51
|
Sheng M, Peng D, Luo S, Ni T, Luo H, Zhang R, Wen Y, Xu H. Micro-dynamic process of cadmium removal by microbial induced carbonate precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119585. [PMID: 35728693 DOI: 10.1016/j.envpol.2022.119585] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Microbially induced carbonate precipitation (MICP) is a technique used extensively to address heavy metal pollution but its micro-dynamic process remains rarely explored. In this study, A novel Cd-tolerant ureolytic bacterium DL-1 (Pseudochrobactrum sp.) was used to study the micro-dynamic process. With conditions optimized by response surface methodology, the removal efficiency of Cd2+ could achieve 99.89%. Three components were separated and characterized in the reaction mixture of Cd2+ removal by MICP. The quantitative-dynamic distribution of Cd2+ in different components was revealed. Five synergistic effects for Cd2+ removal were found, including co-precipitation, adsorption by precipitation, crystal precipitation on the cell surface, intracellular accumulation and extracellular chemisorption. Importantly, during Cd2+ removal by MICP, the phenomenon that crystalline nanoparticles adhere to the cell surface, but without any micrometer-sized precipitation encapsulated bacterial cells was observed. This indicated that the previously studied model of bacterial cells as nucleation sites for metal cation precipitation and crystal growth is oversimplified. Our findings provided valuable insights into the mechanism of heavy metals removal by MICP, and a more straightforward method for studying biomineralization-related dynamic process.
Collapse
Affiliation(s)
- Mingping Sheng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Dinghua Peng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Shihua Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Ting Ni
- School of Life Science, Shanxi University, Taiyuan, 03006, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Renfeng Zhang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yu Wen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
52
|
Beuvier T, Chushkin Y, Zontone F, Gibaud A, Cherkas O, Da Silva J, Snigireva I. Self-transformation of solid CaCO 3 microspheres into core-shell and hollow hierarchical structures revealed by coherent X-ray diffraction imaging. IUCRJ 2022; 9:580-593. [PMID: 36071800 PMCID: PMC9438498 DOI: 10.1107/s2052252522006108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The self-transformation of solid microspheres into complex core-shell and hollow architectures cannot be explained by classical Ostwald ripening alone. Here, coherent X-ray diffraction imaging and 3D X-ray fluorescence were used to visualize in 3D the formation of hollow microparticles of calcium carbonate in the presence of polystyrene sulfonate (PSS). During the dissolution of the core made from 10-25 nm crystals, the shell developed a global spheroidal shape composed of an innermost layer of 30 nm particles containing high PSS content on which oriented vaterite crystals grew with their c axis mainly oriented along the meridians. The stabilizing role of PSS and the minimization of the intercrystal dipolar energy can explain in combination with Ostwald ripening the formation of these sophisticated structures as encountered in many systems such as ZnO, TiO2, Fe2O3, Co3O4, MnO2, Cu2O, ZnS, CaCO3 and Ca8H2(PO4)6·5H2O.
Collapse
Affiliation(s)
- Thomas Beuvier
- LUNAM, IMMM, UMR 6283 CNRS, Faculté des Sciences, 72085 Le Mans Cedex 09 , France
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 09, France
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 09, France
| | - Federico Zontone
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 09, France
| | - Alain Gibaud
- LUNAM, IMMM, UMR 6283 CNRS, Faculté des Sciences, 72085 Le Mans Cedex 09 , France
| | - Oxana Cherkas
- LUNAM, IMMM, UMR 6283 CNRS, Faculté des Sciences, 72085 Le Mans Cedex 09 , France
| | - Julio Da Silva
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 09, France
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Irina Snigireva
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble Cedex 09, France
| |
Collapse
|
53
|
Gao X, Wang H, Luan S, Zhou G. Low-Temperature Printed Hierarchically Porous Induced-Biomineralization Polyaryletherketone Scaffold for Bone Tissue Engineering. Adv Healthc Mater 2022; 11:e2200977. [PMID: 35816736 DOI: 10.1002/adhm.202200977] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Polyetheretherketone (PEEK) as a popular orthopaedic implant is usually fabricated into a hierarchically porous structure for improving osteogenic activity. However, the applications are limited due to the excessively high processing temperature and uncontrollably tedious modification routes. Here, an amorphous polyaryletherketone with carboxyl groups (PAEK-COOH) is synthesized and fabricated to the hierarchically controllable porous scaffolds via a low-temperature 3D-printing process. The prepared PAEK-COOH scaffolds present controllable porous structures ranging from nano- to micro-scale, and their mechanical strengths are comparable to that of trabecular bone. More importantly, the in vitro experiments show that the nanoporous surface is conducive to promoting cellular adhesion, and carboxyl groups can induce hydroxyapatite mineralization via electrostatic interaction. The in vivo experiments demonstrate that the PAEK-COOH scaffolds offer much better osseointegration without additional active ingredients, compared to that of PEEK. Therefore, this work will not only develop a promising candidate for bone tissue engineering, but provide a viable method to design PAEK biomaterials.
Collapse
Affiliation(s)
- Xinshuai Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guangyuan Zhou
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
54
|
Pellens N, Doppelhammer N, Radhakrishnan S, Asselman K, Chandran CV, Vandenabeele D, Jakoby B, Martens JA, Taulelle F, Reichel EK, Breynaert E, Kirschhock CEA. Nucleation of Porous Crystals from Ion-Paired Prenucleation Clusters. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7139-7149. [PMID: 36032557 PMCID: PMC9404542 DOI: 10.1021/acs.chemmater.2c00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Current nucleation models propose manifold options for the formation of crystalline materials. Exploring and distinguishing between different crystallization pathways on the molecular level however remain a challenge, especially for complex porous materials. These usually consist of large unit cells with an ordered framework and pore components and often nucleate in complex, multiphasic synthesis media, restricting in-depth characterization. This work shows how aluminosilicate speciation during crystallization can be documented in detail in monophasic hydrated silicate ionic liquids (HSILs). The observations reveal that zeolites can form via supramolecular organization of ion-paired prenucleation clusters, consisting of aluminosilicate anions, ion-paired to alkali cations, and imply that zeolite crystallization from HSILs can be described within the spectrum of modern nucleation theory.
Collapse
Affiliation(s)
- Nick Pellens
- Center for Surface Chemistry and Catalysis-Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nikolaus Doppelhammer
- Center for Surface Chemistry and Catalysis-Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Institute for Microelectronics and Microsystems JKU Linz, 4040 Linz, Austria
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and Catalysis-Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- NMR-Xray Platform for Convergence Research (NMRCoRe), KU Leuven, 3001 Leuven, Belgium
| | - Karel Asselman
- Center for Surface Chemistry and Catalysis-Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - C Vinod Chandran
- Center for Surface Chemistry and Catalysis-Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- NMR-Xray Platform for Convergence Research (NMRCoRe), KU Leuven, 3001 Leuven, Belgium
| | - Dries Vandenabeele
- Center for Surface Chemistry and Catalysis-Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bernhard Jakoby
- Institute for Microelectronics and Microsystems JKU Linz, 4040 Linz, Austria
| | - Johan A Martens
- Center for Surface Chemistry and Catalysis-Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- NMR-Xray Platform for Convergence Research (NMRCoRe), KU Leuven, 3001 Leuven, Belgium
| | - Francis Taulelle
- Center for Surface Chemistry and Catalysis-Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- NMR-Xray Platform for Convergence Research (NMRCoRe), KU Leuven, 3001 Leuven, Belgium
| | - Erwin K Reichel
- Institute for Microelectronics and Microsystems JKU Linz, 4040 Linz, Austria
| | - Eric Breynaert
- Center for Surface Chemistry and Catalysis-Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- NMR-Xray Platform for Convergence Research (NMRCoRe), KU Leuven, 3001 Leuven, Belgium
| | - Christine E A Kirschhock
- Center for Surface Chemistry and Catalysis-Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
55
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
56
|
Ramnarain V, Georges T, Ortiz Peña N, Ihiawakrim D, Longuinho M, Bulou H, Gervais C, Sanchez C, Azaïs T, Ersen O. Monitoring of CaCO 3 Nanoscale Structuration through Real-Time Liquid Phase Transmission Electron Microscopy and Hyperpolarized NMR. J Am Chem Soc 2022; 144:15236-15251. [PMID: 35971919 DOI: 10.1021/jacs.2c05731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium carbonate (CaCO3) is one of the most significant biominerals in nature. Living organisms are able to control its biomineralization by means of an organic matrix to tailor a myriad of hybrid functional materials. The soluble organic components are often proteins rich in acidic amino-acids such as l-aspartic acid. While several studies have demonstrated the influence of amino acids on the crystallization of calcium carbonate, nanoscopic insight of their impact on CaCO3 mineralization, in particular at the early stages, is still lacking. Herein, we implement liquid phase-transmission electron microscopy (LP-TEM) in order to visualize in real-time and at the nanoscale the prenucleation stages of CaCO3 formation. We observe that l-aspartic acid favors the formation of individual and aggregated prenucleation clusters which are found stable for several minutes before the transformation into amorphous nanoparticles. Combination with hyperpolarized solid state nuclear magnetic resonance (DNP NMR) and density functional theory (DFT) calculations allow shedding light on the underlying mechanism at the prenucleation stage. The promoting nature of l-aspartic acid with respect to prenucleation clusters is explained by specific interactions with both Ca2+ and carbonates and the stabilization of the Ca2+-CO32-/HCO3- ion pairs favoring the formation and stabilization of the CaCO3 transient precursors. The study of prenucleation stages of mineral formation by the combination of in situ LP-TEM, advanced analytical techniques (including hyperpolarized solid-state NMR), and numerical modeling allows the real-time monitoring of prenucleation species formation and evolution and the comprehension of their relative stability.
