51
|
Guha S, Molla F, Sarkar M, Ibańez F, Fabra A, DasGupta M. Nod factor-independent 'crack-entry' symbiosis in dalbergoid legume Arachis hypogaea. Environ Microbiol 2022; 24:2732-2746. [PMID: 34995397 DOI: 10.1111/1462-2920.15888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Dalbergoids are typified by crack-entry symbiosis which is evidenced to be Nod Factor (NF)- independent in several Aeschynomene legumes. Natural symbionts of the dalbergoid legume Arachis hypogaea are always NF-producing, prompting us to check whether symbiosis in this legume could also be NF-independent. For this, we followed the symbiosis with two NF containing bradyrhizobial strains- SEMIA6144, a natural symbiont of Arachis and ORS285, a versatile nodulator of Aeschynomene legumes, along with their corresponding nodulation (nod) mutants. Additionally, we investigated NF-deficient bradyrhizobia like BTAi1, a natural symbiont of Aeschynomene indica and the WBOS strains that were natural endophytes of Oryza sativa, collected from an Arachis-Oryza intercropped field. While SEMIA6144ΔnodC was non-nodulating, both ORS285 and ORS285ΔnodB could induce functional nodulation, although with lower efficiency than SEMIA6144. On the other hand, all the NF-deficient strains- BTAi1, WBOS2 and WBOS4 showed comparable nodulation with ORS285 indicating Arachis to harbour a NF-independent mechanism of symbiosis. Intriguingly, symbiosis in Arachis, irrespective of whether it was NF-dependent or independent, was always associated with the curling or branching of the rosette root hairs at the lateral root bases. Thus, despite being predominantly described as NF-dependent legume, Arachis does retain a vestigial, less-efficient form of NF-independent symbiosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sohini Guha
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Firoz Molla
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Monolina Sarkar
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Fernando Ibańez
- Instituto de Investigaciones Agrobiotecnologicas (CONCINET-UNRC), Ruta 36 Km 601, Río Cuarto, Argentina
| | - Adriana Fabra
- Instituto de Investigaciones Agrobiotecnologicas (CONCINET-UNRC), Ruta 36 Km 601, Río Cuarto, Argentina
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| |
Collapse
|
52
|
Rodríguez-Esperón MC, Eastman G, Sandes L, Garabato F, Eastman I, Iriarte A, Fabiano E, Sotelo-Silveira JR, Platero R. Genomics and transcriptomics insights into luteolin effects on the beta-rhizobial strain Cupriavidus necator UYPR2.512. Environ Microbiol 2021; 24:240-264. [PMID: 34811861 DOI: 10.1111/1462-2920.15845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Cupriavidus necator UYPR2.512 is a rhizobial strain that belongs to the Beta-subclass of proteobacteria, able to establish successful symbiosis with Mimosoid legumes. The initial steps of rhizobium-legumes symbioses involve the reciprocal recognition by chemical signals, being luteolin one of the molecules involved. However, there is a lack of information on the effect of luteolin in beta-rhizobia. In this work, we used long-read sequencing to complete the genome of UYPR2.512 providing evidence for the existence of four closed circular replicons. We used an RNA-Seq approach to analyse the response of UYPR2.512 to luteolin. One hundred and forty-five genes were differentially expressed, with similar numbers of downregulated and upregulated genes. Most repressed genes were mapped to the main chromosome, while the upregulated genes were overrepresented among pCne512e, containing the symbiotic genes. Induced genes included the nod operon and genes implicated in exopolysaccharides and flagellar biosynthesis. We identified many genes involved in iron, copper and other heavy metals metabolism. Among repressed genes, we identified genes involved in basal carbon and nitrogen metabolism. Our results suggest that in response to luteolin, C. necator strain UYPR2.512 reshapes its metabolism in order to be prepared for the forthcoming symbiotic interaction.
Collapse
Affiliation(s)
- M C Rodríguez-Esperón
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - G Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - L Sandes
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - F Garabato
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - I Eastman
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Montevideo, Uruguay
| | - E Fabiano
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - J R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - R Platero
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
53
|
Feng Y, Wu P, Liu C, Peng L, Wang T, Wang C, Tan Q, Li B, Ou Y, Zhu H, Yuan S, Huang R, Stacey G, Zhang Z, Cao Y. Suppression of LjBAK1-mediated immunity by SymRK promotes rhizobial infection in Lotus japonicus. MOLECULAR PLANT 2021; 14:1935-1950. [PMID: 34314895 DOI: 10.1016/j.molp.2021.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/07/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
An important question in biology is how organisms can associate with different microbes that pose no threat (commensals), pose a severe threat (pathogens), and those that are beneficial (symbionts). The root nodule symbiosis serves as an important model system for addressing such questions in the context of plant-microbe interactions. It is now generally accepted that rhizobia can actively suppress host immune responses during the infection process, analogous to the way in which plant pathogens can evade immune recognition. However, much remains to be learned about the mechanisms by which the host recognizes the rhizobia as pathogens and how, subsequently, these pathways are suppressed to allow establishment of the nitrogen-fixing symbiosis. In this study, we found that SymRK (Symbiosis Receptor-like Kinase) is required for rhizobial suppression of plant innate immunity in Lotus japonicus. SymRK associates with LjBAK1 (BRASSINOSTEROID INSENSITIVE 1-Associated receptor Kinase 1), a well-characterized positive regulator of plant innate immunity, and directly inhibits LjBAK1 kinase activity. Rhizobial inoculation enhances the association between SymRK and LjBAK1 in planta. LjBAK1 is required for the regulation of plant innate immunity and plays a negative role in rhizobial infection in L. japonicus. The data indicate that the SymRK-LjBAK1 protein complex serves as an intersection point between rhizobial symbiotic signaling pathways and innate immunity pathways, and support that rhizobia may actively suppress the host's ability to mount a defense response during the legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Yong Feng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Wu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liwei Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Tan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bixuan Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yajuan Ou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Songli Yuan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Renliang Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
54
|
Evolutionary origin and ecological implication of a unique nif island in free-living Bradyrhizobium lineages. THE ISME JOURNAL 2021; 15:3195-3206. [PMID: 33990706 PMCID: PMC8528876 DOI: 10.1038/s41396-021-01002-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023]
Abstract
The alphaproteobacterial genus Bradyrhizobium has been best known as N2-fixing members that nodulate legumes, supported by the nif and nod gene clusters. Recent environmental surveys show that Bradyrhizobium represents one of the most abundant free-living bacterial lineages in the world's soils. However, our understanding of Bradyrhizobium comes largely from symbiotic members, biasing the current knowledge of their ecology and evolution. Here, we report the genomes of 88 Bradyrhizobium strains derived from diverse soil samples, including both nif-carrying and non-nif-carrying free-living (nod free) members. Phylogenomic analyses of these and 252 publicly available Bradyrhizobium genomes indicate that nif-carrying free-living members independently evolved from symbiotic ancestors (carrying both nif and nod) multiple times. Intriguingly, the nif phylogeny shows that the vast majority of nif-carrying free-living members comprise an independent cluster, indicating that horizontal gene transfer promotes nif expansion among the free-living Bradyrhizobium. Comparative genomics analysis identifies that the nif genes found in free-living Bradyrhizobium are located on a unique genomic island of ~50 kb equipped with genes potentially involved in coping with oxygen tension. We further analyze amplicon sequencing data to show that Bradyrhizobium members presumably carrying this nif island are widespread in a variety of environments. Given the dominance of Bradyrhizobium in world's soils, our findings have implications for global nitrogen cycles and agricultural research.
Collapse
|
55
|
Busset N, Gully D, Teulet A, Fardoux J, Camuel A, Cornu D, Severac D, Giraud E, Mergaert P. The Type III Effectome of the Symbiotic Bradyrhizobium vignae Strain ORS3257. Biomolecules 2021; 11:1592. [PMID: 34827590 PMCID: PMC8615406 DOI: 10.3390/biom11111592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Many Bradyrhizobium strains are able to establish a Nod factor-independent symbiosis with the leguminous plant Aeschynomene indica by the use of a type III secretion system (T3SS). Recently, an important advance in the understanding of the molecular factors supporting this symbiosis has been achieved by the in silico identification and functional characterization of 27 putative T3SS effectors (T3Es) of Bradyrhizobium vignae ORS3257. In the present study, we experimentally extend this catalog of T3Es by using a multi-omics approach. Transcriptome analysis under non-inducing and inducing conditions in the ORS3257 wild-type strain and the ttsI mutant revealed that the expression of 18 out of the 27 putative effectors previously identified, is under the control of TtsI, the global transcriptional regulator of T3SS and T3Es. Quantitative shotgun proteome analysis of culture supernatant in the wild type and T3SS mutant strains confirmed that 15 of the previously determined candidate T3Es are secreted by the T3SS. Moreover, the combined approaches identified nine additional putative T3Es and one of them was experimentally validated as a novel effector. Our study underscores the power of combined proteome and transcriptome analyses to complement in silico predictions and produce nearly complete effector catalogs. The establishment of the ORS3257 effectome will form the basis for a full appraisal of the symbiotic properties of this strain during its interaction with various host legumes via different processes.
Collapse
Affiliation(s)
- Nicolas Busset
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France; (N.B.); (D.C.)
| | - Djamel Gully
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD-Campus de Baillarguet, F-34398 Montpellier, France; (D.G.); (A.T.); (J.F.); (A.C.)
| | - Albin Teulet
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD-Campus de Baillarguet, F-34398 Montpellier, France; (D.G.); (A.T.); (J.F.); (A.C.)
| | - Joël Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD-Campus de Baillarguet, F-34398 Montpellier, France; (D.G.); (A.T.); (J.F.); (A.C.)
| | - Alicia Camuel
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD-Campus de Baillarguet, F-34398 Montpellier, France; (D.G.); (A.T.); (J.F.); (A.C.)
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France; (N.B.); (D.C.)
| | - Dany Severac
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, F-34094 Montpellier, France;
- Montpellier GenomiX, France Génomique, F-34094 Montpellier, France
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD-Campus de Baillarguet, F-34398 Montpellier, France; (D.G.); (A.T.); (J.F.); (A.C.)
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France; (N.B.); (D.C.)
| |
Collapse
|
56
|
Nouwen N, Chaintreuil C, Fardoux J, Giraud E. A glutamate synthase mutant of Bradyrhizobium sp. strain ORS285 is unable to induce nodules on Nod factor-independent Aeschynomene species. Sci Rep 2021; 11:20910. [PMID: 34686745 PMCID: PMC8536739 DOI: 10.1038/s41598-021-00480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
The Bradyrhizobium sp. strain ORS285 is able to establish a nitrogen-fixing symbiosis with both Nod factor (NF) dependent and NF-independent Aeschynomene species. Here, we have studied the growth characteristics and symbiotic interaction of a glutamate synthase (GOGAT; gltD::Tn5) mutant of Bradyrhizobium ORS285. We show that the ORS285 gltD::Tn5 mutant is unable to use ammonium, nitrate and many amino acids as nitrogen source for growth and is unable to fix nitrogen under free-living conditions. Moreover, on several nitrogen sources, the growth rate of the gltB::Tn5 mutant was faster and/or the production of the carotenoid spirilloxanthin was much higher as compared to the wild-type strain. The absence of GOGAT activity has a drastic impact on the symbiotic interaction with NF-independent Aeschynomene species. With these species, inoculation with the ORS285 gltD::Tn5 mutant does not result in the formation of nodules. In contrast, the ORS285 gltD::Tn5 mutant is capable to induce nodules on NF-dependent Aeschynomene species, but these nodules were ineffective for nitrogen fixation. Interestingly, in NF-dependent and NF-independent Aeschynomene species inoculation with the ORS285 gltD::Tn5 mutant results in browning of the plant tissue at the site of the infection suggesting that the mutant bacteria induce plant defence responses.
