51
|
Li Y, Mensah EO, Fordjour E, Bai J, Yang Y, Bai Z. Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnol Adv 2022; 59:107970. [PMID: 35550915 DOI: 10.1016/j.biotechadv.2022.107970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
The preparation of genetic libraries is an essential step to evolve microorganisms and study genotype-phenotype relationships by high-throughput screening/selection. As the large-scale synthesis of oligonucleotides becomes easy, cheap, and high-throughput, numerous novel strategies have been developed in recent years to construct high-quality oligo-mediated libraries, leveraging state-of-art molecular biology tools for genome editing and gene regulation. This review presents an overview of recent advances in creating and characterizing in vitro and in vivo genetic libraries, based on CRISPR/Cas, regulatory RNAs, and recombineering, primarily for Escherichia coli and Saccharomyces cerevisiae. These libraries' applications in high-throughput metabolic engineering, strain evolution and protein engineering are also discussed.
Collapse
Affiliation(s)
- Ye Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Emmanuel Osei Mensah
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Eric Fordjour
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Bai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yankun Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
52
|
Abstract
Defense against viruses and other mobile genetic elements (MGEs) is important in many organisms. The CRISPR-Cas systems found in bacteria and archaea constitute adaptive immune systems that can acquire the ability to target previously unrecognized MGEs. No CRISPR-Cas system is found to occur naturally in eukaryotic cells, but here, we demonstrate interference by a type I-E CRISPR-Cas system from Escherichia coli introduced in Saccharomyces cerevisiae. The designed CRISPR arrays are expressed and processed properly in S. cerevisiae. Targeted plasmids display reduced transformation efficiency, indicative of DNA cleavage. IMPORTANCE Genetic inactivation of viruses and other MGEs is an important tool with application in both research and therapy. Gene editing using, e.g., Cas9-based systems, can be used to inactivate MGEs in eukaryotes by introducing specific mutations. However, type I-E systems processively degrade the target which allows for inactivation without detailed knowledge of gene function. A reconstituted CRISPR-Cas system in S. cerevisiae can also function as a basic research platform for testing the role of various factors in the interference process.
Collapse
|
53
|
Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022; 346:358-379. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
Yeast has been employed as an effective derived drug carrier as a unicellular microorganism. Many research works have been devoted to the encapsulation of nucleic acid compounds, insoluble small molecule drugs, small molecules, liposomes, polymers, and various nanoparticles in yeast for the treatment of disease. Recombinant yeast-based vaccine carriers (WYV) have played a major role in the development of vaccines. Herein, the latest reports on the application of yeast carriers and the development of related research are summarized, a conceptual description of gastrointestinal absorption of yeast carriers, as well as the various package forms of different drug molecules and nanoparticles in yeast carriers are introduced. In addition, the advantages and development of recombinant yeast vaccine carriers for the disease, veterinary and aquaculture applications are discussed. Moreover, the current challenges and future directions of yeast carriers are proposed.
Collapse
Affiliation(s)
- Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
54
|
Kang Y, Lin W, Liu Y, Nagy PD. Key tethering function of Atg11 autophagy scaffold protein in formation of virus-induced membrane contact sites during tombusvirus replication. Virology 2022; 572:1-16. [DOI: 10.1016/j.virol.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
|
55
|
Noar RD, Thomas E, Daub ME. Genetic Characteristics and Metabolic Interactions between Pseudocercospora fijiensis and Banana: Progress toward Controlling Black Sigatoka. PLANTS (BASEL, SWITZERLAND) 2022; 11:948. [PMID: 35406928 PMCID: PMC9002641 DOI: 10.3390/plants11070948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 05/10/2023]
Abstract
The international importance of banana and severity of black Sigatoka disease have led to extensive investigations into the genetic characteristics and metabolic interactions between the Dothideomycete Pseudocercospora fijiensis and its banana host. P. fijiensis was shown to have a greatly expanded genome compared to other Dothideomycetes, due to the proliferation of retrotransposons. Genome analysis suggests the presence of dispensable chromosomes that may aid in fungal adaptation as well as pathogenicity. Genomic research has led to the characterization of genes and metabolic pathways involved in pathogenicity, including: secondary metabolism genes such as PKS10-2, genes for mitogen-activated protein kinases such as Fus3 and Slt2, and genes for cell wall proteins such as glucosyl phosphatidylinositol (GPI) and glycophospholipid surface (Gas) proteins. Studies conducted on resistance mechanisms in banana have documented the role of jasmonic acid and ethylene pathways. With the development of banana transformation protocols, strategies for engineering resistance include transgenes expressing antimicrobial peptides or hydrolytic enzymes as well as host-induced gene silencing (HIGS) targeting pathogenicity genes. Pseudocercospora fijiensis has been identified as having high evolutionary potential, given its large genome size, ability to reproduce both sexually and asexually, and long-distance spore dispersal. Thus, multiple control measures are needed for the sustainable control of black Sigatoka disease.
Collapse
Affiliation(s)
- Roslyn D. Noar
- NSF Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27606, USA
| | - Elizabeth Thomas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.T.); (M.E.D.)
| | - Margaret E. Daub
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.T.); (M.E.D.)
| |
Collapse
|
56
|
Yi X, Alper HS. Considering Strain Variation and Non-Type Strains for Yeast Metabolic Engineering Applications. Life (Basel) 2022; 12:life12040510. [PMID: 35455001 PMCID: PMC9032683 DOI: 10.3390/life12040510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
A variety of yeast species have been considered ideal hosts for metabolic engineering to produce value-added chemicals, including the model organism Saccharomyces cerevisiae, as well as non-conventional yeasts including Yarrowia lipolytica, Kluyveromyces marxianus, and Pichia pastoris. However, the metabolic capacity of these microbes is not simply dictated or implied by genus or species alone. Within the same species, yeast strains can display distinct variations in their phenotypes and metabolism, which affect the performance of introduced pathways and the production of interesting compounds. Moreover, it is unclear how this metabolic potential corresponds to function upon rewiring these organisms. These reports thus point out a new consideration for successful metabolic engineering, specifically: what are the best strains to utilize and how does one achieve effective metabolic engineering? Understanding such questions will accelerate the host selection and optimization process for generating yeast cell factories. In this review, we survey recent advances in studying yeast strain variations and utilizing non-type strains in pathway production and metabolic engineering applications. Additionally, we highlight the importance of employing portable methods for metabolic rewiring to best access this metabolic diversity. Finally, we conclude by highlighting the importance of considering strain diversity in metabolic engineering applications.
