51
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
52
|
Wang Y, Milewska M, Foster H, Chapman R, Stenzel MH. The Core-Shell Structure, Not Sugar, Drives the Thermal Stabilization of Single-Enzyme Nanoparticles. Biomacromolecules 2021; 22:4569-4581. [PMID: 34617439 DOI: 10.1021/acs.biomac.1c00871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trehalose is widely assumed to be the most effective sugar for protein stabilization, but exactly how unique the structure is and the mechanism by which it works are still debated. Herein, we use a polyion complex micelle approach to control the position of trehalose relative to the surface of glucose oxidase within cross-linked and non-cross-linked single-enzyme nanoparticles (SENs). The distribution and density of trehalose molecules in the shell can be tuned by changing the structure of the underlying polymer, poly(N-[3-(dimethylamino)propyl] acrylamide (PDMAPA). SENs in which the trehalose is replaced with sucrose and acrylamide are prepared as well for comparison. Isothermal titration calorimetry, dynamic light scattering, and asymmetric flow field-flow fraction in combination with multiangle light scattering reveal that two to six polymers bind to the enzyme. Binding either trehalose or sucrose close to the enzyme surface has very little effect on the thermal stability of the enzyme. By contrast, encapsulation of the enzyme within a cross-linked polymer shell significantly enhances its thermal stability and increases the unfolding temperature from 70.3 °C to 84.8 °C. Further improvements (up to 92.8 °C) can be seen when trehalose is built into this shell. Our data indicate that the structural confinement of the enzyme is a far more important driver in its thermal stability than the location of any sugar.
Collapse
Affiliation(s)
- Yiping Wang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Malgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice 44 100, Poland
| | - Henry Foster
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, UNSW Sydney, Kensington, New South Wales 2052, Australia
| |
Collapse
|
53
|
Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á, Kamli MR, Tavano O, Fernandez-Lafuente R. Immobilization of papain: A review. Int J Biol Macromol 2021; 188:94-113. [PMID: 34375660 DOI: 10.1016/j.ijbiomac.2021.08.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Papain is a cysteine protease from papaya, with many applications due to its broad specificity. This paper reviews for first time the immobilization of papain on different supports (organic, inorganic or hybrid supports) presenting some of the features of the utilized immobilization strategies (e.g., epoxide, glutaraldehyde, genipin, glyoxyl for covalent immobilization). Special focus is placed on the preparation of magnetic biocatalysts, which will permit the simple recovery of the biocatalyst even if the medium is a suspension. Problems specific to the immobilization of proteases (e.g., steric problems when hydrolyzing large proteins) are also defined. The benefits of a proper immobilization (enzyme stabilization, widening of the operation window) are discussed, together with some artifacts that may suggest an enzyme stabilization that may be unrelated to enzyme rigidification.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddad 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddad 21589, Saudi Arabia
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Center of Excellence in Bionanoscience Research, External advisory board, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
54
|
An Updated review on production of food derived bioactive peptides; focus on the psychrotrophic bacterial proteases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
55
|
Mohsin MZ, Omer R, Huang J, Mohsin A, Guo M, Qian J, Zhuang Y. Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials. Synth Syst Biotechnol 2021; 6:180-191. [PMID: 34401544 PMCID: PMC8332661 DOI: 10.1016/j.synbio.2021.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 07/23/2021] [Indexed: 01/23/2023] Open
Abstract
Bacillus subtilis is a commonly used commercial specie with broad applications in the fields of bioengineering and biotechnology. B. subtilis is capable of producing both biofilms and spores. Biofilms are matrix-encased multicellular communities that comprise various components including exopolysaccharides, proteins, extracellular DNA, and poly-γ-glutamic acid. These biofilms resist environmental conditions such as oxidative stress and hence have applications in bioremediation technologies. Furthermore, biofilms and spores can be engineered through biotechnological techniques for environmentally-friendly and safe production of bio-products such as enzymes. The ability to withstand with harsh conditions and producing spores makes Bacillus a suitable candidate for surface display technology. In recent years, the spores of such specie are widely used as it is generally regarded as safe to use. Advances in synthetic biology have enabled the reprogramming of biofilms to improve their functions and enhance the production of value-added products. Globally, there is increased interest in the production of engineered biosensors, biocatalysts, and biomaterials. The elastic modulus and gel properties of B. subtilis biofilms have been utilized to develop living materials. This review outlines the formation of B. subtilis biofilms and spores. Biotechnological engineering processes and their increasing application in bioremediation and biocatalysis, as well as the future directions of B. subtilis biofilm engineering, are discussed. Furthermore, the ability of B. subtilis biofilms and spores to fabricate functional living materials with self-regenerating, self-regulating and environmentally responsive characteristics has been summarized. This review aims to resume advances in biological engineering of B. subtilis biofilms and spores and their applications.
Collapse
Key Words
- Bacillus subtilis
- Biocatalysis
- Biofilms
- Biomaterials
- Bioremediation
- Extracellular DNA, (eDNA)
- Extracellular Polymeric Substance/ Exopolysaccharide, (EPS)
- Gold nanoparticles, (AuNPs)
- Green fluorescent protein, (GFP)
- Isopropylthio-β-d-galactoside, (IPTG)
- Menaquinoe-7, (MK-7)
- Microbial fuel cell, (MFC)
- Mono (2-hydroxyethyl) terephthalic acid, (MHET)
- N-Acetyl-d-neuraminic Acid, (Neu5Ac)
- N-acetylglucosamine, (GlcNAc)
- Nanoparticles, (NPs)
- Nickel nitriloacetic acid, (Ni-NTA)
- Organophosphorus hydrolase, (OPH)
- Paranitrophenol, (PNP)
- Paraoxon, (PAR)
- Quantum dots, (QDs)
- Spores
- Synthetic biology
- d-psicose 3-epimerase, (DPEase)
- l-Arabinose Isomerase, (L-AI)
- p-aminophenol, (PAP)
- β-Galactosidase, (β-Gal)
Collapse
Affiliation(s)
- Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
56
|
Sha F, Chen Y, Drout RJ, Idrees KB, Zhang X, Farha OK. Stabilization of an enzyme cytochrome c in a metal-organic framework against denaturing organic solvents. iScience 2021; 24:102641. [PMID: 34151233 PMCID: PMC8192563 DOI: 10.1016/j.isci.2021.102641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 01/30/2023] Open
Abstract
Enzymes are promising catalysts with high selectivity and activity under mild reaction conditions. However, their practical application has largely been hindered by their high cost and poor stability. Metal-organic frameworks (MOFs) as host materials show potential in protecting proteins against denaturing conditions, but a systematic study investigating the stabilizing mechanism is still lacking. In this study, we stabilized enzyme cytochrome c (cyt c) by encapsulating it in a hierarchical mesoporous zirconium-based MOF, NU-1000 against denaturing organic solvents. Cyt c@NU-1000 showed a significantly enhanced activity compared to the native enzyme, and the composite retained this enhanced activity after treatment with five denaturing organic solvents. Moreover, the composite was recyclable without activity loss for at least three cycles. Our cyt c@NU-1000 model system demonstrates that enzyme@MOF composites prepared via post-synthetic encapsulation offer a promising route to overcome the challenges of enzyme stability and recyclability that impede the widespread adoption of biocatalysis.
