51
|
Hudachek L, Wamsley EJ. A meta-analysis of the relation between dream content and memory consolidation. Sleep 2023; 46:zsad111. [PMID: 37058584 DOI: 10.1093/sleep/zsad111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/11/2023] [Indexed: 04/16/2023] Open
Abstract
The frequent appearance of newly learned information in dreams suggests that dream content is influenced by memory consolidation. Many studies have tested this hypothesis by asking whether dreaming about a learning task is associated with improved memory, but results have been inconsistent. We conducted a meta-analysis to determine the strength of the association between learning-related dreams and post-sleep memory improvement. We searched the literature for studies that (1) trained participants on a pre-sleep learning task and then tested their memory after sleep, and (2) associated post-sleep memory improvement with the extent to which dreams incorporated learning task content. Sixteen studies qualified for inclusion, which together reported 45 effects. Integrating across effects, we report a strong and statistically significant association between task-related dreaming and memory performance (SMD = 0.51 [95% CI 0.28, 0.74], p < 0.001). Among studies using polysomnography, this relationship was statistically significant for dreams collected from non-rapid eye movement (NREM) sleep (n = 10) but not for dreams collected from rapid eye movement (REM) sleep (n = 12). There was a significant association between dreaming and memory for all types of learning tasks studied. This meta-analysis provides further evidence that dreaming about a learning task is associated with improved memory performance, suggesting that dream content may be an indication of memory consolidation. Furthermore, we report preliminary evidence that the relationship between dreaming and memory may be stronger in NREM sleep compared to REM.
Collapse
Affiliation(s)
- Lauren Hudachek
- Furman University Department of Psychology and Program in Neuroscience, Greenville, SC, 29613, USA
| | - Erin J Wamsley
- Furman University Department of Psychology and Program in Neuroscience, Greenville, SC, 29613, USA
| |
Collapse
|
52
|
Huelin Gorriz M, Takigawa M, Bendor D. The role of experience in prioritizing hippocampal replay. Nat Commun 2023; 14:8157. [PMID: 38071221 PMCID: PMC10710481 DOI: 10.1038/s41467-023-43939-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
During sleep, recent memories are replayed by the hippocampus, leading to their consolidation, with a higher priority given to salient experiences. To examine the role of replay in the selective strengthening of memories, we recorded large ensembles of hippocampal place cells while male rats ran repeated spatial trajectories on two linear tracks, differing in either their familiarity or number of laps run. We observed that during sleep, the rate of replay events for a given track increased proportionally with the number of spatial trajectories run by the animal. In contrast, the rate of sleep replay events decreased if the animal was more familiar with the track. Furthermore, we find that the cumulative number of awake replay events occurring during behavior, influenced by both the novelty and duration of an experience, predicts which memories are prioritized for sleep replay, providing a more parsimonious neural correlate for the selective strengthening of memories.
Collapse
Affiliation(s)
- Marta Huelin Gorriz
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Masahiro Takigawa
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| | - Daniel Bendor
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK.
| |
Collapse
|
53
|
Sep MSC, Geuze E, Joëls M. Impaired learning, memory, and extinction in posttraumatic stress disorder: translational meta-analysis of clinical and preclinical studies. Transl Psychiatry 2023; 13:376. [PMID: 38062029 PMCID: PMC10703817 DOI: 10.1038/s41398-023-02660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Current evidence-based treatments for post-traumatic stress disorder (PTSD) are efficacious in only part of PTSD patients. Therefore, novel neurobiologically informed approaches are urgently needed. Clinical and translational neuroscience point to altered learning and memory processes as key in (models of) PTSD psychopathology. We extended this notion by clarifying at a meta-level (i) the role of information valence, i.e. neutral versus emotional/fearful, and (ii) comparability, as far as applicable, between clinical and preclinical phenotypes. We hypothesized that cross-species, neutral versus emotional/fearful information processing is, respectively, impaired and enhanced in PTSD. This preregistered meta-analysis involved a literature search on PTSD+Learning/Memory+Behavior, performed in PubMed. First, the effect of information valence was estimated with a random-effects meta-regression. The sources of variation were explored with a random forest-based analysis. The analyses included 92 clinical (N = 6732 humans) and 182 preclinical (N = 6834 animals) studies. A general impairment of learning, memory and extinction processes was observed in PTSD patients, regardless of information valence. Impaired neutral learning/memory and fear extinction were also present in animal models of PTSD. Yet, PTSD models enhanced fear/trauma memory in preclinical studies and PTSD impaired emotional memory in patients. Clinical data on fear/trauma memory was limited. Mnemonic phase and valence explained most variation in rodents but not humans. Impaired neutral learning/memory and fear extinction show stable cross-species PTSD phenotypes. These could be targeted for novel PTSD treatments, using information gained from neurobiological animal studies. We argue that apparent cross-species discrepancies in emotional/fearful memory deserve further in-depth study; until then, animal models targeting this phenotype should be applied with utmost care.
Collapse
Affiliation(s)
- Milou S C Sep
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands.
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
- GGZ inGeest Mental Health Care, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands.
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam University Medical Center location Vrije Universiteit, Amsterdam, The Netherlands.
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
54
|
Vickrey B, Lerner I. Overnight exposure to pink noise could jeopardize sleep-dependent insight and pattern detection. Front Hum Neurosci 2023; 17:1302836. [PMID: 38107593 PMCID: PMC10722168 DOI: 10.3389/fnhum.2023.1302836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Accumulated evidence from the past decades suggests that sleep plays a crucial role in memory consolidation and the facilitation of higher-level cognitive processes such as abstraction and gist extraction. In addition, recent studies show that applying pink noise during sleep can further enhance sleep-dependent memory consolidation, potentially by modulating sleep physiology through stochastic resonance. However, whether this enhancement extends to higher cognitive processes remains untested. In this study, we investigated how the application of open-loop pink noise during sleep influences the gain of insight into hidden patterns. Seventy-two participants were assigned to three groups: daytime-wake, silent sleep, and sleep with pink noise. Each group completed the number reduction task, an established insight paradigm known to be influenced by sleep, over two sessions with a 12-h interval. Sleep groups were monitored by the DREEM 3 headband in home settings. Contrary to our prediction, pink noise did not induce an increase in insight compared to silent sleep and was statistically more similar to the wake condition despite evidence for its typical influence on sleep physiology. Particularly, we found that pink noise limited the time spent in the initial cycle of N1 just after sleep onset, while time spent in N1 positively predicted insight. These results echo recent suggestions that the time in the initial cycle of N1 plays a critical role in insight formation. Overall, our results suggest that open-loop pink noise during sleep may be detrimental to insight formation and creativity due to the alterations it causes to normal sleep architecture.
Collapse
Affiliation(s)
- Beverly Vickrey
- Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Itamar Lerner
- Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
55
|
Chang H, Esteves IM, Neumann AR, Mohajerani MH, McNaughton BL. Cortical reactivation of spatial and non-spatial features coordinates with hippocampus to form a memory dialogue. Nat Commun 2023; 14:7748. [PMID: 38012135 PMCID: PMC10682454 DOI: 10.1038/s41467-023-43254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
Episodic memories comprise diverse attributes of experience distributed across neocortical areas. The hippocampus is integral to rapidly binding these diffuse representations, as they occur, to be later reinstated. However, the nature of the information exchanged during this hippocampal-cortical dialogue remains poorly understood. A recent study has shown that the secondary motor cortex carries two types of representations: place cell-like activity, which were impaired by hippocampal lesions, and responses tied to visuo-tactile cues, which became more pronounced following hippocampal lesions. Using two-photon Ca2+ imaging to record neuronal activities in the secondary motor cortex of male Thy1-GCaMP6s mice, we assessed the cortical retrieval of spatial and non-spatial attributes from previous explorations in a virtual environment. We show that, following navigation, spontaneous resting state reactivations convey varying degrees of spatial (trajectory sequences) and non-spatial (visuo-tactile attributes) information, while reactivations of non-spatial attributes tend to precede reactivations of spatial representations surrounding hippocampal sharp-wave ripples.
Collapse
Affiliation(s)
- HaoRan Chang
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, AB, Canada.
| | - Ingrid M Esteves
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, AB, Canada
| | - Adam R Neumann
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, AB, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, AB, Canada
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, 6875 Boulevard LaSalle, Verdun, QC, H4H 1R3, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, AB, Canada
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, 92697, CA, USA
| |
Collapse
|
56
|
Yang W, Sun C, Huszár R, Hainmueller T, Buzsáki G. Selection of experience for memory by hippocampal sharp wave ripples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565935. [PMID: 37987008 PMCID: PMC10659301 DOI: 10.1101/2023.11.07.565935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A general wisdom is that experiences need to be tagged during learning for further consolidation. However, brain mechanisms that select experiences for lasting memory are not known. Combining large-scale neural recordings with a novel application of dimensionality reduction techniques, we observed that successive traversals in the maze were tracked by continuously drifting populations of neurons, providing neuronal signatures of both places visited and events encountered (trial number). When the brain state changed during reward consumption, sharp wave ripples (SPW-Rs) occurred on some trials and their unique spike content most often decoded the trial in which they occurred. In turn, during post-experience sleep, SPW-Rs continued to replay those trials that were reactivated most frequently during awake SPW-Rs. These findings suggest that replay content of awake SPW-Rs provides a tagging mechanism to select aspects of experience that are preserved and consolidated for future use.