Collapse
Affiliation(s)
- Vinavadini Ramnarain
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Tristan Georges
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Nathaly Ortiz Peña
- Laboratoire Matériaux et Phénomènes Quantiques, 75025 Paris, Cedex 13, France
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Mariana Longuinho
- CBPF, Rua Dr. Xavier Sigaud, 150 Urca I, CEP 22290-180, Rio de Janeiro, Brasil.,UFRJ, Av Pedro Calmon, 550 Edificio da Reitoria, Iha de do Fundao, CEP 21941-901 Rio de Janeiro, Brasil
| | - Hervé Bulou
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Christel Gervais
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Clément Sanchez
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France.,USIAS, Université de Strasbourg, 67000 Strasbourg, France
| | - Thierry Azaïs
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
57
|
Li CG, Liu C, Xu WH, Shan MG, Wu HX. Formation mechanisms and supervisory prediction of scaling in water supply pipelines: A review. WATER RESEARCH 2022; 222:118922. [PMID: 35932708 DOI: 10.1016/j.watres.2022.118922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The scaling problem in the water supply pipeline will increase the resistance coefficient of the pipeline and the pressure of the water supply pipeline, which will not only affect the operation safety of the water supply pipeline, but also cause energy waste. The scale in the pipeline will also enrich heavy metal ions and pathogenic microorganisms, affecting the safety of water supply water quality and causing secondary pollution of water quality. At present, a lot of research has been done on the composition structure and crystallization process of the scale. The study found that calcite is the main component of the scale; the scale process is a heterogeneous nucleation process induced by heavy metal particles and their corrosion products in the pipeline. The introduction of electrochemical detection technology, density functional theory and molecular dynamics simulation has greatly improved the accuracy and timeliness of water scaling conditions detection and realized the visualization of scaling mechanism. In this paper, the measurement methods of the scale in the water supply pipeline and the corresponding material composition and crystal structure characteristics are reviewed, and the mechanism of the scale and the water quality conditions are summarized. At the end of this paper, based on summarizing the existing water quality scaling tendency evaluation methods, it is proposed to establish a water quality potential scaling risk assessment framework based on Puckorius scaling index (PSI) and electrochemical impedance spectroscopy (EIS) in the future.
Collapse
Affiliation(s)
- Chang-Geng Li
- College of Environment, Hohai University, Nanjing 210098, China
| | - Cheng Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Wen-Hui Xu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Ming-Gang Shan
- College of Environment, Hohai University, Nanjing 210098, China
| | - Hai-Xia Wu
- Jiangsu Heqinghaiyan Environment Co., LTD., Suqian 223800, China
| |
Collapse
|
58
|
Heczko D, Hachuła B, Maksym P, Kamiński K, Zięba A, Orszulak L, Paluch M, Kamińska E. The Effect of Various Poly ( N-vinylpyrrolidone) (PVP) Polymers on the Crystallization of Flutamide. Pharmaceuticals (Basel) 2022; 15:971. [PMID: 36015118 PMCID: PMC9414356 DOI: 10.3390/ph15080971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, several experimental techniques were applied to probe thermal properties, molecular dynamics, crystallization kinetics and intermolecular interactions in binary mixtures (BMs) composed of flutamide (FL) and various poly(N-vinylpyrrolidone) (PVP) polymers, including a commercial product and, importantly, samples obtained from high-pressure syntheses, which differ in microstructure (defined by the tacticity of the macromolecule) from the commercial PVP. Differential Scanning Calorimetry (DSC) studies revealed a particularly large difference between the glass transition temperature (Tg) of FL+PVPsynth. mixtures with 10 and 30 wt% of the excipient. In the case of the FL+PVPcomm. system, this effect was significantly lower. Such unexpected findings for the former mixtures were strictly connected to the variation of the microstructure of the polymer. Moreover, combined DSC and dielectric measurements showed that the onset of FL crystallization is significantly suppressed in the BM composed of the synthesized polymers. Further non-isothermal DSC investigations carried out on various FL+10 wt% PVP mixtures revealed a slowing down of FL crystallization in all FL-based systems (the best inhibitor of this process was PVP Mn = 190 kg/mol). Our research indicated a significant contribution of the microstructure of the polymer on the physical stability of the pharmaceutical-an issue completely overlooked in the literature.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Paulina Maksym
- Institute of Material Science, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Andrzej Zięba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marian Paluch
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
59
|
Page K, Stack AG, Chen SA, Wang HW. Nanopore facilitated monohydrocalcitic amorphous calcium carbonate precipitation. Phys Chem Chem Phys 2022; 24:18340-18346. [PMID: 35880670 DOI: 10.1039/d2cp00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Predicting the precipitation of solids is important in both natural systems and subsurface energy applications. The factors controlling reaction mechanisms, phase selection and conversion between phases are particularly important. In this contribution the precipitation and growth of an amorphous calcium carbonate species from flowing aqueous solution in a nanoporous controlled pore glass is followed in situ with differential X-ray pair distribution function analysis. It is discovered that the local atomic structure of this phase indicates monohydrocalcite-like pair-pair correlations, yet is functionally amorphous because it lacks long-range structure. The unexpected occurrence of synthetic proto-monohydrocalcite amorphous calcium carbonate, precipitated from a solution undersaturated with respect to published solubilities, suggests that nanopore confinement facilitates formation of an amorphous phase at the expense of more favorable crystalline ones. This result illustrates that confinement and interface effects are physical factors exerting control on mineral nucleation behavior in natural and geological systems.
Collapse
Affiliation(s)
- Katharine Page
- Materials Science and Engineering Department, The University of Tennessee, Knoxville, TN, 38996, USA. .,Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrew G Stack
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Si Athena Chen
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Hsiu-Wen Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
60
|
Duchstein P, Schodder PI, Leupold S, Dao TQN, Kababya S, Cicconi MR, de Ligny D, Pipich V, Eike D, Schmidt A, Zahn D, Wolf SE. Small‐Molecular‐Weight Additives Modulate Calcification by Interacting with Prenucleation Clusters on the Molecular Level. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Philipp I. Schodder
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Simon Leupold
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Thi Q. N. Dao
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Shifi Kababya
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Maria R. Cicconi
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Dominique de Ligny
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Lehrstuhl für Glas und Keramik GERMANY
| | - Vitaliy Pipich
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH Garching GERMANY
| | | | - Asher Schmidt
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Dirk Zahn
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry Department GERMANY
| | - Stephan E. Wolf
- Friedrich-Alexander University Erlangen-Nürnberg – Institute of Glass and Ceramics Department of Materials Science and Engineering Martensstrasse 5 91058 Erlangen GERMANY
| |
Collapse
|
61
|
Pankhurst JR, Castilla-Amorós L, Stoian DC, Vavra J, Mantella V, Albertini PP, Buonsanti R. Copper Phosphonate Lamella Intermediates Control the Shape of Colloidal Copper Nanocrystals. J Am Chem Soc 2022; 144:12261-12271. [PMID: 35770916 PMCID: PMC9284559 DOI: 10.1021/jacs.2c03489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Understanding the
structure and behavior of intermediates in chemical
reactions is the key to developing greater control over the reaction
outcome. This principle is particularly important in the synthesis
of metal nanocrystals (NCs), where the reduction, nucleation, and
growth of the reaction intermediates will determine the final size
and shape of the product. The shape of metal NCs plays a major role
in determining their catalytic, photochemical, and electronic properties
and, thus, the potential applications of the material. In this work,
we demonstrate that layered coordination polymers, called lamellae,
are reaction intermediates in Cu NC synthesis. Importantly, we discover
that the lamella structure can be fine-tuned using organic ligands
of different lengths and that these structural changes control the
shape of the final NC. Specifically, we show that short-chain phosphonate
ligands generate lamellae that are stable enough at the reaction temperature
to facilitate the growth of Cu nuclei into anisotropic Cu NCs, being
primarily triangular plates. In contrast, lamellae formed from long-chain
ligands lose their structure and form spherical Cu NCs. The synthetic
approach presented here provides a versatile tool for the future development
of metal NCs, including other anisotropic structures.
