51
|
Hirasawa T, Pascual-Anaya J, Kamezaki N, Taniguchi M, Mine K, Kuratani S. The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:194-207. [PMID: 24898540 DOI: 10.1002/jez.b.22579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
Abstract
Turtles are characterized by their possession of a shell with dorsal and ventral moieties: the carapace and the plastron, respectively. In this review, we try to provide answers to the question of the evolutionary origin of the carapace, by revising morphological, developmental, and paleontological comparative analyses. The turtle carapace is formed through modification of the thoracic ribs and vertebrae, which undergo extensive ossification to form a solid bony structure. Except for peripheral dermal elements, there are no signs of exoskeletal components ontogenetically added to the costal and neural bones, and thus the carapace is predominantly of endoskeletal nature. Due to the axial arrest of turtle rib growth, the axial part of the embryo expands laterally and the shoulder girdle becomes encapsulated in the rib cage, together with the inward folding of the lateral body wall in the late phase of embryogenesis. Along the line of this folding develops a ridge called the carapacial ridge (CR), a turtle-specific embryonic structure. The CR functions in the marginal growth of the carapacial primordium, in which Wnt signaling pathway might play a crucial role. Both paleontological and genomic evidence suggest that the axial arrest is the first step toward acquisition of the turtle body plan, which is estimated to have taken place after the divergence of a clade including turtles from archosaurs. The developmental relationship between the CR and the axial arrest remains a central issue to be solved in future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
52
|
Chen XH, Motani R, Cheng L, Jiang DY, Rieppel O. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation. PLoS One 2014; 9:e94396. [PMID: 24718682 PMCID: PMC3981804 DOI: 10.1371/journal.pone.0094396] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/13/2014] [Indexed: 11/25/2022] Open
Abstract
Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan’an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan’an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan’an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.
Collapse
Affiliation(s)
- Xiao-hong Chen
- Wuhan Center of China Geological Survey, Wuhan, Hubei, P. R. China
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, United States of America
| | - Long Cheng
- Wuhan Center of China Geological Survey, Wuhan, Hubei, P. R. China
| | - Da-yong Jiang
- Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education, Department of Geology and Geological Museum, Peking University, Beijing, P.R. China
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, Illinois, United States of America
| |
Collapse
|
53
|
Fu JP, Chen SN, Zou PF, Huang B, Guo Z, Zeng LB, Qin QW, Nie P. IFN-γ in turtle: conservation in sequence and signalling and role in inhibiting iridovirus replication in Chinese soft-shelled turtle Pelodiscus sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:87-95. [PMID: 24239708 DOI: 10.1016/j.dci.2013.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/03/2013] [Accepted: 11/03/2013] [Indexed: 06/02/2023]
Abstract
The IFN-γ gene was identified in a turtle, the Chinese soft-shelled turtle, Pelodiscus sinensis, with its genome consisting of 4 exons and 3 introns. The deduced amino acid sequence of this gene contains a signal peptide, an IFN-γ family signature motif (130)IQRKAVNELFPT, an NLS motif (155)KRKR and three potential N-glycosylation sites. As revealed by real-time quantitative PCR, the gene was constitutively expressed in all tested organs/tissues, with higher level observed in blood, intestine and thymus. An induced expression of IFN-γ at mRNA level was observed in peripheral blood leucocytes (PBLs) in response to in vitro stimulation of LPS and PolyI:C. The overexpression of IFN-γ in the Chinese soft-shelled turtle artery (STA) cell line resulted in the increase in the expression of transcriptional regulators, such as IRF1, IRF7 and STAT1, and antiviral genes, such as Mx, PKR, implying possibly the existence of a conserved signalling network and role for IFN-γ in the turtle. Furthermore, the infection of soft-shelled turtle iridovirus (STIV) in the cell line transfected with IFN-γ may cause the cell death as demonstrated with the elevated lactate dehydrogenase (LDH) level and cell mortality. However, the mechanism involved in the antiviral activity may require further investigation.