Collapse
Affiliation(s)
- Fanrui Sha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yijing Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Riki J. Drout
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Karam B. Idrees
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
- International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
57
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Morellon-Sterling R, Tavano O, Berenguer-Murcia Á, Vela-Gutiérrez G, Rather IA, Fernandez-Lafuente R. Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. Int J Biol Macromol 2021; 184:415-428. [PMID: 34157329 DOI: 10.1016/j.ijbiomac.2021.06.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Papain is a cysteine endopeptidase of vegetal origin (papaya (Carica papaya L.) with diverse applications in food technology. In this review we have focused our attention on its application in the production of bio-peptides by hydrolysis of proteins from fish residues. This way, a residual material, that can become a contaminant if dumped without control, is converted into highly interesting products. The main bioactivity of the produced peptides is their antioxidant activity, followed by their nutritional and functional activities, but peptides with many other bioactivities have been produced. Thera are also examples of production of hydrolysates with several bioactivities. The enzyme may be used alone, or in combination with other enzymes to increase the degree of hydrolysis.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Gilber Vela-Gutiérrez
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Irfan A Rather
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
58
|
Zhang QP, Wang Z, Zhang ZW, Zhai TL, Chen JJ, Ma H, Tan B, Zhang C. Triptycene-based Chiral Porous Polyimides for Enantioselective Membrane Separation. Angew Chem Int Ed Engl 2021; 60:12781-12785. [PMID: 33792135 DOI: 10.1002/anie.202102350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Indexed: 11/07/2022]
Abstract
Enantiomers of 2, 6-diaminotriptycene (R, R-1 and S, S-1) are split by chiral-phase HPLC and their absolute configurations are identified by single-crystal X-ray diffraction technology. Using the enantiomers as monomers, a couple of chiral porous polyimides (R-FTPI and S-FTPI) are prepared by polycondensation reactions and display good heat stability, high BET surface area and good solubility in organic solvents. Moreover, both of R-FTPI and S-FTPI can be cast into robust, free-standing films suitable for enantioselective separation with symmetrical chiral selectivity.
Collapse
Affiliation(s)
- Qing-Pu Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhe-Wen Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tian-Long Zhai
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing-Jing Chen
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bien Tan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
59
|
Zhang Q, Wang Z, Zhang Z, Zhai T, Chen J, Ma H, Tan B, Zhang C. Triptycene‐based Chiral Porous Polyimides for Enantioselective Membrane Separation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qing‐Pu Zhang
- College of Life Science and Technology National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhen Wang
- College of Life Science and Technology National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhe‐Wen Zhang
- College of Life Science and Technology National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan 430074 China
| | - Tian‐Long Zhai
- College of Life Science and Technology National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan 430074 China
| | - Jing‐Jing Chen
- College of Life Science and Technology National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan 430074 China
| | - Hui Ma
- College of Life Science and Technology National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan 430074 China
| | - Bien Tan
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Chun Zhang
- College of Life Science and Technology National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
60
|
Immobilization of the Peroxygenase from Agrocybe aegerita. The Effect of the Immobilization pH on the Features of an Ionically Exchanged Dimeric Peroxygenase. Catalysts 2021. [DOI: 10.3390/catal11050560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This paper outlines the immobilization of the recombinant dimeric unspecific peroxygenase from Agrocybe aegerita (rAaeUPO). The enzyme was quite stable (remaining unaltered its activity after 35 h at 47 °C and pH 7.0). Phosphate destabilized the enzyme, while glycerol stabilized it. The enzyme was not immobilized on glyoxyl-agarose supports, while it was immobilized albeit in inactive form on vinyl-sulfone-activated supports. rAaeUPO immobilization on glutaraldehyde pre-activated supports gave almost quantitative immobilization yield and retained some activity, but the biocatalyst was very unstable. Its immobilization via anion exchange on PEI supports also produced good immobilization yields, but the rAaeUPO stability dropped. However, using aminated agarose, the enzyme retained stability and activity. The stability of the immobilized enzyme strongly depended on the immobilization pH, being much less stable when rAaeUPO was adsorbed at pH 9.0 than when it was immobilized at pH 7.0 or pH 5.0 (residual activity was almost 0 for the former and 80% for the other preparations), presenting stability very similar to that of the free enzyme. This is a very clear example of how the immobilization pH greatly affects the final biocatalyst performance.
Collapse
|
61
|
Choi HJ, Ahn YH, Koh DY. Enantioselective Mixed Matrix Membranes for Chiral Resolution. MEMBRANES 2021; 11:279. [PMID: 33920323 PMCID: PMC8069341 DOI: 10.3390/membranes11040279] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022]
Abstract
Most pharmaceuticals are stereoisomers that each enantiomer shows dramatically different biological activity. Therefore, the production of optically pure chemicals through sustainable and energy-efficient technology is one of the main objectives in the pharmaceutical industry. Membrane-based separation is a continuous process performed on a large scale that uses far less energy than the conventional thermal separation process. Enantioselective polymer membranes have been developed for chiral resolution of pharmaceuticals; however, it is difficult to generate sufficient enantiomeric excess (ee) with conventional polymers. This article describes a chiral resolution strategy using a composite structure of mixed matrix membrane that employs chiral fillers. We discuss several enantioselective fillers, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, porous organic cages (POCs), and their potential use as chiral fillers in mixed matrix membranes. State-of-the-art enantioselective mixed matrix membranes (MMMs) and the future design consideration for highly efficient enantioselective MMMs are discussed.