Collapse
Affiliation(s)
- Wannan Yang
- Center for Neural Science, New York University, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Chen Sun
- Mila - Quebec AI Institute, Montréal, Canada
| | - Roman Huszár
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Thomas Hainmueller
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - György Buzsáki
- Center for Neural Science, New York University, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
57
|
Türker B, Musat EM, Chabani E, Fonteix-Galet A, Maranci JB, Wattiez N, Pouget P, Sitt J, Naccache L, Arnulf I, Oudiette D. Behavioral and brain responses to verbal stimuli reveal transient periods of cognitive integration of the external world during sleep. Nat Neurosci 2023; 26:1981-1993. [PMID: 37828228 PMCID: PMC10620087 DOI: 10.1038/s41593-023-01449-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Sleep has long been considered as a state of behavioral disconnection from the environment, without reactivity to external stimuli. Here we questioned this 'sleep disconnection' dogma by directly investigating behavioral responsiveness in 49 napping participants (27 with narcolepsy and 22 healthy volunteers) engaged in a lexical decision task. Participants were instructed to frown or smile depending on the stimulus type. We found accurate behavioral responses, visible via contractions of the corrugator or zygomatic muscles, in most sleep stages in both groups (except slow-wave sleep in healthy volunteers). Across sleep stages, responses occurred more frequently when stimuli were presented during high cognitive states than during low cognitive states, as indexed by prestimulus electroencephalography. Our findings suggest that transient windows of reactivity to external stimuli exist during bona fide sleep, even in healthy individuals. Such windows of reactivity could pave the way for real-time communication with sleepers to probe sleep-related mental and cognitive processes.
Collapse
Affiliation(s)
- Başak Türker
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France
| | - Esteban Munoz Musat
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France
| | - Emma Chabani
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France
| | | | - Jean-Baptiste Maranci
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Service des Pathologies du Sommeil, National Reference Centre for Narcolepsy, Paris, France
| | - Nicolas Wattiez
- Sorbonne Université, INSERM, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Pierre Pouget
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France
| | - Jacobo Sitt
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France
| | - Lionel Naccache
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Service de Neurophysiologie Clinique, Paris, France
| | - Isabelle Arnulf
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Service des Pathologies du Sommeil, National Reference Centre for Narcolepsy, Paris, France
| | - Delphine Oudiette
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France.
- AP-HP, Hôpital Pitié-Salpêtrière, Service des Pathologies du Sommeil, National Reference Centre for Narcolepsy, Paris, France.
| |
Collapse
|
58
|
Chappel-Farley MG, Adams JN, Betzel RF, Janecek JC, Sattari NS, Berisha DE, Meza NJ, Niknazar H, Kim S, Dave A, Chen IY, Lui KK, Neikrug AB, Benca RM, Yassa MA, Mander BA. Medial temporal lobe functional network architecture supports sleep-related emotional memory processing in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564260. [PMID: 37961192 PMCID: PMC10634911 DOI: 10.1101/2023.10.27.564260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Memory consolidation occurs via reactivation of a hippocampal index during non-rapid eye movement slow-wave sleep (NREM SWS) which binds attributes of an experience existing within cortical modules. For memories containing emotional content, hippocampal-amygdala dynamics facilitate consolidation over a sleep bout. This study tested if modularity and centrality-graph theoretical measures that index the level of segregation/integration in a system and the relative import of its nodes-map onto central tenets of memory consolidation theory and sleep-related processing. Findings indicate that greater network integration is tied to overnight emotional memory retention via NREM SWS expression. Greater hippocampal and amygdala influence over network organization supports emotional memory retention, and hippocampal or amygdala control over information flow are differentially associated with distinct stages of memory processing. These centrality measures are also tied to the local expression and coupling of key sleep oscillations tied to sleep-dependent memory consolidation. These findings suggest that measures of intrinsic network connectivity may predict the capacity of brain functional networks to acquire, consolidate, and retrieve emotional memories.
Collapse
Affiliation(s)
- Miranda G. Chappel-Farley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Jenna N. Adams
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, University of Indiana Bloomington, Bloomington IN, 47405
| | - John C. Janecek
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Negin S. Sattari
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Destiny E. Berisha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Novelle J. Meza
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Hamid Niknazar
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
| | - Soyun Kim
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ivy Y. Chen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Kitty K. Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92093, USA
| | - Ariel B. Neikrug
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ruth M. Benca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, 53706, WI, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, 27109, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine CA, 92697, USA
| | - Bryce A. Mander
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine CA, 92697, USA
| |
Collapse
|
59
|
Liu J, Xia T, Chen D, Yao Z, Zhu M, Antony JW, Lee TMC, Hu X. Item-specific neural representations during human sleep support long-term memory. PLoS Biol 2023; 21:e3002399. [PMID: 37983253 PMCID: PMC10695382 DOI: 10.1371/journal.pbio.3002399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Understanding how individual memories are reactivated during sleep is essential in theorizing memory consolidation. Here, we employed the targeted memory reactivation (TMR) paradigm to unobtrusively replaying auditory memory cues during human participants' slow-wave sleep (SWS). Using representational similarity analysis (RSA) on cue-elicited electroencephalogram (EEG), we found temporally segregated and functionally distinct item-specific neural representations: the early post-cue EEG activity (within 0 to 2,000 ms) contained comparable item-specific representations for memory cues and control cues, signifying effective processing of auditory cues. Critically, the later EEG activity (2,500 to 2,960 ms) showed greater item-specific representations for post-sleep remembered items than for forgotten and control cues, indicating memory reprocessing. Moreover, these later item-specific neural representations were supported by concurrently increased spindles, particularly for items that had not been tested prior to sleep. These findings elucidated how external memory cues triggered item-specific neural representations during SWS and how such representations were linked to successful long-term memory. These results will benefit future research aiming to perturb specific memory episodes during sleep.
Collapse
Affiliation(s)
- Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Tao Xia
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Danni Chen
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ziqing Yao
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Minrui Zhu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - James W. Antony
- Department of Psychology & Child Development, California Polytechnic State University, San Luis Obispo, California, United States of America
| | - Tatia M. C. Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Xiaoqing Hu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, People’s Republic of China
| |
Collapse
|
60
|
Gagnon K, Rey AE, Guignard-Perret A, Guyon A, Reynaud E, Herbillon V, Lina JM, Carrier J, Franco P, Mazza S. Sleep Stage Transitions and Sleep-Dependent Memory Consolidation in Children with Narcolepsy-Cataplexy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1702. [PMID: 37892365 PMCID: PMC10605014 DOI: 10.3390/children10101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Electroencephalographic sleep stage transitions and altered first REM sleep period transitions have been identified as biomarkers of type 1 narcolepsy in adults, but not in children. Studies on memory complaints in narcolepsy have not yet investigated sleep-dependent memory consolidation. We aimed to explore stage transitions; more specifically altered REM sleep transition and its relationship with sleep-dependent memory consolidation in children with narcolepsy. Twenty-one children with narcolepsy-cataplexy and twenty-three healthy control children completed overnight polysomnography and sleep-dependent memory consolidation tests. Overnight transition rates (number of transitions per hour), global relative transition frequencies (number of transitions between a stage and all other stages/total number of transitions × 100), overnight transitions to REM sleep (transition from a given stage to REM/total REM transitions × 100), and altered first REM sleep period transitions (transitions from wake or N1 to the first REM period) were computed. Narcoleptic children had a significantly higher overnight transition rate with a higher global relative transition frequencies to wake. A lower sleep-dependent memory consolidation score found in children with narcolepsy was associated with a higher overnight transition frequency. As observed in narcoleptic adults, 90.48% of narcoleptic children exhibited an altered first REM sleep transition. As in adults, the altered sleep stage transition is also present in children with narcolepsy-cataplexy, and a higher transition rate could have an impact on sleep-dependent memory consolidation. These potential biomarkers could help diagnose type 1 narcolepsy in children more quickly; however, further studies with larger cohorts, including of those with type 2 narcolepsy and hypersomnia, are needed.