Collapse
Affiliation(s)
- Jian Ping Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Peng Fei Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Bei Huang
- College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province 361021, China
| | - Zheng Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Ling Bing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei Province 430223, China
| | - Qi Wei Qin
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong Province 510301, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian Province 361021, China.
| |
Collapse
|
54
|
Werneburg I, Hinz JK, Gumpenberger M, Volpato V, Natchev N, Joyce WG. Modeling neck mobility in fossil turtles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:230-43. [DOI: 10.1002/jez.b.22557] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Ingmar Werneburg
- Fachbereich Geowissenschaften der Eberhard Karls Universität Tübingen; Tübingen Germany
- Museum für Naturkunde; Leibniz Institute for Research on Evolution and Biodiversity; Berlin Germany
- Paläontologisches Institut und Museum der Universität Zürich; Zürich Switzerland
| | - Juliane K. Hinz
- Fachbereich Geowissenschaften der Eberhard Karls Universität Tübingen; Tübingen Germany
| | | | - Virginie Volpato
- Paläoanthropologie und Messelforschung/Mammalogie; Senckenberg Gesellschaft für Naturforschung; Frankfurt am Main Germany
| | - Nikolay Natchev
- Department of Integrative Zoology; University of Vienna; Vienna Austria
- Faculty of Natural Science; Shumen University; Bulgaria, Shumen 9712, Univeristetska str. 115
| | - Walter G. Joyce
- Fachbereich Geowissenschaften der Eberhard Karls Universität Tübingen; Tübingen Germany
- Department of Geoscience; University of Fribourg; Fribourg Switzerland
| |
Collapse
|
55
|
Abstract
The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endoskeletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell. The evolutionary origins of the costal and neural bony plates of the turtle shell have long remained elusive. Here the authors show, through comparative morphological and embryological analyses, that the most of the carapace is derived from endoskeletal ribs.
Collapse
|
56
|
Li YI, Kong L, Ponting CP, Haerty W. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles. Genome Biol Evol 2013; 5:923-33. [PMID: 23576313 PMCID: PMC3673632 DOI: 10.1093/gbe/evt060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.
Collapse
Affiliation(s)
- Yang I Li
- Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
57
|
Joyce WG, Schoch RR, Lyson TR. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown. BMC Evol Biol 2013; 13:266. [PMID: 24314094 PMCID: PMC4077068 DOI: 10.1186/1471-2148-13-266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/26/2013] [Indexed: 12/02/2022] Open
Abstract
Background Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. Results The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. Conclusions The primary homology of the character “sutured pelvis” is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic.
Collapse
Affiliation(s)
- Walter G Joyce
- Department of Geosciences, University of Tübingen, Hölderlinstr, 12, 72074 Tübingen, Germany.
| | | | | |
Collapse
|
58
|
Lu B, Yang W, Dai Q, Fu J. Using genes as characters and a parsimony analysis to explore the phylogenetic position of turtles. PLoS One 2013; 8:e79348. [PMID: 24278129 PMCID: PMC3836853 DOI: 10.1371/journal.pone.0079348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
The phylogenetic position of turtles within the vertebrate tree of life remains controversial. Conflicting conclusions from different studies are likely a consequence of systematic error in the tree construction process, rather than random error from small amounts of data. Using genomic data, we evaluate the phylogenetic position of turtles with both conventional concatenated data analysis and a "genes as characters" approach. Two datasets were constructed, one with seven species (human, opossum, zebra finch, chicken, green anole, Chinese pond turtle, and western clawed frog) and 4584 orthologous genes, and the second with four additional species (soft-shelled turtle, Nile crocodile, royal python, and tuatara) but only 1638 genes. Our concatenated data analysis strongly supported turtle as the sister-group to archosaurs (the archosaur hypothesis), similar to several recent genomic data based studies using similar methods. When using genes as characters and gene trees as character-state trees with equal weighting for each gene, however, our parsimony analysis suggested that turtles are possibly sister-group to diapsids, archosaurs, or lepidosaurs. None of these resolutions were strongly supported by bootstraps. Furthermore, our incongruence analysis clearly demonstrated that there is a large amount of inconsistency among genes and most of the conflict relates to the placement of turtles. We conclude that the uncertain placement of turtles is a reflection of the true state of nature. Concatenated data analysis of large and heterogeneous datasets likely suffers from systematic error and over-estimates of confidence as a consequence of a large number of characters. Using genes as characters offers an alternative for phylogenomic analysis. It has potential to reduce systematic error, such as data heterogeneity and long-branch attraction, and it can also avoid problems associated with computation time and model selection. Finally, treating genes as characters provides a convenient method for examining gene and genome evolution.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