Collapse
Affiliation(s)
- James R Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Dragos C Stoian
- The Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility (ESRF), Grenoble 38000, France
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Valeria Mantella
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Petru P Albertini
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, Sion 1950, Switzerland
| |
Collapse
|
62
|
Rolf J, Cao T, Huang X, Boo C, Li Q, Elimelech M. Inorganic Scaling in Membrane Desalination: Models, Mechanisms, and Characterization Methods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7484-7511. [PMID: 35666637 DOI: 10.1021/acs.est.2c01858] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inorganic scaling caused by precipitation of sparingly soluble salts at supersaturation is a common but critical issue, limiting the efficiency of membrane-based desalination and brine management technologies as well as other engineered systems. A wide range of minerals including calcium carbonate, calcium sulfate, and silica precipitate during membrane-based desalination, limiting water recovery and reducing process efficiency. The economic impact of scaling on desalination processes requires understanding of its sources, causes, effects, and control methods. In this Critical Review, we first describe nucleation mechanisms and crystal growth theories, which are fundamental to understanding inorganic scale formation during membrane desalination. We, then, discuss the key mechanisms and factors that govern membrane scaling, including membrane properties, such as surface roughness, charge, and functionality, as well as feedwater characteristics, such as pH, temperature, and ionic strength. We follow with a critical review of current characterization techniques for both homogeneous and heterogeneous nucleation, focusing on the strengths and limitations of each technique to elucidate scale-inducing mechanisms, observe actual crystal growth, and analyze the outcome of scaling behaviors of desalination membranes. We conclude with an outlook on research needs and future research directions to provide guidelines for scale mitigation in water treatment and desalination.
Collapse
Affiliation(s)
- Julianne Rolf
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06520-8286, United States
| | - Tianchi Cao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Xiaochuan Huang
- Department of Civil and Environmental Engineering, Rice University, MS-519, 6100 Main Street, Houston, Texas 77005, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, MS 6398, 6100 Main Street, Houston 77005, United States
| | - Chanhee Boo
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, MS-519, 6100 Main Street, Houston, Texas 77005, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, MS 6398, 6100 Main Street, Houston 77005, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
63
|
Schodder PI, Gindele MB, Ott A, Rückel M, Ettl R, Boyko V, Kellermeier M. Probing the effects of polymers on the early stages of calcium carbonate formation by stoichiometric co-titration. Phys Chem Chem Phys 2022; 24:9978-9989. [PMID: 35319032 DOI: 10.1039/d1cp05606a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potentiometric titrations are a powerful tool to study the early stages of the precipitation of minerals such as calcium carbonate and were used among others for the discovery and characterisation of key precursors like prenucleation clusters. Here we present a modified procedure for conducting such titration experiments, in which the reactants (i.e. calcium and (bi)carbonate ions) are added simultaneously in stoichiometric amounts, while both the amount of free calcium and the optical transmission of the solution are monitored online. Complementarily, the species occurring at distinct stages of the crystallisation process were studied using cryogenic transmission electron microscopy. This novel routine was applied to investigate CaCO3 nucleation in the absence and presence of polymeric additives with different chemical functionalities. The obtained results provide new insights into the critical steps underlying nucleation and subsequent ripening, such as the role of liquid mineral-rich phases and their transformation into solid particles. The studied polymers proved to interfere at multiple stages along the complex mineralisation pathway of calcium carbonate, with both the degree and mode of interaction depending on the chosen polymer chemistry. In this way, the methodology developed in this work allows the mechanisms of antiscalants - or crystallisation modifiers in general - to be elucidated at an advanced level of detail.
Collapse
Affiliation(s)
- Philipp I Schodder
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany. .,Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
| | - Maxim B Gindele
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany. .,Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, D-30167 Hannover, Germany
| | - Andreas Ott
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
| | - Markus Rückel
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
| | - Roland Ettl
- Care Chemicals, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Volodymyr Boyko
- Formulation Platform, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Matthias Kellermeier
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
| |
Collapse
|
64
|
Chen YQ, Wang SQ, Tong XY, Kang X. Crystal transformation and self-assembly theory of microbially induced calcium carbonate precipitation. Appl Microbiol Biotechnol 2022; 106:3555-3569. [PMID: 35501489 DOI: 10.1007/s00253-022-11938-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Microbially induced calcium carbonate precipitation (MICP) is ubiquitous in the earth's lithosphere and brings the inspiration of bionic cementation technology. Over recent years, MICP has been proposed as a potential solution to address many environmental and engineering issues. However, the stability of cemented precipitations generated via MICP technology, especially the characteristics and change mechanism of crystal forms, is still unclear, which substantially hindered the understanding of biomineralization and prohibited the application and upscaling of MICP technology. Here, Sporosarcina pasteurii was selected as a model microbe to induce calcium carbonate mineralization in a series of standard nutrient solutions. The authors studied the process of precipitation from amorphous calcium carbonate to calcite crystal form and revealed the assembly behavior and mechanism of precipitations by FTIR, SEM, TEM and EDS. In the two crystal forms of induced calcium carbonate, the relative position and content of C, O, N, P and Ca elements were only slightly different. The molecular attachment and structural match of organic matrix made the crystals form change. Finally, a self-assembly theory was proposed to MICP, and it provided a solid theoretical basis for the technical specification of MICP technology in engineering application. KEY POINTS: • Organic matrix is intensively involved in MICP by forming functional groups. • Molecular attachment and structural match cause calcite crystal evolution. • A self-assembly theory is proposed for MICP.
Collapse
Affiliation(s)
- Yong-Qing Chen
- Key Laboratory of Building Safety and Energy Efficiency of Ministry of Education, Hunan University, Changsha, 410082, China.,National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, 410082, China.,College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shi-Qing Wang
- Key Laboratory of Building Safety and Energy Efficiency of Ministry of Education, Hunan University, Changsha, 410082, China.,National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, 410082, China.,College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Xin-Yang Tong
- Key Laboratory of Building Safety and Energy Efficiency of Ministry of Education, Hunan University, Changsha, 410082, China.,National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, 410082, China.,College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Xin Kang
- Key Laboratory of Building Safety and Energy Efficiency of Ministry of Education, Hunan University, Changsha, 410082, China. .,National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, 410082, China. .,College of Civil Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
65
|
The nano- and meso-scale structure of amorphous calcium carbonate. Sci Rep 2022; 12:6870. [PMID: 35477728 PMCID: PMC9046151 DOI: 10.1038/s41598-022-10627-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding the underlying processes of biomineralization is crucial to a range of disciplines allowing us to quantify the effects of climate change on marine organisms, decipher the details of paleoclimate records and advance the development of biomimetic materials. Many biological minerals form via intermediate amorphous phases, which are hard to characterize due to their transient nature and a lack of long-range order. Here, using Monte Carlo simulations constrained by X-ray and neutron scattering data together with model building, we demonstrate a method for determining the structure of these intermediates with a study of amorphous calcium carbonate (ACC) which is a precursor in the bio-formation of crystalline calcium carbonates. We find that ACC consists of highly ordered anhydrous nano-domains of approx. 2 nm that can be described as nanocrystalline. These nano-domains are held together by an interstitial net-like matrix of water molecules which generate, on the mesoscale, a heterogeneous and gel-like structure of ACC. We probed the structural stability and dynamics of our model on the nanosecond timescale by molecular dynamics simulations. These simulations revealed a gel-like and glassy nature of ACC due to the water molecules and carbonate ions in the interstitial matrix featuring pronounced orientational and translational flexibility. This allows for viscous mobility with diffusion constants four to five orders of magnitude lower than those observed in solutions. Small and ultra-small angle neutron scattering indicates a hierarchically-ordered organization of ACC across length scales that allow us, based on our nano-domain model, to build a comprehensive picture of ACC formation by cluster assembly from solution. This contribution provides a new atomic-scale understanding of ACC and provides a framework for the general exploration of biomineralization and biomimetic processes.