Collapse
Affiliation(s)
- Katia Gagnon
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| | - Amandine E. Rey
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| | - Anne Guignard-Perret
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
| | - Aurore Guyon
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, WAKING, F-69500 Bron, France
| | - Eve Reynaud
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| | - Vania Herbillon
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, EDUWELL, F-69500 Bron, France
| | - Jean-Marc Lina
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada;
| | - Julie Carrier
- Department of Psychology, Université de Montréal, Montréal, QC H3C 3J7, Canada;
| | - Patricia Franco
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, WAKING, F-69500 Bron, France
| | - Stéphanie Mazza
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| |
Collapse
|
61
|
Sarkis RA, Lam AD, Pavlova M, Locascio JJ, Putta S, Puri N, Pham J, Yih A, Marshall GA, Stickgold R. Epilepsy and sleep characteristics are associated with diminished 24-h memory retention in older adults with epilepsy. Epilepsia 2023; 64:2771-2780. [PMID: 37392445 PMCID: PMC10592425 DOI: 10.1111/epi.17707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVE Individuals with epilepsy often have memory difficulties, and older adults with epilepsy are especially vulnerable, due to the additive effect of aging. The goal of this study was to assess factors that are associated with 24-h memory retention in older adults with epilepsy. METHODS Fifty-five adults with epilepsy, all aged >50 years, performed a declarative memory task involving the recall of the positions of 15 card pairs on a computer screen prior to a 24-h ambulatory electroencephalogram (EEG). We assessed the percentage of encoded card pairs that were correctly recalled after 24 h (24-h retention rate). EEGs were evaluated for the presence and frequency of scalp interictal epileptiform activity (IEA) and scored for total sleep. Global slow wave activity (SWA) power during non-rapid eye movement sleep was also calculated. RESULTS Forty-four participants successfully completed the memory task. Two were subsequently excluded due to seizures on EEG. The final cohort (n = 42) had a mean age of 64.3 ± 7.5 years, was 52% female, and had an average 24-h retention rate of 70.9% ± 30.2%. Predictors of 24-h retention based on multivariate regression analysis when controlling for age, sex, and education included number of antiseizure medications (β = -.20, p = .013), IEA frequency (β = -.08, p = .0094), and SWA power (β = +.002, p = .02). SIGNIFICANCE In older adults with epilepsy, greater frequency of IEA, reduced SWA power, and higher burden of antiseizure medications correlated with worse 24-h memory retention. These factors represent potential treatment targets to improve memory in older adults with epilepsy.
Collapse
Affiliation(s)
- Rani A Sarkis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Milena Pavlova
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Joseph J Locascio
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Swapna Putta
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nirajan Puri
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan Pham
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alison Yih
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Gad A Marshall
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
62
|
Hamel A, Mary A, Rauchs G. Sleep and memory consolidation in aging: A neuroimaging perspective. Rev Neurol (Paris) 2023; 179:658-666. [PMID: 37586942 DOI: 10.1016/j.neurol.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Recently acquired information is strengthened and consolidated during sleep. For hippocampus-dependent memory, this process is assumed to occur mainly during slow wave sleep. Changes in sleep patterns in older adults can contribute to the disruption of the consolidation process during sleep and thus lead to cognitive impairment. Current findings suggest that reduced gray matter volume, particularly in frontal areas, Aβ and tau accumulation in combination with age-related changes of specific oscillations during sleep may contribute to memory deficits. This non-exhaustive review aims at providing a comprehensive picture of the associations between sleep changes and memory consolidation in aging, mainly based on neuroimaging studies. Overall, data confirm the utmost importance of sleep for healthy aging and the need to develop interventions aiming at improving sleep to reduce cognitive decline observed with advancing age.
Collapse
Affiliation(s)
- A Hamel
- Normandie Univ, UNICAEN, Inserm, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Neuropresage Team, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France; UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Center for Research in Cognition and Neurosciences and UNI, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - A Mary
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Center for Research in Cognition and Neurosciences and UNI, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - G Rauchs
- Normandie Univ, UNICAEN, Inserm, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Neuropresage Team, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.
| |
Collapse
|
63
|
Kreitz S, Mennecke A, Konerth L, Rösch J, Nagel AM, Laun FB, Uder M, Dörfler A, Hess A. 3T vs. 7T fMRI: capturing early human memory consolidation after motor task utilizing the observed higher functional specificity of 7T. Front Neurosci 2023; 17:1215400. [PMID: 37638321 PMCID: PMC10448826 DOI: 10.3389/fnins.2023.1215400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Functional magnetic resonance imaging (fMRI) visualizes brain structures at increasingly higher resolution and better signal-to-noise ratio (SNR) as field strength increases. Yet, mapping the blood oxygen level dependent (BOLD) response to distinct neuronal processes continues to be challenging. Here, we investigated the characteristics of 7 T-fMRI compared to 3 T-fMRI in the human brain beyond the effect of increased SNR and verified the benefits of 7 T-fMRI in the detection of tiny, highly specific modulations of functional connectivity in the resting state following a motor task. Methods 18 healthy volunteers underwent two resting state and a stimulus driven measurement using a finger tapping motor task at 3 and 7 T, respectively. The SNR for each field strength was adjusted by targeted voxel size variation to minimize the effect of SNR on the field strength specific outcome. Spatial and temporal characteristics of resting state ICA, network graphs, and motor task related activated areas were compared. Finally, a graph theoretical approach was used to detect resting state modulation subsequent to a simple motor task. Results Spatial extensions of resting state ICA and motor task related activated areas were consistent between field strengths, but temporal characteristics varied, indicating that 7 T achieved a higher functional specificity of the BOLD response than 3 T-fMRI. Following the motor task, only 7 T-fMRI enabled the detection of highly specific connectivity modulations representing an "offline replay" of previous motor activation. Modulated connections of the motor cortex were directly linked to brain regions associated with memory consolidation. Conclusion These findings reveal how memory processing is initiated even after simple motor tasks, and that it begins earlier than previously shown. Thus, the superior capability of 7 T-fMRI to detect subtle functional dynamics promises to improve diagnostics and therapeutic assessment of neurological diseases.
Collapse
Affiliation(s)
- Silke Kreitz
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Laura Konerth
- Institute for Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julie Rösch
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Hess
- Institute for Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- FAU NeW—Research Center for New Bioactive Compounds, Erlangen, Germany
| |
Collapse
|
64
|
Antony JW, Schechtman E. Reap while you sleep: Consolidation of memories differs by how they were sown. Hippocampus 2023; 33:922-935. [PMID: 36973868 PMCID: PMC10429120 DOI: 10.1002/hipo.23526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
Newly formed memories are spontaneously reactivated during sleep, leading to their strengthening. This reactivation process can be manipulated by reinstating learning-related stimuli during sleep, a technique termed targeted memory reactivation. Numerous studies have found that delivering cues during sleep improves memory for simple associations, in which one cue reactivates one tested memory. However, real-life memories often live in rich, complex networks of associations. In this review, we will examine recent forays into investigating how targeted sleep reactivation affects memories within complex paradigms, in which one cue can reactivate multiple tested memories. A common theme across studies is that reactivation consequences do not merely depend on whether memories reside in complex arrangements, but on how memories interact with one another during acquisition. We therefore emphasize how intricate study design details that alter the nature of learning and/or participant intentions impact the outcomes of sleep reactivation. In some cases, complex networks of memories interact harmoniously to bring about mutual memory benefits; in other cases, memories interact antagonistically and produce selective impairments in retrieval. Ultimately, although this burgeoning area of research has yet to be systematically explored, results suggest that the fate of reactivated stimuli within complex arrangements depends on how they were learned.
Collapse
Affiliation(s)
- James W. Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California, USA
| | - Eitan Schechtman
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| |
Collapse
|
65
|
Rios RL, Kafashan M, Hyche O, Lenard E, Lucey BP, Lenze EJ, Palanca BJA. Targeting Slow Wave Sleep Deficiency in Late-Life Depression: A Case Series With Propofol. Am J Geriatr Psychiatry 2023; 31:643-652. [PMID: 37105885 PMCID: PMC10544727 DOI: 10.1016/j.jagp.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
Slow wave sleep (SWS), characterized by large electroencephalographic oscillations, facilitates crucial physiologic processes that maintain synaptic plasticity and overall brain health. Deficiency in older adults is associated with depression and cognitive dysfunction, such that enhancing sleep slow waves has emerged as a promising target for novel therapies. Enhancement of SWS has been noted after infusions of propofol, a commonly used anesthetic that induces electroencephalographic patterns resembling non-rapid eye movement sleep. This paper 1) reviews the scientific premise underlying the hypothesis that sleep slow waves are a novel therapeutic target for improving cognitive and psychiatric outcomes in older adults, and 2) presents a case series of two patients with late-life depression who each received two propofol infusions. One participant, a 71-year-old woman, had a mean of 2.8 minutes of evening SWS prior to infusions (0.7% of total sleep time). SWS increased on the night after each infusion, to 12.5 minutes (5.3% of total sleep time) and 24 minutes (10.6% of total sleep time), respectively. Her depression symptoms improved, reflected by a reduction in her Montgomery-Asberg Depression Rating Scale (MADRS) score from 26 to 7. In contrast, the other participant, a 77-year-old man, exhibited no SWS at baseline and only modest enhancement after the second infusion (3 minutes, 1.3% of total sleep time). His MADRS score increased from 13 to 19, indicating a lack of improvement in his depression. These cases provide proof-of-concept that propofol can enhance SWS and improve depression for some individuals, motivating an ongoing clinical trial (ClinicalTrials.gov NCT04680910).