Collapse
Affiliation(s)
- Xiunan Yi
- Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Hal S. Alper
- Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Correspondence:
| |
Collapse
|
57
|
Lee MD, Creagh JW, Fredericks LR, Crabtree AM, Patel JS, Rowley PA. The Characterization of a Novel Virus Discovered in the Yeast Pichia membranifaciens. Viruses 2022; 14:v14030594. [PMID: 35337001 PMCID: PMC8951182 DOI: 10.3390/v14030594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Mycoviruses are widely distributed across fungi, including the yeasts of the Saccharomycotina subphylum. This manuscript reports the first double-stranded RNA (dsRNA) virus isolated from Pichia membranifaciens. This novel virus has been named Pichia membranifaciens virus L-A (PmV-L-A) and is a member of the Totiviridae. PmV-L-A is 4579 bp in length, with RNA secondary structures similar to the packaging, replication, and frameshift signals of totiviruses that infect Saccharomycotina yeasts. PmV-L-A was found to be part of a monophyletic group within the I-A totiviruses, implying a shared ancestry between mycoviruses isolated from the Pichiaceae and Saccharomycetaceae yeasts. Energy-minimized AlphaFold2 molecular models of the PmV-L-A Gag protein revealed structural conservation with the Gag protein of Saccharomyces cerevisiae virus L-A (ScV-L-A). The predicted tertiary structure of the PmV-L-A Pol and other homologs provided a possible mechanism for totivirus RNA replication due to structural similarities with the RNA-dependent RNA polymerases of mammalian dsRNA viruses. Insights into the structure, function, and evolution of totiviruses gained from yeasts are essential because of their emerging role in animal disease and their parallels with mammalian viruses.
Collapse
Affiliation(s)
- Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Jack W. Creagh
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Jagdish Suresh Patel
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
- Correspondence:
| |
Collapse
|
58
|
Travers Cook TJ, Skirgaila C, Martin OY, Buser CC. Infection by dsRNA viruses is associated with enhanced sporulation efficiency in Saccharomyces cerevisiae. Ecol Evol 2022; 12:e8558. [PMID: 35127053 PMCID: PMC8794758 DOI: 10.1002/ece3.8558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 01/07/2023] Open
Abstract
Upon starvation diploid cells of the facultative sexual yeast Saccharomyces cerevisiae undergo sporulation, forming four metabolically quiescent and robust haploid spores encased in a degradable ascus. All endosymbionts, whether they provide net benefits or costs, utilize host resources; in yeast, this should induce an earlier onset of sporulation. Here, we tested whether the presence of endosymbiotic dsRNA viruses (M satellite and L-A helper) correspond with higher sporulation rate of their host, S. cerevisiae. We find that S. cerevisiae hosting both the M and L-A viruses (so-called "killer yeasts") have significantly higher sporulation efficiency than those without. We also found that the removal of the M virus did not reduce sporulation frequency, possibly because the L-A virus still utilizes host resources with and without the M virus. Our findings indicate that either virulent resource use by endosymbionts induces sporulation, or that viruses are spread more frequently to sporulating strains. Further exploration is required to distinguish cause from effect.
Collapse
Affiliation(s)
- Thomas J. Travers Cook
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | | | - Oliver Y. Martin
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of BiologyETH ZürichZürichSwitzerland
| | - Claudia C. Buser
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| |
Collapse
|
59
|
Tsouris A, Schacherer J, Ishchuk OP. RNA Interference (RNAi ) as a Tool for High-Resolution Phenotypic Screening of the Pathogenic Yeast Candida glabrata. Methods Mol Biol 2022; 2477:313-330. [PMID: 35524125 DOI: 10.1007/978-1-0716-2257-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
After its discovery RNA interference (RNAi) has become a powerful tool to study gene functions in different organisms. RNAi has been applied at genome-wide scale and can be nowadays performed using high-throughput automated systems (robotics). The simplest RNAi process requires the expression of two genes (Dicer and Argonaute) to function. To initiate the silencing, constructs generating either double-strand RNA or antisense RNA are required. Recently, RNAi was reconstituted by expressing Saccharomyces castellii genes in the human pathogenic yeast Candida glabrata and was used to identify new genes related to the virulence of this pathogen.In this chapter, we describe a method to make the C. glabrata pathogenic yeast competent for RNAi and to use RNA silencing as a tool for low- or high-resolution phenotypic screening in this species.
Collapse
Affiliation(s)
- Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olena P Ishchuk
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
60
|
Oberlin S, Rajeswaran R, Trasser M, Barragán-Borrero V, Schon MA, Plotnikova A, Loncsek L, Nodine MD, Marí-Ordóñez A, Voinnet O. Innate, translation-dependent silencing of an invasive transposon in Arabidopsis. EMBO Rep 2021; 23:e53400. [PMID: 34931432 PMCID: PMC8892269 DOI: 10.15252/embr.202153400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element EVADÉ (EVD), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA (shGAG) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic flGAG‐POL. We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG‐POL. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on shGAG, occurs precisely at this breakage point. This hitherto‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern.