Collapse
|
66
|
Díaz Leines G, Rogal J. Template-Induced Precursor Formation in Heterogeneous Nucleation: Controlling Polymorph Selection and Nucleation Efficiency. PHYSICAL REVIEW LETTERS 2022; 128:166001. [PMID: 35522521 DOI: 10.1103/physrevlett.128.166001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
We present an atomistic study of heterogeneous nucleation in Ni employing transition path sampling, which reveals a template precursor-mediated mechanism of crystallization. Most notably, we find that the ability of tiny templates to modify the structural features of the liquid and promote the formation of precursor regions with enhanced bond-orientational order is key to determining their nucleation efficiency and the polymorphs that crystallize. Our results reveal an intrinsic link between structural liquid heterogeneity and the nucleating ability of templates, which significantly advances our understanding toward the control of nucleation efficiency and polymorph selection.
Collapse
Affiliation(s)
- Grisell Díaz Leines
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridgeshire CB2 1EW, United Kingdom
| | - Jutta Rogal
- Department of Chemistry, New York University, New York, New York 10003, USA and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
67
|
Zong S, Wang J, Huang X, Wu H, Liu Q, Hao H. Formation and stabilization mechanism of mesoscale clusters in solution. IUCRJ 2022; 9:215-222. [PMID: 35371509 PMCID: PMC8895010 DOI: 10.1107/s2052252521012987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
To understand the existence of complex meso-sized solute-rich clusters, which challenge the understanding of phases and phase equilibria, the formation and stabilization mechanisms of clusters in solution during nucleation of crystals and the associated physico-chemical rules are studied in detail. An essential part of the mechanism is the formation of long-lived oligomers between solute molecules. By means of density functional theory simulation and nuclear magnetic resonance experiments, this work showed that the oligomers in solution tend to be π-π stacking dimers. Clusters are formed under the combined effect of diffusion and monomer-dimer reaction. The physically meaningful quantities such as the monomer-dimer reaction rate constants and the diffusion coefficients of both species were obtained by reaction-diffusion kinetics and diffusion-ordered spectroscopy results. The evolution of cluster radius as a function of time, and the qualitative spatial distributions of monomer and dimer densities under steady-state were plotted to better understand the formation process and the nature of the clusters.
Collapse
Affiliation(s)
- Shuyi Zong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jingkang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Xin Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Qi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hongxun Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
- School of Chemical Engineering and Technology, Hainan University, Haikou 570208, People’s Republic of China
| |
Collapse
|
68
|
Qin D, He Z, Li P, Zhang S. Liquid-Liquid Phase Separation in Nucleation Process of Biomineralization. Front Chem 2022; 10:834503. [PMID: 35186885 PMCID: PMC8854647 DOI: 10.3389/fchem.2022.834503] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Biomineralization is a typical interdisciplinary subject attracting biologists, chemists, and geologists to figure out its potential mechanism. A mounting number of studies have revealed that the classical nucleation theory is not suitable for all nucleation process of biominerals, and phase-separated structures such as polymer-induced liquid precursors (PILPs) play essential roles in the non-classical nucleation processes. These structures are able to play diverse roles biologically or pathologically, and could also give inspiring clues to bionic applications. However, a lot of confusion and dispute occurred due to the intricacy and interdisciplinary nature of liquid precursors. Researchers in different fields may have different opinions because the terminology and current state of understanding is not common knowledge. As a result, our team reviewed the most recent articles focusing on the nucleation processes of various biominerals to clarify the state-of-the-art understanding of some essential concepts and guide the newcomers to enter this intricate but charming field.
Collapse
Affiliation(s)
| | | | - Peng Li
- *Correspondence: Peng Li, ; Shutian Zhang,
| | | |
Collapse
|
69
|
Jun YS, Zhu Y, Wang Y, Ghim D, Wu X, Kim D, Jung H. Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation. Annu Rev Phys Chem 2022; 73:453-477. [PMID: 35113740 DOI: 10.1146/annurev-physchem-082720-100947] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces and expand by monomeric growth, oriented attachment, and phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can determine their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical and nonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and the growth of nanoparticles. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Ying Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Deoukchen Ghim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Xuanhao Wu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut;
| | - Doyoon Kim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Haesung Jung
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, South Korea;
| |
Collapse
|
70
|
Recent advances in drug polymorphs: Aspects of pharmaceutical properties and selective crystallization. Int J Pharm 2022; 611:121320. [PMID: 34843866 DOI: 10.1016/j.ijpharm.2021.121320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
Drug polymorphism, an established term used to describe the phenomenon that a drug can exist in different crystalline phases, has attracted great interests in pharmaceutical field in consideration of its important role in affecting the pharmaceutical performance of oral formulations. This paper presents an overview of recent advances in the research on polymorphic drug systems including understandings on nucleation, crystal growth, dissolution, mechanical properties, polymorphic transformation, etc. Moreover, new strategies and mechanisms in the control of polymorphic forms are also highlighted in this review. Furthermore, challenges and trends in the development of polymorphic drugs are briefly discussed, aiming at developing effective and efficient pharmaceutical formulations containing the polymorphic drugs.
Collapse
|
71
|
Merle M, Soulié J, Sassoye C, Roblin P, Rey C, Bonhomme C, Combes C. Pyrophosphate-stabilised amorphous calcium carbonate for bone substitution: toward a doping-dependent cluster-based model. CrystEngComm 2022. [DOI: 10.1039/d2ce00936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiscale and multitool advanced characterisation of pyrophosphate-stabilised amorphous calcium carbonates allowed building a cluster-based model paving the way for tunable biomaterials.
Collapse
Affiliation(s)
- Marion Merle
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Pierre Roblin
- LGC, Université de Toulouse, CNRS, 118 Route de Narbonne Bâtiment 2R1, Toulouse, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| |
Collapse
|
72
|
Maslyk M, Mondeshki M, Tremel W. Amorphous calcium carbonate monohydrate containing a defect hydrate network by mechanochemical processing of mono-hydrocalcite using ethanol as auxiliary solvent. CrystEngComm 2022. [DOI: 10.1039/d2ce00677d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium carbonate monohydrate-like ACC was made by ball-milling with ethanol as auxiliary solvent. IR and solid-state NMR, diffraction and total scattering show that defects of the hydrate network due to partial displacement of water by ethanol are crucial for amorphization.
Collapse
Affiliation(s)
- Marcel Maslyk
- Department Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Mihail Mondeshki
- Department Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Wolfgang Tremel
- Department Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
| |
Collapse
|
73
|
Svärd M. Mesoscale clusters of organic solutes in solution and their role in crystal nucleation. CrystEngComm 2022. [DOI: 10.1039/d2ce00718e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is becoming evident that primary nucleation of crystals of organic molecules from solution is often anything but ‘classical’ in its complexity. It is also becoming increasingly clear that mesoscopic...
Collapse
|
74
|
Kimura Y, Katsuno H, Yamazaki T. Possible embryo and precursor of crystalline nuclei of calcium carbonate observed by LC-TEM. Faraday Discuss 2022; 235:81-94. [DOI: 10.1039/d1fd00125f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several different building blocks or precursors play an important role in the early stages of crystallization of calcium carbonate (CaCO3). Substantial number of studies have been conducted to understand the...
Collapse
|
75
|
Katsman A, Polishchuk I, Pokroy B. On the mechanism of calcium carbonate polymorph selection via confinement. Faraday Discuss 2022; 235:433-445. [DOI: 10.1039/d1fd00111f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organisms deposit various biominerals in the course of their biomineralisation. The most abundant of these is calcium carbonate, which manifests itself in several polymorphs. While organisms possess the ability to...
Collapse
|
76
|
Hamdi R, Tlili MM. Influence of foreign salts on the CaCO3 pre-nucleation stage: application of the conductometric method. CrystEngComm 2022. [DOI: 10.1039/d2ce00099g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium carbonate crystallization process has been studied for more than a century. Nevertheless, little is known about the early stages of nucleation since the in situ observations are difficult at...