Collapse
Affiliation(s)
- Rachel L Rios
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - MohammadMehdi Kafashan
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Orlandrea Hyche
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Emily Lenard
- Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Brendan P Lucey
- Center on Biological Rhythms and Sleep (BPL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Neurology (BPL), Washington University in St. Louis, MO
| | - Eric J Lenze
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Ben Julian A Palanca
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Center on Biological Rhythms and Sleep (BPL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Biomedical Engineering (BJAP), Washington University in St. Louis, St. Louis, MO; Division of Biology and Biomedical Sciences (BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO.
| |
Collapse
|
66
|
Park KS, Choi SH, Yoon H. Modulation of sleep using noninvasive stimulations during sleep. Biomed Eng Lett 2023; 13:329-341. [PMID: 37519871 PMCID: PMC10382438 DOI: 10.1007/s13534-023-00298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 08/01/2023] Open
Abstract
Among the various sleep modulation methods for improving sleep, three methods using noninvasive stimulation during sleep have been reviewed and summarized. The first method involves noninvasive direct brain stimulation to induce a current directly in the brain cortex. Electrically or magnetically applied stimulations trigger electrical events such as slow oscillations or sleep spindles, which can also be recorded by an electroencephalogram. The second method involves sensory stimulation during sleep, which provides stimulation through the sensory pathway to invoke equivalent brain activity like direct brain stimulation. Olfactory, vestibular, and auditory stimulation methods have been used, resulting in several sleep-modulating effects, which are characteristic and depend on the experimental paradigm. The third method is to modulate sleep by shifting the autonomic balance affecting sleep homeostasis. To strengthen parasympathetic dominance, stimulation was applied to decrease heart rate by synchronizing the heart rhythm. These noninvasive stimulation methods can strengthen slow-wave sleep, consolidate declarative or procedural memory, and modify sleep macrostructure. These stimulation methods provide evidence and possibility for sleep modulation in our daily life as an alternative method for the treatment of disturbed sleep and enhancing sleep quality and performance beyond the average level.
Collapse
Affiliation(s)
- Kwang Suk Park
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 03080 Korea
| | - Sang Ho Choi
- School of Computer and Information Engineering, Kwangwoon University, Seoul, 01897 Korea
| | - Heenam Yoon
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul, 03016 Korea
| |
Collapse
|
67
|
Okabe S, Abe T. Subjectively intense odor does not affect dream emotions during rapid eye movement sleep. Sci Rep 2023; 13:10442. [PMID: 37369711 DOI: 10.1038/s41598-023-37151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Dreams experienced during rapid eye movement (REM) sleep have emotional features. Intervention methods for dream affectivity have recently garnered interest; we previously demonstrated that negative dreams were induced during REM sleep by exposure to favorable or familiar odors. However, the underlying mechanisms behind this phenomenon remain unclear. Thus, to address this gap, we investigated whether more intense odors could induce negative dreams, as odors tend to be perceived as more intense when they are preferred or familiar. Contrary to our hypothesis, the results of our study indicated that subjective intense odors did not induce negative dreams. We initially anticipated stronger odors to have a greater impact on dream emotionality, as they stimulate the brain more intensely. Notably, during arousal, weak odors tended to evoke a more potent olfactory response, while strong odors tended to produce a weaker response. To investigate whether this difference influenced the effects on dreams, we compared the respiratory activities of the strongly and weakly perceived odor groups; however, no significant differences were observed. Our findings suggest that subjectively perceived strong odors are unlikely to affect dream emotionality and may be processed differently than favorable or familiar odors.
Collapse
Affiliation(s)
- Satomi Okabe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Research Fellowship for Young Scientists (PD), Japan Society for the Promotion of Science, 5-3-1 Koujimachi, Chiyoda, Tokyo, 102-0083, Japan.
- Department of sleep-wake disorders, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| | - Takashi Abe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
68
|
Abdellahi MEA, Koopman ACM, Treder MS, Lewis PA. Targeted memory reactivation in human REM sleep elicits detectable reactivation. eLife 2023; 12:e84324. [PMID: 37350572 PMCID: PMC10425171 DOI: 10.7554/elife.84324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/22/2023] [Indexed: 06/24/2023] Open
Abstract
It is now well established that memories can reactivate during non-rapid eye movement (non-REM) sleep, but the question of whether equivalent reactivation can be detected in rapid eye movement (REM) sleep is hotly debated. To examine this, we used a technique called targeted memory reactivation (TMR) in which sounds are paired with learned material in wake, and then re-presented in subsequent sleep, in this case REM, to trigger reactivation. We then used machine learning classifiers to identify reactivation of task-related motor imagery from wake in REM sleep. Interestingly, the strength of measured reactivation positively predicted overnight performance improvement. These findings provide the first evidence for memory reactivation in human REM sleep after TMR that is directly related to brain activity during wakeful task performance.
Collapse
Affiliation(s)
- Mahmoud EA Abdellahi
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Anne CM Koopman
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Matthias S Treder
- School of Computer Science and Informatics, Cardiff UniversityCardiffUnited Kingdom
| | - Penelope A Lewis
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| |
Collapse
|
69
|
Madan CR. Memory and Consciousness-Usually in Tandem but Sometimes Apart. Cogn Behav Neurol 2023; 36:128-131. [PMID: 36961309 PMCID: PMC10226462 DOI: 10.1097/wnn.0000000000000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/25/2023]
Abstract
Episodic memory, the ability to remember specific events from one's personal past, has been the subject of research for several decades, with a particular emphasis on its relationship with consciousness. In the December 2022 issue of Cognitive and Behavioral Neurology , Budson, Richman, and Kensinger shed new light on this complex topic with a comprehensive exploration of consciousness. In this commentary, I present three propositions about the relationship between episodic memory and consciousness: (1) Episodic memory is usually associated with conscious retrieval; (2) it is possible to have consciousness without episodic memory; and (3) episodic memory can be accessed without conscious retrieval. Drawing from studies conducted with nonhuman animals, I provide evidence to support each of these propositions and discuss how they relate to the theory presented by Budson et al (2000). Although some of my propositions differ from their views, their work has been valuable in stimulating ongoing discussions to advance our understanding of memory.
Collapse
|
70
|
Yeganegi H, Ondracek JM. Multi-channel recordings reveal age-related differences in the sleep of juvenile and adult zebra finches. Sci Rep 2023; 13:8607. [PMID: 37244927 DOI: 10.1038/s41598-023-35160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/13/2023] [Indexed: 05/29/2023] Open
Abstract
Despite their phylogenetic differences and distinct pallial structures, mammals and birds show similar electroencephalography (EEG) traces during sleep, consisting of distinct rapid eye movement (REM) sleep and slow wave sleep (SWS) stages. Studies in human and a limited number of other mammalian species show that this organization of sleep into interleaving stages undergoes radical changes during lifetime. Do these age-dependent variations in sleep patterns also occur in the avian brain? Does vocal learning have an effect on sleep patterns in birds? To answer these questions, we recorded multi-channel sleep EEG from juvenile and adult zebra finches for several nights. Whereas adults spent more time in SWS and REM sleep, juveniles spent more time in intermediate sleep (IS). The amount of IS was significantly larger in male juveniles engaged in vocal learning compared to female juveniles, which suggests that IS could be important for vocal learning. In addition, we observed that functional connectivity increased rapidly during maturation of young juveniles, and was stable or declined at older ages. Synchronous activity during sleep was larger for recording sites in the left hemisphere for both juveniles and adults, and generally intra-hemispheric synchrony was larger than inter-hemispheric synchrony during sleep. A graph theory analysis revealed that in adults, highly correlated EEG activity tended to be distributed across fewer networks that were spread across a wider area of the brain, whereas in juveniles, highly correlated EEG activity was distributed across more numerous, albeit smaller, networks in the brain. Overall, our results reveal that significant changes occur in the neural signatures of sleep during maturation in an avian brain.
Collapse
Affiliation(s)
- Hamed Yeganegi
- Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Janie M Ondracek
- Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
71
|
Pereira SIR, Santamaria L, Andrews R, Schmidt E, Van Rossum MCW, Lewis P. Rule Abstraction Is Facilitated by Auditory Cuing in REM Sleep. J Neurosci 2023; 43:3838-3848. [PMID: 36977584 PMCID: PMC10218979 DOI: 10.1523/jneurosci.1966-21.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 03/30/2023] Open
Abstract
Sleep facilitates abstraction, but the exact mechanisms underpinning this are unknown. Here, we aimed to determine whether triggering reactivation in sleep could facilitate this process. We paired abstraction problems with sounds, then replayed these during either slow-wave sleep (SWS) or rapid eye movement (REM) sleep to trigger memory reactivation in 27 human participants (19 female). This revealed performance improvements on abstraction problems that were cued in REM, but not problems cued in SWS. Interestingly, the cue-related improvement was not significant until a follow-up retest 1 week after the manipulation, suggesting that REM may initiate a sequence of plasticity events that requires more time to be implemented. Furthermore, memory-linked trigger sounds evoked distinct neural responses in REM, but not SWS. Overall, our findings suggest that targeted memory reactivation in REM can facilitate visual rule abstraction, although this effect takes time to unfold.SIGNIFICANCE STATEMENT The ability to abstract rules from a corpus of experiences is a building block of human reasoning. Sleep is known to facilitate rule abstraction, but it remains unclear whether we can manipulate this process actively and which stage of sleep is most important. Targeted memory reactivation (TMR) is a technique that uses re-exposure to learning-related sensory cues during sleep to enhance memory consolidation. Here, we show that TMR, when applied during REM sleep, can facilitate the complex recombining of information needed for rule abstraction. Furthermore, we show that this qualitative REM-related benefit emerges over the course of a week after learning, suggesting that memory integration may require a slower form of plasticity.