Collapse
Affiliation(s)
- Stefan Oberlin
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Rajendran Rajeswaran
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Marieke Trasser
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Verónica Barragán-Borrero
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael A Schon
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexandra Plotnikova
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| | - Lukas Loncsek
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael D Nodine
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria.,Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Arturo Marí-Ordóñez
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| |
Collapse
|
61
|
Haluck-Kangas A, Patel M, Paudel B, Vaidyanathan A, Murmann AE, Peter ME. DISE/6mer seed toxicity-a powerful anti-cancer mechanism with implications for other diseases. J Exp Clin Cancer Res 2021; 40:389. [PMID: 34893072 PMCID: PMC8662895 DOI: 10.1186/s13046-021-02177-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
micro(mi)RNAs are short noncoding RNAs that through their seed sequence (pos. 2-7/8 of the guide strand) regulate cell function by targeting complementary sequences (seed matches) located mostly in the 3' untranslated region (3' UTR) of mRNAs. Any short RNA that enters the RNA induced silencing complex (RISC) can kill cells through miRNA-like RNA interference when its 6mer seed sequence (pos. 2-7 of the guide strand) has a G-rich nucleotide composition. G-rich seeds mediate 6mer Seed Toxicity by targeting C-rich seed matches in the 3' UTR of genes critical for cell survival. The resulting Death Induced by Survival gene Elimination (DISE) predominantly affects cancer cells but may contribute to cell death in other disease contexts. This review summarizes recent findings on the role of DISE/6mer Seed Tox in cancer; its therapeutic potential; its contribution to therapy resistance; its selectivity, and why normal cells are protected. In addition, we explore the connection between 6mer Seed Toxicity and aging in relation to cancer and certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashley Haluck-Kangas
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Monal Patel
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Bidur Paudel
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Aparajitha Vaidyanathan
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Andrea E. Murmann
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| | - Marcus E. Peter
- Division Hematology/Oncology and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 6-123, Chicago, IL 60611 USA
| |
Collapse
|
62
|
Abstract
One of the first layers of protection that metazoans put in place to defend themselves against viruses rely on the use of proteins containing DExD/H-box helicase domains. These members of the duplex RNA–activated ATPase (DRA) family act as sensors of double-stranded RNA (dsRNA) molecules, a universal marker of viral infections. DRAs can be classified into 2 subgroups based on their mode of action: They can either act directly on the dsRNA, or they can trigger a signaling cascade. In the first group, the type III ribonuclease Dicer plays a key role to activate the antiviral RNA interference (RNAi) pathway by cleaving the viral dsRNA into small interfering RNAs (siRNAs). This represents the main innate antiviral immune mechanism in arthropods and nematodes. Even though Dicer is present and functional in mammals, the second group of DRAs, containing the RIG-I-like RNA helicases, appears to have functionally replaced RNAi and activate type I interferon (IFN) response upon dsRNA sensing. However, recent findings tend to blur the frontier between these 2 mechanisms, thereby highlighting the crucial and diverse roles played by RNA helicases in antiviral innate immunity. Here, we will review our current knowledge of the importance of these key proteins in viral infection, with a special focus on the interplay between the 2 main types of response that are activated by dsRNA.
Collapse
Affiliation(s)
- Morgane Baldaccini
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
- * E-mail:
| |
Collapse
|
63
|
Nazer E, Gómez Acuña L, Kornblihtt AR. Seeking the truth behind the myth: Argonaute tales from "nuclearland". Mol Cell 2021; 82:503-513. [PMID: 34856122 DOI: 10.1016/j.molcel.2021.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Argonaute proteins have been traditionally characterized as a highly evolutionary conserved family engaged in post-transcriptional gene silencing pathways. The Argonaute family is mainly grouped into the AGO and PIWI clades. The canonical role of Argonaute proteins relies on their ability to bind small-RNAs that recognize complementary sequences on target mRNAs to induce either mRNA degradation or translational repression. However, there is an increasing amount of evidence supporting that Argonaute proteins also exert multiple nuclear functions that subsequently regulate gene expression. In this line, genome-wide studies showed that members from the AGO clade regulate transcription, 3D chromatin organization, and splicing of active loci located within euchromatin. Here, we discuss recent work based on high-throughput technologies that have significantly contributed to shed light on the multivariate nuclear functions of AGO proteins in different model organisms. We also analyze data supporting that AGO proteins are able to execute these nuclear functions independently from small RNA pathways. Finally, we integrate these mechanistic insights with recent reports highlighting the clinical importance of AGO in breast and prostate cancer development.
Collapse
Affiliation(s)
- Ezequiel Nazer
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| | - Luciana Gómez Acuña
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
64
|
Hao G, McCormick S, Vaughan MM. Effects of Double-Stranded RNAs Targeting Fusarium graminearum TRI6 on Fusarium Head Blight and Mycotoxins. PHYTOPATHOLOGY 2021; 111:2080-2087. [PMID: 33823648 DOI: 10.1094/phyto-10-20-0468-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium graminearum is the causal agent of Fusarium head blight (FHB), which reduces crop yield and contaminates grains with poisonous trichothecene mycotoxins, including deoxynivalenol (DON). DON functions as an important virulence factor that promotes FHB spread in wheat; therefore, reducing DON production will decrease yield losses to FHB and increase food safety. Recent progress in the topical application of double-stranded RNA (dsRNA) to reduce F. graminearum infection has provided encouraging results. In this study, we designed and synthesized dsRNA targeting the transcription factor TRI6 (TRI6-dsRNA), which is a key regulator of DON biosynthesis. The expression of F. graminearum TRI6 was significantly lower in detached wheat heads treated with TRI6-dsRNA solution compared with the controls. Furthermore, TRI6-dsRNA treatments reduced disease and DON accumulation in inoculated detached wheat heads. Therefore, topical applications of TRI6-dsRNA on wheat heads of intact plants were assessed for their ability to reduce FHB and DON under growth chamber and greenhouse conditions. When wheat heads were treated with TRI6-dsRNA solution in growth chamber conditions, TRI6-dsRNA treatments failed to prevent FHB spread. However, when wheat heads were treated with TRI6-dsRNA solution under greenhouse conditions, FHB and DON were significantly reduced, and infection was restricted to the inoculated floret. In addition, addition of TRI6-dsRNA to toxin induction liquid media had no effect on F. graminearum 15-ADON production. Our study demonstrates that the efficacy of dsRNA applications is strongly dependent on application methods and environmental conditions.