59
|
Lyson TR, Bhullar BAS, Bever GS, Joyce WG, de Queiroz K, Abzhanov A, Gauthier JA. Homology of the enigmatic nuchal bone reveals novel reorganization of the shoulder girdle in the evolution of the turtle shell. Evol Dev 2013; 15:317-25. [DOI: 10.1111/ede.12041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tyler R. Lyson
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
- Department of Vertebrate Zoology; National Museum of Natural History, Smithsonian Institution; Washington DC 20560 USA
| | - Bhart-Anjan S. Bhullar
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - Gabe S. Bever
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Department of Anatomy; New York Institute of Technology, College of Osteopathic Medicine; New York NY USA
- Division of Paleontology; American Museum of Natural History; New York NY USA
| | - Walter G. Joyce
- Department of Geosciences; University of Tübingen; 72074 Tübingen Germany
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology; National Museum of Natural History, Smithsonian Institution; Washington DC 20560 USA
| | - Arhat Abzhanov
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - Jacques A. Gauthier
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
| |
Collapse
|
60
|
Evolutionary Origin of the Turtle Shell. Curr Biol 2013; 23:1113-9. [DOI: 10.1016/j.cub.2013.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/03/2013] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
|
61
|
Matsumura Y, Machida R, Wipfler B, Beutel RG, Yoshizawa K. Parallel evolution of novelties: extremely long intromittent organs in the leaf beetle subfamily Criocerinae. Evol Dev 2013; 15:305-15. [DOI: 10.1111/ede.12036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Ryuichiro Machida
- Sugadaira Montane Research Center; University of Tsukuba; Nagano; Japan
| | - Benjamin Wipfler
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum; FSU Jena; Germany
| | - Rolf G. Beutel
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum; FSU Jena; Germany
| | - Kazunori Yoshizawa
- Laboratory of Systematic Entomology, Department of Ecology and Systematics; Graduate School of Agriculture, Hokkaido University; Sapporo; Japan
| |
Collapse
|
62
|
The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 2013; 45:701-706. [PMID: 23624526 PMCID: PMC4000948 DOI: 10.1038/ng.2615] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/27/2013] [Indexed: 12/23/2022]
Abstract
The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.
Collapse
|
63
|
Diogo R, Wood B. The broader evolutionary lessons to be learned from a comparative and phylogenetic analysis of primate muscle morphology. Biol Rev Camb Philos Soc 2013; 88:988-1001. [DOI: 10.1111/brv.12039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 U.S.A
| | - Bernard Wood
- Department of Anthropology, Center for the Advanced Study of Hominid Paleobiology; George Washington University; Washington DC 20052 U.S.A
| |
Collapse
|
64
|
Nomura T, Kawaguchi M, Ono K, Murakami Y. Reptiles: a new model for brain evo-devo research. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:57-73. [PMID: 23319423 DOI: 10.1002/jez.b.22484] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/05/2012] [Accepted: 10/13/2012] [Indexed: 12/24/2022]
Abstract
Vertebrate brains exhibit vast amounts of anatomical diversity. In particular, the elaborate and complex nervous system of amniotes is correlated with the size of their behavioral repertoire. However, the evolutionary mechanisms underlying species-specific brain morphogenesis remain elusive. In this review we introduce reptiles as a new model organism for understanding brain evolution. These animal groups inherited ancestral traits of brain architectures. We will describe several unique aspects of the reptilian nervous system with a special focus on the telencephalon, and discuss the genetic mechanisms underlying reptile-specific brain morphology. The establishment of experimental evo-devo approaches to studying reptiles will help to shed light on the origin of the amniote brains.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Taisyogun, Kitaku, Kyoto, Japan.