Collapse
Affiliation(s)
| | - Lorena Santamaria
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Ralph Andrews
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Elena Schmidt
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Mark C W Van Rossum
- School of Psychology and School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Penelope Lewis
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| |
Collapse
|
72
|
Xia T, Antony JW, Paller KA, Hu X. Targeted memory reactivation during sleep influences social bias as a function of slow-oscillation phase and delta power. Psychophysiology 2023; 60:e14224. [PMID: 36458473 PMCID: PMC10085833 DOI: 10.1111/psyp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/27/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022]
Abstract
To understand how memories are reactivated and consolidated during sleep, experimenters have employed the unobtrusive re-presentation of memory cues from a variety of pre-sleep learning tasks. Using this procedure, known as targeted memory reactivation (TMR), we previously found that reactivation of counter-social-bias training during post-training sleep could selectively enhance training effects in reducing unintentional social biases. Here, we describe re-analyses of electroencephalographic (EEG) data from this previous study to characterize neurophysiological correlates of TMR-induced bias reduction. We found that TMR benefits in bias reduction were associated with (a) the timing of memory-related cue presentation relative to the 0.1-1.5 Hz slow-oscillation phase and (b) cue-elicited EEG power within the 1-4 Hz delta range. Although cue delivery was at a fixed rate in this study and not contingent on the slow-oscillation phase, cues were found to be clustered in slow-oscillation upstates for those participants with stronger TMR benefits. Similarly, higher cue-elicited delta power 250-1000 ms after cue onset was also linked with larger TMR benefits. These electrophysiological results substantiate the claim that memory reactivation altered social bias in the original study, while also informing neural explanations of these benefits. Future research should consider these sleep physiology parameters in relation to TMR applications and to memory reactivation in general.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
| | - James W. Antony
- Department of Psychology, Center for Mind and Brain, University of California, Davis, USA
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, USA
| | - Ken A. Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
73
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
74
|
Fenk LA, Riquelme JL, Laurent G. Interhemispheric competition during sleep. Nature 2023; 616:312-318. [PMID: 36949193 PMCID: PMC10097603 DOI: 10.1038/s41586-023-05827-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Our understanding of the functions and mechanisms of sleep remains incomplete, reflecting their increasingly evident complexity1-3. Likewise, studies of interhemispheric coordination during sleep4-6 are often hard to connect precisely to known sleep circuits and mechanisms. Here, by recording from the claustra of sleeping bearded dragons (Pogona vitticeps), we show that, although the onsets and offsets of Pogona rapid-eye-movement (REMP) and slow-wave sleep are coordinated bilaterally, these two sleep states differ markedly in their inter-claustral coordination. During slow-wave sleep, the claustra produce sharp-wave ripples independently of one another, showing no coordination. By contrast, during REMP sleep, the potentials produced by the two claustra are precisely coordinated in amplitude and time. These signals, however, are not synchronous: one side leads the other by about 20 ms, with the leading side switching typically once per REMP episode or in between successive episodes. The leading claustrum expresses the stronger activity, suggesting bilateral competition. This competition does not occur directly between the two claustra or telencephalic hemispheres. Rather, it occurs in the midbrain and depends on the integrity of a GABAergic (γ-aminobutyric-acid-producing) nucleus of the isthmic complex, which exists in all vertebrates and is known in birds to underlie bottom-up attention and gaze control. These results reveal that a winner-take-all-type competition exists between the two sides of the brain of Pogona, which originates in the midbrain and has precise consequences for claustrum activity and coordination during REMP sleep.
Collapse
Affiliation(s)
- Lorenz A Fenk
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| | - Juan Luis Riquelme
- Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
75
|
Glicksohn A, Shams L, Seitz AR. Improving memory for unusual events with wakeful reactivation. Front Psychol 2023; 14:1092408. [PMID: 37057152 PMCID: PMC10086428 DOI: 10.3389/fpsyg.2023.1092408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/30/2023] Open
Abstract
Memory consists of multiple processes, from encoding information, consolidating it into short- and long- term memory, and later retrieving relevant information. Targeted memory reactivation is an experimental method during which sensory components of a multisensory representation (such as sounds or odors) are ‘reactivated’, facilitating the later retrieval of unisensory attributes. We examined whether novel and unpredicted events benefit from reactivation to a greater degree than normal stimuli. We presented participants with everyday objects, and ‘tagged’ these objects with sounds (e.g., animals and their matching sounds) at different screen locations. ‘Oddballs’ were created by presenting unusual objects and sounds (e.g., a unicorn with a heartbeat sound). During a short reactivation phase, participants listened to a replay of normal and oddball sounds. Participants were then tested on their memory for visual and spatial information in the absence of sounds. Participants were better at remembering the oddball objects compared to normal ones. Importantly, participants were also better at recalling the locations of oddball objects whose sounds were reactivated, compared to objects whose sounds that were not presented again. These results suggest that episodic memory benefits from associating objects with unusual cues, and that reactivating those cues strengthen the entire multisensory representation, resulting in enhanced memory for unisensory attributes.
Collapse
Affiliation(s)
- Arit Glicksohn
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ladan Shams
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron R. Seitz
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
- *Correspondence: Aaron R. Seitz,
| |
Collapse
|
76
|
Picard-Deland C, Bernardi G, Genzel L, Dresler M, Schoch SF. Memory reactivations during sleep: a neural basis of dream experiences? Trends Cogn Sci 2023; 27:568-582. [PMID: 36959079 DOI: 10.1016/j.tics.2023.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Newly encoded memory traces are spontaneously reactivated during sleep. Since their discovery in the 1990s, these memory reactivations have been discussed as a potential neural basis for dream experiences. New results from animal and human research, as well as from the rapidly growing field of sleep and dream engineering, provide essential insights into this question, and reveal both strong parallels and disparities between the two phenomena. We suggest that, although memory reactivations may contribute to subjective experiences across different states of consciousness, they are not likely to be the primary neural basis of dreaming. We identify important limitations in current research paradigms and suggest novel strategies to address this question empirically.
Collapse
Affiliation(s)
- Claudia Picard-Deland
- Dream and Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, University of Montreal, Montreal, QC, Canada
| | - Giulio Bernardi
- Institutions, Markets, Technologies (IMT) School for Advanced Studies Lucca, Lucca, Italy
| | - Lisa Genzel
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sarah F Schoch
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
77
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
78
|
Guttesen AÁV, Gaskell MG, Madden EV, Appleby G, Cross ZR, Cairney SA. Sleep loss disrupts the neural signature of successful learning. Cereb Cortex 2023; 33:1610-1625. [PMID: 35470400 PMCID: PMC9977378 DOI: 10.1093/cercor/bhac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep supports memory consolidation as well as next-day learning. The influential "Active Systems" account of offline consolidation suggests that sleep-associated memory processing paves the way for new learning, but empirical evidence in support of this idea is scarce. Using a within-subjects (n = 30), crossover design, we assessed behavioral and electrophysiological indices of episodic encoding after a night of sleep or total sleep deprivation in healthy adults (aged 18-25 years) and investigated whether behavioral performance was predicted by the overnight consolidation of episodic associations from the previous day. Sleep supported memory consolidation and next-day learning as compared to sleep deprivation. However, the magnitude of this sleep-associated consolidation benefit did not significantly predict the ability to form novel memories after sleep. Interestingly, sleep deprivation prompted a qualitative change in the neural signature of encoding: Whereas 12-20 Hz beta desynchronization-an established marker of successful encoding-was observed after sleep, sleep deprivation disrupted beta desynchrony during successful learning. Taken together, these findings suggest that effective learning depends on sleep but not necessarily on sleep-associated consolidation.
Collapse
Affiliation(s)
- Anna á V Guttesen
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - M Gareth Gaskell
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Emily V Madden
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - Gabrielle Appleby
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Scott A Cairney
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
79
|
Knötzele J, Riemann D, Frase L, Feige B, van Elst LT, Kornmeier J. Presenting rose odor during learning, sleep and retrieval helps to improve memory consolidation: a real-life study. Sci Rep 2023; 13:2371. [PMID: 36759589 PMCID: PMC9911722 DOI: 10.1038/s41598-023-28676-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Improving our learning abilities is important for numerous aspects of our life. Several studies found beneficial effects of presenting cues (odor or sounds) during learning and during sleep for memory performance. A recent study applying a real-life paradigm indicated that additional odor cueing during a Final Test can further increase this cueing effect. The present online study builds on these findings with the following questions: (1) Can we replicate beneficial memory effects of additional odor cueing during tests? (2) How many odor cueing learning sessions and odor cueing nights of sleep maximize the learning success? (3) Can odor cueing also reduce the amount of forgetting over time? 160 Participants learned 40 German Japanese word pairs in four groups with separate experimental conditions over three days. Group N received no odor during the whole study. Group LS received odor cueing during learning and sleep, group LT during learning and testing and group LST during learning, sleep and testing. Participants performed intermediate tests after each learning session plus three final tests 1, 7 and 28 days after the last learning session. Results: (1) Group LST learned 8.5% more vocabulary words than the other groups overall. (2) This odor cueing effect increased across the three days of cued learning. (3) We found no clear evidence for effects of odor cueing on the forgetting dynamics. Our findings support the notion of a beneficial effect of odor cueing. They further suggest to use at least 3 days and nights of odor cueing. Overall, this study indicates that there is an easy, efficient and economical way to enhance memory performance in daily life.