Collapse
Affiliation(s)
- Nico Nouwen
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France.
| | - Clémence Chaintreuil
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France
| | - Joel Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD - Campus de Baillarguet, Montpellier, France
| |
Collapse
|
57
|
Schaedel M, Hidrobo G, Grossman J. From Microns to Meters: Exploring Advances in Legume Microbiome Diversity for Agroecosystem Benefits. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.668195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Legumes are of primary importance for agroecosystems because they provide protein-rich foods and enhance soil fertility through fixed atmospheric nitrogen. The legume-rhizobia symbiosis that makes this possible has been extensively studied, from basic research on biochemical signaling to practical applications in cropping systems. While rhizobia are the most-studied group of associated microorganisms, the functional benefit they confer to their legume hosts by fixing nitrogen is not performed in isolation. Indeed, non-rhizobia members of the rhizosphere and nodule microbiome are now understood to contribute in multiple ways to nodule formation, legume fitness, and other agroecosystem services. In this review, we summarize advances contributing to our understanding of the diversity and composition of bacterial members of the belowground legume microbiome. We also highlight applied work in legume food and forage crops that link microbial community composition with plant functional benefits. Ultimately, further research will assist in the development of multi-species microbial inoculants and cropping systems that maximize plant nutrient benefits, while reducing sources of agricultural pollution.
Collapse
|
58
|
Khokhani D, Carrera Carriel C, Vayla S, Irving TB, Stonoha-Arther C, Keller NP, Ané JM. Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annu Rev Microbiol 2021; 75:583-607. [PMID: 34623896 DOI: 10.1146/annurev-micro-051921-114809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitin is a structural polymer in many eukaryotes. Many organisms can degrade chitin to defend against chitinous pathogens or use chitin oligomers as food. Beneficial microorganisms like nitrogen-fixing symbiotic rhizobia and mycorrhizal fungi produce chitin-based signal molecules called lipo-chitooligosaccharides (LCOs) and short chitin oligomers to initiate a symbiotic relationship with their compatible hosts and exchange nutrients. A recent study revealed that a broad range of fungi produce LCOs and chitooligosaccharides (COs), suggesting that these signaling molecules are not limited to beneficial microbes. The fungal LCOs also affect fungal growth and development, indicating that the roles of LCOs beyond symbiosis and LCO production may predate mycorrhizal symbiosis. This review describes the diverse structures of chitin; their perception by eukaryotes and prokaryotes; and their roles in symbiotic interactions, defense, and microbe-microbe interactions. We also discuss potential strategies of fungi to synthesize LCOs and their roles in fungi with different lifestyles.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Current affiliation: Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108, USA;
| | - Cristobal Carrera Carriel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Shivangi Vayla
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
59
|
Culture-independent assessment of the diazotrophic Bradyrhizobium communities in the Pampa and Atlantic Forest Biomes localities in southern Brazil. Syst Appl Microbiol 2021; 44:126228. [PMID: 34265499 DOI: 10.1016/j.syapm.2021.126228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
The isolation of rhizobial strains from the root and stem nodules remains a commonly used method despite its limitations as it enables the identification of mainly dominant symbiotic groups within rhizobial communities. To overcome these limitations, we used genus-specific nifD primers in a culture-independent assessment of Bradyrhizobium communities inhabiting soils in southern Brazil. The majority of nifD sequences were generated from DNA isolated from tropical-lowland pasture soils, although some soil samples originated from the Campos de Cima da Serra volcanic plateau. In the nifD tree, all the bradyrhizobial sequences comprised 38 clades, including 18 new clades. The sequences generated in this study were resolved into 22 clades and 21 singletons. The nifD bradyrhizobial assemblage contained Azorhizobium and α-proteobacterial methylotrophic genera, suggesting that these genera may have acquired their nif loci from Bradyrhizobium donors. The most common in the lowland pasture soils subclade III.3D branch comprises the isolates of mainly an American origin. On the other hand, subclade III.4, which was earlier detected in Brazil among Bradyrhizobium isolates nodulating native lupins, appears more common in the Campos de Cima da Serra soils. The second-largest group, Clade XXXVIII, has not yet been reported in culture-dependent studies, while another common group called Clade I represents a symbiovar predominating in Australia. The identification of the diverse nifD Clade I haplotypes in the tropical-lowland pastures infested by Australian Acacia spp implies that the introduction of these legumes to southern Brazil has resulted in the dissemination of their bradyrhizobial symbionts.
Collapse
|
60
|
Gühl K, Holmer R, Xiao TT, Shen D, Wardhani TAK, Geurts R, van Zeijl A, Kohlen W. The Effect of Exogenous Nitrate on LCO Signalling, Cytokinin Accumulation, and Nodule Initiation in Medicago truncatula. Genes (Basel) 2021; 12:genes12070988. [PMID: 34203444 PMCID: PMC8305252 DOI: 10.3390/genes12070988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
Nitrogen fixation by rhizobia is a highly energy-demanding process. Therefore, nodule initiation in legumes is tightly regulated. Environmental nitrate is a potent inhibitor of nodulation. However, the precise mechanism by which this agent (co)regulates the inhibition of nodulation is not fully understood. Here, we demonstrate that in Medicago truncatula the lipo-chitooligosaccharide-induced accumulation of cytokinins is reduced in response to the application of exogenous nitrate. Under permissive nitrate conditions, perception of rhizobia-secreted signalling molecules leads to an increase in the level of four cytokinins (i.e., iP, iPR, tZ, and tZR). However, under high-nitrate conditions, this increase in cytokinins is reduced. The ethylene-insensitive mutant Mtein2/sickle, as well as wild-type plants grown in the presence of the ethylene biosynthesis inhibitor 2-aminoethoxyvinyl glycine (AVG), is resistant to the inhibition of nodulation by nitrate. This demonstrates that ethylene biosynthesis and perception are required to inhibit nodule organogenesis under high-nitrate conditions.
Collapse
Affiliation(s)
- Kerstin Gühl
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - Rens Holmer
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Ting Ting Xiao
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - Defeng Shen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - Titis A. K. Wardhani
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - René Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - Arjan van Zeijl
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
- Correspondence:
| |
Collapse
|
61
|
Bromfield ESP, Cloutier S. Bradyrhizobium septentrionale sp. nov. (sv. septentrionale) and Bradyrhizobium quebecense sp. nov. (sv. septentrionale) associated with legumes native to Canada possess rearranged symbiosis genes and numerous insertion sequences. Int J Syst Evol Microbiol 2021; 71. [PMID: 34106824 PMCID: PMC8374602 DOI: 10.1099/ijsem.0.004831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Six bacterial strains isolated from root nodules of soybean plants that had been inoculated with root-zone soil of legumes native to Canada were previously characterized and 1) placed in two novel lineages within the genus Bradyrhizobium and 2) assigned to symbiovar septentrionale. Here we verified the taxonomic status of these strains using genomic and phenotypic analyses. Phylogenetic analyses of five protein encoding partial gene sequences as well as 52 full length ribosome protein subunit gene sequences confirmed placement of the novel strains in two highly supported lineages distinct from named Bradyrhizobium species. The highest average nucleotide identity values of strains representing these two lineages relative to type strains of closest relatives were 90.7 and 92.3% which is well below the threshold value for bacterial species circumscription. The genomes of representative strains 1S1T, 162S2 and 66S1MBT have sizes of 10598256, 10733150 and 9032145 bp with DNA G+C contents of 63.5, 63.4 and 63.8 mol%, respectively. These strains possess between one and three plasmids based on copy number of plasmid replication and segregation (repABC) genes. Novel strains also possess numerous insertion sequences, and, relative to reference strain Bradyrhizobium diazoefficiens USDA110T, exhibit inversion and fragmentation of nodulation (nod) and nitrogen-fixation (nif) gene clusters. Phylogenetic analyses of nodC and nifH gene sequences confirmed placement of novel strains in a distinct lineage corresponding to symbiovar septentrionale. Data for morphological, physiological and symbiotic characteristics complement the sequence-based results. The data presented here support the description of two new species for which the names Bradyrhizobium septentrionale sp. nov. (sv. septentrionale) and Bradyrhizobium quebecense sp. nov. (sv. septentrionale) are proposed, with 1S1T (=LMG 29930T=HAMBI 3676T) and 66S1MBT (=LMG 31547T=HAMBI 3720T) as type strains, respectively.
Collapse
Affiliation(s)
- Eden S P Bromfield
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| |
Collapse
|
62
|
Rahimlou S, Bahram M, Tedersoo L. Phylogenomics reveals the evolution of root nodulating alpha- and beta-Proteobacteria (rhizobia). Microbiol Res 2021; 250:126788. [PMID: 34051611 DOI: 10.1016/j.micres.2021.126788] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The symbiosis between legumes and nodulating Proteobacteria (so-called rhizobia) contributes greatly to nitrogen fixation in terrestrial ecosystems. Root nodulating Proteobacteria produce nodulation (Nod) factors during the initiation of rhizobial nodule organogenesis on the roots of legumes. Here, we screened the Nod factor production capacity of the previously reported nodule inducing Proteobacteria genera using their genome sequences and assessed the evolutionary history of symbiosis based on phylogenomics. Our analysis revealed 12 genera as potentially Nod factor producing taxa exclusively from alpha- and beta-Proteobacteria. Based on molecular clock analysis, we estimate that rhizobial nitrogen-fixing symbiosis appeared for the first time about 51 Mya (Eocene epoch) in Rhizobiaceae, and it was laterally transferred to multiple symbiotic taxa in alpha- and beta-Proteobacteria. Coevolutionary tests conducted for measuring the phylogenetic congruence between hosts and symbionts revealed only weak topological similarity between legumes and their bacterial symbionts. We conclude that frequent lateral transfer of symbiotic genes, facultative symbiotic nature of rhizobia, differential evolutionary processes of chromosome versus plasmids, and complex multispecies coevolutionary processes have shaped the rhizobia-host associations.