Collapse
Affiliation(s)
- Guixia Hao
- U.S. Department of Agriculture-Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604
| | - Susan McCormick
- U.S. Department of Agriculture-Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604
| | - Martha M Vaughan
- U.S. Department of Agriculture-Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604
| |
Collapse
|
65
|
Piombo E, Vetukuri RR, Broberg A, Kalyandurg PB, Kushwaha S, Funck Jensen D, Karlsson M, Dubey M. Role of Dicer-Dependent RNA Interference in Regulating Mycoparasitic Interactions. Microbiol Spectr 2021; 9:e0109921. [PMID: 34549988 PMCID: PMC8557909 DOI: 10.1128/spectrum.01099-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Dicer-like proteins (DCLs) play a vital role in RNA interference (RNAi), by cleaving RNA filament into small RNAs. Although DCL-mediated RNAi can regulate interspecific communication between pathogenic/mutualistic organisms and their hosts, its role in mycoparasitic interactions is yet to be investigated. In this study, we deleted dcl genes in the mycoparasitic fungus Clonostachys rosea and characterize the functions of DCL-dependent RNAi in mycoparasitism. Deletion of dcl2 resulted in a mutant with reduced secondary metabolite production, antagonism toward the plant-pathogenic fungus Botrytis cinerea, and reduced ability to control Fusarium foot rot disease on wheat, caused by Fusarium graminearum. Transcriptome sequencing of the in vitro interaction between the C. rosea Δdcl2 strain and B. cinerea or F. graminearum identified the downregulation of genes coding for transcription factors, membrane transporters, hydrolytic enzymes, and secondary metabolites biosynthesis enzymes putatively involved in antagonistic interactions, in comparison with the C. rosea wild-type interaction. A total of 61 putative novel microRNA-like RNAs (milRNAs) were identified in C. rosea, and 11 were downregulated in the Δdcl2 mutant. In addition to putative endogenous gene targets, these milRNAs were predicted to target B. cinerea and F. graminearum virulence factor genes, which showed an increased expression during interaction with the Δdcl2 mutant incapable of producing the targeting milRNAs. In summary, this study constitutes the first step in elucidating the role of RNAi in mycoparasitic interactions, with important implications for biological control of plant diseases, and poses the base for future studies focusing on the role of cross-species RNAi regulating mycoparasitic interactions. IMPORTANCE Small RNAs mediated RNA interference (RNAi) known to regulate several biological processes. Dicer-like endoribonucleases (DCLs) play a vital role in the RNAi pathway by generating sRNAs. In this study, we investigated a role of DCL-mediated RNAi in interference interactions between mycoparasitic fungus Clonostachys rosea and the two fungal pathogens Botrytis cinerea and Fusarium graminearum (here called mycohosts). We found that the dcl mutants were not able to produce 11 sRNAs predicted to finetune the regulatory network of genes known to be involved in production of hydrolytic enzymes, antifungal compounds, and membrane transporters needed for antagonistic action of C. rosea. We also found C. rosea sRNAs putatively targeting known virulence factors in the mycohosts, indicating RNAi-mediated cross-species communication. Our study expanded the understanding of underlying mechanisms of cross-species communication during interference interactions and poses a base for future works studying the role of DCL-based cross-species RNAi in fungal interactions.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sandeep Kushwaha
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
66
|
Iida T, Kobayashi T. Establishment of an "in saccharo" experimental system. Genes Genet Syst 2021; 96:107-118. [PMID: 34108346 DOI: 10.1266/ggs.21-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many proteins form complexes that function in reaction pathways. Therefore, to understand protein function, it is necessary to reconstitute complexes and pathways in vitro. However, it is not straightforward to achieve full activity in reconstituted systems. To address this problem, we present a yeast system named "in saccharo" analysis, which uses budding yeast for simultaneous expression and analysis of many kinds of non-host proteins, such as human proteins. For this purpose, vectors that can accommodate many genes are required. Here, we describe the construction of a chromosome vector by insertion of unique barcode sequences (BCs) into the ribosomal RNA gene repeat (rDNA). Each unit of the rDNA has a BC that is used as the target for integration of an external gene. Because rDNA is naturally capable of maintaining many repetitive copies, the vector is expected to retain the numerous external genes that may be required for reconstitution of functional protein complexes and reaction pathways. Consistent with this prediction, we were able to clone three human genes that form the RNA silencing pathway, which has no functional equivalent in budding yeast, and to demonstrate functionality in this in saccharo analysis system.
Collapse
Affiliation(s)
- Tetsushi Iida
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
67
|
Guan R, Chu D, Han X, Miao X, Li H. Advances in the Development of Microbial Double-Stranded RNA Production Systems for Application of RNA Interference in Agricultural Pest Control. Front Bioeng Biotechnol 2021; 9:753790. [PMID: 34589476 PMCID: PMC8473835 DOI: 10.3389/fbioe.2021.753790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022] Open
Abstract
RNA interference (RNAi) is a valuable and revolutionary technology that has been widely applied in medicine and agriculture. The application of RNAi in various industries requires large amounts of low-cost double-stranded RNA (dsRNA). Chemical synthesis can only produce short dsRNAs; long dsRNAs need to be synthesized biologically. Several microbial chassis cells, such as Escherichia coli, Saccharomyces cerevisiae, and Bacillus species, have been used for dsRNA synthesis. However, the titer, rate of production, and yield of dsRNA obtained by these microorganism-based strategies is still low. In this review, we summarize advances in microbial dsRNA production, and analyze the merits and faults of different microbial dsRNA production systems. This review provides a guide for dsRNA production system selection. Future development of efficient microbial dsRNA production systems is also discussed.