Collapse
Affiliation(s)
- Hwa-Jin Choi
- Department of Chemical and Molecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Yun-Ho Ahn
- Department of Chemical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea;
| | - Dong-Yeun Koh
- Department of Chemical and Molecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| |
Collapse
|
62
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
63
|
Braham SA, Siar EH, Arana-Peña S, Bavandi H, Carballares D, Morellon-Sterling R, de Andrades D, Kornecki JF, Fernandez-Lafuente R. Positive effect of glycerol on the stability of immobilized enzymes: Is it a universal fact? Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
64
|
Morellon-Sterling R, Siar EH, Braham SA, de Andrades D, Pedroche J, Millán MDC, Fernandez-Lafuente R. Effect of amine length in the interference of the multipoint covalent immobilization of enzymes on glyoxyl agarose beads. J Biotechnol 2021; 329:128-142. [PMID: 33600890 DOI: 10.1016/j.jbiotec.2021.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Trypsin, chymotrypsin, penicillin G acylase and ficin extract have been stabilized by immobilization on glyoxyl agarose, adding different aliphatic compounds bearing a primary amine group during the immobilization: ethyl amine, butyl amine, hexyl amine (at concentrations ranging from 0 to 20 mM) and octyl amine (from 0 to 10 mM) to analyze their effects on the immobilized enzyme stability. As expected, the presence of amines reduced the intensity of the enzyme-support multipoint covalent attachment, and therefore the enzyme stability. However, it is clear that this effect is higher using octyl amine for all enzymes (in some cases the enzyme immobilized in the presence of 10 mM octyl amine was almost inactivated while the reference kept over 50 % of the initial activity). This way, it seems that the most important effect of the presence of aminated compounds came from the generation of steric hindrances to the enzyme/support multi-reaction promoted by the ammines that are interacting with the aldehyde groups. In some instances, just 1 mM of aminated compounds is enough to greatly decrease enzyme stability. The results suggested that, if the composition of the enzyme extract is unknown, to eliminate small aminated compounds may be necessary to maximize the enzyme-support reaction.
Collapse
Affiliation(s)
| | - El-Hocine Siar
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC Madrid, Spain; Transformation and Food Product Elaboration Laboratory, Nutrition and Food, Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | - Sabrina Ait Braham
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC Madrid, Spain; Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Diandra de Andrades
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC Madrid, Spain; Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Justo Pedroche
- Group of Plant Proteins, Department of Food and Health, Instituto de la Grasa-CSIC, Seville, Spain
| | - Mª Del Carmen Millán
- Group of Plant Proteins, Department of Food and Health, Instituto de la Grasa-CSIC, Seville, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
65
|
Monteiro RR, Virgen-Ortiz JJ, Berenguer-Murcia Á, da Rocha TN, dos Santos JC, Alcántara AR, Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
66
|
Liang J, Gao S, Liu J, Zulkifli MYB, Xu J, Scott J, Chen V, Shi J, Rawal A, Liang K. Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactor‐Dependent Biocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Song Gao
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Jian Liu
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Muhammad Y. B. Zulkifli
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Jiangtao Xu
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Jason Scott
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Vicki Chen
- School of Chemical Engineering University of Queensland Queensland 4072 Australia
| | - Jiafu Shi
- School of Environmental Science and Engineering Tianjin University 92# Weijin Road, Nankai District Tianjin 300072 China
| | - Aditya Rawal
- Nuclear Magnetic Resonance Facility Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia
| | - Kang Liang
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
67
|
Liang J, Gao S, Liu J, Zulkifli MYB, Xu J, Scott J, Chen V, Shi J, Rawal A, Liang K. Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactor-Dependent Biocatalysis. Angew Chem Int Ed Engl 2021; 60:5421-5428. [PMID: 33258208 DOI: 10.1002/anie.202014002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Metal-organic frameworks (MOFs) have recently emerged as excellent hosting matrices for enzyme immobilization, offering superior physical and chemical protection for biocatalytic reactions. However, for multienzyme and cofactor-dependent biocatalysis, the subtle orchestration of enzymes and cofactors is largely disrupted upon immobilizing in the rigid crystalline MOF network, which leads to a much reduced biocatalytic efficiency. Herein, we constructed hierarchically porous MOFs by controlled structural etching to enhance multienzyme and cofactor-dependent enzyme biocatalysis. The expanded size of the pores can provide sufficient space for accommodated enzymes to reorientate and spread within MOFs in their lower surface energy state as well as to decrease the inherent barriers to accelerate the diffusion rate of reactants and intermediates. Moreover, the developed hierarchically porous MOFs demonstrated outstanding tolerance to inhospitable surroundings and recyclability.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Song Gao
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jian Liu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Muhammad Y B Zulkifli
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jason Scott
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Queensland, 4072, Australia
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, 92# Weijin Road, Nankai District, Tianjin, 300072, China
| | - Aditya Rawal
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
68
|
Su WB, Li FL, Li XY, Fan XM, Liu RJ, Zhang YW. Using galactitol dehydrogenase coupled with water-forming NADH oxidase for efficient enzymatic synthesis of L-tagatose. N Biotechnol 2021; 62:18-25. [PMID: 33460816 DOI: 10.1016/j.nbt.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
L-Tagatose, a promising building block in the production of many value-added chemicals, is generally produced by chemical routes with a low yield, which may not meet the increasing demands. Synthesis of l-tagatose by enzymatic oxidation of d-galactitol has not been applied on an industrial scale because of the high cofactor costs and the lack of efficient cofactor regeneration methods. In this work, an efficient and environmentally friendly enzymatic method containing a galactitol dehydrogenase for d-galactitol oxidation and a water-forming NADH oxidase for regeneration of NAD+ was first designed and used for l-tagatose production. Supplied with only 3 mM NAD+, subsequent reaction optimization facilitated the efficient transformation of 100 mM of d-galactitol into l-tagatose with a yield of 90.2 % after 12 h (obtained productivity: 7.61 mM.h-1). Compared with the current chemical and biocatalytic methods, the strategy developed avoids by-product formation and achieves the highest yield of l-tagatose with low costs. It is expected to become a cleaner and more promising route for industrial biosynthesis of l-tagatose.