| | | | | | | |
Collapse
|
65
|
Angielczyk KD, Feldman CR. Are diminutive turtles miniaturized? The ontogeny of plastron shape in emydine turtles. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kenneth D. Angielczyk
- Department of Geology; Field Museum of Natural History; 1400 South Lake Shore Drive; Chicago; IL; 60605; USA
| | - Chris R. Feldman
- Department of Biology; University of Nevada, Reno; 1664 North Virginia Street; Reno; NV; 89557; USA
| |
Collapse
|
66
|
Origin of the Turtle Body Plan: The Folding Theory to Illustrate Turtle-Specific Developmental Repatterning. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
67
|
Rieppel O. The Evolution of the Turtle Shell. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
68
|
Three Ways to Tackle the Turtle: Integrating Fossils, Comparative Embryology, and Microanatomy. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
69
|
Lyson TR, Joyce WG. Evolution of the turtle bauplan: the topological relationship of the scapula relative to the ribcage. Biol Lett 2012; 8:1028-31. [PMID: 22809725 PMCID: PMC3497105 DOI: 10.1098/rsbl.2012.0462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/21/2012] [Indexed: 11/12/2022] Open
Abstract
The turtle shell and the relationship of the shoulder girdle inside or 'deep' to the ribcage have puzzled neontologists and developmental biologists for more than a century. Recent developmental and fossil data indicate that the shoulder girdle indeed lies inside the shell, but anterior to the ribcage. Developmental biologists compare this orientation to that found in the model organisms mice and chickens, whose scapula lies laterally on top of the ribcage. We analyse the topological relationship of the shoulder girdle relative to the ribcage within a broader phylogenetic context and determine that the condition found in turtles is also found in amphibians, monotreme mammals and lepidosaurs. A vertical scapula anterior to the thoracic ribcage is therefore inferred to be the basal amniote condition and indicates that the condition found in therian mammals and archosaurs (which includes both developmental model organisms: chickens and mice) is derived and not appropriate for studying the developmental origin of the turtle shell. Instead, among amniotes, either monotreme mammals or lepidosaurs should be used.
Collapse
Affiliation(s)
- Tyler R Lyson
- Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA.
| | | |
Collapse
|
70
|
Fong JJ, Brown JM, Fujita MK, Boussau B. A phylogenomic approach to vertebrate phylogeny supports a turtle-archosaur affinity and a possible paraphyletic lissamphibia. PLoS One 2012; 7:e48990. [PMID: 23145043 PMCID: PMC3492174 DOI: 10.1371/journal.pone.0048990] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/03/2012] [Indexed: 01/18/2023] Open
Abstract
In resolving the vertebrate tree of life, two fundamental questions remain: 1) what is the phylogenetic position of turtles within amniotes, and 2) what are the relationships between the three major lissamphibian (extant amphibian) groups? These relationships have historically been difficult to resolve, with five different hypotheses proposed for turtle placement, and four proposed branching patterns within Lissamphibia. We compiled a large cDNA/EST dataset for vertebrates (75 genes for 129 taxa) to address these outstanding questions. Gene-specific phylogenetic analyses revealed a great deal of variation in preferred topology, resulting in topologically ambiguous conclusions from the combined dataset. Due to consistent preferences for the same divergent topologies across genes, we suspected systematic phylogenetic error as a cause of some variation. Accordingly, we developed and tested a novel statistical method that identifies sites that have a high probability of containing biased signal for a specific phylogenetic relationship. After removing putatively biased sites, support emerged for a sister relationship between turtles and either crocodilians or archosaurs, as well as for a caecilian-salamander sister relationship within Lissamphibia, with Lissamphibia potentially paraphyletic.
Collapse
Affiliation(s)
- Jonathan J Fong
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.