Collapse
Affiliation(s)
- Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Dongdong Chu
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinyi Han
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
| | - Haichao Li
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
68
|
Seeking a Role for Translational Control by Alternative Polyadenylation in Saccharomyces cerevisiae. Microorganisms 2021; 9:microorganisms9091885. [PMID: 34576779 PMCID: PMC8464734 DOI: 10.3390/microorganisms9091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative polyadenylation (APA) represents an important mechanism for regulating isoform-specific translation efficiency, stability, and localisation. Though some progress has been made in understanding its consequences in metazoans, the role of APA in the model organism Saccharomyces cerevisiae remains a relative mystery because, despite abundant studies on the translational state of mRNA, none differentiate mRNA isoforms’ alternative 3′-end. This review discusses the implications of alternative polyadenylation in S. cerevisiae using other organisms to draw inferences. Given the foundational role that research in this yeast has played in the discovery of the mechanisms of cleavage and polyadenylation and in the drivers of APA, it is surprising that such an inference is required. However, because advances in ribosome profiling are insensitive to APA, how it impacts translation is still unclear. To bridge the gap between widespread observed APA and the discovery of any functional consequence, we also provide a review of the experimental techniques used to uncover the functional importance of 3′ UTR isoforms on translation.
Collapse
|
69
|
Zhou W, Li Z, Zhang J, Mou B, Zhou W. The OsIME4 gene identified as a key to meiosis initiation by RNA in situ hybridization. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:861-873. [PMID: 33884735 DOI: 10.1111/plb.13274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The formation of asexual seeds in plants holds great promise as a breeding system for one-line hybrid rice. Entry into meiosis is a key developmental decision in gametogenesis, especially in formation of asexual seeds in plants. Apomeiosis in MeMCs can be achieved by identifying and manipulating meiosis-specific genes. Using methods based on in situ hybridization and expression analysis, we identified OsIME4 (inducer of meiosis 4) sense and antisense transcripts involved in rice meiosis initiation, similar to initiation of meiosis in budding yeast. Our data suggest that the OsIME4 sense transcript, which encodes a putative mRNA N6-adenosine methyltransferase, keeps rice cells at mitosis stage through some form of epigenesis (DNA/RNA methylation), and the non-coding antisense transcript of OsIME4 converts the cell status from mitosis to meiosis by inhibiting expression (transcription and translation) of the sense transcript. We identified that the non-coding antisense transcript of OsIME4 converts archesporial cell status from mitosis to meiosis by inhibiting expression of the OsIME4 sense transcript in rice. Our results provide novel insights into meiosis initiation in rice and for engineering of apomixis in sexual crops by manipulating the OsIME4 sense and antisense transcripts, which has great promise for producing apomictic rice in the future.
Collapse
Affiliation(s)
- W Zhou
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, PR China
| | - Z Li
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100094, PR China
| | - J Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, PR China
| | - B Mou
- US Department of Agriculture, Agricultural Research Service, USDA-ARS), 1636 E. Alisal Street, Salinas, CA, 93905, USA
| | - W Zhou
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100094, PR China
- US Department of Agriculture, Agricultural Research Service, USDA-ARS), 1636 E. Alisal Street, Salinas, CA, 93905, USA
| |
Collapse
|
70
|
Dziegielewski W, Ziolkowski PA. License to Regulate: Noncoding RNA Special Agents in Plant Meiosis and Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:662185. [PMID: 34489987 PMCID: PMC8418119 DOI: 10.3389/fpls.2021.662185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The complexity of the subcellular processes that take place during meiosis requires a significant remodeling of cellular metabolism and dynamic changes in the organization of chromosomes and the cytoskeleton. Recently, investigations of meiotic transcriptomes have revealed additional noncoding RNA factors (ncRNAs) that directly or indirectly influence the course of meiosis. Plant meiosis is the point at which almost all known noncoding RNA-dependent regulatory pathways meet to influence diverse processes related to cell functioning and division. ncRNAs have been shown to prevent transposon reactivation, create germline-specific DNA methylation patterns, and affect the expression of meiosis-specific genes. They can also influence chromosome-level processes, including the stimulation of chromosome condensation, the definition of centromeric chromatin, and perhaps even the regulation of meiotic recombination. In many cases, our understanding of the mechanisms underlying these processes remains limited. In this review, we will examine how the different functions of each type of ncRNA have been adopted in plants, devoting attention to both well-studied examples and other possible functions about which we can only speculate for now. We will also briefly discuss the most important challenges in the investigation of ncRNAs in plant meiosis.
Collapse
Affiliation(s)
| | - Piotr A. Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
71
|
Huang JH, Liao YR, Lin TC, Tsai CH, Lai WY, Chou YK, Leu JY, Tsai HK, Kao CF. iTARGEX analysis of yeast deletome reveals novel regulators of transcriptional buffering in S phase and protein turnover. Nucleic Acids Res 2021; 49:7318-7329. [PMID: 34197604 PMCID: PMC8287957 DOI: 10.1093/nar/gkab555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/12/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Integrating omics data with quantification of biological traits provides unparalleled opportunities for discovery of genetic regulators by in silico inference. However, current approaches to analyze genetic-perturbation screens are limited by their reliance on annotation libraries for prioritization of hits and subsequent targeted experimentation. Here, we present iTARGEX (identification of Trait-Associated Regulatory Genes via mixture regression using EXpectation maximization), an association framework with no requirement of a priori knowledge of gene function. After creating this tool, we used it to test associations between gene expression profiles and two biological traits in single-gene deletion budding yeast mutants, including transcription homeostasis during S phase and global protein turnover. For each trait, we discovered novel regulators without prior functional annotations. The functional effects of the novel candidates were then validated experimentally, providing solid evidence for their roles in the respective traits. Hence, we conclude that iTARGEX can reliably identify novel factors involved in given biological traits. As such, it is capable of converting genome-wide observations into causal gene function predictions. Further application of iTARGEX in other contexts is expected to facilitate the discovery of new regulators and provide observations for novel mechanistic hypotheses regarding different biological traits and phenotypes.