Collapse
|
77
|
Song N, Li J, Li B, Pan E, Gao J, Ma Y. In vitro crystallization of calcium carbonate mediated by proteins extracted from P. placenta shells. CrystEngComm 2022. [DOI: 10.1039/d2ce00692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ASM extracted from the shells of P. placenta can stabilize ACC and inhibit secondary nucleation for 10 hours, and an explosive secondary nucleation and quick crystal growth from 50 nm to 10 μm can be finished on the shell surface in one hour.
Collapse
Affiliation(s)
- Ningjing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangfeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ercai Pan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
78
|
Xu S, Zhang H, Qiao B, Wang Y. Insights into solvent-dependent nucleation behavior of benzoic acid from metastable zone widths. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
79
|
Li M, Ma H, Han F, Zhai D, Zhang B, Sun Y, Li T, Chen L, Wu C. Microbially Catalyzed Biomaterials for Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104829. [PMID: 34632631 DOI: 10.1002/adma.202104829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bone is a complex mineralized tissue composed of various organic (proteins, cells) and inorganic (hydroxyapatite, calcium carbonate) substances with micro/nanoscale structures. To improve interfacial bioactivity of bone-implanted biomaterials, extensive efforts are being made to fabricate favorable biointerface via surface modification. Inspired by microbially catalyzed mineralization, a novel concept to biologically synthesize the micro/nanostructures on bioceramics, microbial-assisted catalysis, is presented. It involves three processes: bacterial adhesion on biomaterials, production of CO3 2- assisted by bacteria, and nucleation and growth of CaCO3 nanocrystals on the surface of bioceramics. The microbially catalyzed biominerals exhibit relatively uniform micro/nanostructures on the surface of both 2D and 3D α-CaSiO3 bioceramics. The topographic and chemical cues of the grown micro/nanostructures present excellent in vitro and in vivo bone-forming bioactivity. The underlying mechanism is closely related to the activation of multiple biological processes associated with bone regeneration. The study offers a microbially catalytic concept and strategy of fabricating micro/nanostructured biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Fei Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yuhua Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
80
|
Kubo S. Insights into the Formation Pathway of Templated Ordered Nanostructured Carbonaceous Particles under Hydrothermal Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10866-10874. [PMID: 34463515 DOI: 10.1021/acs.langmuir.1c01871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ordered nanostructured materials and their porous counterparts are important for numerous applications in sorption and separation sciences, electrochemistry, catalysis, and photonics. They can be synthesized by introducing surfactant or amphiphilic polymer template(s) into the condensation stage of a developing solid. Understanding the pathways involved in the formation of these materials is of great interest and will help in the development of future synthesis schemes for designing nanomaterials with controlled nanostructures, pore sizes and shapes, and particle morphologies. In this work, the formation pathway of carbonaceous particles, with cubic-type ordered nanostructures, in the polymer amphiphile-templated hydrothermal condensation of sugar was investigated. A detailed transmission electron microscopy study revealed the initial formation of ∼50 nm sized nanoparticles and the structure attributable to assembled nanoparticles to form larger microparticle volumes. Small-angle X-ray scattering analysis showed the time-dependent development of the ordered structures in the carbonaceous particles. A dynamic stabilization-destabilization of the ordered phase was suggested through the analysis of the liquid crystalline gel-like matrix. The growing carbonaceous body inherited the final liquid crystalline phase, giving the microparticles a well-ordered cubic nanostructure. An additional internal domain texture was also revealed inside the microparticles. The proposed pathway will contribute toward establishing strategies for precisely manipulating nanostructured bodies as well as acquiring an in-depth understanding of the templated precipitations, including those in the natural systems.
Collapse
Affiliation(s)
- Shiori Kubo
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Japan
| |
Collapse
|
81
|
Schoeppler V, Stier D, Best RJ, Song C, Turner J, Savitzky BH, Ophus C, Marcus MA, Zhao S, Bustillo K, Zlotnikov I. Crystallization by Amorphous Particle Attachment: On the Evolution of Texture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101358. [PMID: 34337782 PMCID: PMC11468020 DOI: 10.1002/adma.202101358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Crystallization by particle attachment (CPA) is a gradual process where each step has its own thermodynamic and kinetic constrains defining a unique pathway of crystal growth. An important example is biomineralization of calcium carbonate through amorphous precursors that are morphed into shapes and textural patterns that cannot be envisioned by the classical monomer-by-monomer approach. Here, a mechanistic link between the collective kinetics of mineral deposition and the emergence of crystallographic texture is established. Using the prismatic ultrastructure in bivalve shells as a model, a fundamental leap is made in the ability to analytically describe the evolution of form and texture of biological mineralized tissues and to design the structure and crystallographic properties of synthetic materials formed by CPA.
Collapse
Affiliation(s)
- Vanessa Schoeppler
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
- Department of PhysicsUniversity of CaliforniaBerkeleyCA94720USA
| | - Deborah Stier
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| | - Richard J. Best
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - John Turner
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Benjamin H. Savitzky
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Matthew A. Marcus
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Shiteng Zhao
- Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Karen Bustillo
- National Center for Electron Microscopy, Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Igor Zlotnikov
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| |
Collapse
|
82
|
|
83
|
Probst J, Borca CN, Newton MA, van Bokhoven J, Huthwelker T, Stavrakis S, deMello A. In Situ X-ray Absorption Spectroscopy and Droplet-Based Microfluidics: An Analysis of Calcium Carbonate Precipitation. ACS MEASUREMENT SCIENCE AU 2021; 1:27-34. [PMID: 36785734 PMCID: PMC9836070 DOI: 10.1021/acsmeasuresciau.1c00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Droplet-based microfluidic systems are ideally suited for the investigation of nucleation and crystallization processes. To best leverage the features of such platforms (including exquisite time resolution and high-throughput operation), sensitive and in situ detection schemes are needed to extract real-time chemical information about all species of interest. In this regard, the extension of conventional (UV, visible, and infrared) optical detection schemes to the X-ray region of the electromagnetic spectrum is of high current interest, as techniques such as X-ray absorption spectroscopy (XAS) provide for the element-specific investigation of the local chemical environment. Accordingly, herein, we report for the first time the integration of millisecond droplet-based microfluidics with XAS. Such a platform allows for the sensitive acquisition of X-ray absorption data from picoliter-volume droplets moving at high linear velocities. Significantly, the high-temporal resolution of the droplet-based microfluidic platform enables unprecedented access to the early stages of the reaction. Using such an approach, we demonstrate in situ monitoring of calcium carbonate precipitation by extracting XAS spectra at the early time points of the reaction with a dead time as low as 10 ms. We obtain insights into the kinetics of the formation of amorphous calcium carbonate (ACC) as a first species during the crystallization process by monitoring the proportion of calcium ions converted into ACC. Within the confined and homogeneous environment of picoliter-volume droplets, the ACC content reaches 60% over the first 130 ms. More generally, the presented method offers new opportunities for the real-time monitoring of fast chemical and biological processes.
Collapse
Affiliation(s)
- Julie Probst
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | | | - Mark A. Newton
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Jeroen van Bokhoven
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- Paul
Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Stavros Stavrakis
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Andrew deMello
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
84
|
Zhu Y, Li Q, Kim D, Min Y, Lee B, Jun YS. Sulfate-Controlled Heterogeneous CaCO 3 Nucleation and Its Non-linear Interfacial Energy Evolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11455-11464. [PMID: 34314155 DOI: 10.1021/acs.est.1c02865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unveiling the effects of an environmental abundant anion "sulfate" on the formation of calcium carbonate (CaCO3) is essential to understand the formation mechanisms of biominerals like corals and brachiopod shells, as well as the scale formation in desalination systems. However, it was experimentally challenging to elucidate the sulfate-CaCO3 interactions at the explicit first step of CaCO3 formation: nucleation. In addition, there is limited quantitative information on the precise control of nucleation kinetics. Here, heterogeneous CaCO3 nucleation is monitored in real time as a function of sulfate concentrations (0-10 mM Na2SO4) using synchrotron-based grazing incidence X-ray scattering techniques. The results showed that sulfate can be incorporated in the nuclei, resulting in a nearly 90% decrease in the CaCO3 nucleation rate, causing a 120% increase in the CaCO3 nucleus size, and inhibiting the vaterite-to-calcite phase transformation. Moreover, this work quantitatively relates sulfate concentrations to the effective interfacial energies of CaCO3 and finds a non-linear trend, suggesting that CaCO3 heterogeneous nucleation is more sensitive at a low sulfate concentration. This study can be readily extended to study other additives and obtain quantitative relationships between additive concentrations and CaCO3 interfacial energies, a key step toward achieving natural and engineered controls on CaCO3 nucleation.