Collapse
Affiliation(s)
- Jessica Knötzele
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kornmeier
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany. .,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
80
|
Hall AF, Wang DV. The two tales of hippocampal sharp-wave ripple content: The rigid and the plastic. Prog Neurobiol 2023; 221:102396. [PMID: 36563928 PMCID: PMC9899323 DOI: 10.1016/j.pneurobio.2022.102396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Sharp-wave ripples, prominently in the CA1 region of the hippocampus, are short oscillatory events accompanied by bursts of neural firing. Ripples and associated hippocampal place cell sequences communicate with cortical ensembles during slow-wave sleep, which has been shown to be critical for systems consolidation of episodic memories. This consolidation is not limited to a newly formed memory trace; instead, ripples appear to reactivate and consolidate memories spanning various experiences. Despite this broad spanning influence, ripples remain capable of producing precise memories. The underlying mechanisms that enable ripples to consolidate memories broadly and with specificity across experiences remain unknown. In this review, we discuss data that uncovers circuit-level processes that generate ripples and influence their characteristics during consolidation. Based on current knowledge, we propose that memory emerges from the integration of two parallel consolidation pathways in CA1: the rigid and plastic pathways. The rigid pathway generates ripples stochastically, providing a backbone upon which dynamic plastic pathway inputs carrying novel information are integrated.
Collapse
Affiliation(s)
- Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
81
|
Röcke C, Luo M, Bereuter P, Katana M, Fillekes M, Gehriger V, Sofios A, Martin M, Weibel R. Charting everyday activities in later life: Study protocol of the mobility, activity, and social interactions study (MOASIS). Front Psychol 2023; 13:1011177. [PMID: 36760916 PMCID: PMC9903074 DOI: 10.3389/fpsyg.2022.1011177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/15/2022] [Indexed: 01/25/2023] Open
Abstract
Prominent theories of aging emphasize the importance of resource allocation processes as a means to maintain functional ability, well-being and quality of life. Little is known about which activities and what activity patterns actually characterize the daily lives of healthy older adults in key domains of functioning, including the spatial, physical, social, and cognitive domains. This study aims to gain a comprehensive understanding of daily activities of community-dwelling older adults over an extended period of time and across a diverse range of activity domains, and to examine associations between daily activities, health and well-being at the within- and between-person levels. It also aims to examine contextual correlates of the relations between daily activities, health, and well-being. At its core, this ambulatory assessment (AA) study with a sample of 150 community-dwelling older adults aged 65 to 91 years measured spatial, physical, social, and cognitive activities across 30 days using a custom-built mobile sensor ("uTrail"), including GPS, accelerometer, and audio recording. In addition, during the first 15 days, self-reports of daily activities, psychological correlates, contexts, and cognitive performance in an ambulatory working memory task were assessed 7 times per day using smartphones. Surrounding the ambulatory assessment period, participants completed an initial baseline assessment including a telephone survey, web-based questionnaires, and a laboratory-based cognitive and physical testing session. They also participated in an intermediate laboratory session in the laboratory at half-time of the 30-day ambulatory assessment period, and finally returned to the laboratory for a posttest assessment. In sum, this is the first study which combines multi-domain activity sensing and self-report ambulatory assessment methods to observe daily life activities as indicators of functional ability in healthy older adults unfolding over an extended period (i.e., 1 month). It offers a unique opportunity to describe and understand the diverse individual real-life functional ability profiles characterizing later life.
Collapse
Affiliation(s)
- Christina Röcke
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Zurich, Switzerland,Center for Gerontology, University of Zurich, Zurich, Switzerland,*Correspondence: Christina Röcke, ✉
| | - Minxia Luo
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Zurich, Switzerland,Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Pia Bereuter
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Zurich, Switzerland,Institute of Geomatics, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Marko Katana
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Zurich, Switzerland,Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Michelle Fillekes
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Zurich, Switzerland,Department of Geography, University of Zurich, Zurich, Switzerland
| | - Victoria Gehriger
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Zurich, Switzerland,Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Alexandros Sofios
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Zurich, Switzerland,Department of Geography, University of Zurich, Zurich, Switzerland
| | - Mike Martin
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Zurich, Switzerland,Center for Gerontology, University of Zurich, Zurich, Switzerland,Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Robert Weibel
- University Research Priority Program ‘Dynamics of Healthy Aging’, University of Zurich, Zurich, Switzerland,Department of Geography, University of Zurich, Zurich, Switzerland
| |
Collapse
|
82
|
Xia T, Yao Z, Guo X, Liu J, Chen D, Liu Q, Paller KA, Hu X. Updating memories of unwanted emotions during human sleep. Curr Biol 2023; 33:309-320.e5. [PMID: 36584677 PMCID: PMC9979073 DOI: 10.1016/j.cub.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Post-learning sleep contributes to memory consolidation. Yet it remains contentious whether sleep affords opportunities to modify or update emotional memories, particularly when people would prefer to forget those memories. Here, we attempted to update memories during sleep, using spoken positive words paired with cues to recent memories of aversive events. Affective updating using positive words during human non-rapid eye movement (NREM) sleep, compared with using neutral words instead, reduced negative affective judgments in post-sleep tests, suggesting that the recalled events were perceived as less aversive. Electroencephalogram (EEG) analyses showed that positive words modulated theta and spindle/sigma activity; specifically, to the extent that theta power was larger for the positive words than for the memory cues that followed, participants judged the memory cues less negatively. Moreover, to the extent that sigma power was larger for the positive words than for the memory cues that followed, participants forgot more episodic details about aversive events. Notably, when the onset of individual positive words coincided with the up-phase of slow oscillations (a state characterized by increased cortical excitability during NREM sleep), affective updating was more successful. In sum, we altered the affective content of memories via the strategic pairing of positive words and memory cues during sleep, linked with EEG theta power increases and the slow oscillation up-phase. These findings suggest novel possibilities for modifying unwanted memories during sleep, which would not require people to consciously confront memories that they prefer to avoid.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xue Guo
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Qiang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610068, China; Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian 116029, China.
| | - Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen 518057, China.
| |
Collapse
|
83
|
Abstract
The restorative function of sleep is shaped by its duration, timing, continuity, subjective quality, and efficiency. Current sleep recommendations specify only nocturnal duration and have been largely derived from sleep self-reports that can be imprecise and miss relevant details. Sleep duration, preferred timing, and ability to withstand sleep deprivation are heritable traits whose expression may change with age and affect the optimal sleep prescription for an individual. Prevailing societal norms and circumstances related to work and relationships interact to influence sleep opportunity and quality. The value of allocating time for sleep is revealed by the impact of its restriction on behavior, functional brain imaging, sleep macrostructure, and late-life cognition. Augmentation of sleep slow oscillations and spindles have been proposed for enhancing sleep quality, but they inconsistently achieve their goal. Crafting bespoke sleep recommendations could benefit from large-scale, longitudinal collection of objective sleep data integrated with behavioral and self-reported data.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
84
|
Roüast NM, Schönauer M. Continuously changing memories: a framework for proactive and non-linear consolidation. Trends Neurosci 2023; 46:8-19. [PMID: 36428193 DOI: 10.1016/j.tins.2022.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
The traditional view of long-term memory is that memory traces mature in a predetermined 'linear' process: their neural substrate shifts from rapidly plastic medial temporal regions towards stable neocortical networks. We propose that memories remain malleable, not by repeated reinstantiations of this linear process but instead via dynamic routes of proactive and non-linear consolidation: memories change, their trajectory is flexible and reversible, and their physical basis develops continuously according to anticipated demands. Studies demonstrating memory updating, increasing hippocampal dependence to support adaptive use, and rapid neocortical plasticity provide evidence for continued non-linear consolidation. Although anticipated demand can affect all stages of memory formation, the extent to which it shapes the physical memory trace repeatedly and proactively will require further dedicated research.
Collapse
Affiliation(s)
- Nora Malika Roüast
- Institute for Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
| | - Monika Schönauer
- Institute for Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
85
|
Miyamoto D. Neural circuit plasticity for complex non-declarative sensorimotor memory consolidation during sleep. Neurosci Res 2022; 189:37-43. [PMID: 36584925 DOI: 10.1016/j.neures.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Evidence is accumulating that the brain actively consolidates long-term memory during sleep. Motor skill memory is a form of non-declarative procedural memory and can be coordinated with multi-sensory processing such as visual, tactile, and, auditory. Conversely, perception is affected by body movement signal from motor brain regions. Although both cortical and subcortical brain regions are involved in memory consolidation, cerebral cortex activity can be recorded and manipulated noninvasively or minimally invasively in humans and animals. NREM sleep, which is important for non-declarative memory consolidation, is characterized by slow and spindle waves representing thalamo-cortical population activity. In animals, electrophysiological recording, optical imaging, and manipulation approaches have revealed multi-scale cortical dynamics across learning and sleep. In the sleeping cortex, neural activity is affected by prior learning and neural circuits are continually reorganized. Here I outline how sensorimotor coordination is formed through awake learning and subsequent sleep.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
86
|
Gaeta G, Wilson DA. Reciprocal relationships between sleep and smell. Front Neural Circuits 2022; 16:1076354. [PMID: 36619661 PMCID: PMC9813672 DOI: 10.3389/fncir.2022.1076354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Despite major anatomical differences with other mammalian sensory systems, olfaction shares with those systems a modulation by sleep/wake states. Sleep modulates odor sensitivity and serves as an important regulator of both perceptual and associative odor memory. In addition, however, olfaction also has an important modulatory impact on sleep. Odors can affect the latency to sleep onset, as well as the quality and duration of sleep. Olfactory modulation of sleep may be mediated by direct synaptic interaction between the olfactory system and sleep control nuclei, and/or indirectly through odor modulation of arousal and respiration. This reciprocal interaction between sleep and olfaction presents novel opportunities for sleep related modulation of memory and perception, as well as development of non-pharmacological olfactory treatments of simple sleep disorders.