Collapse
Affiliation(s)
- Jia-Hsin Huang
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - You-Rou Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Chieh Lin
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Yun Lai
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Yang-Kai Chou
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
72
|
Mishra D, Bepler T, Teague B, Berger B, Broach J, Weiss R. An engineered protein-phosphorylation toggle network with implications for endogenous network discovery. Science 2021; 373:eaav0780. [PMID: 34210851 PMCID: PMC11203391 DOI: 10.1126/science.aav0780] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/29/2021] [Indexed: 12/23/2022]
Abstract
Synthetic biological networks comprising fast, reversible reactions could enable engineering of new cellular behaviors that are not possible with slower regulation. Here, we created a bistable toggle switch in Saccharomyces cerevisiae using a cross-repression topology comprising 11 protein-protein phosphorylation elements. The toggle is ultrasensitive, can be induced to switch states in seconds, and exhibits long-term bistability. Motivated by our toggle's architecture and size, we developed a computational framework to search endogenous protein pathways for other large and similar bistable networks. Our framework helped us to identify and experimentally verify five formerly unreported endogenous networks that exhibit bistability. Building synthetic protein-protein networks will enable bioengineers to design fast sensing and processing systems, allow sophisticated regulation of cellular processes, and aid discovery of endogenous networks with particular functions.
Collapse
Affiliation(s)
- Deepak Mishra
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tristan Bepler
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY, USA
| | - Brian Teague
- Department of Biology, University of Wisconsin, Stout, WI, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jim Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
73
|
Habig M, Schotanus K, Hufnagel K, Happel P, Stukenbrock EH. Ago1 Affects the Virulence of the Fungal Plant Pathogen Zymoseptoria tritici. Genes (Basel) 2021; 12:1011. [PMID: 34208898 PMCID: PMC8303167 DOI: 10.3390/genes12071011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
In host-pathogen interactions RNA interference (RNAi) has emerged as a pivotal mechanism to modify both, the immune responses of the host as well as the pathogenicity and virulence of the pathogen. In addition, in some fungi RNAi is also known to affect chromosome biology via its effect on chromatin conformation. Previous studies reported no effect of the RNAi machinery on the virulence of the fungal plant pathogen Zymoseptoria tritici however the role of RNAi is still poorly understood in this species. Herein, we elucidate whether the RNAi machinery is conserved within the genus Zymoseptoria. Moreover, we conduct functional analyses of Argonaute and Dicer-like proteins and test if the RNAi machinery affects chromosome stability. We show that the RNAi machinery is conserved among closely related Zymoseptoria species while an exceptional pattern of allelic diversity was possibly caused by introgression. The deletion of Ago1 reduced the ability of the fungus to produce asexual propagules in planta in a quantitative matter. Chromosome stability of the accessory chromosome of Z. tritici was not prominently affected by the RNAi machinery. These results indicate, in contrast to previous finding, a role of the RNAi pathway during host infection, but not in the stability of accessory chromosomes in Z. tritici.
Collapse
Affiliation(s)
- Michael Habig
- Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 1-11, 24118 Kiel, Germany; (M.H.); (K.S.); (K.H.)
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Klaas Schotanus
- Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 1-11, 24118 Kiel, Germany; (M.H.); (K.S.); (K.H.)
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Kim Hufnagel
- Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 1-11, 24118 Kiel, Germany; (M.H.); (K.S.); (K.H.)
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany;
| | - Eva H. Stukenbrock
- Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 1-11, 24118 Kiel, Germany; (M.H.); (K.S.); (K.H.)
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| |
Collapse
|
74
|
Li J, Liu X, Yin Z, Hu Z, Zhang KQ. An Overview on Identification and Regulatory Mechanisms of Long Non-coding RNAs in Fungi. Front Microbiol 2021; 12:638617. [PMID: 33995298 PMCID: PMC8113380 DOI: 10.3389/fmicb.2021.638617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
For decades, more and more long non-coding RNAs (lncRNAs) have been confirmed to play important functions in key biological processes of different organisms. At present, most identified lncRNAs and those with known functional roles are from mammalian systems. However, lncRNAs have also been found in primitive eukaryotic fungi, and they have different functions in fungal development, metabolism, and pathogenicity. In this review, we highlight some recent researches on lncRNAs in the primitive eukaryotic fungi, particularly focusing on the identification of lncRNAs and their regulatory roles in diverse biological processes.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoying Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ziyu Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zhihong Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
75
|
Narayanan A, Vadnala RN, Ganguly P, Selvakumar P, Rudramurthy SM, Prasad R, Chakrabarti A, Siddharthan R, Sanyal K. Functional and Comparative Analysis of Centromeres Reveals Clade-Specific Genome Rearrangements in Candida auris and a Chromosome Number Change in Related Species. mBio 2021; 12:e00905-21. [PMID: 33975937 PMCID: PMC8262905 DOI: 10.1128/mbio.00905-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
The thermotolerant multidrug-resistant ascomycete Candida auris rapidly emerged since 2009 causing systemic infections worldwide and simultaneously evolved in different geographical zones. The molecular events that orchestrated this sudden emergence of the killer fungus remain mostly elusive. Here, we identify centromeres in C. auris and related species, using a combined approach of chromatin immunoprecipitation and comparative genomic analyses. We find that C. auris and multiple other species in the Clavispora/Candida clade shared a conserved small regional GC-poor centromere landscape lacking pericentromeres or repeats. Further, a centromere inactivation event led to karyotypic alterations in this species complex. Interspecies genome analysis identified several structural chromosomal changes around centromeres. In addition, centromeres are found to be rapidly evolving loci among the different geographical clades of the same species of C. auris Finally, we reveal an evolutionary trajectory of the unique karyotype associated with clade 2 that consists of the drug-susceptible isolates of C. aurisIMPORTANCECandida auris, the killer fungus, emerged as different geographical clades, exhibiting multidrug resistance and high karyotype plasticity. Chromosomal rearrangements are known to play key roles in the emergence of new species, virulence, and drug resistance in pathogenic fungi. Centromeres, the genomic loci where microtubules attach to separate the sister chromatids during cell division, are known to be hot spots of breaks and downstream rearrangements. We identified the centromeres in C. auris and related species to study their involvement in the evolution and karyotype diversity reported in C. auris We report conserved centromere features in 10 related species and trace the events that occurred at the centromeres during evolution. We reveal a centromere inactivation-mediated chromosome number change in these closely related species. We also observe that one of the geographical clades, the East Asian clade, evolved along a unique trajectory, compared to the other clades and related species.