Collapse
Affiliation(s)
- Yaguang Zhu
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Qingyun Li
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Doyoon Kim
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yujia Min
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
85
|
Huang Y, Rao A, Huang S, Chang C, Drechsler M, Knaus J, Chan JCC, Raiteri P, Gale JD, Gebauer D. Aufdeckung der Rolle von Hydrogencarbonat‐Ionen bei der Bildung von Calciumcarbonat im nahezu neutralen pH‐Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yu‐Chieh Huang
- Fachbereich Chemie, Physikalische Chemie Universität Konstanz Deutschland
| | - Ashit Rao
- Physics of Complex Fluids Group and MESA+ Institute Faculty of Science and Technology University of Twente Enschede Niederlande
| | - Shing‐Jong Huang
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Chun‐Yu Chang
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | | - Jennifer Knaus
- Fachbereich Chemie, Physikalische Chemie Universität Konstanz Deutschland
- stimOS GmbH Konstanz Deutschland
| | | | - Paolo Raiteri
- Curtin Institute for Computation/, The Institute for Geoscience Research (TIGeR) School of Molecular and Life Sciences Curtin University Perth Australien
| | - Julian D. Gale
- Curtin Institute for Computation/, The Institute for Geoscience Research (TIGeR) School of Molecular and Life Sciences Curtin University Perth Australien
| | - Denis Gebauer
- Institut für Anorganische Chemie Leibniz Universität Hannover Callinstraße 9 30167 Hannover Deutschland
| |
Collapse
|
86
|
Epasto LM, Georges T, Selimović A, Guigner JM, Azaïs T, Kurzbach D. Formation and Evolution of Nanoscale Calcium Phosphate Precursors under Biomimetic Conditions. Anal Chem 2021; 93:10204-10211. [PMID: 34251166 PMCID: PMC8319911 DOI: 10.1021/acs.analchem.1c01561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simulated body fluids (SBFs) that mimic human blood plasma are widely used media for in vitro studies in an extensive array of research fields, from biomineralization to surface and corrosion sciences. We show that these solutions undergo dynamic nanoscopic conformational rearrangements on the timescale of minutes to hours, even though they are commonly considered stable or metastable. In particular, we find and characterize nanoscale inhomogeneities made of calcium phosphate (CaP) aggregates that emerge from homogeneous SBFs within a few hours and evolve into prenucleation species (PNS) that act as precursors in CaP crystallization processes. These ionic clusters consist of ∼2 nm large spherical building units that can aggregate into suprastructures with sizes of over 200 nm. We show that the residence times of phosphate ions in the PNS depend critically on the total PNS surface. These findings are particularly relevant for understanding nonclassical crystallization phenomena, in which PNS are assumed to act as building blocks for the final crystal structure.
Collapse
Affiliation(s)
- Ludovica M Epasto
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Tristan Georges
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, Place Jussieu, F-75005 Paris, France
| | - Albina Selimović
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Jean-Michel Guigner
- Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), Sorbonne Université, 4, Place Jussieu, F-75005 Paris, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, Place Jussieu, F-75005 Paris, France
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
87
|
Eaton D, Saika-Voivod I, Bowles RK, Poole PH. Free energy surface of two-step nucleation. J Chem Phys 2021; 154:234507. [PMID: 34241260 DOI: 10.1063/5.0055877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We test the theoretical free energy surface (FES) for two-step nucleation (TSN) proposed by Iwamatsu [J. Chem. Phys. 134, 164508 (2011)] by comparing the predictions of the theory to numerical results for the FES recently reported from Monte Carlo simulations of TSN in a simple lattice system [James et al., J. Chem. Phys. 150, 074501 (2019)]. No adjustable parameters are used to make this comparison. That is, all the parameters of the theory are evaluated directly for the model system, yielding a predicted FES, which we then compare to the FES obtained from simulations. We find that the theoretical FES successfully predicts the numerically evaluated FES over a range of thermodynamic conditions that spans distinct regimes of behavior associated with TSN. All the qualitative features of the FES are captured by the theory, and the quantitative comparison is also very good. Our results demonstrate that Iwamatsu's extension of classical nucleation theory provides an excellent framework for understanding the thermodynamics of TSN.
Collapse
Affiliation(s)
- Dean Eaton
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| | - Richard K Bowles
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan 57N 5C9, Canada
| | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| |
Collapse
|
88
|
Huang YC, Rao A, Huang SJ, Chang CY, Drechsler M, Knaus J, Chan JCC, Raiteri P, Gale JD, Gebauer D. Uncovering the Role of Bicarbonate in Calcium Carbonate Formation at Near-Neutral pH. Angew Chem Int Ed Engl 2021; 60:16707-16713. [PMID: 33973691 PMCID: PMC8362096 DOI: 10.1002/anie.202104002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 11/30/2022]
Abstract
Mechanistic pathways relevant to mineralization are not well‐understood fundamentally, let alone in the context of their biological and geological environments. Through quantitative analysis of ion association at near‐neutral pH, we identify the involvement of HCO3− ions in CaCO3 nucleation. Incorporation of HCO3− ions into the structure of amorphous intermediates is corroborated by solid‐state nuclear magnetic resonance spectroscopy, complemented by quantum mechanical calculations and molecular dynamics simulations. We identify the roles of HCO3− ions as being through (i) competition for ion association during the formation of ion pairs and ion clusters prior to nucleation and (ii) incorporation as a significant structural component of amorphous mineral particles. The roles of HCO3− ions as active soluble species and structural constituents in CaCO3 formation are of fundamental importance and provide a basis for a better understanding of physiological and geological mineralization.
Collapse
Affiliation(s)
- Yu-Chieh Huang
- Department of Chemistry, Physical Chemistry, University of Konstanz, Konstanz, Germany
| | - Ashit Rao
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Shing-Jong Huang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Yu Chang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | | | - Jennifer Knaus
- Department of Chemistry, Physical Chemistry, University of Konstanz, Konstanz, Germany.,stimOS GmbH, Konstanz, Germany
| | | | - Paolo Raiteri
- Curtin Institute for Computation/, The Institute for Geoscience Research (TIGeR), School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Julian D Gale
- Curtin Institute for Computation/, The Institute for Geoscience Research (TIGeR), School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University of Hannover, Callinstraße 9, 30167, Hannover, Germany
| |
Collapse
|
89
|
Pure hydroxyapatite synthesis originating from amorphous calcium carbonate. Sci Rep 2021; 11:11546. [PMID: 34078994 PMCID: PMC8173018 DOI: 10.1038/s41598-021-91064-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
We report a synthesis strategy for pure hydroxyapatite (HAp) using an amorphous calcium carbonate (ACC) colloid as the starting source. Room-temperature phosphorylation and subsequent calcination produce pure HAp via intermediate amorphous calcium phosphate (ACP). The pre-calcined sample undergoes a competitive transformation from ACC to ACP and crystalline calcium carbonate. The water content, ACC concentration, Ca/P molar ratio, and pH during the phosphorylation reaction play crucial roles in the final phase of the crystalline phosphate compound. Pure HAp is formed after ACP is transformed from ACC at a low concentration (1 wt%) of ACC colloid (1.71 < Ca/P < 1.88), whereas Ca/P = 1.51 leads to pure β-tricalcium phosphate. The ACP phases are precursors for calcium phosphate compounds and may determine the final crystalline phase.