Collapse
Affiliation(s)
- Giuliano Gaeta
- Givaudan UK Limited, Health and Well-Being Centre of Excellence, Ashford, United Kingdom,Giuliano Gaeta,
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States,Child and Adolescent Psychiatry, NYU School of Medicine, New York University, New York, NY, United States,*Correspondence: Donald A. Wilson,
| |
Collapse
|
87
|
Ngo HVV, Antony JW, Rasch B. Real-time stimulation during sleep: prior findings, novel developments, and future perspectives. J Sleep Res 2022; 31:e13735. [PMID: 36180062 DOI: 10.1111/jsr.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Real-time brain stimulation is a powerful technique that continues to gain importance in the field of sleep and cognition. In this special issue, we collected 14 articles about real-time stimulation during sleep, including one review, 12 research articles and one letter covering both human and rodent research from various fields. We hope this special issue sparks greater interest and inspires fellow sleep researchers and clinicians to develop new ideas in the exciting topic of real-time stimulation.
Collapse
Affiliation(s)
- Hong-Viet V Ngo
- Department of Psychology, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - James W Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California, USA
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
88
|
Amoah DK. Advances in the understanding and enhancement of the human cognitive functions of learning and memory. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Learning and memory are among the key cognitive functions that drive the human experience. As such, any defective condition associated with these cognitive domains could affect our navigation through everyday life. For years, researchers have been working toward having a clear understanding of how learning and memory work, as well as ways to improve them. Many advances have been made, as well as some challenges that have also been faced in the process. That notwithstanding, there are prospects with regards to the frontier of the enhancement of learning and memory in humans. This review article selectively highlights four broad areas of focus in research into the understanding and enhancement of learning and memory. Brain stimulation, effects of sleep, effects of stress and emotion, and synaptic plasticity are the main focal areas of this review, in terms of some pivotal research works, findings and theories.
Collapse
Affiliation(s)
- Daniel Kofi Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra LG 25, Ghana
| |
Collapse
|
89
|
Schwartz S, Clerget A, Perogamvros L. Enhancing imagery rehearsal therapy for nightmares with targeted memory reactivation. Curr Biol 2022; 32:4808-4816.e4. [PMID: 36306786 DOI: 10.1016/j.cub.2022.09.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Nightmare disorder (ND) is characterized by dreams with strong negative emotions occurring during rapid eye movement (REM) sleep. ND is mainly treated by imagery rehearsal therapy (IRT), where the patients are asked to change the negative story line of their nightmare to a more positive one. We here used targeted memory reactivation (TMR) during REM sleep to strengthen IRT-related memories and accelerate remission of ND. Thirty-six patients with ND were asked to perform an initial IRT session and, while they generated a positive outcome of their nightmare, half of the patients were exposed to a sound (TMR group), while no such pairing took place for the other half (control group). During the next 2 weeks, all patients performed IRT every evening at home and were exposed to the sound during REM sleep with a wireless headband, which automatically detected sleep stages. The frequency of nightmares per week at 2 weeks was used as the primary outcome measure. We found that the TMR group had less frequent nightmares and more positive dream emotions than the control group after 2 weeks of IRT and a sustained decrease of nightmares after 3 months. By demonstrating the effectiveness of TMR during sleep to potentiate therapy, these results have clinical implications for the management of ND, with relevance to other psychiatric disorders too. Additionally, these findings show that TMR applied during REM sleep can modulate emotions in dreams.
Collapse
Affiliation(s)
- Sophie Schwartz
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, 1202 Geneva, Switzerland
| | - Alice Clerget
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland
| | - Lampros Perogamvros
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, 1202 Geneva, Switzerland; Center for Sleep Medicine, Geneva University Hospitals, 1225 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospitals, 1225 Geneva, Switzerland.
| |
Collapse
|
90
|
Electrophysiological markers of memory consolidation in the human brain when memories are reactivated during sleep. Proc Natl Acad Sci U S A 2022; 119:e2123430119. [PMID: 36279460 PMCID: PMC9636913 DOI: 10.1073/pnas.2123430119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep contributes to memory consolidation, we presume, because memories are replayed during sleep. Understanding this aspect of consolidation can help with optimizing normal learning in many contexts and with treating memory disorders and other diseases. Here, we systematically manipulated sleep-based processing using targeted memory reactivation; brief sounds coupled with presleep learning were quietly presented again during sleep, producing 1) recall improvements for specific spatial memories associated with those sounds and 2) physiological responses in the sleep electroencephalogram. Neural activity in the hippocampus and adjacent medial temporal cortex was thus found in association with memory consolidation during sleep. These findings advance understanding of consolidation by linking beneficial memory changes during sleep to both memory reactivation and specific patterns of brain activity. Human accomplishments depend on learning, and effective learning depends on consolidation. Consolidation is the process whereby new memories are gradually stored in an enduring way in the brain so that they can be available when needed. For factual or event knowledge, consolidation is thought to progress during sleep as well as during waking states and to be mediated by interactions between hippocampal and neocortical networks. However, consolidation is difficult to observe directly but rather is inferred through behavioral observations. Here, we investigated overnight memory change by measuring electrical activity in and near the hippocampus. Electroencephalographic (EEG) recordings were made in five patients from electrodes implanted to determine whether a surgical treatment could relieve their seizure disorders. One night, while each patient slept in a hospital monitoring room, we recorded electrophysiological responses to 10 to 20 specific sounds that were presented very quietly, to avoid arousal. Half of the sounds had been associated with objects and their precise spatial locations that patients learned before sleep. After sleep, we found systematic improvements in spatial recall, replicating prior results. We assume that when the sounds were presented during sleep, they reactivated and strengthened corresponding spatial memories. Notably, the sounds also elicited oscillatory intracranial EEG activity, including increases in theta, sigma, and gamma EEG bands. Gamma responses, in particular, were consistently associated with the degree of improvement in spatial memory exhibited after sleep. We thus conclude that this electrophysiological activity in the hippocampus and adjacent medial temporal cortex reflects sleep-based enhancement of memory storage.
Collapse
|
91
|
Ngo HVV, Staresina BP. Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proc Natl Acad Sci U S A 2022; 119:e2123428119. [PMID: 36279449 PMCID: PMC9636934 DOI: 10.1073/pnas.2123428119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Sleep constitutes a privileged state for new memories to reactivate and consolidate. Previous work has demonstrated that consolidation can be bolstered experimentally either via delivery of reminder cues (targeted memory reactivation [TMR]) or via noninvasive brain stimulation geared toward enhancing endogenous sleep rhythms. Here, we combined both approaches, controlling the timing of TMR cues with respect to ongoing slow-oscillation (SO) phases. Prior to sleep, participants learned associations between unique words and a set of repeating images (e.g., car) while hearing a prototypical image sound (e.g., engine starting). Memory performance on an immediate test vs. a test the next morning quantified overnight memory consolidation. Importantly, two image sounds were designated as TMR cues, with one cue delivered at SO UP states and the other delivered at SO DOWN states. A novel sound was used as a TMR control condition. Behavioral results revealed a significant reduction of overnight forgetting for words associated with UP-state TMR compared with words associated with DOWN-state TMR. Electrophysiological results showed that UP-state cueing led to enhancement of the ongoing UP state and was followed by greater spindle power than DOWN-state cueing. Moreover, UP-state (and not DOWN-state) cueing led to reinstatement of target image representations. Together, these results unveil the behavioral and mechanistic effects of delivering reminder cues at specific phases of endogenous sleep rhythms and mark an important step for the endeavor to experimentally modulate memories during sleep.
Collapse
Affiliation(s)
- Hong-Viet V. Ngo
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Centre for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Bernhard P. Staresina
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 9DU, United Kingdom
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
92
|
Spencer RMC, Riggins T. Contributions of memory and brain development to the bioregulation of naps and nap transitions in early childhood. Proc Natl Acad Sci U S A 2022; 119:e2123415119. [PMID: 36279436 PMCID: PMC9636905 DOI: 10.1073/pnas.2123415119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transition from multiple sleep bouts each day to a single overnight sleep bout (i.e., nap transition) is a universal process in human development. Naps are important during infancy and early childhood as they enhance learning through memory consolidation. However, a normal part of development is the transition out of naps. Understanding nap transitions is essential in order to maximize early learning and promote positive long-term cognitive outcomes. Here, we propose a novel hypothesis regarding the cognitive, physiological, and neural changes that accompany nap transitions. Specifically, we posit that maturation of the hippocampal-dependent memory network results in more efficient memory storage, which reduces the buildup of homeostatic sleep pressure across the cortex (as reflected by slow-wave activity), and eventually, contributes to nap transitions. This hypothesis synthesizes evidence of bioregulatory mechanisms underlying nap transitions and sheds new light on an important window of change in development. This framework can be used to evaluate multiple untested predictions from the field of sleep science and ultimately, yield science-based guidelines and policies regarding napping in childcare and early education settings.