Collapse
Affiliation(s)
- Wen-Bin Su
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Fei-Long Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xue-Yong Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Rui-Jiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China; College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, People's Republic of China.
| |
Collapse
|
69
|
Scope and limitations of biocatalytic carbonyl reduction with white-rot fungi. Bioorg Chem 2021; 108:104651. [PMID: 33508677 DOI: 10.1016/j.bioorg.2021.104651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 11/24/2022]
Abstract
The reductive activity of various basidiomycetous fungi towards carbonyl compounds was screened on an analytical level. Some strains displayed high reductive activities toward aromatic carbonyls and aliphatic ketones. Utilizing growing whole-cell cultures of Dichomitus albidofuscus, the reactions were up-scaled to a preparative level in an aqueous system. The reactions showed excellent selectivities and gave the respective alcohols in high yields. Carboxylic acids were also reduced to aldehydes and alcohols under the same conditions. In particular, benzoic, vanillic, ferulic, and p-coumaric acid were reduced to benzyl alcohol, vanillin, dihydroconiferyl alcohol and 1-hydroxy-3-(4-hydroxyphenyl)propan, respectively.
Collapse
|
70
|
Salvi HM, Yadav GD. Process intensification using immobilized enzymes for the development of white biotechnology. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00020a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Process intensification of biocatalysed reactions using different techniques such as microwaves, ultrasound, hydrodynamic cavitation, ionic liquids, microreactors and flow chemistry in various industries is critically analysed and future directions provided.
Collapse
Affiliation(s)
- Harshada M. Salvi
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Ganapati D. Yadav
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
71
|
Heckmann CM, Paradisi F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem 2020; 12:6082-6102. [PMID: 33381242 PMCID: PMC7756376 DOI: 10.1002/cctc.202001107] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Enzymatic approaches to challenges in chemical synthesis are increasingly popular and very attractive to industry given their green nature and high efficiency compared to traditional methods. In this historical review we highlight the developments across several fields that were necessary to create the modern field of biocatalysis, with enzyme engineering and directed evolution at its core. We exemplify the modular, incremental, and highly unpredictable nature of scientific discovery, driven by curiosity, and showcase the resulting examples of cutting-edge enzymatic applications in industry.
Collapse
Affiliation(s)
- Christian M Heckmann
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| | - Francesca Paradisi
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
72
|
Kumar Sahoo D, Devi Tulsiyan K, Jena S, Biswal HS. Implication of Threonine-Based Ionic Liquids on the Structural Stability, Binding and Activity of Cytochrome c. Chemphyschem 2020; 21:2525-2535. [PMID: 33022820 DOI: 10.1002/cphc.202000761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/04/2020] [Indexed: 12/28/2022]
Abstract
Ionic liquids (ILs) are useful in pharmaceutical industries and biotechnology as alternative solvents or sources for protein extraction and purification, preservation of biomolecules and for regulating the catalytic activity of enzymes. However, the binding mechanism, the non-covalent forces responsible for protein-IL interactions and dynamics of proteins in IL need to be investigated in depth for the effective use of ILs as alternatives. Herein, we disclose the molecular level understanding of the structural intactness and reactivity of a model protein cytochrome c (Cyt c) in biocompatible threonine-based ILs with the help of experimental techniques such as isothermal titration calorimetry (ITC), fluorescence spectroscopy, transmission electron microscopy (TEM) as well as molecular docking. Hydrophobic and electrostatic forces are responsible for the structural and conformational integrity of Cyt c in IL. The ITC experiments revealed the Cyt c-IL binding free energies are in the range of 10-14 kJ/mol and the molecular docking studies demonstrated that ILs interact at the surfaces of Cyt c. The results look promising as the ILs used here are non-toxic and biocompatible, and thus may find potential applications in structural biology and biotechnology.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN-752050, Bhubaneswar, India.,Homi Bhaba National Institute Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN-752050, Bhubaneswar, India.,Homi Bhaba National Institute Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN-752050, Bhubaneswar, India.,Homi Bhaba National Institute Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN-752050, Bhubaneswar, India.,Homi Bhaba National Institute Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
73
|
Ott W, Ceccarelli A, Manning J, Turner NJ, Oppenheimer R. Data‐driven enzyme immobilisation: a case study using DNA to immobilise galactose oxidase. ENGINEERING BIOLOGY 2020; 4:43-46. [PMID: 36968156 PMCID: PMC9996703 DOI: 10.1049/enb.2020.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022] Open
Abstract
Biocatalysis has the potential to enable green chemistry. New methods of enzyme immobilisation will be required to improve enzyme stability, product purification, and compatibility of different enzymes in the same reaction conditions. Deoxyribonucleic acid (DNA) stands out among supramolecular scaffolds, as simple Watson-Crick base-pairing rules can be used to rationally design a unique nanoscale environment around each individual enzyme in a cascade. Enhancements of enzyme activity and stability on DNA nanostructures have previously been reported, but never in the context of industrially relevant chemical syntheses or reaction conditions. Here, the authors show DNA can enhance the activity and stability of a galactose oxidase mutant, which could be used in a cascade to produce bioplastics from lignin. The enzyme was enhanced in the cell-free extract, which to their knowledge has not been shown before for any enzymes on DNA. This is significant because crude biocatalytic reactions are vastly more cost-effective. This opens the door to further work on multienzyme cascades by tuning the properties of individual enzymes.
Collapse
Affiliation(s)
- Wolfgang Ott
- FabricNano, Unit 19, Westbourne Studios 242 Acklam Rd London W10 5JJ UK
| | | | - Jack Manning
- FabricNano, Unit 19, Westbourne Studios 242 Acklam Rd London W10 5JJ UK
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology University of Manchester 131 Princess Street Manchester M1 7DN UK
| | | |
Collapse
|
74
|
Affiliation(s)
- Sayantika Bhakta
- Department of Applied Sciences Maulana Abul Kalam Azad University of Technology West Bengal, Simhat, Haringhata-741249 Nadia postcode missing West Bengal India
| | - Tapas Ghosh
- Department of Applied Sciences Maulana Abul Kalam Azad University of Technology West Bengal, Simhat, Haringhata-741249 Nadia postcode missing West Bengal India
| |
Collapse
|
75
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
76
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
77
|
Lee CH, Jin ES, Lee JH, Hwang ET. Immobilization and Stabilization of Enzyme in Biomineralized Calcium Carbonate Microspheres. Front Bioeng Biotechnol 2020; 8:553591. [PMID: 33163476 PMCID: PMC7581938 DOI: 10.3389/fbioe.2020.553591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Biomineralized uniform and well-organized calcium carbonate microspheres were synthesized for enzyme immobilization, and the immobilized enzyme was successfully stabilized. The physicochemical parameters of calcium carbonate were studied using scanning electron microscopy with energy-dispersive X-ray spectroscopy, particle size analysis, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and surface area measurement. Additionally, Barrett-Joyner-Halenda adsorption/desorption analysis showed that the calcium carbonate microspheres provided efficient mesopore space for enzyme loading. As a model enzyme, carboxyl esterase (CE) was entrapped and then cross-linked to form an enzyme structure. In this aggregate, the cross-linked enzymes cannot leach out from mesopores, resulting in enzyme stability. The hydrolytic activities of the free and cross-linked enzymes were analyzed over broad temperature and pH ranges. The cross-linked enzyme displayed better activity than the free enzyme. Furthermore, the immobilized CE was found to be stable for more than 30 days, preserving 60% of its initial activity even after being reused more than 10 times. This report is expected to be the first demonstration of a stabilized cross-linked enzyme system in calcium carbonate microspheres, which can be applied in enzyme catalyzed reactions involved in bioprocessing, bioremediation, and bioconversion.