Collapse
Affiliation(s)
- Saleh Rahimlou
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51, Uppsala, Sweden
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia; Natural History Museum, University of Tartu, 46 Vanemuise, 51003 Tartu, Estonia
| |
Collapse
|
63
|
Huo H, Wang X, Liu Y, Chen J, Wei G. A Nod factor- and type III secretion system-dependent manner for Robinia pseudoacacia to establish symbiosis with Mesorhizobium amorphae CCNWGS0123. TREE PHYSIOLOGY 2021; 41:817-835. [PMID: 33219377 DOI: 10.1093/treephys/tpaa160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Under nitrogen-limiting conditions, symbiotic nodulation promotes the growth of legume plants via the fixation of atmospheric nitrogen to ammonia by rhizobia in root nodules. The rhizobial Nod factor (NF) and type III secretion system (T3SS) are two key signaling pathways for establishing the legume-rhizobium symbiosis. However, whether NF signaling is involved in the nodulation of Robinia pseudoacacia and Mesorhizobium amorphae CCNWGS0123, and its symbiotic differences compared with T3SS signaling remain unclear. Therefore, to elucidate the function of NF signaling in nodulation, we mutated nodC in M. amorphae CCNWGS0123, which aborted NF synthesis. Compared with the plants inoculated with the wild type strain, the plants inoculated with the NF-deficient strain exhibited shorter shoots with etiolated leaves. These phenotypic characteristics were similar to those of the plants inoculated with the T3SS-deficient strain, which served as a Nod- (non-effective nodulation) control. The plants inoculated with both the NF- and T3SS-deficient strains formed massive root hair swellings, but no normal infection threads were detected. Sections of the nodules showed that inoculation with the NF- and T3SS-deficient strains induced small, white bumps without any rhizobia inside. Analyzing the accumulation of 6 plant hormones and the expression of 10 plant genes indicated that the NF- and T3SS-deficient strains activated plant defense reactions while suppressing plant symbiotic signaling during the perception and nodulation processes. The requirement for NF signaling appeared to be conserved in two other leguminous trees that can establish symbiosis with M. amorphae CCNWGS0123. In contrast, the function of the T3SS might differ among species, even within the same subfamily (Faboideae). Overall, this work demonstrated that nodulation of R. pseudoacacia and M. amorphae CCNWGS0123 was both NF and T3SS dependent.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water conservation, Northwest A&F University, 26 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
64
|
Costa SR, Ng JLP, Mathesius U. Interaction of Symbiotic Rhizobia and Parasitic Root-Knot Nematodes in Legume Roots: From Molecular Regulation to Field Application. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:470-490. [PMID: 33471549 DOI: 10.1094/mpmi-12-20-0350-fi] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Legumes form two types of root organs in response to signals from microbes, namely, nodules and root galls. In the field, these interactions occur concurrently and often interact with each other. The outcomes of these interactions vary and can depend on natural variation in rhizobia and nematode populations in the soil as well as abiotic conditions. While rhizobia are symbionts that contribute fixed nitrogen to their hosts, parasitic root-knot nematodes (RKN) cause galls as feeding structures that consume plant resources without a contribution to the plant. Yet, the two interactions share similarities, including rhizosphere signaling, repression of host defense responses, activation of host cell division, and differentiation, nutrient exchange, and alteration of root architecture. Rhizobia activate changes in defense and development through Nod factor signaling, with additional functions of effector proteins and exopolysaccharides. RKN inject large numbers of protein effectors into plant cells that directly suppress immune signaling and manipulate developmental pathways. This review examines the molecular control of legume interactions with rhizobia and RKN to elucidate shared and distinct mechanisms of these root-microbe interactions. Many of the molecular pathways targeted by both organisms overlap, yet recent discoveries have singled out differences in the spatial control of expression of developmental regulators that may have enabled activation of cortical cell division during nodulation in legumes. The interaction of legumes with symbionts and parasites highlights the importance of a comprehensive view of root-microbe interactions for future crop management and breeding strategies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sofia R Costa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jason Liang Pin Ng
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
65
|
de Matos GF, Rouws LFM, Simões-Araújo JL, Baldani JI. Evolution and function of nitrogen fixation gene clusters in sugarcane associated Bradyrhizobium strains. Environ Microbiol 2021; 23:6148-6162. [PMID: 33928743 DOI: 10.1111/1462-2920.15533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/01/2022]
Abstract
Bradyrhizobium spp. are well known to mediate biological nitrogen fixation (BNF) as microsymbionts inhabiting nodules on leguminous plants. However, they may also contribute to plant growth via free-living N2 fixation (FLNF) in association with non-legumes. Notably, several Bradyrhizobium strains from sugarcane roots display FLNF activity. Among them, Bradyrhizobium sacchari is a legume symbiotic species, whereas strains AG48 and M12 are non-symbiotic. In the present study, a phylogenomic approach was applied to study peculiarities of these and other Bradyrhizobium strains with respect to N fixation (nif) gene content in order to reveal genetic features that enable FNLF in Bradyrhizobium spp. All FLNF strains carry an ancestral 'non-symbiotic' nif-gene cluster (NSC). B. sacchari also contains a second 'symbiotic' nif-gene cluster (SC), a characteristic observed in only three of 156 evaluated genomes. B. sacchari stood out and presented a high level of sequence divergence between individual nif-gene homologues and we discuss scenarios for the evolutionary origin of these clusters. The transcript level of NSC nifH gene increased during FLNF, when compared to symbiotic conditions. The data suggest that sugarcane roots harbor diverse Bradyrhizobium spp. that are genetically adapted to a dynamic environment where leguminous and non-leguminous host plants are alternately available.
Collapse
Affiliation(s)
- Gustavo Feitosa de Matos
- Curso de Pós-graduação em Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465 km 7, Seropédica, RJ, 23891-000, Brazil
| | | | | | - José Ivo Baldani
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, 23891-000, Brazil
| |
Collapse
|
66
|
Montiel J, Reid D, Grønbæk TH, Benfeldt CM, James EK, Ott T, Ditengou FA, Nadzieja M, Kelly S, Stougaard J. Distinct signaling routes mediate intercellular and intracellular rhizobial infection in Lotus japonicus. PLANT PHYSIOLOGY 2021; 185:1131-1147. [PMID: 33793909 PMCID: PMC8133683 DOI: 10.1093/plphys/kiaa049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 05/07/2023]
Abstract
Rhizobial infection of legume roots during the development of nitrogen-fixing root nodules can occur intracellularly, through plant-derived infection threads traversing cells, or intercellularly, via bacterial entry between epidermal plant cells. Although it is estimated that around 25% of all legume genera are intercellularly infected, the pathways and mechanisms supporting this process have remained virtually unexplored due to a lack of genetically amenable legumes that exhibit this form of infection. In this study, we report that the model legume Lotus japonicus is infected intercellularly by the IRBG74 strain, recently proposed to belong to the Agrobacterium clade of the Rhizobiaceae. We demonstrate that the resources available for L. japonicus enable insight into the genetic requirements and fine-tuning of the pathway governing intercellular infection in this species. Inoculation of L. japonicus mutants shows that Ethylene-responsive factor required for nodulation 1 (Ern1) and Leu-rich Repeat Receptor-Like Kinase (RinRK1) are dispensable for intercellular infection in contrast to intracellular infection. Other symbiotic genes, including nod factor receptor 5 (NFR5), symbiosis receptor-like kinase (SymRK), Ca2+/calmodulin dependent kinase (CCaMK), exopolysaccharide receptor 3 (Epr3), Cyclops, nodule inception (Nin), nodulation signaling pathway 1 (Nsp1), nodulation signaling pathway 2 (Nsp2), cystathionine-β-synthase (Cbs), and Vapyrin are equally important for both entry modes. Comparative RNAseq analysis of roots inoculated with IRBG74 revealed a distinctive transcriptome response compared with intracellular colonization. In particular, several cytokinin-related genes were differentially regulated. Corroborating this observation, cyp735A and ipt4 cytokinin biosynthesis mutants were significantly affected in their nodulation with IRBG74, whereas lhk1 cytokinin receptor mutants formed no nodules. These results indicate a differential requirement for cytokinin signaling during intercellular rhizobial entry and highlight distinct modalities of inter- and intracellular infection mechanisms in L. japonicus.
Collapse
Affiliation(s)
- Jesús Montiel
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Thomas H Grønbæk
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Caroline M Benfeldt
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Franck A Ditengou
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
- Author for ommunication:
| |
Collapse
|
67
|
The leguminous trees Vachellia seyal (Del.) and Prosopis juliflora (Swartz) DC and their association with rhizobial strains from the root-influence zone of the grass Sporobolus robustus Kunth. Symbiosis 2021. [DOI: 10.1007/s13199-021-00763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
68
|
Rosselli R, La Porta N, Muresu R, Stevanato P, Concheri G, Squartini A. Pangenomics of the Symbiotic Rhizobiales. Core and Accessory Functions Across a Group Endowed with High Levels of Genomic Plasticity. Microorganisms 2021; 9:microorganisms9020407. [PMID: 33669391 PMCID: PMC7920277 DOI: 10.3390/microorganisms9020407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Pangenome analyses reveal major clues on evolutionary instances and critical genome core conservation. The order Rhizobiales encompasses several families with rather disparate ecological attitudes. Among them, Rhizobiaceae, Bradyrhizobiaceae, Phyllobacteriacreae and Xanthobacteriaceae, include members proficient in mutualistic symbioses with plants based on the bacterial conversion of N2 into ammonia (nitrogen-fixation). The pangenome of 12 nitrogen-fixing plant symbionts of the Rhizobiales was analyzed yielding total 37,364 loci, with a core genome constituting 700 genes. The percentage of core genes averaged 10.2% over single genomes, and between 5% to 7% were found to be plasmid-associated. The comparison between a representative reference genome and the core genome subset, showed the core genome highly enriched in genes for macromolecule metabolism, ribosomal constituents and overall translation machinery, while membrane/periplasm-associated genes, and transport domains resulted under-represented. The analysis of protein functions revealed that between 1.7% and 4.9% of core proteins could putatively have different functions.
Collapse
Affiliation(s)
- Riccardo Rosselli
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, NL-1790 AB Den Burg, The Netherlands;
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 Alicante, Spain
| | - Nicola La Porta
- Department of Sustainable Agrobiosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy;
- MOUNTFOR Project Centre, European Forest Institute, 38098 San Michele all’Adige, Italy
| | - Rosella Muresu
- Institute of Animal Production Systems in Mediterranean Environments-National Research Council, 07040 Sassari, Italy;
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
- Correspondence: ; Tel.: +39-049-8272-923
| |
Collapse
|
69
|
Quilbé J, Lamy L, Brottier L, Leleux P, Fardoux J, Rivallan R, Benichou T, Guyonnet R, Becana M, Villar I, Garsmeur O, Hufnagel B, Delteil A, Gully D, Chaintreuil C, Pervent M, Cartieaux F, Bourge M, Valentin N, Martin G, Fontaine L, Droc G, Dereeper A, Farmer A, Libourel C, Nouwen N, Gressent F, Mournet P, D'Hont A, Giraud E, Klopp C, Arrighi JF. Genetics of nodulation in Aeschynomene evenia uncovers mechanisms of the rhizobium-legume symbiosis. Nat Commun 2021; 12:829. [PMID: 33547303 PMCID: PMC7864950 DOI: 10.1038/s41467-021-21094-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023] Open
Abstract
Among legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia. Despite the significance of these symbiotic features, their understanding remains limited. To overcome such limitations, we conduct genetic studies of nodulation in Aeschynomene evenia, supported by the development of a genome sequence for A. evenia and transcriptomic resources for 10 additional Aeschynomene spp. Comparative analysis of symbiotic genes substantiates singular mechanisms in the early and late nodulation steps. A forward genetic screen also shows that AeCRK, coding a receptor-like kinase, and the symbiotic signaling genes AePOLLUX, AeCCamK, AeCYCLOPS, AeNSP2, and AeNIN are required to trigger both root and stem nodulation. This work demonstrates the utility of the A. evenia model and provides a cornerstone to unravel mechanisms underlying the rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Johan Quilbé
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Léo Lamy
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Laurent Brottier
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Philippe Leleux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Joël Fardoux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Ronan Rivallan
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Thomas Benichou
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Rémi Guyonnet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | - Irene Villar
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | - Olivier Garsmeur
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Bárbara Hufnagel
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Amandine Delteil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Marjorie Pervent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Fabienne Cartieaux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Mickaël Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Nicolas Valentin
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Loïc Fontaine
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398, Montpellier, France
| | - Gaëtan Droc
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Alexis Dereeper
- Institut de Recherche pour le Développement (IRD), University of Montpellier, DIADE, IPME, Montpellier, France
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Cyril Libourel
- LRSV, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nico Nouwen
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Frédéric Gressent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Pierre Mournet
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Christophe Klopp
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Jean-François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France.