Collapse
|
90
|
Khanjani M, Westenberg DJ, Kumar A, Ma H. Tuning Polymorphs and Morphology of Microbially Induced Calcium Carbonate: Controlling Factors and Underlying Mechanisms. ACS OMEGA 2021; 6:11988-12003. [PMID: 34056353 PMCID: PMC8153981 DOI: 10.1021/acsomega.1c00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/21/2021] [Indexed: 05/31/2023]
Abstract
Microbially precipitated calcium carbonate (CaCO3) has drawn broad attention due to its potential applications in various areas, for example, biocementation, medicine, and soil reinforcement. Sporosarcina pasteurii (S. pasteurii), formerly known as Bacillus pasteurii, has been investigated for CaCO3 biomineralization due to its high ureolytic activity. A high degree of supersaturation with respect to the presence of bacterial cell wall, extracellular polymeric substances, and organic byproducts of bacterial activity plays an important role in the formation and stabilization of CaCO3 polymorphs. Although microbially induced CaCO3 and its polymorphs have been investigated broadly, the mechanisms of polymorph selection and morphological evolution are not well understood. This study employs ex situ approaches to address the complication of biomineralization in the presence of living organisms and to elucidate how solution chemistry, bacterial activity, and precipitation kinetics alter the polymorphism and morphology of CaCO3 induced by S. pasteurii. The results indicate that in the presence of enough calcium ions and urea (as a carbonate source), the bacterial activity favors the formation and stabilization of vaterite. The morphological observations also provide valuable information on the particles' microstructure. The morphology of calcite evolves from single crystal to polycrystalline structures, and the morphology of vaterite evolved from spherical to oval-shaped structures on increasing the organic material concentration. Specific functional groups also exert morphological control on CaCO3 polymorphs. However, the sensitivity of the calcite polymorph to the composition and orientation of these functional groups is higher compared to that of the vaterite polymorph. These findings offer important insights that can be used to constrain a set of experimental conditions for synthesizing a certain polymorph ratio for vaterite/calcite or a particular morphology of each polymorph and shed light on the crystallization and phase transformation mechanisms in such complicated bioenvironments.
Collapse
Affiliation(s)
- Maryam Khanjani
- Department
of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| | - David J. Westenberg
- Department
of Biological Sciences, Missouri University
of Science and Technology, Rolla, Missouri 65401, United States
| | - Aditya Kumar
- Department
of Materials Science and Engineering, Missouri
University of Science and Technology, Rolla, Missouri 65401, United States
| | - Hongyan Ma
- Department
of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| |
Collapse
|
91
|
Juramy M, Chèvre R, Cerreia Vioglio P, Ziarelli F, Besson E, Gastaldi S, Viel S, Thureau P, Harris KDM, Mollica G. Monitoring Crystallization Processes in Confined Porous Materials by Dynamic Nuclear Polarization Solid-State Nuclear Magnetic Resonance. J Am Chem Soc 2021; 143:6095-6103. [PMID: 33856790 PMCID: PMC8154530 DOI: 10.1021/jacs.0c12982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Establishing mechanistic understanding of crystallization processes at the molecular level is challenging, as it requires both the detection of transient solid phases and monitoring the evolution of both liquid and solid phases as a function of time. Here, we demonstrate the application of dynamic nuclear polarization (DNP) enhanced NMR spectroscopy to study crystallization under nanoscopic confinement, revealing a viable approach to interrogate different stages of crystallization processes. We focus on crystallization of glycine within the nanometric pores (7-8 nm) of a tailored mesoporous SBA-15 silica material with wall-embedded TEMPO radicals. The results show that the early stages of crystallization, characterized by the transition from the solution phase to the first crystalline phase, are straightforwardly observed using this experimental strategy. Importantly, the NMR sensitivity enhancement provided by DNP allows the detection of intermediate phases that would not be observable using standard solid-state NMR experiments. Our results also show that the metastable β polymorph of glycine, which has only transient existence under bulk crystallization conditions, remains trapped within the pores of the mesoporous SBA-15 silica material for more than 200 days.
Collapse
Affiliation(s)
- Marie Juramy
- Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France
| | - Romain Chèvre
- Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France
| | | | - Fabio Ziarelli
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, 13397 Marseille, France
| | - Eric Besson
- Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France
| | | | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France.,Institut Universitaire de France, 75231 Paris, France
| | | | - Kenneth D M Harris
- School of Chemistry, Cardiff University, Park Place, Cardiff, Wales CF10 3AT, U. K
| | | |
Collapse
|
92
|
Dachraoui W, Keller D, Henninen TR, Ashton OJ, Erni R. Atomic Mechanisms of Nanocrystallization via Cluster-Clouds in Solution Studied by Liquid-Phase Scanning Transmission Electron Microscopy. NANO LETTERS 2021; 21:2861-2869. [PMID: 33818087 DOI: 10.1021/acs.nanolett.0c04965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The formation of nanocrystals is at the heart of various scientific disciplines, but the atomic mechanisms underlying the early stages of crystallization from supersaturated solutions are still rather unclear. Here, we used in situ liquid-phase scanning transmission electron microscopy to study at the atomic level the very early stages of gold nanocrystal growth, and the evolution of its crystallinity. We found that the nucleation is initiated by the formation of poorly crystalline nanoparticles. These are transformed into monocrystals via nanocrystallization governed by a complex process of multiple out-and-in exchanges of matter between a crystalline-core and a disordered-shell, referred to as the cluster-cloud. Our observations at the crystal/cluster-cloud interface during growth demonstrate that the initially formed nanocrystals expel the poorly crystallized phases as nanoclusters into the cluster-cloud, then readsorb it by two distinct pathways, namely, by (i) monomer attachments and (ii) nanocluster coalescence. This growth process eventually leads to the formation of monocrystalline nanoparticles.
Collapse
Affiliation(s)
- Walid Dachraoui
- Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Debora Keller
- Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Trond R Henninen
- Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Olivia J Ashton
- Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| |
Collapse
|
93
|
Li J, Liu M, Qiu Y, Gan Y, Jiang H, Liu B, Wei H, Ma N. Urchin-like Hydroxyapatite/Graphene Hollow Microspheres as pH-Responsive Bone Drug Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4137-4146. [PMID: 33813823 DOI: 10.1021/acs.langmuir.0c03640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydroxyapatite (HA) is the main inorganic component of human bones and teeth. It has good biocompatibility and bioactivity, which promotes its good application prospects in the field of bone drug carriers. In this study, tetraethylenepentamine-graphene (rGO-TEPA)/CaCO3:HA composite microspheres were prepared via microwave hydrothermal synthesis using rGO-TEPA/CaCO3 solid microspheres as intermediates. Furthermore, the incompletely transformed CaCO3 was removed by soaking in a citric acid buffer to obtain rGO-TEPA/HA hollow composite microspheres. The two types of as-prepared composite microspheres exhibited sea urchin-like structures, large BET surface areas, and good dispersibility. Mouse preosteoblast cells (MC3T3-E1) were used for in vitro cytotoxicity experiments. The in vitro cell viability test showed that the two composite drug carriers exhibited noncytotoxicity. Moreover, the doxorubicin (DOX) loading and releasing investigations revealed that the two types of prepared carriers had mild storage-release behaviors and good pH responsiveness. Hence, these rGO-TEPA/HA hollow microspheres have promising applications as bone drug carriers.
Collapse
Affiliation(s)
- Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Miaomiao Liu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Yuanjing Gan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Hongkun Jiang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Boyue Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384 Tianjin, China
| | - Hao Wei
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Ning Ma
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| |
Collapse
|
94
|
Abstract
Metal-organic frameworks (MOFs) are crystalline nanoporous materials with great potential for a wide range of industrial applications. Understanding the nucleation and early growth stages of these materials from a solution is critical for their design and synthesis. Despite their importance, the pathways through which MOFs nucleate are largely unknown. Using a combination of in situ liquid-phase and cryogenic transmission electron microscopy, we show that zeolitic imidazolate framework-8 MOF nanocrystals nucleate from precursor solution via three distinct steps: 1) liquid-liquid phase separation into solute-rich and solute-poor regions, followed by 2) direct condensation of the solute-rich region into an amorphous aggregate and 3) crystallization of the aggregate into a MOF. The three-step pathway for MOF nucleation shown here cannot be accounted for by conventional nucleation models and provides direct evidence for the nonclassical nucleation pathways in open-framework materials, suggesting that a solute-rich phase is a common precursor for crystallization from a solution.