Collapse
Affiliation(s)
- Chan Hee Lee
- Department of Life Science, Research Institute for Nature Sciences, Hanyang University, Seoul, South Korea
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, Cheongju-si, South Korea
| | - Eon Seon Jin
- Department of Life Science, Research Institute for Nature Sciences, Hanyang University, Seoul, South Korea
| | - Jin Hyung Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, Cheongju-si, South Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan, South Korea
| |
Collapse
|
78
|
Liu K, Gong M, Lv X, Li J, Du G, Liu L. Biotransformation and chiral resolution of d,l-alanine into pyruvate and d-alanine with a whole-cell biocatalyst expressing l-amino acid deaminase. Biotechnol Appl Biochem 2020; 67:668-676. [PMID: 32822096 DOI: 10.1002/bab.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023]
Abstract
Pyruvate is an important pharmaceutical intermediate and is widely used in food, nutraceuticals, and pharmaceuticals. However, high environmental pollution caused by chemical synthesis or complex separation process of microbial fermentation methods constrain the supply of pyruvate. Here, one-step pyruvate and d-alanine production from d,l-alanine by whole-cell biocatalysis was investigated. First, l-amino acid deaminase (Pm1) from Proteus mirabilis was expressed in Escherichia coli, resulting in pyruvate titer of 12.01 g/L. Then, N-terminal coding sequences were introduced to the 5'-end of the pm1 gene to enhance the expression of Pm1 and the pyruvate titer increased to 15.13 g/L. Next, product utilization by the biocatalyst was prevented by knocking out the pyruvate uptake transporters (cstA, btsT) and the pyruvate metabolic pathway genes pps, poxB, pflB, ldhA, and aceEF using CRISPR/Cas9, yielding 30.88 g/L pyruvate titer. Finally, by optimizing the reaction conditions, the pyruvate titer was further enhanced to 43.50 g/L in 8 H with a 79.99% l-alanine conversion rate; meanwhile, the resolution of d-alanine reached 84.0%. This work developed a whole-cell biocatalyst E. coli strain for high-yield, high-efficiency, and low-pollution pyruvate and d-alanine production, which has great potential for the commercial application in the future.
Collapse
Affiliation(s)
- Ke Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Mengyue Gong
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
79
|
Abstract
Enzymatic methods for the oxidation of alcohols are critically reviewed. Dehydrogenases and oxidases are the most prominent biocatalysts, enabling the selective oxidation of primary alcohols into aldehydes or acids. In the case of secondary alcohols, region and/or enantioselective oxidation is possible. In this contribution, we outline the current state-of-the-art and discuss current limitations and promising solutions.
Collapse
|
80
|
Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts 2020. [DOI: 10.3390/catal10080891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immobilization of enzymes using protein coated micro-crystals (PCMCs) was reported for the first time in 2001 by Kreiner and coworkers. The strategy is very simple. First, an enzyme solution must be prepared in a concentrated solution of one compound (salt, sugar, amino acid) very soluble in water and poorly soluble in a water-soluble solvent. Then, the enzyme solution is added dropwise to the water soluble solvent under rapid stirring. The components accompanying the enzyme are called the crystal growing agents, the solvent being the dehydrating agent. This strategy permits the rapid dehydration of the enzyme solution drops, resulting in a crystallization of the crystal formation agent, and the enzyme is deposited on this crystal surface. The reaction medium where these biocatalysts can be used is marked by the solubility of the PCMC components, and usually these biocatalysts may be employed in water soluble organic solvents with a maximum of 20% water. The evolution of these PCMC was to chemically crosslink them and further improve their stabilities. Moreover, the PCMC strategy has been used to coimmobilize enzymes or enzymes and cofactors. The immobilization may permit the use of buffers as crystal growth agents, enabling control of the reaction pH in the enzyme environments. Usually, the PCMC biocatalysts are very stable and more active than other biocatalysts of the same enzyme. However, this simple (at least at laboratory scale) immobilization strategy is underutilized even when the publications using it systematically presented a better performance of them in organic solvents than that of many other immobilized biocatalysts. In fact, many possibilities and studies using this technique are lacking. This review tried to outline the possibilities of this useful immobilization strategy.
Collapse
|
81
|
de Souza TC, de Sousa Fonseca T, de Sousa Silva J, Lima PJM, Neto CACG, Monteiro RRC, Rocha MVP, de Mattos MC, dos Santos JCS, Gonçalves LRB. Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess Biosyst Eng 2020; 43:2253-2268. [DOI: 10.1007/s00449-020-02411-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/15/2020] [Indexed: 01/24/2023]
|
82
|
Liang J, Liang K. Multi‐enzyme Cascade Reactions in Metal‐organic Frameworks. CHEM REC 2020; 20:1100-1116. [DOI: 10.1002/tcr.202000067] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
83
|
Zetzsche LE, Narayan ARH. Broadening the scope of biocatalytic C-C bond formation. Nat Rev Chem 2020; 4:334-346. [PMID: 34430708 PMCID: PMC8382263 DOI: 10.1038/s41570-020-0191-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The impeccable control over chemo-, site-, and stereoselectivity possible in enzymatic reactions has led to a surge in the development of new biocatalytic methods. Despite carbon-carbon (C-C) bonds providing the central framework for organic molecules, development of biocatalytic methods for their formation has been largely confined to the use of a select few lyases over the last several decades, limiting the types of C-C bond-forming transformations possible through biocatalytic methods. This Review provides an update on the suite of enzymes available for highly selective biocatalytic C-C bond formation. Examples will be discussed in reference to the (1) native activity of enzymes, (2) alteration of activity through protein or substrate engineering for broader applicability, and (3) utility of the biocatalyst for abiotic synthesis.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alison R. H. Narayan
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
84
|
Huang CY. Structure, catalytic mechanism, posttranslational lysine carbamylation, and inhibition of dihydropyrimidinases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:63-96. [PMID: 32951816 DOI: 10.1016/bs.apcsb.2020.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dihydropyrimidinase catalyzes the reversible hydrolytic ring opening of dihydrouracil and dihydrothymine to N-carbamoyl-β-alanine and N-carbamyl-β-aminoisobutyrate, respectively. Dihydropyrimidinase from microorganisms is normally known as hydantoinase because of its role as a biocatalyst in the synthesis of d- and l-amino acids for the industrial production of antibiotic precursors and its broad substrate specificity. Dihydropyrimidinase belongs to the cyclic amidohydrolase family, which also includes imidase, allantoinase, and dihydroorotase. Although these metal-dependent enzymes share low levels of amino acid sequence homology, they possess similar active site architectures and may use a similar mechanism for catalysis. By contrast, the five human dihydropyrimidinase-related proteins possess high amino acid sequence identity and are structurally homologous to dihydropyrimidinase, but they are neuronal proteins with no dihydropyrimidinase activity. In this chapter, we summarize and discuss current knowledge and the recent advances on the structure, catalytic mechanism, and inhibition of dihydropyrimidinase.