| |
Collapse
|
70
|
Massot F, Gkorezis P, Van Hamme J, Marino D, Trifunovic BS, Vukovic G, d'Haen J, Pintelon I, Giulietti AM, Merini L, Vangronsveld J, Thijs S. Isolation, Biochemical and Genomic Characterization of Glyphosate Tolerant Bacteria to Perform Microbe-Assisted Phytoremediation. Front Microbiol 2021; 11:598507. [PMID: 33519737 PMCID: PMC7840833 DOI: 10.3389/fmicb.2020.598507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide. In this work, we isolated bacteria from a chronically glyphosate-exposed site in Argentina, evaluated their glyphosate tolerance using the minimum inhibitory concentration assay, their in vitro degradation potential, their plant growth-promotion traits, and performed whole genome sequencing to gain insight into the application of a phytoremediation strategy to remediate glyphosate contaminated agronomic soils. Twenty-four soil and root-associated bacterial strains were isolated. Sixteen could grow using glyphosate as the sole source of phosphorous. As shown in MIC assay, some strains tolerated up to 10000 mg kg–1 of glyphosate. Most of them also demonstrated a diverse spectrum of in vitro plant growth-promotion traits, confirmed in their genome sequences. Two representative isolates were studied for their root colonization. An isolate of Ochrobactrum haematophilum exhibited different colonization patterns in the rhizoplane compared to an isolate of Rhizobium sp. Both strains were able to metabolize almost 50% of the original glyphosate concentration of 50 mg l–1 in 9 days. In a microcosms experiment with Lotus corniculatus L, O. haematophilum performed better than Rhizobium, with 97% of glyphosate transformed after 20 days. The results suggest that L. corniculatus in combination with to O. haematophilum can be adopted for phytoremediation of glyphosate on agricultural soils. An effective strategy is presented of linking the experimental data from the isolation of tolerant bacteria with performing plant-bacteria interaction tests to demonstrate positive effects on the removal of glyphosate from soils.
Collapse
Affiliation(s)
- Francisco Massot
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín, Argentina
| | - Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Damian Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
| | | | - Gorica Vukovic
- Department of Phytomedicine, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Jan d'Haen
- Institute for Materials Research (IMO-IMEC), Hasselt University, Diepenbeek, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Ana María Giulietti
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín, Argentina
| | | | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
71
|
Abstract
Rhizobia are a phylogenetically diverse group of soil bacteria that engage in mutualistic interactions with legume plants. Although specifics of the symbioses differ between strains and plants, all symbioses ultimately result in the formation of specialized root nodule organs which host the nitrogen-fixing microsymbionts called bacteroids. Inside nodules, bacteroids encounter unique conditions that necessitate global reprogramming of physiological processes and rerouting of their metabolism. Decades of research have addressed these questions using genetics, omics approaches, and more recently computational modelling. Here we discuss the common adaptations of rhizobia to the nodule environment that define the core principles of bacteroid functioning. All bacteroids are growth-arrested and perform energy-intensive nitrogen fixation fueled by plant-provided C4-dicarboxylates at nanomolar oxygen levels. At the same time, bacteroids are subject to host control and sanctioning that ultimately determine their fitness and have fundamental importance for the evolution of a stable mutualistic relationship.
Collapse
|
72
|
Chen WF, Wang ET, Ji ZJ, Zhang JJ. Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application. J Appl Microbiol 2021; 131:553-563. [PMID: 33300250 DOI: 10.1111/jam.14960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Currently, symbiotic rhizobia (sl., rhizobium) refer to the soil bacteria in α- and β-Proteobacteria that can induce root and/or stem nodules on some legumes and a few of nonlegumes. In the nodules, rhizobia convert the inert dinitrogen gas (N2 ) into ammonia (NH3 ) and supply them as nitrogen nutrient to the host plant. In general, this symbiotic association presents specificity between rhizobial and leguminous species, and most of the rhizobia use lipochitooligosaccharides, so called Nod factor (NF), for cooperating with their host plant to initiate the formation of nodule primordium and to inhibit the plant immunity. Besides NF, effectors secreted by type III secretion system (T3SS), exopolysaccharides and many microbe-associated molecular patterns in the rhizobia also play important roles in nodulation and immunity response between rhizobia and legumes. However, the promiscuous hosts like Glycine max and Sophora flavescens can nodulate with various rhizobial species harbouring diverse symbiosis genes in different soils, meaning that the nodulation specificity/efficiency might be mainly determined by the host plants and regulated by the soil conditions in a certain cases. Based on previous studies on rhizobial application, we propose a '1+n-N' model to promote the function of symbiotic nitrogen fixation (SNF) in agricultural practice, where '1' refers to appreciate rhizobium; '+n' means the addition of multiple trace elements and PGPR bacteria; and '-N' implies the reduction of chemical nitrogen fertilizer. Finally, open questions in the SNF field are raised to future think deeply and researches.
Collapse
Affiliation(s)
- W F Chen
- State Key Laboratory of Agrobiotechnology, Beijing, P. R. China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, P. R. China
| | - E T Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, D.F, México
| | - Z J Ji
- College of Life Science and Food Engineering, Horqin Plant Stress Biology Research Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P. R. China
| | - J J Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, P. R. China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Province, P. R. China.,Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, Henan Province, P. R. China
| |
Collapse
|
73
|
Nouwen N, Arrighi JF, Gully D, Giraud E. RibBX of Bradyrhizobium ORS285 Plays an Important Role in Intracellular Persistence in Various Aeschynomene Host Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:88-99. [PMID: 33226302 DOI: 10.1094/mpmi-07-20-0209-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bradyrhizobium ORS285 forms a nitrogen-fixating symbiosis with both Nod factor (NF)-dependent and NF-independent Aeschynomene spp. The Bradyrhizobium ORS285 ribBA gene encodes for a putative bifunctional enzyme with 3,4-dihydroxybutanone phosphate (3,4-DHBP) synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps in the riboflavin biosynthesis pathway. In this study, we show that inactivating the ribBA gene does not cause riboflavin auxotrophy under free-living conditions and that, as shown for RibBAs from other bacteria, the GTP cyclohydrolase II domain has no enzymatic activity. For this reason, we have renamed the annotated ribBA as ribBX. Because we were unable to identify other ribBA or ribA and ribB homologs in the genome of Bradyrhizobium ORS285, we hypothesize that the ORS285 strain can use unconventional enzymes or an alternative pathway for the initial steps of riboflavin biosynthesis. Inactivating ribBX has a drastic impact on the interaction of Bradyrhizobium ORS285 with many of the tested Aeschynomene spp. In these Aeschynomene spp., the ORS285 ribBX mutant is able to infect the plant host cells but the intracellular infection is not maintained and the nodules senesce early. This phenotype can be complemented by reintroduction of the 3,4-DHBP synthase domain alone. Our results indicate that, in Bradyrhizobium ORS285, the RibBX protein is not essential for riboflavin biosynthesis under free-living conditions and we hypothesize that its activity is needed to sustain riboflavin biosynthesis under certain symbiotic conditions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nico Nouwen
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| | - Jean-Francois Arrighi
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| | - Djamel Gully
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, SupAgro, INRAE, University of Montpellier, Montpellier, France
| |
Collapse
|
74
|
Zhou Z, Yu M, Ding G, Gao G, He Y. Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants. PLoS One 2020; 15:e0241057. [PMID: 33351824 PMCID: PMC7755220 DOI: 10.1371/journal.pone.0241057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
By assessing diversity variations of bacterial communities under different rhizocompartment types (i.e., roots, rhizosphere soil, root zone soil, and inter-shrub bulk soil), we explore the structural difference of bacterial communities in different root microenvironments under desert leguminous plant shrubs. Results will enable the influence of niche differentiation of plant roots and root soil on the structural stability of bacterial communities under three desert leguminous plant shrubs to be examined. High-throughput 16S rRNA genome sequencing was used to characterize diversity and structural differences of bacterial microbes in the rhizocompartments of three xeric leguminous plants. Results from this study confirm previous findings relating to niche differentiation in rhizocompartments under related shrubs, and they demonstrate that diversity and structural composition of bacterial communities have significant hierarchical differences across four rhizocompartment types under leguminous plant shrubs. Desert leguminous plants showed significant hierarchical filtration and enrichment of the specific bacterial microbiome across different rhizocompartments (P < 0.05). The dominant bacterial microbiome responsible for the differences in microbial community structure and composition across different niches of desert leguminous plants mainly consisted of Proteobacteria, Actinobacteria, and Bacteroidetes. All soil factors of rhizosphere and root zone soils, except for NO3-N and TP under C. microphylla and the two Hedysarum spp., recorded significant differences (P < 0.05). Moreover, soil physicochemical factors have a significant impact on driving the differentiation of bacterial communities under desert leguminous plant shrubs. By investigating the influence of niches on the structural difference of soil bacterial communities with the differentiation of rhizocompartments under desert leguminous plant shrubs, we provide data support for the identification of dominant bacteria and future preparation of inocula, and provide a foundation for further study of the host plants-microbial interactions.
Collapse
Affiliation(s)
- Ziyuan Zhou
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, P. R. China
| | - Minghan Yu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, P. R. China
- * E-mail: (MY); (GD)
| | - Guodong Ding
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, P. R. China
- * E-mail: (MY); (GD)
| | - Guanglei Gao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, P. R. China
| | - Yingying He
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
75
|
Cai W, Ou F, Staehelin C, Dai W. Bradyrhizobium sp. strain ORS278 promotes rice growth and its quorum sensing system is required for optimal root colonization. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:656-666. [PMID: 32929871 DOI: 10.1111/1758-2229.12885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/10/2020] [Indexed: 05/25/2023]
Abstract
Many Gram-negative bacteria communicate by using homoserine lactones (HSLs) as quorum sensing (QS) signals in a cell density-dependent manner. In addition to fatty acyl-HSL (acyl-HSL) signals, certain strains, most of them associated with plants, produce non-canonical aryl-HSLs such as cinnamoyl-HSL. However, the role of aryl-HSL in endophytic associations remained elusive. Bradyrhizobium sp. strain ORS278 possesses a LuxI-LuxR type QS system and produces cinnamoyl-HSL as a QS signal. Here, we report that strain ORS278 promotes growth of domesticated rice (Oryza sativa). QS mutants unable to produce cinnamoyl-HSL exhibited reduced plant-growth promoting activity in comparison to the parent strain ORS278. Likewise, the QS mutants were impaired in their ability to colonize rice roots. These findings suggest that genes controlled by cinnamoyl-HSL play an important role in the association between rice and ORS278. However, biofilm production was not visibly altered in these mutants. In conclusion, our study highlights the importance of aryl-HSLs in endophytic plant-bacteria interactions.