Collapse
|
95
|
Eslami H, Gharibi A, Müller-Plathe F. Mechanisms of Nucleation and Solid-Solid-Phase Transitions in Triblock Janus Assemblies. J Chem Theory Comput 2021; 17:1742-1754. [PMID: 33529019 DOI: 10.1021/acs.jctc.0c01080] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A model, including the chemical details of core nanoparticles as well as explicit surface charges and hydrophobic patches, of triblock Janus particles is employed to simulate nucleation and solid-solid phase transitions in two-dimensional layers. An explicit solvent and a substrate are included in the model, and hydrodynamic and many-body interactions were taken into account within many-body dissipative particle dynamics simulation. In order not to impose a mechanism a priori, we performed free (unbiased) simulations, leaving the system the freedom to choose its own pathways. In agreement with the experiment and previous biased simulations, a two-step mechanism for the nucleation of a kagome lattice from solution was detected. However, a distinct feature of the present unbiased versus biased simulations is that multiple nuclei emerge from the solution; upon their growth, the aligned and misaligned facets at the grain boundaries are introduced into the system. The liquid-like particles trapped between the neighboring nuclei connect them together. A mismatch in the symmetry planes of neighboring nuclei hinders the growth of less stable (smaller) nuclei. Unification of such nuclei at the grain boundaries of misaligned facets obeys a two-step mechanism: melting of the smaller nuclei, followed by subsequent nucleation of liquid-like particles at the interface of bigger neighboring nuclei. Besides, multiple postcritical nuclei are formed in the simulation box; the growth of some of which stops due to introduction of a strain in the system. Such an incomplete nucleation/growth mechanism is in complete agreement with the recent experiments. The solid-solid (hexagonal-to-kagome) phase transition, at weak superheatings, obeys a two-step mechanism: a slower step (formation of a liquid droplet), followed by a faster step (nucleation of kagome from the liquid droplet).
Collapse
Affiliation(s)
- Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany.,Department of Chemistry, College of Sciences, Persian Gulf University, 75168 Boushehr, Iran
| | - Ali Gharibi
- Department of Chemistry, College of Sciences, Persian Gulf University, 75168 Boushehr, Iran
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
96
|
Seepma SYMH, Ruiz-Hernandez SE, Nehrke G, Soetaert K, Philipse AP, Kuipers BWM, Wolthers M. Controlling CaCO 3 Particle Size with {Ca 2+}:{CO 3 2-} Ratios in Aqueous Environments. CRYSTAL GROWTH & DESIGN 2021; 21:1576-1590. [PMID: 33762898 PMCID: PMC7976603 DOI: 10.1021/acs.cgd.0c01403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The effect of stoichiometry on the new formation and subsequent growth of CaCO3 was investigated over a large range of solution stoichiometries (10-4 < r aq < 104, where r aq = {Ca2+}:{CO3 2-}) at various, initially constant degrees of supersaturation (30 < Ωcal < 200, where Ωcal = {Ca2+}{CO3 2-}/K sp), pH of 10.5 ± 0.27, and ambient temperature and pressure. At r aq = 1 and Ωcal < 150, dynamic light scattering (DLS) showed that ion adsorption onto nuclei (1-10 nm) was the dominant mechanism. At higher supersaturation levels, no continuum of particle sizes is observed with time, suggesting aggregation of prenucleation clusters into larger particles as the dominant growth mechanism. At r aq ≠ 1 (Ωcal = 100), prenucleation particles remained smaller than 10 nm for up to 15 h. Cross-polarized light in optical light microscopy was used to measure the time needed for new particle formation and growth to at least 20 μm. This precipitation time depends strongly and asymmetrically on r aq. Complementary molecular dynamics (MD) simulations confirm that r aq affects CaCO3 nanoparticle formation substantially. At r aq = 1 and Ωcal ≫ 1000, the largest nanoparticle in the system had a 21-68% larger gyration radius after 20 ns of simulation time than in nonstoichiometric systems. Our results imply that, besides Ωcal, stoichiometry affects particle size, persistence, growth time, and ripening time toward micrometer-sized crystals. Our results may help us to improve the understanding, prediction, and formation of CaCO3 in geological, industrial, and geo-engineering settings.
Collapse
Affiliation(s)
- Sergěj Y. M. H. Seepma
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
| | - Sergio E. Ruiz-Hernandez
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
| | - Gernot Nehrke
- Alfred-Wegener
Institut: Helmholtz-Zentrum für Polar- und Meeresforschung, am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Karline Soetaert
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
- Estuarine
& Delta Systems Department, NIOZ: Royal
Netherlands Institute for Sea Research, Korringaweg 7, 4401
NT Yerseke, The Netherlands
| | - Albert P. Philipse
- Van‘t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bonny W. M. Kuipers
- Van‘t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mariette Wolthers
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
97
|
Xu S, Bu Y, Jiang S, Yang P, Wang Y. Insights into the Role of Solvents in Nucleation Kinetics of Glutaric Acid from Metastable Zone Widths. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shijie Xu
- Tianjin Key Laboratory of Brine Chemical Engineering and Ecological Utilization of Resources, Tianjin Engineering Center of Marine Chemical Engineering & Technology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaqing Bu
- Tianjin Key Laboratory of Brine Chemical Engineering and Ecological Utilization of Resources, Tianjin Engineering Center of Marine Chemical Engineering & Technology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuwan Jiang
- Tianjin Key Laboratory of Brine Chemical Engineering and Ecological Utilization of Resources, Tianjin Engineering Center of Marine Chemical Engineering & Technology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Penghui Yang
- Tianjin Key Laboratory of Brine Chemical Engineering and Ecological Utilization of Resources, Tianjin Engineering Center of Marine Chemical Engineering & Technology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanfei Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Ecological Utilization of Resources, Tianjin Engineering Center of Marine Chemical Engineering & Technology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
98
|
Variation in Properties of Pre-Nucleation Calcium Carbonate Clusters Induced by Aggregation: A Molecular Dynamics Study. CRYSTALS 2021. [DOI: 10.3390/cryst11020102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous studies have speculated calcium carbonate (CaCO3) nucleation induced by pre-nucleation clusters (PNCs) aggregation. However, it is challenging for experiments to directly obtain the relationship between PNCs aggregation and nucleation. Herein, we employ molecular dynamics simulations to explore the variation during PNCs aggregation, which can describe the beginning stage of CaCO3 nucleation induced by PNCs aggregation in supersaturated solutions. The results reveal that the formation of CaCO3 nucleus consists of PNCs spontaneous growth, PNCs solubility equilibrium, and aggregation of PNCs inducing nucleation. The PNCs aggregation, accompanied by the variation in the configuration and stability of CaCO3 aggregate, breaks the solubility equilibrium of PNCs and creates conditions for the formation of the more stable nucleus. Besides, the CaCO3 nucleus with the higher coordination number and the lower hydration number form when decreasing the CaCO3 concentration or increasing the temperature. This work not only sheds light on the formation of the CaCO3 nucleus but also contributes to the explanation for CaCO3 polymorphism.
Collapse
|
99
|
Nakamuro T, Sakakibara M, Nada H, Harano K, Nakamura E. Capturing the Moment of Emergence of Crystal Nucleus from Disorder. J Am Chem Soc 2021; 143:1763-1767. [PMID: 33475359 DOI: 10.1021/jacs.0c12100] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crystallization is the process of atoms or molecules forming an organized solid via nucleation and growth. Being intrinsically stochastic, the research at an atomistic level has been a huge experimental challenge. We report herein in situ detection of a crystal nucleus forming during nucleation/growth of a NaCl nanocrystal, as video recorded in the interior of a vibrating conical carbon nanotube at 20-40 ms frame-1 with localization precision of <0.1 nm. We saw NaCl units assembled to form a cluster fluctuating between featureless and semiordered states, which suddenly formed a crystal. Subsequent crystal growth at 298 K and shrinkage at 473 K took place also in a stochastic manner. Productive contributions of the graphitic surface and its mechanical vibration have been experimentally indicated.
Collapse
Affiliation(s)
- Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Sakakibara
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Nada
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
100
|
Song X, Liu H, Wang J, Cao Y, Luo X. A study of the effects of NH 4+ on the fast precipitation of vaterite CaCO 3 formed from steamed ammonia liquid waste and K 2CO 3/Na 2CO 3. CrystEngComm 2021. [DOI: 10.1039/d1ce00365h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The results indicated that the CaCO3 morphology, particle size, and crystal phase were significantly influenced by the NH4+ concentration were investigated upon the use of steamed ammonia liquid waste (CaCl2) in a rapid fabrication technique.
Collapse
Affiliation(s)
- Xuewen Song
- College of Material science and Engineering
- Xian University of Architecture and Technology
- China
| | - Hui Liu
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control
- Jiangxi University of Science and Technology
- Ganzhou
- China
| | | | - Yuwei Cao
- Western Mining Group Co., Ltd. Xining
- China
| | - Xianping Luo
- College of Material science and Engineering
- Xian University of Architecture and Technology
- China
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control
- Jiangxi University of Science and Technology
| |
Collapse
|