Collapse
Affiliation(s)
- Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
85
|
Prabhudev H, Sneharani AH. Extraction and characterization of pectin methylesterase from muskmelon biowaste for pectin remodeling. J Food Biochem 2020; 44:e13237. [PMID: 32478425 DOI: 10.1111/jfbc.13237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/29/2020] [Accepted: 03/25/2020] [Indexed: 11/28/2022]
Abstract
Pectin methylesterase (PME) extracted from muskmelon was purified by anion exchange chromatography. The specific activity of purified enzyme was 152.01 U/mg and relative molecular weight was ~69,000 Da. Methylesterase was characterized for various physicochemical factors to designate its suitability in the food industry applications. The optimum temperature of the enzyme was 30°C and is thermally stable between the temperature ranges of 15-65°C with critical temperature for stability being >65°C. Thermal inactivation first order kinetics and thermodynamic parameters in temperature range (45-65°C) favors stability of PME and at 75°C complete inactivation of enzyme was observed indicating the unstable nature of enzyme over >65°C. Activation energy (Ea ) and Z values of thermal inactivation were found to be 100.108 kJ/mol and 2.05°C, respectively. About 0.1 M NaCl is essential for enzyme to attain the maximum activity. The enzyme lost activity in presence of divalent calcium (Ca2+ ) and magnesium (Mg2+ ) ions. PRACTICAL APPLICATIONS: Pectin methylesterase (EC3.1.1.11) are an important class of enzymes expressed in plants and microbes and they bring about the de-methylesterification on pectin substrate. Up to ~13% degree of esterification of pectin was observed with muskmelon PME enzyme treatment. The de-methylesterified pectin thus prepared was subjected for gelation in presence of Ca2+ ions and above 0.5% of demethylesterified pectin stable calcium pectate gels were produced. The study demonstrates the suitability of muskmelon PME extracted from biowaste in food applications with good gelling property.
Collapse
Affiliation(s)
- Hosamani Prabhudev
- Department of Studies in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Kodagu, India
| | - A H Sneharani
- Department of Studies in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Kodagu, India
| |
Collapse
|
86
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
87
|
Stenner R, Anderson JLR. Chemoselective N−H insertion catalyzed by ade novocarbene transferase. Biotechnol Appl Biochem 2020; 67:527-535. [DOI: 10.1002/bab.1924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Richard Stenner
- School of Biochemistry University of Bristol Bristol UK
- Bristol Centre for Functional Nanomaterials HH Wills Physics Laboratory, University of Bristol Bristol UK
| | - John Leslie Ross Anderson
- School of Biochemistry University of Bristol Bristol UK
- BrisSynBio Synthetic Biology Research Centre University of Bristol Bristol UK
| |
Collapse
|
88
|
Rao J, Zhang R, Xu G, Li L, Xu Y. Efficient production of (S)-1-phenyl-1,2-ethanediol using xylan as co-substrate by a coupled multi-enzyme Escherichia coli system. Microb Cell Fact 2020; 19:87. [PMID: 32264866 PMCID: PMC7137420 DOI: 10.1186/s12934-020-01344-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/28/2020] [Indexed: 12/04/2022] Open
Abstract
Background (S)-1-phenyl-1,2-ethanediol is an important chiral intermediate in the synthesis of liquid crystals and chiral biphosphines. (S)-carbonyl reductase II from Candida parapsilosis catalyzes the conversion of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol with NADPH as a cofactor. Glucose dehydrogenase with a Ala258Phe mutation is able to catalyze the oxidation of xylose with concomitant reduction of NADP+ to NADPH, while endo-β-1,4-xylanase 2 catalyzes the conversion of xylan to xylose. In the present work, the Ala258Phe glucose dehydrogenase mutant and endo-β-1,4-xylanase 2 were introduced into the (S)-carbonyl reductase II-mediated chiral pathway to strengthen cofactor regeneration by using xylan as a naturally abundant co-substrate. Results We constructed several coupled multi-enzyme systems by introducing (S)-carbonyl reductase II, the A258F glucose dehydrogenase mutant and endo-β-1,4-xylanase 2 into Escherichia coli. Different strains were produced by altering the location of the encoding genes on the plasmid. Only recombinant E. coli/pET-G-S-2 expressed all three enzymes, and this strain produced (S)-1-phenyl-1,2-ethanediol from 2-hydroxyacetophenone as a substrate and xylan as a co-substrate. The optical purity was 100% and the yield was 98.3% (6 g/L 2-HAP) under optimal conditions of 35 °C, pH 6.5 and a 2:1 substrate-co-substrate ratio. The introduction of A258F glucose dehydrogenase and endo-β-1,4-xylanase 2 into the (S)-carbonyl reductase II-mediated chiral pathway caused a 54.6% increase in yield, and simultaneously reduced the reaction time from 48 to 28 h. Conclusions This study demonstrates efficient chiral synthesis using a pentose as a co-substrate to enhance cofactor regeneration. This provides a new approach for enantiomeric catalysis through the inclusion of naturally abundant materials.