Collapse
Affiliation(s)
- Wenjie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Fuwen Ou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Bioresources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weijun Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
76
|
Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol 2020; 13:1314-1335. [PMID: 31797528 PMCID: PMC7415380 DOI: 10.1111/1751-7915.13517] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/01/2022] Open
Abstract
Biological nitrogen fixation in rhizobia occurs primarily in root or stem nodules and is induced by the bacteria present in legume plants. This symbiotic process has fascinated researchers for over a century, and the positive effects of legumes on soils and their food and feed value have been recognized for thousands of years. Symbiotic nitrogen fixation uses solar energy to reduce the inert N2 gas to ammonia at normal temperature and pressure, and is thus today, especially, important for sustainable food production. Increased productivity through improved effectiveness of the process is seen as a major research and development goal. The interaction between rhizobia and their legume hosts has thus been dissected at agronomic, plant physiological, microbiological and molecular levels to produce ample information about processes involved, but identification of major bottlenecks regarding efficiency of nitrogen fixation has proven to be complex. We review processes and results that contributed to the current understanding of this fascinating system, with focus on effectiveness of nitrogen fixation in rhizobia.
Collapse
Affiliation(s)
- Kristina Lindström
- Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiFI‐00014HelsinkiFinland
| | - Seyed Abdollah Mousavi
- Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiFI‐00014HelsinkiFinland
| |
Collapse
|
77
|
Teulet A, Gully D, Rouy Z, Camuel A, Koebnik R, Giraud E, Lassalle F. Phylogenetic distribution and evolutionary dynamics of nod and T3SS genes in the genus Bradyrhizobium. Microb Genom 2020; 6:mgen000407. [PMID: 32783800 PMCID: PMC7643967 DOI: 10.1099/mgen.0.000407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/26/2020] [Indexed: 01/22/2023] Open
Abstract
Bradyrhizobium are abundant soil bacteria and the major symbiont of legumes. The recent availability of Bradyrhizobium genome sequences provides a large source of information for analysis of symbiotic traits. In this study, we investigated the evolutionary dynamics of the nodulation genes (nod) and their relationship with the genes encoding type III secretion systems (T3SS) and their effectors among bradyrhizobia. Based on the comparative analysis of 146 Bradyrhizobium genome sequences, we identified six different types of T3SS gene clusters. The two predominant cluster types are designated RhcIa and RhcIb and both belong to the RhcI-T3SS family previously described in other rhizobia. They are found in 92/146 strains, most of them also containing nod genes. RhcIa and RhcIb gene clusters differ in the genes they carry: while the translocon-encoding gene nopX is systematically found in strains containing RhcIb, the nopE and nopH genes are specifically conserved in strains containing RhcIa, suggesting that these last two genes might functionally substitute nopX and play a role related to effector translocation. Phylogenetic analysis suggests that bradyrhizobia simultaneously gained nod and RhcI-T3SS gene clusters via horizontal transfer or subsequent vertical inheritance of a symbiotic island containing both. Sequence similarity searches for known Nop effector proteins in bradyrhizobial proteomes revealed the absence of a so-called core effectome, i.e. that no effector is conserved among all Bradyrhizobium strains. However, NopM and SUMO proteases were found to be the main effector families, being represented in the majority of the genus. This study indicates that bradyrhizobial T3SSs might play a more significant symbiotic role than previously thought and provides new candidates among T3SS structural proteins and effectors for future functional investigations.
Collapse
Affiliation(s)
- Albin Teulet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/Université de Montpellier/CIRAD, TA-A82/J – Campus de Baillarguet 34398, Montpellier cedex 5, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/Université de Montpellier/CIRAD, TA-A82/J – Campus de Baillarguet 34398, Montpellier cedex 5, France
| | - Zoe Rouy
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Alicia Camuel
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/Université de Montpellier/CIRAD, TA-A82/J – Campus de Baillarguet 34398, Montpellier cedex 5, France
| | - Ralf Koebnik
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/Université de Montpellier/CIRAD, TA-A82/J – Campus de Baillarguet 34398, Montpellier cedex 5, France
| | - Florent Lassalle
- Department of Infectious Disease Epidemiology. Imperial College London, St Mary’s Hospital Campus, Praed Street, London W2 1NY, UK
- Pathogen and Microbes Program, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Present address: Pathogen and Microbes Program, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
78
|
Rhizobium-Legume Symbiosis: Molecular Determinants and Geospecificity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
79
|
Banerjee G, Basak S, Roy T, Chattopadhyay P. Intrinsic role of bacterial secretion systems in phylogenetic niche conservation of Bradyrhizobium spp. FEMS Microbiol Ecol 2020; 95:5586991. [PMID: 31609448 DOI: 10.1093/femsec/fiz165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/13/2019] [Indexed: 11/12/2022] Open
Abstract
Bradyrhizobium is a biologically important bacterial genus. Different Bradyrhizobium strains exhibit distinct niche selection like free living, root nodular and stem nodular. The present in-silico study was undertaken to identify the role of bacterial secretome in the phylogenetic niche conservation (PNC) of Bradyrhizobium sp. Analysis was carried out with the publicly available 19 complete genome assembly and annotation reports. A protocol was developed to screen the secretome related genes using three different database, viz. genome, proteome and gene ortholog. This resulted into 139 orthologs that include type secretion systems (T1SS-T6SS) along with flagella (Flg), type IV pili (T4P) and tight adherence (Tad) systems. Multivariate analysis using bacterial secretome was undertaken to find out the role of these secretion systems in PNC. In free living strains, T3SS, T4SS and T6SS were completely absent. Whereas, in the stem nodulating strains, T3SS and T6SS were absent, but T4SS was found to be present. On the other hand, the T3SS was found to be present only in the root-nodulating strains. The present investigation clearly demonstrated a pattern of PNC based on the distribution of secretion system components. To the best of our knowledge, this is the first report on PNC of Bradyrhizobium using the multivariate analysis of secretome.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Biochemistry, University of Calcutta, West Bengal 700019, India
| | - Swarnendu Basak
- Department of Medical Zoology, Kyung Hee University, School of Medicine, Seoul 02447, Republic of Korea
| | - Tathagato Roy
- Member of Jeevak Herb Welfare Society (registration number S/1L/78148 OF 2010-2011), Santiniketan, 731235, India.,Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, U.S
| | - Pritam Chattopadhyay
- Department of Biotechnology, Gauhati University, Guwahati, Assam 781014, India.,Department of Botany, M.U.C. Women's College, University of Bardhaman, Bardhaman, West Bengal 713104, India
| |
Collapse
|
80
|
Identification of Bradyrhizobium elkanii USDA61 Type III Effectors Determining Symbiosis with Vigna mungo. Genes (Basel) 2020; 11:genes11050474. [PMID: 32349348 PMCID: PMC7291247 DOI: 10.3390/genes11050474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023] Open
Abstract
Bradyrhizobium elkanii USDA61 possesses a functional type III secretion system (T3SS) that controls host-specific symbioses with legumes. Here, we demonstrated that B. elkanii T3SS is essential for the nodulation of several southern Asiatic Vigna mungo cultivars. Strikingly, inactivation of either Nod factor synthesis or T3SS in B. elkanii abolished nodulation of the V. mungo plants. Among the effectors, NopL was identified as a key determinant for T3SS-dependent symbiosis. Mutations of other effector genes, such as innB, nopP2, and bel2-5, also impacted symbiotic effectiveness, depending on host genotypes. The nopL deletion mutant formed no nodules on V. mungo, but infection thread formation was still maintained, thereby suggesting its pivotal role in nodule organogenesis. Phylogenetic analyses revealed that NopL was exclusively conserved among Bradyrhizobium and Sinorhizobium (Ensifer) species and showed a different phylogenetic lineage from T3SS. These findings suggest that V. mungo evolved a unique symbiotic signaling cascade that requires both NFs and T3Es (NopL).
Collapse
|
81
|
Botou M, Yalelis V, Lazou P, Zantza I, Papakostas K, Charalambous V, Mikros E, Flemetakis E, Frillingos S. Specificity profile of NAT/NCS2 purine transporters in
Sinorhizobium
(
Ensifer
)
meliloti. Mol Microbiol 2020; 114:151-171. [DOI: 10.1111/mmi.14503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Botou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Vassilis Yalelis
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Panayiota Lazou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Iliana Zantza
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Konstantinos Papakostas
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Vassiliki Charalambous
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology Department of Biotechnology Agricultural University of Athens Athens Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| |
Collapse
|
82
|
Velichko NS, Grinev VS, Fedonenko YP. Characterization of biopolymers produced by planktonic and biofilm cells of Herbaspirillum lusitanum P6-12. J Appl Microbiol 2020; 129:1349-1363. [PMID: 32216024 DOI: 10.1111/jam.14647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/31/2020] [Accepted: 03/20/2020] [Indexed: 11/30/2022]
Abstract
AIMS The goal of this study was to characterize biopolymers from two modes of the Herbaspirillum lusitanum P6-12 growth: planktonic, in which cells are free swimming, and biofilm life style, in which the cells are sessile. METHODS AND RESULTS Differences in biopolymers composition from planktonic and biofilm cells of H. lusitanum strain P6-12 were analysed using Fourier transform infrared spectroscopy (FTIR), sodium dodecyl sulphate-polyacrylamide gel electrophoresis, gas-liquid chromatography and spectrophotometry. A high degree of polymer separation and purification was achieved by ultracentrifugation, and column chromatography allowed us to identify the chemical differences between biopolymers from biofilm and planktonic H. lusitanum. It was shown that planktonic cells of H. lusitanum P6-12 when cultivated in a liquid medium to the end of the exponential phase of growth, produced two high-molecular-weight glycoconjugates (were arbitrarily called CPS-I and CPS-II) of a lipopolysaccharide (LPS) nature and a lipid-polysacharide complex (were arbitrarily called EPS). The EPS, CPS-I, CPS-II had different monosaccharide and lipid compositions. The extracellular polymeric matrix (EPM) produced by the biofilm cells was mostly proteinaceous, with a small amount of carbohydrates (up to 3%). From the biofilm culture medium, a free extracellular polymeric substance (was arbitrarily called fEPS) was obtained that contained proteins and carbohydrates (up to 7%). The cells outside the biofilm had capsules containing high-molecular-weight glycoconjugate (was arbitrarily called CPSFBC ) that consisted of carbohydrates (up to 10%), proteins (up to 16%) and lipids (up to 70%). CONCLUSIONS During biofilm formation, the bacteria secreted surface biopolymers that differed from those of the planktonic cells. The heterogeneity of the polysaccharide containing biopolymers of the H. lusitanum P6-12 surface is probably conditioned by their different functions in plant colonization and formation of an efficient symbiosis, as well as in cell adaptation to existence in plant tissues. SIGNIFICANCE AND IMPACT OF THE STUDY The results of the study permit a better understanding of the physiological properties of the biopolymers, for example, in plant-microbe interactions.
