
|
98
|
Liu Z, Chen W, Jiao S, Wang X, Fan M, Wang E, Wei G. New Insight into the Evolution of Symbiotic Genes in Black Locust-Associated Rhizobia. Genome Biol Evol 2019; 11:1736-1750. [PMID: 31192354 PMCID: PMC6698633 DOI: 10.1093/gbe/evz116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2019] [Indexed: 11/29/2022] Open
Abstract
Nitrogen fixation in legumes occurs via symbiosis with rhizobia. This process involves packages of symbiotic genes on mobile genetic elements that are readily transferred within or between rhizobial species, furnishing the recipient with the ability to interact with plant hosts. However, it remains elusive whether plant host migration has played a role in shaping the current distribution of genetic variation in symbiotic genes. Herein, we examined the genetic structure and phylogeographic pattern of symbiotic genes in 286 symbiotic strains of Mesorhizobium nodulating black locust (Robinia pseudoacacia), a cross-continental invasive legume species that is native to North America. We conducted detailed phylogeographic analysis and approximate Bayesian computation to unravel the complex demographic history of five key symbiotic genes. The sequencing results indicate an origin of symbiotic genes in Germany rather than North America. Our findings provide strong evidence of prehistoric lineage splitting and spatial expansion events resulting in multiple radiations of descendent clones from founding sequence types worldwide. Estimates of the timescale of divergence in North American and Chinese subclades suggest that black locust-specific symbiotic genes have been present in these continent many thousands of years before recent migration of plant host. Although numerous crop plants, including legumes, have found their centers of origin as centers of evolution and diversity, the number of legume-specific symbiotic genes with a known geographic origin is limited. This work sheds light on the coevolution of legumes and rhizobia.
Collapse
Affiliation(s)
- Zhenshan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinye Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Miaochun Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, D.F., Mexico
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
99
|
Brumwell SL, MacLeod MR, Huang T, Cochrane RR, Meaney RS, Zamani M, Matysiakiewicz O, Dan KN, Janakirama P, Edgell DR, Charles TC, Finan TM, Karas BJ. Designer Sinorhizobium meliloti strains and multi-functional vectors enable direct inter-kingdom DNA transfer. PLoS One 2019; 14:e0206781. [PMID: 31206509 PMCID: PMC6576745 DOI: 10.1371/journal.pone.0206781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
Storage, manipulation and delivery of DNA fragments is crucial for synthetic biology applications, subsequently allowing organisms of interest to be engineered with genes or pathways to produce desirable phenotypes such as disease or drought resistance in plants, or for synthesis of a specific chemical product. However, DNA with high G+C content can be unstable in many host organisms including Saccharomyces cerevisiae. Here, we report the development of Sinorhizobium meliloti, a nitrogen-fixing plant symbioticα-Proteobacterium, as a novel host that can store DNA, and mobilize DNA to E. coli, S. cerevisiae, and the eukaryotic microalgae Phaeodactylum tricornutum. To achieve this, we deleted the hsdR restriction-system in multiple reduced genome strains of S. meliloti that enable DNA transformation with up to 1.4 x 105 and 2.1 x 103 CFU μg-1 of DNA efficiency using electroporation and a newly developed polyethylene glycol transformation method, respectively. Multi-host and multi-functional shuttle vectors (MHS) were constructed and stably propagated in S. meliloti, E. coli, S. cerevisiae, and P. tricornutum. We also developed protocols and demonstrated direct transfer of these MHS vectors via conjugation from S. meliloti to E. coli, S. cerevisiae, and P. tricornutum. The development of S. meliloti as a new host for inter-kingdom DNA transfer will be invaluable for synthetic biology research and applications, including the installation and study of genes and biosynthetic pathways into organisms of interest in industry and agriculture.
Collapse
Affiliation(s)
- Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Tony Huang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ryan R Cochrane
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Kaitlyn N Dan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Designer Microbes Inc., London, ON, Canada
| |
Collapse
|
100
|
Lipa P, Vinardell JM, Janczarek M. Transcriptomic Studies Reveal that the Rhizobium leguminosarum Serine/Threonine Protein Phosphatase PssZ has a Role in the Synthesis of Cell-Surface Components, Nutrient Utilization, and Other Cellular Processes. Int J Mol Sci 2019; 20:ijms20122905. [PMID: 31197117 PMCID: PMC6628131 DOI: 10.3390/ijms20122905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing symbiotic associations with clover plants (Trifolium spp.). Surface polysaccharides, transport systems, and extracellular components synthesized by this bacterium are required for both the adaptation to changing environmental conditions and successful infection of host plant roots. The pssZ gene located in the Pss-I region, which is involved in the synthesis of extracellular polysaccharide, encodes a protein belonging to the group of serine/threonine protein phosphatases. In this study, a comparative transcriptomic analysis of R. leguminosarum bv. trifolii wild-type strain Rt24.2 and its derivative Rt297 carrying a pssZ mutation was performed. RNA-Seq data identified a large number of genes differentially expressed in these two backgrounds. Transcriptome profiling of the pssZ mutant revealed a role of the PssZ protein in several cellular processes, including cell signalling, transcription regulation, synthesis of cell-surface polysaccharides and components, and bacterial metabolism. In addition, we show that inactivation of pssZ affects the rhizobial ability to grow in the presence of different sugars and at various temperatures, as well as the production of different surface polysaccharides. In conclusion, our results identified a set of genes whose expression was affected by PssZ and confirmed the important role of this protein in the rhizobial regulatory network.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|