Collapse
Affiliation(s)
- Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Rakesh Netha Vadnala
- Computational Biology, The Institute of Mathematical Sciences/HBNI, Chennai, India
| | - Promit Ganguly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Pavitra Selvakumar
- Computational Biology, The Institute of Mathematical Sciences/HBNI, Chennai, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Siddharthan
- Computational Biology, The Institute of Mathematical Sciences/HBNI, Chennai, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Osaka University, Suita, Japan
| |
Collapse
|
76
|
Chan J, Qinqin F, Jianwei L, Ying C, Machida S, Wei C, Yuan YA, Jobichen C. Structural and mechanistic insight into stem-loop RNA processing by yeast Pichia stipitis Dicer. Protein Sci 2021; 30:1210-1220. [PMID: 33884665 DOI: 10.1002/pro.4086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/11/2022]
Abstract
Dicer is a member of the ribonuclease III enzyme family and processes double-stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non-canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis. The structure of the catalytically active region (the catalytic RNase III domain and double-stranded RNA-binding domain 1 [dsRBD1]) of DCR1 showed that RNaseIII domain is structurally similar to yeast RNase III (Rnt1p) but uniquely presents dsRBD1 in a diagonal orientation, forming a catalytic core made of homodimer and large RNA-binding surface. The second dsRNA binding domain at C-terminus, which is absent in Rnt1, enhances the RNA cleavage activity. Although the cleavage pattern of PsDCR1 anchors an apical loop similar to Rnt1, the cleavage activity depended on the sequence motif at the lower stem, not the apical loop, of hairpin RNA. Through RNA sequencing and RNA mutations, we showed that RNA cleavage by PsDCR1 is determined by the stem-loop structure of the RNA substrate, suggesting the possibility that stem-loop RNA-guided gene silencing pathway exists in budding yeast.
Collapse
Affiliation(s)
- JingRu Chan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Fu Qinqin
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Li Jianwei
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chen Ying
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Satoru Machida
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chen Wei
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Yuren Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Chacko Jobichen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
77
|
Aishanjiang K, Wei XD, Fu Y, Lin X, Ma Y, Le J, Han Q, Wang X, Kong X, Gu J, Wu H. Circular RNAs and Hepatocellular Carcinoma: New Epigenetic Players With Diagnostic and Prognostic Roles. Front Oncol 2021; 11:653717. [PMID: 33959506 PMCID: PMC8093866 DOI: 10.3389/fonc.2021.653717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Due to the lack of potent diagnosis and prognosis biomarkers and effective therapeutic targets, the overall prognosis of survival is poor in HCC patients. Circular RNAs (circRNAs) are a class of novel endogenous non-coding RNAs with covalently closed loop structures and implicated in diverse physiological processes and pathological diseases. Recent studies have demonstrated the involvement of circRNAs in HCC diagnosis, prognosis, development, and drug resistance, suggesting that circRNAs may be a class of novel targets for improving HCC diagnosis, prognosis, and treatments. In fact, some artificial circRNAs have been engineered and showed their therapeutic potential in treating HCV infection and gastric cancer. In this review, we introduce the potential of circRNAs as biomarkers for HCC diagnosis and prognosis, as therapeutic targets for HCC treatments and discuss the challenges in circRNA research and chances of circRNA application.
Collapse
Affiliation(s)
- Kedeerya Aishanjiang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China.,Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Dong Wei
- Department of General Surgery, The 81st Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yi Fu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Xinjie Lin
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Jiamei Le
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Xuan Wang
- Department of General Surgery, The 81st Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
78
|
Meng H, Wang S, Yang W, Ding X, Li N, Chu Z, Li X. Identification of virulence associated milRNAs and their bidirectional targets in Rhizoctonia solani and maize during infection. BMC PLANT BIOLOGY 2021; 21:155. [PMID: 33771101 PMCID: PMC8004440 DOI: 10.1186/s12870-021-02930-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Anastomosis group 1 IA (AG1-IA) of Rhizoctonia solani is the major agent of banded leaf and sheath blight (BLSB) disease that causes severe yield loss in many worldwide crops. MicroRNAs (miRNAs) are ~ 22 nt non-coding RNAs that negatively regulate gene expression levels by mRNA degradation or translation inhibition. A better understanding of miRNA function during AG1-IA infection can expedite to elucidate the molecular mechanisms of fungi-host interactions. RESULTS In this study, we sequenced three small RNA libraries obtained from the mycelium of AG1-IA isolate, non-infected maize sheath and mixed maize sheath 3 days after inoculation. In total, 137 conserved and 34 novel microRNA-like small RNAs (milRNAs) were identified from the pathogen. Among these, one novel and 17 conserved milRNAs were identified as potential virulence-associated (VA) milRNAs. Subsequently, the prediction of target genes for these milRNAs was performed in both AG1-IA and maize, while functional annotation of these targets suggested a link to pathogenesis-related biological processes. Further, expression patterns of these virulence-associated milRNAs demonstrated that theyparticipate in the virulence of AG1-IA. Finally, regulation of one maize targeting gene, GRMZM2G412674 for Rhi-milRNA-9829-5p, was validated by dual-luciferase assay and identified to play a positive role in BLSB resistance in two maize mutants. These results suggest the global differentially expressed milRNAs of R. solani AG1-IA that participate in the regulation of target genes in both AG1-IA and maize to reinforce its pathogenicity. CONCLUSIONS Our data have provided a comprehensive overview of the VA-milRNAs of R. solani and identified that they are probably the virulence factors by directly interfered in host targeting genes. These results offer new insights on the molecular mechanisms of R.solani-maize interactions during the process of infection.