Collapse
Affiliation(s)
- N S Velichko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - V S Grinev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Y P Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
83
|
Tapia-Pastrana F, Delgado-Salinas A, Caballero J. Patterns of chromosomal variation in Mexican species of Aeschynomene (Fabaceae, Papilionoideae) and their evolutionary and taxonomic implications. COMPARATIVE CYTOGENETICS 2020; 14:157-182. [PMID: 32206208 PMCID: PMC7080853 DOI: 10.3897/compcytogen.v14i1.47264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
A cytogenetic analysis of sixteen taxa of the genus Aeschynomene Linnaeus, 1753, which includes species belonging to both subgenera Aeschynomene (Léonard, 1954) and Ochopodium (Vogel, 1838) J. Léonard, 1954, was performed. All studied species had the same chromosome number (2n = 20) but exhibited karyotype diversity originating in different combinations of metacentric, submetacentric and subtelocentric chromosomes, chromosome size and number of SAT chromosomes. The plasticity of the genomes included the observation in a taxon belonging to the subgenus Aeschynomene of an isolated spherical structure similar in appearance to the extra chromosomal circular DNA observed in other plant genera. By superimposing the karyotypes in a recent phylogenetic tree, a correspondence between morphology, phylogeny and cytogenetic characteristics of the taxa included in the subgenus Aeschynomene is observed. Unlike subgenus Aeschynomene, the species of Ochopodium exhibit notable karyotype heterogeneity. However the limited cytogenetic information recorded prevents us from supporting the proposal of their taxonomic separation and raise it to the genus category. It is shown that karyotype information is useful in the taxonomic delimitation of Aeschynomene and that the diversity in the diploid level preceded the hybridization/polyploidization demonstrated in the genus. The systematic implications of our results and their value can be extended to other Dalbergieae genera as knowledge about the chromosomal structure and its evolution increases.
Collapse
Affiliation(s)
- Fernando Tapia-Pastrana
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Laboratorio de Genecología, Batalla 5 de Mayo s/n esquina Fuerte de Loreto, Col. Ejército de Oriente, Iztapalapa, C.P. 09230, Ciudad de México, MexicoUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Alfonso Delgado-Salinas
- Instituto de Biología, Departamento de Botánica, Universidad Nacional Autónoma de México, Apartado Postal 70-233, 04510, Cd. de México, MexicoUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Javier Caballero
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Campos Deportivos, Ciudad Universitaria, Coyoacán 04510, Cd. de México, MexicoUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| |
Collapse
|
84
|
Paudel D, Liu F, Wang L, Crook M, Maya S, Peng Z, Kelley K, Ané JM, Wang J. Isolation, Characterization, and Complete Genome Sequence of a Bradyrhizobium Strain Lb8 From Nodules of Peanut Utilizing Crack Entry Infection. Front Microbiol 2020; 11:93. [PMID: 32117123 PMCID: PMC7020250 DOI: 10.3389/fmicb.2020.00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
In many legumes, the colonization of roots by rhizobia is via "root hair entry" and its molecular mechanisms have been extensively studied. However, the nodulation of peanuts (Arachis hypogaea L.) by Bradyrhizobium strains requires an intercellular colonization process called "crack entry," which is understudied. To understand the intercellular crack entry process, it is critical to develop the tools and resources related to the rhizobium in addition to focus on investigating the mechanisms of the plant host. In this study, we isolated a Bradyrhizobium sp. strain, Lb8 from peanut root nodules and sequenced it using PacBio long reads. The complete genome sequence was a circular chromosome of 8,718,147 base-pair (bp) with an average GC content of 63.14%. No plasmid sequence was detected in the sequenced DNA sample. A total of 8,433 potential protein-encoding genes, one rRNA cluster, and 51 tRNA genes were annotated. Fifty-eight percent of the predicted genes showed similarity to genes of known functions and were classified into 27 subsystems representing various biological processes. The genome shared 92% of the gene families with B. diazoefficens USDA 110T. A presumptive symbiosis island of 778 Kb was detected, which included two clusters of nif and nod genes. A total of 711 putative protein-encoding genes were in this region, among which 455 genes have potential functions related to symbiotic nitrogen fixation and DNA transmission. Of 21 genes annotated as transposase, 16 were located in the symbiosis island. Lb8 possessed both Type III and Type IV protein secretion systems, and our work elucidated the association of flagellar Type III secretion systems in bradyrhizobia. These observations suggested that complex rearrangement, such as horizontal transfer and insertion of different DNA elements, might be responsible for the plasticity of the Bradyrhizobium genome.
Collapse
Affiliation(s)
- Dev Paudel
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Fengxia Liu
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Liping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Matthew Crook
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Stephanie Maya
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Karen Kelley
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jean-Michel Ané
- Departments of Bacteriology and Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States.,Plant Molecular and Cellular Biology Program, Genetic Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
85
|
Huisman R, Geurts R. A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. PLANT COMMUNICATIONS 2020; 1:100019. [PMID: 33404552 PMCID: PMC7748023 DOI: 10.1016/j.xplc.2019.100019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/06/2019] [Accepted: 12/27/2019] [Indexed: 05/26/2023]
Abstract
In the late 19th century, it was discovered that legumes can establish a root nodule endosymbiosis with nitrogen-fixing rhizobia. Soon after, the question was raised whether it is possible to transfer this trait to non-leguminous crops. In the past century, an ever-increasing amount of knowledge provided unique insights into the cellular, molecular, and genetic processes controlling this endosymbiosis. In addition, recent phylogenomic studies uncovered several genes that evolved to function specifically to control nodule formation and bacterial infection. However, despite this massive body of knowledge, the long-standing objective to engineer the nitrogen-fixing nodulation trait on non-leguminous crop plants has not been achieved yet. In this review, the unsolved questions and engineering strategies toward nitrogen-fixing nodulation in non-legume plants are discussed and highlighted.
Collapse
Affiliation(s)
- Rik Huisman
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Rene Geurts
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| |
Collapse
|
86
|
Current Progress in Nitrogen Fixing Plants and Microbiome Research. PLANTS 2020; 9:plants9010097. [PMID: 31940996 PMCID: PMC7020401 DOI: 10.3390/plants9010097] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
In agroecosystems, nitrogen is one of the major nutrients limiting plant growth. To meet the increased nitrogen demand in agriculture, synthetic fertilizers have been used extensively in the latter part of the twentieth century, which have led to environmental challenges such as nitrate pollution. Biological nitrogen fixation (BNF) in plants is an essential mechanism for sustainable agricultural production and healthy ecosystem functioning. BNF by legumes and associative, endosymbiotic, and endophytic nitrogen fixation in non-legumes play major roles in reducing the use of synthetic nitrogen fertilizer in agriculture, increased plant nutrient content, and soil health reclamation. This review discusses the process of nitrogen-fixation in plants, nodule formation, the genes involved in plant-rhizobia interaction, and nitrogen-fixing legume and non-legume plants. This review also elaborates on current research efforts involved in transferring nitrogen-fixing mechanisms from legumes to non-legumes, especially to economically important crops such as rice, maize, and wheat at the molecular level and relevant other techniques involving the manipulation of soil microbiome for plant benefits in the non-legume root environment.
Collapse
|
87
|
Draft Genome Sequence of Rhizobium tropici SARCC-755, a Free-Living Rhizobium That Nodulated and Promoted Growth in Pigeonpea [Cajanus cajan (L.) Millsp.]. Microbiol Resour Announc 2020; 9:9/2/e01122-19. [PMID: 31919160 PMCID: PMC6952646 DOI: 10.1128/mra.01122-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Rhizobium tropici SARCC-755 is a free-living soil bacterium that formed nodules on pigeonpea roots in the present study. However, the draft genome sequence reveals that this Rhizobium species contains the nolR gene but lacks the common nodulation (nodABC) genes and probably uses other pathways to induce nodules on the legume plant. Rhizobium tropici SARCC-755 is a free-living soil bacterium that formed nodules on pigeonpea roots in the present study. However, the draft genome sequence reveals that this Rhizobium species contains the nolR gene but lacks the common nodulation (nodABC) genes and probably uses other pathways to induce nodules on the legume plant.
Collapse
|
88
|
Characterization of Bradyrhizobium strains indigenous to Western Australia and South Africa indicates remarkable genetic diversity and reveals putative new species. Syst Appl Microbiol 2020; 43:126053. [PMID: 31937424 DOI: 10.1016/j.syapm.2020.126053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 01/01/2023]
Abstract
Bradyrhizobium are N2-fixing microsymbionts of legumes with relevant applications in agricultural sustainability, and we investigated the phylogenetic relationships of conserved and symbiotic genes of 21 bradyrhizobial strains. The study included strains from Western Australia (WA), isolated from nodules of Glycine spp. the country is one genetic center for the genus and from nodules of other indigenous legumes grown in WA, and strains isolated from forage Glycine sp. grown in South Africa. The 16S rRNA phylogeny divided the strains in two superclades, of B. japonicum and B. elkanii, but with low discrimination among the species. The multilocus sequence analysis (MLSA) with four protein-coding housekeeping genes (dnaK, glnII, gyrB and recA) pointed out seven groups as putative new species, two within the B. japonicum, and five within the B. elkanii superclades. The remaining eleven strains showed higher similarity with six species, B. lupini, B. liaoningense, B. yuanmingense, B. subterraneum, B. brasilense and B. retamae. Phylogenetic analysis of the nodC symbiotic gene clustered 13 strains in three different symbiovars (sv. vignae, sv. genistearum and sv. retamae), while seven others might compose new symbiovars. The genetic profiles of the strains evaluated by BOX-PCR revealed high intra- and interspecific diversity. The results point out the high level of diversity still to be explored within the Bradyrhizobium genus, and further studies might confirm new species and symbiovars.
Collapse
|
89
|
Nouwen N, Gargani D, Giraud E. The Modification of the Flavonoid Naringenin by Bradyrhizobium sp. Strain ORS285 Changes the nod Genes Inducer Function to a Growth Stimulator. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1517-1525. [PMID: 31265361 DOI: 10.1094/mpmi-05-19-0133-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As inducers of nodulation (nod) genes, flavonoids play an important role in the symbiotic interaction between rhizobia and legumes. However, in addition to the control of expression of nod genes, many other effects of flavonoids on rhizobial cells have been described. Here, we show that the flavonoid naringenin stimulates the growth of the photosynthetic Bradyrhizobium sp. strain ORS285. This growth-stimulating effect was still observed for strain ORS285 with nodD1, nodD2, or the naringenin-degrading fde operon deleted. Phenotypic microarray analysis indicates that in cells grown in the presence of naringenin, the glycerol and fatty acid metabolism is activated. Moreover, electron microscopic and enzymatic analyses show that polyhydroxy alkanoate metabolism is altered in cells grown in the presence of naringenin. Although strain ORS285 was able to degrade naringenin, a fraction was converted into an intensely yellow-colored molecule with an m/z (+) of 363.0716. Further analysis indicates that this molecule is a hydroxylated and O-methylated form of naringenin. In contrast to naringenin, this derivative did not induce nod gene expression, but it did stimulate the growth of strain ORS285. We hypothesize that the growth stimulation and metabolic changes induced by naringenin are part of a mechanism to facilitate the colonization and infection of naringenin-exuding host plants.