Collapse
Affiliation(s)
- Junchao Rao
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| | - Guanyu Xu
- Xuteli School, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Lihong Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
89
|
Girelli AM, Astolfi ML, Scuto FR. Agro-industrial wastes as potential carriers for enzyme immobilization: A review. CHEMOSPHERE 2020; 244:125368. [PMID: 31790990 DOI: 10.1016/j.chemosphere.2019.125368] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This review provides a general overview of the suitability of different agro-industrial wastes for enzyme immobilization. For the purposes of this literary study, the support materials are divided into two main groups, called lignocellulosic (coconut fiber, corn cob, spent grain, spent coffee, husk, husk ash, and straw rice, soybean and wheat bran) and not lignocellulosic by-products (eggshell and eggshell membranes). The study pointed out that all of these wastes are materials of great potentiality for enzyme immobilization even if coconut fiber is preferred. This result is of significant interest due to the low cost and great availability of such wastes, which actually are underused and cause significant environmental problems for improper storage. In addition, the development of economic biocatalysts more sustainable, besides reduce environmental impacts, improve the application of enzymatic technology in industry. Therefore, the enzyme immobilization reaction and the application of biocatalysts are reviewed and discussed.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca Romana Scuto
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
90
|
Yang W, Wang X, Hao W, Wu Q, Peng J, Tu J, Cao Y. 3D hollow-out TiO 2 nanowire cluster/GOx as an ultrasensitive photoelectrochemical glucose biosensor. J Mater Chem B 2020; 8:2363-2370. [PMID: 32104865 DOI: 10.1039/d0tb00082e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultra-high sensitivity is difficult to achieve using conventional enzymatic glucose biosensors due to the lack of exposed active sites and steric-hinderance effects. Thus, in the present study, we report a photoelectrochemical (PEC) enzymatic glucose biosensor based on 3-dimensional (3D) hollow-out titanium dioxide (TiO2) nanowire cluster (NWc)/glucose oxidase (GOx), providing more number of exposed active sites, thus constructing a sensor with a higher affinity toward glucose reaction. Excellent performance with an ultra-high sensitivity of 58.9 μA mM-1 cm-2 and 0-2 mM linear range with a determination limit of 8.7 μM was obtained for the detection of glucose. This study might provide a new approach to expose active sites efficiently for remarkable photoelectrochemical performances.
Collapse
Affiliation(s)
- Wenke Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Material Science and Engineering, Hainan University, Haikou 570228, China.
| | | | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Ishikawa H, Ban K, Uemura N, Yoshida Y, Mino T, Kasashima Y, Sakamoto M. Attrition‐Enhanced Deracemization of Axially Chiral Nicotinamides. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroki Ishikawa
- Department of Applied Chemistry and Biotechnology Graduate School Engineering Chiba University Yayoi‐cho, Inage‐ku 263‐8522 Chiba Japan
| | - Kazuma Ban
- Department of Applied Chemistry and Biotechnology Graduate School Engineering Chiba University Yayoi‐cho, Inage‐ku 263‐8522 Chiba Japan
| | - Naohiro Uemura
- Department of Applied Chemistry and Biotechnology Graduate School Engineering Chiba University Yayoi‐cho, Inage‐ku 263‐8522 Chiba Japan
| | - Yasushi Yoshida
- Department of Applied Chemistry and Biotechnology Graduate School Engineering Chiba University Yayoi‐cho, Inage‐ku 263‐8522 Chiba Japan
- Molecular Chirality Research Center Graduate School Engineering Chiba University Yayoi‐cho, Inage‐ku 263‐8522 Chiba Japan
| | - Takashi Mino
- Department of Applied Chemistry and Biotechnology Graduate School Engineering Chiba University Yayoi‐cho, Inage‐ku 263‐8522 Chiba Japan
- Molecular Chirality Research Center Graduate School Engineering Chiba University Yayoi‐cho, Inage‐ku 263‐8522 Chiba Japan
| | - Yoshio Kasashima
- Education Center Faculty of Creative Engineering Chiba Institute of Technology Shibazono, Narashino 275‐0023 Chiba Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology Graduate School Engineering Chiba University Yayoi‐cho, Inage‐ku 263‐8522 Chiba Japan
- Molecular Chirality Research Center Graduate School Engineering Chiba University Yayoi‐cho, Inage‐ku 263‐8522 Chiba Japan
| |
Collapse
|
93
|
Mukhopadhayay A, Singh D, Sharma KP. Neat Ionic liquid and α-Chymotrypsin-Polymer Surfactant Conjugate-Based Biocatalytic Solvent. Biomacromolecules 2020; 21:867-877. [PMID: 31841313 DOI: 10.1021/acs.biomac.9b01556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Performing biocatalysis in nonaqueous solvents is advantageous as it imparts enhanced solubility to hydrophobic substrates and an ability to increase the temperature for shifting reaction equilibrium in the forward direction. In this work, we show the design and development of another class of nonaqueous composite solvent obtained by mixing surface modified enzyme and neat ionic liquid (IL). We systematically probe the interaction and solubility of industrially relevant α-chymotrypsin in its native or surface-bound polymer-surfactant bioconjugated form, with neat protic (N-methyl-2-pyrrolidonium trifluoromethanesulfonate; [NMP][OTf]), or aprotic (1-methyl-3-(4-sulfobutyl)-1H-imidazol-3-ium trifluoromethanesulfonate; [HO3S(CH2)4MIm][OTf]), ILs. Polarized optical micrographs show that the lyophilized powder of native α-chymotrypsin, nCT, does not disperse in either of the neat ILs, however, its polymer surfactant (PS)-coated bioconjugate counterparts, PScCT, in the waterless state, can be well-dispersed and solubilized in the neat [HO3S(CH2)4MIm][OTf]. The solubilization of waterless bioconjugates of PScCT in neat aprotic IL provides a composite liquid, WL-ImPScCT (WL: waterless, Im: [HO3S(CH2)4MIm][OTf]), having a viscosity of 69.6 Pa·s at 25 °C with a shear-thinning behavior, ≈ 15 w/w % α-chymotrypsin, and ≈ 1.2 w/w % residual water content. Detailed secondary structural analysis using circular dichroism and Fourier self-deconvolution on the ATR-FTIR data of WL-ImPScCT liquid reveals retention of the near native secondary structure of α-chymotrypsin. Further, using a combination of fluorescence spectroscopy and electron spray ionization mass spectrometry, we show that scattering of dry and powdered bovine serum albumin (BSA) protein on the WL-ImPScCT composite liquid results in the solubilization of the former, followed by limited proteolysis of BSA by the α-chymotrypsin. Our results, therefore, show the stabilization of α-chymotrypsin in a neat aprotic IL environment to yield a composite liquid, which not only acts as a nonaqueous, nonvolatile, and environmentally benign solvent, but also provides a biocatalytic platform capable of carrying out reactions relevant for biotransformations, food processing, drug delivery, and various other applications.