| | | | | | | |
Collapse
|
71
|
Diogo R, Linde-Medina M, Abdala V, Ashley-Ross MA. New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma. Biol Rev Camb Philos Soc 2012; 88:196-214. [DOI: 10.1111/j.1469-185x.2012.00247.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Tokita M, Chaeychomsri W, Siruntawineti J. Developmental basis of toothlessness in turtles: insight into convergent evolution of vertebrate morphology. Evolution 2012; 67:260-73. [PMID: 23289576 DOI: 10.1111/j.1558-5646.2012.01752.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The tooth is a major component of the vertebrate feeding apparatus and plays a crucial role in species survival, thus subjecting tooth developmental programs to strong selective constraints. However, irrespective of their functional importance, teeth have been lost in multiple lineages of tetrapod vertebrates independently. To understand both the generality and the diversity of developmental mechanisms that cause tooth agenesis in tetrapods, we investigated expression patterns of a series of tooth developmental genes in the lower jaw of toothless turtles and compared them to that of toothed crocodiles and the chicken as a representative of toothless modern birds. In turtle embryos, we found impairment of Shh signaling in the oral epithelium and early-stage arrest of odontoblast development caused by termination of Msx2 expression in the dental mesenchyme. Our data indicate that such changes underlie tooth agenesis in turtles and suggest that the mechanism that leads to early-stage odontogenic arrest differs between birds and turtles. Our results demonstrate that the cellular and molecular mechanisms that regulate early-stage arrest of tooth development are diverse in tetrapod lineages, and odontogenic developmental programs may respond to changes in upstream molecules similarly thereby evolving convergently with feeding morphology.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | |
Collapse
|
73
|
Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S. Body plan of turtles: an anatomical, developmental and evolutionary perspective. Anat Sci Int 2011; 87:1-13. [DOI: 10.1007/s12565-011-0121-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
74
|
Frazzetta TH. Flatfishes, Turtles, and Bolyerine Snakes: Evolution by Small Steps or Large, or Both? Evol Biol 2011. [DOI: 10.1007/s11692-011-9142-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
Valasek P, Theis S, DeLaurier A, Hinits Y, Luke GN, Otto AM, Minchin J, He L, Christ B, Brooks G, Sang H, Evans DJ, Logan M, Huang R, Patel K. Cellular and molecular investigations into the development of the pectoral girdle. Dev Biol 2011; 357:108-16. [PMID: 21741963 DOI: 10.1016/j.ydbio.2011.06.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 01/10/2023]
Abstract
The forelimbs of higher vertebrates are composed of two portions: the appendicular region (stylopod, zeugopod and autopod) and the less prominent proximal girdle elements (scapula and clavicle) that brace the limb to the main trunk axis. We show that the formation of the muscles of the proximal limb occurs through two distinct mechanisms. The more superficial girdle muscles (pectoral and latissimus dorsi) develop by the "In-Out" mechanism whereby migration of myogenic cells from the somites into the limb bud is followed by their extension from the proximal limb bud out onto the thorax. In contrast, the deeper girdle muscles (e.g. rhomboideus profundus and serratus anterior) are induced by the forelimb field which promotes myotomal extension directly from the somites. Tbx5 inactivation demonstrated its requirement for the development of all forelimb elements which include the skeletal elements, proximal and distal muscles as well as the sternum in mammals and the cleithrum of fish. Intriguingly, the formation of the diaphragm musculature is also dependent on the Tbx5 programme. These observations challenge our classical views of the boundary between limb and trunk tissues. We suggest that significant structures located in the body should be considered as components of the forelimb.
Collapse
Affiliation(s)
- Petr Valasek
- School of Biological Sciences, Institute for Cardiovascular and Metabolic Research, University of Reading, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Kawashima-Ohya Y, Narita Y, Nagashima H, Usuda R, Kuratani S. Hepatocyte growth factor is crucial for development of the carapace in turtles. Evol Dev 2011; 13:260-8. [PMID: 21535464 PMCID: PMC3121961 DOI: 10.1111/j.1525-142x.2011.00474.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution from the perspective of muscle development, we compared the development of the muscle plate, the anlage of hypaxial muscles, between the Chinese soft-shelled turtle, Pelodiscus sinensis, and chicken embryos. We found that the ventrolateral lip (VLL) of the thoracic dermomyotome of P. sinensis delaminates early and produces sparse muscle plate in the lateral body wall. Expression patterns of the regulatory genes for myotome differentiation, such as Myf5, myogenin, Pax3, and Pax7 have been conserved among amniotes, including turtles. However, in P. sinensis embryos, the gene hepatocyte growth factor (HGF), encoding a regulatory factor for delamination of the dermomyotomal VLL, was uniquely expressed in sclerotome and the lateral body wall at the interlimb level. Implantation of COS-7 cells expressing a HGF antagonist into the turtle embryo inhibited CR formation. We conclude that the de novo expression of HGF in the turtle mesoderm would have played an innovative role resulting in the acquisition of the turtle-specific body plan.