Collapse
Affiliation(s)
- Rebecca M. C. Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, MA 01003
- Neuroscience & Behavior Program, University of Massachusetts, Amherst, MA 01003
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, MD 20742
| |
Collapse
|
93
|
Inducing forgetting of unwanted memories through subliminal reactivation. Nat Commun 2022; 13:6496. [PMID: 36310181 PMCID: PMC9618560 DOI: 10.1038/s41467-022-34091-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Processes that might facilitate the forgetting of unwanted experiences typically require the actual or imagined re-exposure to reminders of the event, which is aversive and carries risks to people. But it is unclear whether awareness of aversive content is necessary for effective voluntary forgetting. Disrupting hippocampal function through retrieval suppression induces an amnesic shadow that impairs the encoding and stabilization of unrelated memories that are activated near in time to people's effort to suppress retrieval. Building on this mechanism, here we successfully disrupt retention of unpleasant memories by subliminally reactivating them within this amnesic shadow. Critically, whereas unconscious forgetting occurs on these affective memories, the amnesic shadow itself is induced by conscious suppression of unrelated and benign neutral memories, avoiding conscious re-exposure of unwelcome content. Combining the amnesic shadow with subliminal reactivation may offer a new approach to voluntary forgetting that bypasses the unpleasantness in conscious exposure to unwanted memories.
Collapse
|
94
|
Howard MD, Skorheim SW, Pilly PK. A model of bi-directional interactions between complementary learning systems for memory consolidation of sequential experiences. Front Syst Neurosci 2022; 16:972235. [PMID: 36313529 PMCID: PMC9606815 DOI: 10.3389/fnsys.2022.972235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The standard theory of memory consolidation posits a dual-store memory system: a fast-learning fast-decaying hippocampus that transfers memories to slow-learning long-term cortical storage. Hippocampal lesions interrupt this transfer, so recent memories are more likely to be lost than more remote memories. Existing models of memory consolidation that simulate this temporally graded retrograde amnesia operate only on static patterns or unitary variables as memories and study only one-way interaction from the hippocampus to the cortex. However, the mechanisms underlying the consolidation of episodes, which are sequential in nature and comprise multiple events, are not well-understood. The representation of learning for sequential experiences in the cortical-hippocampal network as a self-consistent dynamical system is not sufficiently addressed in prior models. Further, there is evidence for a bi-directional interaction between the two memory systems during offline periods, whereby the reactivation of waking neural patterns originating in the cortex triggers time-compressed sequential replays in the hippocampus, which in turn drive the consolidation of the pertinent sequence in the cortex. We have developed a computational model of memory encoding, consolidation, and recall for storing temporal sequences that explores the dynamics of this bi-directional interaction and time-compressed replays in four simulation experiments, providing novel insights into whether hippocampal learning needs to be suppressed for stable memory consolidation and into how new and old memories compete for limited replay opportunities during offline periods. The salience of experienced events, based on factors such as recency and frequency of use, is shown to have considerable impact on memory consolidation because it biases the relative probability that a particular event will be cued in the cortex during offline periods. In the presence of hippocampal learning during sleep, our model predicts that the fast-forgetting hippocampus can continually refresh the memory traces of a given episodic sequence if there are no competing experiences to be replayed.
Collapse
|
95
|
Cortico-cortical and thalamo-cortical connectivity during non-REM and REM sleep: Insights from intracranial recordings in humans. Clin Neurophysiol 2022; 143:84-94. [PMID: 36166901 DOI: 10.1016/j.clinph.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study changes of thalamo-cortical and cortico-cortical connectivity during wakefulness, non-Rapid Eye Movement (non-REM) sleep, including N2 and N3 stages, and REM sleep, using stereoelectroencephalography (SEEG) recording in humans. METHODS We studied SEEG recordings of ten patients during wakefulness, non-REM sleep and REM sleep, in seven brain regions of interest including the thalamus. We calculated directed and undirected functional connectivity using a measure of non-linear correlation coefficient h2. RESULTS The thalamus was more connected to other brain regions during N2 stage and REM sleep than during N3 stage during which cortex was more connected than the thalamus. We found two significant directed links: the first from the prefrontal region to the lateral parietal region in the delta band during N3 sleep and the second from the thalamus to the insula during REM sleep. CONCLUSIONS These results showed that cortico-cortical connectivity is more prominent in N3 stage than in N2 and REM sleep. During REM sleep we found significant thalamo-insular connectivity, with a driving role of the thalamus. SIGNIFICANCE We found a pattern of cortical connectivity during N3 sleep concordant with antero-posterior traveling slow waves. The thalamus seemed particularly involved as a hub of connectivity during REM sleep.
Collapse
|
96
|
Sleep targets highly connected global and local nodes to aid consolidation of learned graph networks. Sci Rep 2022; 12:15086. [PMID: 36064730 PMCID: PMC9445065 DOI: 10.1038/s41598-022-17747-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/30/2022] [Indexed: 11/30/2022] Open
Abstract
Much of our long-term knowledge is organised in complex networks. Sleep is thought to be critical for abstracting knowledge and enhancing important item memory for long-term retention. Thus, sleep should aid the development of memory for networks and the abstraction of their structure for efficient storage. However, this remains unknown because past sleep studies have focused on discrete items. Here we explored the impact of sleep (night-sleep/day-wake within-subject paradigm with 25 male participants) on memory for graph-networks where some items were important due to dense local connections (degree centrality) or, independently, important due to greater global connections (closeness/betweenness centrality). A network of 27 planets (nodes) sparsely interconnected by 36 teleporters (edges) was learned via discrete associations without explicit indication of any network structure. Despite equivalent exposure to all connections in the network, we found that memory for the links between items with high local connectivity or high global connectivity were better retained after sleep. These results highlight that sleep has the capacity for strengthening both global and local structure from the world and abstracting over multiple experiences to efficiently form internal networks of knowledge.
Collapse
|
97
|
Sleep Fosters Odor Recognition in Children with Attention Deficit Hyperactivity Disorder but Not in Typically Developing Children. Brain Sci 2022; 12:brainsci12091182. [PMID: 36138918 PMCID: PMC9496889 DOI: 10.3390/brainsci12091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Prior experience represents a prerequisite for memory consolidation across various memory systems. In the context of olfaction, sleep was found to enhance the consolidation of odors in adults but not in typically developing children (TDC), likely due to differences in pre-experience. Interestingly, unmedicated children with attention deficit hyperactivity disorder (ADHD), a neurodevelopmental condition related to dopamine dysfunction, showed lower perceptive thresholds for odors, potentially allowing for more odor experience compared to TDC. We investigated sleep-associated odor memory consolidation in ADHD. Twenty-eight children with ADHD and thirty age-matched TDC participated in an incidental odor recognition task. For the sleep groups (ADHD: n = 14, TDC: n = 15), the encoding of 10 target odorants took place in the evening, and the retention of odorants was tested with 10 target odorants and 10 distractor odorants the next morning. In the wake groups (ADHD: n = 14, TDC: n = 15), the time schedule was reversed. Odor memory consolidation was superior in the ADHD sleep group compared to the TDC sleep and the ADHD wake groups. Intensity and familiarity ratings during encoding were substantially higher in ADHD compared to TDC. Sleep-associated odor memory consolidation in ADHD is superior to TDC. Abundant pre-experience due to lower perceptive thresholds is suggested as a possible explanation. Olfaction might serve as a biomarker in ADHD.
Collapse
|
98
|
Aime M, Adamantidis AR. Sleep to Survive Predators. Neurosci Bull 2022; 38:1114-1116. [PMID: 35570232 PMCID: PMC9468192 DOI: 10.1007/s12264-022-00875-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Affiliation(s)
- Mattia Aime
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland
| | - Antoine R Adamantidis
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, 3010, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
99
|
Abstract
Over the past few decades, the importance of sleep has become increasingly recognized for many physiologic functions, including cognition. Many studies have reported the deleterious effect of sleep loss or sleep disruption on cognitive performance. Beyond ensuring adequate sleep quality and duration, discovering methods to enhance sleep to augment its restorative effects is important to improve learning in many populations, such as the military, students, age-related cognitive decline, and cognitive disorders.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
100
|
Adaptive Solutions to the Problem of Vulnerability During Sleep. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2022. [DOI: 10.1007/s40806-022-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractSleep is a behavioral state whose quantity and quality represent a trade-off between the costs and benefits this state provides versus the costs and benefits of wakefulness. Like many species, we humans are particularly vulnerable during sleep because of our reduced ability to monitor the external environment for nighttime predators and other environmental dangers. A number of variations in sleep characteristics may have evolved over the course of human history to reduce this vulnerability, at both the individual and group level. The goals of this interdisciplinary review paper are (1) to explore a number of biological/instinctual features of sleep that may have adaptive utility in terms of enhancing the detection of external threats, and (2) to consider relatively recent cultural developments that improve vigilance and reduce vulnerability during sleep and the nighttime. This paper will also discuss possible benefits of the proposed adaptations beyond vigilance, as well as the potential costs associated with each of these proposed adaptations. Finally, testable hypotheses will be presented to evaluate the validity of these proposed adaptations.
Collapse
|