Collapse
Affiliation(s)
- Anasua Mukhopadhayay
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Dharmendra Singh
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| |
Collapse
|
94
|
Effects of different expression systems on characterization of adenylate deaminase from Aspergillus oryzae. Bioprocess Biosyst Eng 2020; 43:919-926. [PMID: 32020448 DOI: 10.1007/s00449-020-02288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Adenylate deaminase (AMPD) is an amino hydrolase that catalyzes the irreversible hydrolysis of adenosine monophosphate (AMP) to inosine monophosphate (IMP) and ammonia. In this study, the effect of different hosts on the enzymatic properties of AMPD from Aspergillus oryzae GX-08 was investigated and showed that Bacillus subtilis WB600 was more suitable for producing AMPD with a higher activity of 2540 U/mL. After purification, the optimal temperature and pH of recombinant AMPD were 55 °C and pH 6.0, respectively, and its activity was significantly enhanced by 10 mM Fe3+ with an increase of 236%. More importantly, the recombinant AMPD specifically and effectively catalyzed the conversion between AMP and IMP, in which 10 mL of crude AMPD achieved a conversion ratio of 76.4% after 40 min. Therefore, B. subtilis WB600 provides a potential platform for producing AMPD with excellent catalytic ability and catalytic specificity.
Collapse
|
95
|
Using enzyme cascades in biocatalysis: Highlight on transaminases and carboxylic acid reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140322. [DOI: 10.1016/j.bbapap.2019.140322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
|
96
|
Alissandratos A. In vitro multi-enzymatic cascades using recombinant lysates of E. coli: an emerging biocatalysis platform. Biophys Rev 2020; 12:175-182. [PMID: 31960346 PMCID: PMC7040066 DOI: 10.1007/s12551-020-00618-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 11/26/2022] Open
Abstract
In recent years, cell-free extracts (or lysates) have (re-)emerged as a third route to the traditional options of isolated or whole-cell biocatalysts. Advances in molecular biology and genetic engineering enable facile production of recombinant cell-free extracts, where endogenous enzymes are enriched with heterologous activities. These inexpensive preparations may be used to catalyse multistep enzymatic reactions without the constraints of cell toxicity and the cell membrane or the cost and complexity associated with production of isolated biocatalysts. Herein, we present an overview of the key advancements in cell-free synthetic biology that have led to the emergence of cell-free extracts as a promising biocatalysis platform.
Collapse
Affiliation(s)
- Apostolos Alissandratos
- Research School of Chemistry, The Australian National University, ACT, Canberra, 2601, Australia.
- CSIRO Synthetic Biology Future Science Platform, The Australian National University, ACT, Canberra, 2601, Australia.
| |
Collapse
|
97
|
Kornecki JF, Carballares D, Tardioli PW, Rodrigues RC, Berenguer-Murcia Á, Alcántara AR, Fernandez-Lafuente R. Enzyme production ofd-gluconic acid and glucose oxidase: successful tales of cascade reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00819b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review mainly focuses on the use of glucose oxidase in the production ofd-gluconic acid, which is a reactant of undoubtable interest in different industrial areas. As example of diverse enzymatic cascade reactions.
Collapse
Affiliation(s)
- Jakub F. Kornecki
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Diego Carballares
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Paulo W. Tardioli
- Postgraduate Program in Chemical Engineering (PPGEQ)
- Department of Chemical Engineering
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales
- Universidad de Alicante
- Alicante 03080
- Spain
| | - Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | | |
Collapse
|
98
|
Alves LDF, Borelli TC, Westmann CA, Silva-Rocha R, Guazzaroni ME. Boundaries in metagenomic screenings using lacZα-based vectors. Genet Mol Biol 2020; 43:e20180252. [PMID: 31429862 PMCID: PMC7198016 DOI: 10.1590/1678-4685-gmb-2018-0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/28/2019] [Indexed: 11/21/2022] Open
Abstract
Metagenomics approaches have been of high relevance for providing enzymes used in
diverse industrial applications. In the current study, we have focused on the
prospection of protease and glycosyl hydrolase activities from a soil sample by
using the lacZα -based plasmid pSEVA232. For
this, we used a functional screen based on skimmed milk agar and a pH indicator
dye for detection of both enzymes, as previously reported in literature.
Although we effectively identified positive clones in the screenings, subsequent
experiments revealed that this phenotype was not because of the hydrolytic
activity encoded in the metagenomic fragments, but rather due to the insertion
of small metagenomic DNA fragments in frame within the coding
region of the lacZ gene present in the original vector.
Analyses of the thermodynamic stability of mRNA secondary structures indicated
that recovering of positive clones was probably due to higher expression levels
of the chimeric lacZα-genes in respect to the original from empty vector. We
concluded that this method has a higher tendency for recovery false positive
clones, when used in combination with a
lacZα-based vector. As these vectors are
massively used in functional metagenomic screenings, we highlight the importance
of reporting boundaries in established metagenomic screenings methodologies.
Collapse
|
99
|
Genipin as An Emergent Tool in the Design of Biocatalysts: Mechanism of Reaction and Applications. Catalysts 2019. [DOI: 10.3390/catal9121035] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genipin is a reagent isolated from the Gardenia jasminoides fruit extract, and whose low toxicity and good crosslinking properties have converted it into a reactive whose popularity is increasing by the day. These properties have made it widely used in many medical applications, mainly in the production of chitosan materials (crosslinked by this reactive), biological scaffolds for tissue engineering, and nanoparticles of chitosan and nanogels of proteins for controlled drug delivery, the genipin crosslinking being a key point to strengthen the stability of these materials. This review is focused on the mechanism of reaction of this reagent and its use in the design of biocatalysts, where genipin plays a double role, as a support activating agent and as inter- or intramolecular crosslinker. Its low toxicity makes this compound an ideal alterative to glutaraldehyde in these processes. Moreover, in some cases the features of the biocatalysts prepared using genipin surpassed those of the biocatalysts prepared using other standard crosslinkers, even disregarding toxicity. In this way, genipin is a very promising reagent in the design of biocatalysts.
Collapse
|
100
|
Enantiomeric resolution of ephedrine racemic mixture using molecularly imprinted carboxylic acid functionalized resin. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|