Collapse
Affiliation(s)
- Nico Nouwen
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | | | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Montpellier, France
| |
Collapse
|
90
|
Yoneyama T, Terakado-Tonooka J, Bao Z, Minamisawa K. Molecular Analyses of the Distribution and Function of Diazotrophic Rhizobia and Methanotrophs in the Tissues and Rhizosphere of Non-Leguminous Plants. PLANTS 2019; 8:plants8100408. [PMID: 31614562 PMCID: PMC6843303 DOI: 10.3390/plants8100408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 01/16/2023]
Abstract
Biological nitrogen fixation (BNF) by plants and its bacterial associations represent an important natural system for capturing atmospheric dinitrogen (N2) and processing it into a reactive form of nitrogen through enzymatic reduction. The study of BNF in non-leguminous plants has been difficult compared to nodule-localized BNF in leguminous plants because of the diverse sites of N2 fixation in non-leguminous plants. Identification of the involved N2-fixing bacteria has also been difficult because the major nitrogen fixers were often lost during isolation attempts. The past 20 years of molecular analyses has led to the identification of N2 fixation sites and active nitrogen fixers in tissues and the rhizosphere of non-leguminous plants. Here, we examined BNF hotspots in six reported non-leguminous plants. Novel rhizobia and methanotrophs were found to be abundantly present in the free-living state at sites where carbon and energy sources were predominantly available. In the carbon-rich apoplasts of plant tissues, rhizobia such as Bradyrhizobium spp. microaerobically fix N2. In paddy rice fields, methane molecules generated under anoxia are oxidized by xylem aerenchyma-transported oxygen with the simultaneous fixation of N2 by methane-oxidizing methanotrophs. We discuss the effective functions of the rhizobia and methanotrophs in non-legumes for the acquisition of fixed nitrogen in addition to research perspectives.
Collapse
Affiliation(s)
- Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
- National Agriculture and Food Research Organization, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666, Japan.
| | - Junko Terakado-Tonooka
- National Agriculture and Food Research Organization, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666, Japan.
| | - Zhihua Bao
- School of Ecology and Environment, Inner Mongolia University, 235 West University Blvd., Hohhot 010021, Inner Mongolia, China.
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
91
|
Hashimoto S, Wongdee J, Songwattana P, Greetatorn T, Goto K, Tittabutr P, Boonkerd N, Teaumroong N, Uchiumi T. Homocitrate Synthase Genes of Two Wide-Host-Range Bradyrhizobium Strains are Differently Required for Symbiosis Depending on Host Plants. Microbes Environ 2019; 34:393-401. [PMID: 31597890 PMCID: PMC6934396 DOI: 10.1264/jsme2.me19078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nifV gene encodes homocitrate synthase, the enzyme that catalyzes the formation of homocitrate, which is essential for arranging the FeMo-cofactor in the catalytic center of nitrogenase. Some host plants, such as Lotus japonicus, supply homocitrate to their symbionts, in this case, Mesorhizobium loti, which lacks nifV. In contrast, Bradyrhizobium ORS285, a symbiont of Aeschynomene cross-inoculation (CI) groups 2 and 3, requires nifV for symbiosis with Aeschynomene species that belong to CI group 3, and some species belonging to CI group 2. However, it currently remains unclear whether rhizobial nifV is required for symbiosis with Aeschynomene species belonging to CI group 1 or with other legumes. We generated nifV-disruption (ΔnifV) mutants of two wide-host-range rhizobia, Bradyrhizobium SUTN9-2 and DOA9, to investigate whether they require nifV for symbiosis. Both ΔnifV mutant strains showed significantly less nitrogenase activity in a free-living state than the respective wild-type strains. The symbiotic phenotypes of SUTN9-2, DOA9, and their ΔnifV mutants were examined with four legumes, Aeschynomene americana, Stylosanthes hamata, Indigofera tinctoria, and Desmodium tortuosum. nifV was required for the efficient symbiosis of SUTN9-2 with A. americana (CI group 1), but not for that of DOA9. SUTN9-2 established symbiosis with all three other legumes; nifV was required for symbiosis with I. tinctoria and D. tortuosum. These results suggest that, in addition to Aeschynomene CI groups 2 and 3, CI group 1 and several other legumes require the rhizobial nifV for symbiosis.
Collapse
Affiliation(s)
- Shun Hashimoto
- Graduate School of Science and Engineering, Kagoshima University
| | - Jenjira Wongdee
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Pongpan Songwattana
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Teerana Greetatorn
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Kohki Goto
- Graduate School of Science and Engineering, Kagoshima University
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
92
|
Abstract
Legumes have a tremendous ecological and agronomic importance due to their ability to interact symbiotically with nitrogen-fixing rhizobia. In most of the rhizobial–legume symbioses, the establishment of the interaction requires the plant perception of the bacterial lipochitooligosaccharide Nod factor signal. However, some bradyrhizobia can activate the symbiosis differently, thanks to their type III secretion system, which delivers effector proteins into the host cell. Here, we demonstrate that this symbiotic process relies on a small set of effectors playing distinct and complementary roles. Most remarkably, a nuclear-targeted effector named ErnA conferred the ability to form nodules. The understanding of this alternative pathway toward nitrogen-fixing symbiosis could pave the way for designing new strategies to transfer nodulation into cereals. Several Bradyrhizobium species nodulate the leguminous plant Aeschynomene indica in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in Bradyrhizobium strain ORS3257. The mutation of nopAO increased nodulation and nitrogenase activity, whereas mutation of 5 other effector genes led to various symbiotic defects. The nopM1 and nopP1 mutants induced a reduced number of nodules, some of which displayed large necrotic zones. The nopT and nopAB mutants induced uninfected nodules, and a mutant in a yet-undescribed effector gene lost the capacity for nodule formation. This effector gene, widely conserved among bradyrhizobia, was named ernA for “effector required for nodulation-A.” Remarkably, expressing ernA in a strain unable to nodulate A. indica conferred nodulation ability. Upon its delivery by Pseudomonas fluorescens into plant cells, ErnA was specifically targeted to the nucleus, and a fluorescence resonance energy transfer–fluorescence lifetime imaging microscopy approach supports the possibility that ErnA binds nucleic acids in the plant nuclei. Ectopic expression of ernA in A. indica roots activated organogenesis of root- and nodule-like structures. Collectively, this study unravels the symbiotic functions of rhizobial type III effectors playing distinct and complementary roles in suppression of host immune functions, infection, and nodule organogenesis, and suggests that ErnA triggers organ development in plants by a mechanism that remains to be elucidated.
Collapse
|
93
|
Bromfield ESP, Cloutier S, Nguyen HDT. Description and complete genome sequence of Bradyrhizobium amphicarpaeae sp. nov., harbouring photosystem and nitrogen-fixation genes. Int J Syst Evol Microbiol 2019; 69:2841-2848. [PMID: 31251718 DOI: 10.1099/ijsem.0.003569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated 39S1MBT, isolated from a root nodule of a soybean plant that had been inoculated with root-zone soil of Amphicarpaea bracteata (hog peanut) growing in Canada, was previously characterized and placed in a novel lineage within the genus Bradyrhizobium. The taxonomic status of strain 39S1MBT was verified by genomic and phenotypic analyses. Phylogenetic analyses of individual and concatenated protein-encoding gene sequences (atpD, glnII, recA, gyrB and rpoB) placed 39S1MBT in a lineage distinct from named species. Data for sequence similarities of concatenated genes relative to type strains of named species supported the phylogenetic data. Average nucleotide identity values of genome sequences (84.5-91.7 %) were well below the threshold value for bacterial species circumscription. Based on these data, Bradyrhizobium ottawaense OO99T and Bradyrhizobium shewense ERR11T are close relatives of 39S1MBT. The complete genome of 39S1MBT consists of a single 7.04 Mbp chromosome without a symbiosis island; G+C content is 64.7 mol%. Present in the genome are key photosystem and nitrogen-fixation genes, but not nodulation and type III secretion system genes. Sequence analysis of the nitrogen fixation gene, nifH, placed 39S1MBT in a novel lineage distinct from named Bradyrhizobium species. Data for phenotypic tests including growth characteristics and carbon source utilization supported the sequence-based analyses. Based on the data presented here, a novel species with the name Bradyrhizobium amphicarpaeae sp. nov. is proposed with 39S1MBT (=LMG 29934T=HAMBI 3680T) as the type strain.
Collapse
Affiliation(s)
- Eden S P Bromfield
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| | - Hai D T Nguyen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A OC6, Canada
| |
Collapse
|
94
|
Songwattana P, Tittabutr P, Wongdee J, Teamtisong K, Wulandari D, Teulet A, Fardoux J, Boonkerd N, Giraud E, Teaumroong N. Symbiotic properties of a chimeric Nod-independent photosynthetic Bradyrhizobium strain obtained by conjugative transfer of a symbiotic plasmid. Environ Microbiol 2019; 21:3442-3454. [PMID: 31077522 DOI: 10.1111/1462-2920.14650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/23/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022]
Abstract
The lateral transfer of symbiotic genes converting a predisposed soil bacteria into a legume symbiont has occurred repeatedly and independently during the evolution of rhizobia. We experimented the transfer of a symbiotic plasmid between Bradyrhizobium strains. The originality of the DOA9 donor is that it harbours a symbiotic mega-plasmid (pDOA9) containing nod, nif and T3SS genes while the ORS278 recipient has the unique property of inducing nodules on some Aeschynomene species in the absence of Nod factors (NFs). We observed that the chimeric strain ORS278-pDOA9* lost its ability to develop a functional symbiosis with Aeschynomene. indica and Aeschynomene evenia. The mutation of rhcN and nodB led to partial restoration of nodule efficiency, indicating that T3SS effectors and NFs block the establishment of the NF-independent symbiosis. Conversely, ORS278-pDOA9* strain acquired the ability to form nodules on Crotalaria juncea and Macroptillium artropurpureum but not on NF-dependent Aeschynomene (A. afraspera and A. americana), suggesting that the ORS278 strain also harbours incompatible factors that block the interaction with these species. These data indicate that the symbiotic properties of a chimeric rhizobia cannot be anticipated due to new combination of symbiotic and non-symbiotic determinants that may interfere during the interaction with the host plant.