Collapse
Affiliation(s)
- Yoshie Kawashima-Ohya
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
77
|
Hall BK, Kerney R. Levels of biological organization and the origin of novelty. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 318:428-37. [PMID: 21826786 DOI: 10.1002/jez.b.21425] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/08/2011] [Accepted: 06/11/2011] [Indexed: 11/08/2022]
Abstract
The concept of novelty in evolutionary biology pertains to multiple tiers of biological organization from behavioral and morphological changes to changes at the molecular level. Identifying novel features requires assessments of similarity (homology and homoplasy) of relationships (phylogenetic history) and of shared developmental and genetic pathways or networks. After a brief discussion of how novelty is used in recent literature, we discuss whether the evolutionary approach to homology and homoplasy initially formulated by Lankester in the 19th century informs our understanding of novelty today. We then discuss six examples of morphological features described in the recent literature as novelties, and assess the basis upon which they are regarded as novel. The six are: origin of the turtle shell, transition from fish fins to tetrapod limbs, origination of the neural crest and neural crest cells, cement glands in frogs and casquettes in fish, whale bone-eating tubeworms, and the digestion of plant proteins by nematodes. The article concludes with a discussion of means of acquiring novel genetic information that can account for novelty recognized at higher levels. These are co-options of existing genetic circuitry, gene duplication followed by neofunctionalization, gene rearrangements through mobile genetic elements, and lateral gene transfer. We conclude that on the molecular level only the latter category provides novel genetic information, in that there is no homologous precursor. However, novel phenotypes can be generated through both neofunctionalization and gene rearrangements. Therefore, assigning phenotypic or genotypic "novelty" is contingent on the level of biological organization addressed.
Collapse
Affiliation(s)
- Brian K Hall
- Department of Biology, Dalhousie University, Halifax Nova Scotia, Canada.
| | | |
Collapse
|
78
|
Lima FC, Santos ALQ, Vieira LG, Da Silva-Junior LM, Romão MF, De Simone SBS, Hirano LQL, Silva JMM, Montelo KM, Malvásio A. Ontogeny of the Shell Bones of Embryos of Podocnemis unifilis (Troschel, 1848) (Testudines, Podocnemididae). Anat Rec (Hoboken) 2011; 294:621-32. [DOI: 10.1002/ar.21359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/26/2010] [Indexed: 11/08/2022]
|
79
|
Slit2 Activity in the Migration of Guidepost Neurons Shapes Thalamic Projections during Development and Evolution. Neuron 2011; 69:1085-98. [DOI: 10.1016/j.neuron.2011.02.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2011] [Indexed: 11/22/2022]
|
80
|
Kuratani S, Kuraku S, Nagashima H. Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 2011; 13:1-14. [DOI: 10.1111/j.1525-142x.2010.00451.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
81
|
Angielczyk KD, Feldman CR, Miller GR. ADAPTIVE EVOLUTION OF PLASTRON SHAPE IN EMYDINE TURTLES. Evolution 2010; 65:377-94. [DOI: 10.1111/j.1558-5646.2010.01118.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
82
|
Mallo M, Wellik DM, Deschamps J. Hox genes and regional patterning of the vertebrate body plan. Dev Biol 2010; 344:7-15. [PMID: 20435029 PMCID: PMC2909379 DOI: 10.1016/j.ydbio.2010.04.024] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/09/2010] [Accepted: 04/22/2010] [Indexed: 12/18/2022]
Abstract
Several decades have passed since the discovery of Hox genes in the fruit fly Drosophila melanogaster. Their unique ability to regulate morphologies along the anteroposterior (AP) axis (Lewis, 1978) earned them well-deserved attention as important regulators of embryonic development. Phenotypes due to loss- and gain-of-function mutations in mouse Hox genes have revealed that the spatio-temporally controlled expression of these genes is critical for the correct morphogenesis of embryonic axial structures. Here, we review recent novel insight into the modalities of Hox protein function in imparting specific identity to anatomical regions of the vertebral column, and in controlling the emergence of these tissues concomitantly with providing them with axial identity. The control of these functions must have been intimately linked to the shaping of the body plan during evolution.
Collapse
Affiliation(s)
- Moises Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | | | |
Collapse
|
83
|
Delfino M, Sánchez-Villagra MR. A survey of the rock record of reptilian ontogeny. Semin Cell Dev Biol 2010; 21:432-40. [DOI: 10.1016/j.semcdb.2009.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 11/26/2022]
|
84
|
Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Dev Cell 2010; 18:655-61. [PMID: 20412779 DOI: 10.1016/j.devcel.2010.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 12/28/2009] [Accepted: 02/18/2010] [Indexed: 11/24/2022]
Abstract
Hox genes are essential for the patterning of the axial skeleton. Hox group 10 has been shown to specify the lumbar domain by setting a rib-inhibiting program in the presomitic mesoderm (PSM). We have now produced mice with ribs in every vertebra by ectopically expressing Hox group 6 in the PSM, indicating that Hox genes are also able to specify the thoracic domain. We show that the information provided by Hox genes to specify rib-containing and rib-less areas is first interpreted in the myotome through the regional-specific control of Myf5 and Myf6 expression. This information is then transmitted to the sclerotome by a system that includes FGF and PDGF signaling to produce vertebrae with or without ribs at different axial levels. Our findings offer a new perspective of how Hox genes produce global patterns in the axial skeleton and support a redundant nonmyogenic role of Myf5 and Myf6 in rib formation.
Collapse
|
85
|
Koi S, Kato M. Developmental morphology of seedling and shoot and phylogenetic relationship of Diplobryum koyamae (Podostemaceae). AMERICAN JOURNAL OF BOTANY 2010; 97:373-387. [PMID: 21622401 DOI: 10.3732/ajb.0900157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We demonstrated that saltational evolution was recurrent in the body plans of seedlings of the aquatic angiosperm Podostemaceae, in contrast to other angiosperms with seedlings having almost common body plans. Diplobryum koyamae, transferred to the genus Hydrodiscus described in this paper, has long-floating shoots with an anchoring disk-like base and is rootless. Such a body plan is distinct from other members of Asian Podostemoideae comprising reduced or moderate shoots borne on the root. Here, our molecular phylogenetic analysis revealed that H. koyamae is sister to a crustose-rooted group of Hanseniella, Hydrobryum and Thawatchaia within Asian Podostemoideae. The germinating embryo was devoid of plumule and radicle, and comprised a single cotyledon and a short hypocotyl, which produced an adventitious shoot endogenously. The leaves are formed in the absence of the shoot apical meristem, accompanying the separation of lightly stained cells. Comparison with other species of Asian Podostemoideae having the plumule and the adventitious root in the seedling, along with their phylogenetic relationship, suggests that saltational evolution occurred in the seedling body plan of H. koyamae leading to the extraordinary adult body plan, as in the separate clade of Dalzellia, Indodalzellia, and Indotristicha of the subfamily Tristichoideae.
Collapse
Affiliation(s)
- Satoshi Koi
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | | |
Collapse
|
86
|
Affiliation(s)
- Ann C Burke
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
87
|
Valasek P, Theis S, Krejci E, Grim M, Maina F, Shwartz Y, Otto A, Huang R, Patel K. Somitic origin of the medial border of the mammalian scapula and its homology to the avian scapula blade. J Anat 2010; 216:482-8. [PMID: 20136669 DOI: 10.1111/j.1469-7580.2009.01200.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The scapula is the main skeletal element of the pectoral girdle allowing muscular fixation of the forelimb to the axial skeleton. The vertebrate limb skeleton has traditionally been considered to develop from the lateral plate mesoderm, whereas the musculature originates from the axial somites. However, in birds, the scapular blade has been shown to develop from the somites. We investigated whether a somitic contribution was also present in the mammalian scapula. Using genetic lineage-tracing techniques, we show that the medial border of the mammalian scapula develops from somitic cells. The medial scapula border serves as the attachment site of girdle muscles (serratus anterior, rhomboidei and levator scapulae). We show that the development of these muscles is independent of the mechanism that controls the formation of all other limb muscles. We suggest that these muscles be specifically referred to as medial girdle muscles. Our results establish the avian scapular blade and medial border of the mammalian scapula as homologous structures as they share the same developmental origin.
Collapse
Affiliation(s)
- Petr Valasek
- School of Biological Sciences, University of Reading, Reading, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Werneburg I, Hugi J, Müller J, Sánchez-Villagra MR. Embryogenesis and ossification ofEmydura subglobosa(Testudines, Pleurodira, Chelidae) and patterns of turtle development. Dev Dyn 2009; 238:2770-86. [DOI: 10.1002/dvdy.22104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
89
|
Affiliation(s)
- Olivier Rieppel
- Rowe Family Curator of Evolutionary Biology, Department of Geology, Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA.
| |
Collapse
|
90
|
Developmental biology: The turtle fold. Nature 2009. [DOI: 10.1038/460309c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|