Collapse
Affiliation(s)
- Pongpan Songwattana
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 30000, Thailand
| | - Jenjira Wongdee
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 30000, Thailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Dyah Wulandari
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 30000, Thailand
| | - Albin Teulet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113, IRD/CIRAD/INRA/UM/SupAgro. Campus de Baillarguet, TA-A82/J, 34398, Montpellier Cedex 5, France
| | - Joel Fardoux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113, IRD/CIRAD/INRA/UM/SupAgro. Campus de Baillarguet, TA-A82/J, 34398, Montpellier Cedex 5, France
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 30000, Thailand
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113, IRD/CIRAD/INRA/UM/SupAgro. Campus de Baillarguet, TA-A82/J, 34398, Montpellier Cedex 5, France
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 30000, Thailand
| |
Collapse
|
95
|
From Intracellular Bacteria to Differentiated Bacteroids: Transcriptome and Metabolome Analysis in Aeschynomene Nodules Using the Bradyrhizobium sp. Strain ORS285 bclA Mutant. J Bacteriol 2019; 201:JB.00191-19. [PMID: 31182497 DOI: 10.1128/jb.00191-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Soil bacteria called rhizobia trigger the formation of root nodules on legume plants. The rhizobia infect these symbiotic organs and adopt an intracellular lifestyle within the nodule cells, where they differentiate into nitrogen-fixing bacteroids. Several legume lineages force their symbionts into an extreme cellular differentiation, comprising cell enlargement and genome endoreduplication. The antimicrobial peptide transporter BclA is a major determinant of this process in Bradyrhizobium sp. strain ORS285, a symbiont of Aeschynomene spp. In the absence of BclA, the bacteria proceed until the intracellular infection of nodule cells, but they cannot differentiate into enlarged polyploid and functional bacteroids. Thus, the bclA nodule bacteria constitute an intermediate stage between the free-living soil bacteria and the nitrogen-fixing bacteroids. Metabolomics on whole nodules of Aeschynomene afraspera and Aeschynomene indica infected with the wild type or the bclA mutant revealed 47 metabolites that differentially accumulated concomitantly with bacteroid differentiation. Bacterial transcriptome analysis of these nodules demonstrated that the intracellular settling of the rhizobia in the symbiotic nodule cells is accompanied by a first transcriptome switch involving several hundred upregulated and downregulated genes and a second switch accompanying the bacteroid differentiation, involving fewer genes but ones that are expressed to extremely elevated levels. The transcriptomes further suggested a dynamic role for oxygen and redox regulation of gene expression during nodule formation and a nonsymbiotic function of BclA. Together, our data uncover the metabolic and gene expression changes that accompany the transition from intracellular bacteria into differentiated nitrogen-fixing bacteroids.IMPORTANCE Legume-rhizobium symbiosis is a major ecological process, fueling the biogeochemical nitrogen cycle with reduced nitrogen. It also represents a promising strategy to reduce the use of chemical nitrogen fertilizers in agriculture, thereby improving its sustainability. This interaction leads to the intracellular accommodation of rhizobia within plant cells of symbiotic organs, where they differentiate into nitrogen-fixing bacteroids. In specific legume clades, this differentiation process requires the bacterial transporter BclA to counteract antimicrobial peptides produced by the host. Transcriptome analysis of Bradyrhizobium wild-type and bclA mutant bacteria in culture and in symbiosis with Aeschynomene host plants dissected the bacterial transcriptional response in distinct phases and highlighted functions of the transporter in the free-living stage of the bacterial life cycle.
Collapse
|
96
|
Zou H, Zhang NN, Pan Q, Zhang JH, Chen J, Wei GH. Hydrogen Sulfide Promotes Nodulation and Nitrogen Fixation in Soybean-Rhizobia Symbiotic System. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:972-985. [PMID: 31204904 DOI: 10.1094/mpmi-01-19-0003-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rhizobium-legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H2S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H2S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H2S in the symbiosis between soybean (Glycine max) and rhizobium (Sinorhizobium fredii). Our results demonstrated that an exogenous H2S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes nodA, nodC, and nodD of S. fredii. In addition, expression of soybean nodulation marker genes, including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN), nodulation signaling pathway 2b (GmNSP2b), and nodulation inception genes (GmNIN1a, GmNIN2a, and GmNIN2b), were upregulated. Moreover, the expressions of glutamate synthase (GmGOGAT), asparagine synthase (GmAS), nitrite reductase (GmNiR), ammonia transporter (GmSAT1), leghemoglobin (GmLb), and nifH involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H2S may act as a positive signaling molecule in the soybean-rhizobia symbiotic system and enhance the system's nitrogen fixation ability.
Collapse
Affiliation(s)
- Hang Zou
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
| | - Ni-Na Zhang
- 3State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qing Pan
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
| | - Jian-Hua Zhang
- 4School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
- 5Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Juan Chen
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 3State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- 4School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| | - Ge-Hong Wei
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
97
|
Li YH, Wang R, Sui XH, Wang ET, Zhang XX, Tian CF, Chen WF, Chen WX. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China. Syst Appl Microbiol 2019; 42:126002. [PMID: 31362902 DOI: 10.1016/j.syapm.2019.126002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/25/2022]
Abstract
Nine slow-growing rhizobia isolated from effective nodules on peanut (Arachis hypogaea) were characterized to clarify the taxonomic status using a polyphasic approach. They were assigned to the genus Bradyrhizobium on the basis of 16S rRNA sequences. MLSA of concatenated glnII-recA-dnaK genes classified them into three species represented by CCBAU 53390T, CCBAU 51670T and CCBAU 51778T, which presented the closest similarity to B. guangxiense CCBAU 53363T, B. guangdongense CCBAU 51649T and B. manausense BR 3351T, B. vignae 7-2T and B. forestalis INPA 54BT, respectively. The dDDH (digital DNA-DNA hybridization) and ANI (Average Nucleotide Identity) between the genomes of the three representative strains and type strains for the closest Bradyrhizobium species were less than 42.1% and 91.98%, respectively, below the threshold of species circumscription. Effective nodules could be induced on peanut and Lablab purpureus by all representative strains, while Vigna radiata formed effective nodules only with CCBAU 53390T and CCBAU 51778T. Phenotypic characteristics including sole carbon sources and growth features supported the phylogenetic results. Based on the genotypic and phenotypic features, strains CCBAU 53390T, CCBAU 51670T and CCBAU 51778T are designated the type strains of three novel species, for which the names Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov. are proposed, respectively.
Collapse
Affiliation(s)
- Yong Hua Li
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Rui Wang
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xin Hua Sui
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - En Tao Wang
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China; Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, 11340 Mexico D. F., Mexico
| | - Xiao Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chang Fu Tian
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen Feng Chen
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen Xin Chen
- State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
98
|
Ormeño-Orrillo E, Martínez-Romero E. A Genomotaxonomy View of the Bradyrhizobium Genus. Front Microbiol 2019; 10:1334. [PMID: 31263459 PMCID: PMC6585233 DOI: 10.3389/fmicb.2019.01334] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Whole genome analysis of the Bradyrhizobium genus using average nucleotide identity (ANI) and phylogenomics showed the genus to be essentially monophyletic with seven robust groups within this taxon that includes nitrogen-fixing nodule forming bacteria as well as free living strains. Despite the wide genetic diversity of these bacteria no indication was found to suggest that the Bradyrhizobium genus have to split in different taxa. Bradyrhizobia have larger genomes than other genera of the Bradyrhizobiaceae family, probably reflecting their metabolic diversity and different lifestyles. Few plasmids in the sequenced strains were revealed from rep gene analysis and a relatively low proportion of the genome is devoted to mobile genetic elements. Sequence diversity of recA and glnII gene metadata was used to theoretically estimate the number of existing species and to predict how many would exist. There may be many more species than those presently described with predictions of around 800 species in nature. Different arguments are presented suggesting that nodulation might have arose in the ancestral genus Bradyrhizobium.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | |
Collapse
|
99
|
de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Puławska J, Steenkamp E, Stępkowski T, Tian CF, Vinuesa P, Wei G, Willems A, Zilli J, Young P. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852-1863. [PMID: 31140963 DOI: 10.1099/ijsem.0.003426] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.
Collapse
Affiliation(s)
| | - Mitchell Andrews
- 2Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Julie Ardley
- 3School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | | | - Estelle Jumas-Bilak
- 5UMR 5569, Department of Microbiology, Faculty of Pharmacy, University of Montpellier, France
| | - Nemanja Kuzmanović
- 6Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Florent Lassalle
- 7Department of Infectious Disease Epidemiology - MRC Centre for Outbreak Analysis and Modelling, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - Kristina Lindström
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Ridha Mhamdi
- 9Centre of Biotechnology of Borj-Cedria, BP 901 Hammam-lif 2050, Tunisia
| | - Esperanza Martínez-Romero
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Lionel Moulin
- 11IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| | - Seyed Abdollah Mousavi
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Xavier Nesme
- 12LEM, UCBL, CNRS, INRA, Univ Lyon, Villeurbanne, France
| | - Alvaro Peix
- 13Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Joanna Puławska
- 14Department of Phytopathology, Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Emma Steenkamp
- 15Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Tomasz Stępkowski
- 16Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Chang-Fu Tian
- 17State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, College of Biological Sciences, China Agricultural University, 100193, Beijing, PR China
| | - Pablo Vinuesa
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Gehong Wei
- 18Northwest A&F University, Yangling, Shaanxi, PR China
| | - Anne Willems
- 19Department Biochemistry and Microbiology, Lab. Microbiology, Ghent University, Belgium
| | - Jerri Zilli
- 20Embrapa Agrobiologia, BR 465 km 07, Seropédica, Rio de Janeiro, Brazil, 23891-000, Brazil
| | - Peter Young
- 21Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
100
|
Natural Strain Variation Reveals Diverse Biofilm Regulation in Squid-Colonizing Vibrio fischeri. J Bacteriol 2019; 201:JB.00033-19. [PMID: 30782630 DOI: 10.1128/jb.00033-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
The mutualistic symbiont Vibrio fischeri builds a symbiotic biofilm during colonization of squid hosts. Regulation of the exopolysaccharide component, termed Syp, has been examined in strain ES114, where production is controlled by a phosphorelay that includes the inner membrane hybrid histidine kinase RscS. Most strains that lack RscS or encode divergent RscS proteins cannot colonize a squid host unless RscS from a squid symbiont is heterologously expressed. In this study, we examine V. fischeri isolates worldwide to understand the landscape of biofilm regulation during beneficial colonization. We provide a detailed study of three distinct evolutionary groups of V. fischeri and find that while the RscS-Syp biofilm pathway is required in one of the groups, two other groups of squid symbionts require Syp independent of RscS. Mediterranean squid symbionts, including V. fischeri SR5, colonize without an RscS homolog encoded by their genome. Additionally, group A V. fischeri strains, which form a tightly related clade of Hawaii isolates, have a frameshift in rscS and do not require the gene for squid colonization or competitive fitness. These same strains have a frameshift in sypE, and we provide evidence that this group A sypE allele leads to an upregulation in biofilm activity. Thus, this work describes the central importance of Syp biofilm in colonization of diverse isolates and demonstrates that significant evolutionary transitions correspond to regulatory changes in the syp pathway.IMPORTANCE Biofilms are surface-associated, matrix-encased bacterial aggregates that exhibit enhanced protection to antimicrobial agents. Previous work has established the importance of biofilm formation by a strain of luminous Vibrio fischeri bacteria as the bacteria colonize their host, the Hawaiian bobtail squid. In this study, expansion of this work to many natural isolates revealed that biofilm genes are universally required, yet there has been a shuffling of the regulators of those genes. This work provides evidence that even when bacterial behaviors are conserved, dynamic regulation of those behaviors can underlie evolution of the host colonization phenotype. Furthermore, this work emphasizes the importance of investigating natural diversity as we seek to understand molecular mechanisms in bacteria.
Collapse
|