Collapse
Affiliation(s)
- Hongxu Meng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Shaoli Wang
- Yantai Academy of Agricultural Sciences, Yan'tai, 265500, Shandong, People's Republic of China
| | - Wei Yang
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Xinhua Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Ning Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Xiaoming Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
79
|
The challenges of predicting transposable element activity in hybrids. Curr Genet 2021; 67:567-572. [PMID: 33738571 DOI: 10.1007/s00294-021-01169-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Transposable elements (TEs) are ubiquitous mobile genetic elements that hold both disruptive and adaptive potential for species. It has long been postulated that their activity may be triggered by hybridization, a hypothesis that received mixed support from studies in various species. While host defense mechanisms against TEs are being elucidated, the increasing volume of genomic data and bioinformatic tools specialized in TE detection enable in-depth characterization of TEs at the levels of species and populations. Here, I borrow elements from the genome ecology theory to illustrate how knowledge of the diversity of TEs and host defense mechanisms may help predict the activity of TEs in the face of hybridization, and how current limitations make this task especially challenging.
Collapse
|
80
|
Dong C, Schultz JC, Liu W, Lian J, Huang L, Xu Z, Zhao H. Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering. Metab Eng 2021; 66:319-327. [PMID: 33713797 DOI: 10.1016/j.ymben.2021.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
S-Adenosyl-L-methionine (SAM) is an important intracellular metabolite and widely used for treatment of various diseases. Although high level production of SAM had been achieved in yeast, novel metabolic engineering strategies are needed to further enhance SAM production for industrial applications. Here genome-scale engineering (GSE) was performed to identify new targets for SAM overproduction using the multi-functional genome-wide CRISPR (MAGIC) system, and the effects of these newly identified targets were further validated in industrial yeast strains. After 3 rounds of FACS screening and characterization, numerous novel targets for enhancing SAM production were identified. In addition, transcriptomic and metabolomic analyses were performed to investigate the molecular mechanisms for enhanced SAM accumulation. The best combination (upregulation of SNZ3, RFC4, and RPS18B) improved SAM productivity by 2.2-fold and 1.6-fold in laboratory and industrial yeast strains, respectively. Using GSE of laboratory yeast strains to guide industrial yeast strain engineering presents an effective approach to design microbial cell factories for industrial applications.
Collapse
Affiliation(s)
- Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - J Carl Schultz
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
81
|
Lin W, Feng Z, Prasanth KR, Liu Y, Nagy PD. Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication. PLoS Pathog 2021; 17:e1009423. [PMID: 33725015 PMCID: PMC7997005 DOI: 10.1371/journal.ppat.1009423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/26/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Plus-stranded RNA viruses have limited coding capacity and have to co-opt numerous pro-viral host factors to support their replication. Many of the co-opted host factors support the biogenesis of the viral replication compartments and the formation of viral replicase complexes on subverted subcellular membrane surfaces. Tomato bushy stunt virus (TBSV) exploits peroxisomal membranes, whereas the closely-related carnation Italian ringspot virus (CIRV) hijacks the outer membranes of mitochondria. How these organellar membranes can be recruited into pro-viral roles is not completely understood. Here, we show that the highly conserved Fis1 mitochondrial fission protein is co-opted by both TBSV and CIRV via direct interactions with the p33/p36 replication proteins. Deletion of FIS1 in yeast or knockdown of the homologous Fis1 in plants inhibits tombusvirus replication. Instead of the canonical function in mitochondrial fission and peroxisome division, the tethering function of Fis1 is exploited by tombusviruses to facilitate the subversion of membrane contact site (MCS) proteins and peroxisomal/mitochondrial membranes for the biogenesis of the replication compartment. We propose that the dynamic interactions of Fis1 with MCS proteins, such as the ER resident VAP tethering proteins, Sac1 PI4P phosphatase and the cytosolic OSBP-like oxysterol-binding proteins, promote the formation and facilitate the stabilization of virus-induced vMCSs, which enrich sterols within the replication compartment. We show that this novel function of Fis1 is exploited by tombusviruses to build nuclease-insensitive viral replication compartment.
Collapse
Affiliation(s)
- Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - Yuyan Liu
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| |
Collapse
|
82
|
Smukowski Heil C, Patterson K, Hickey ASM, Alcantara E, Dunham MJ. Transposable Element Mobilization in Interspecific Yeast Hybrids. Genome Biol Evol 2021; 13:6141023. [PMID: 33595639 PMCID: PMC7952228 DOI: 10.1093/gbe/evab033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Barbara McClintock first hypothesized that interspecific hybridization could provide a “genomic shock” that leads to the mobilization of transposable elements (TEs). This hypothesis is based on the idea that regulation of TE movement is potentially disrupted in hybrids. However, the handful of studies testing this hypothesis have yielded mixed results. Here, we set out to identify if hybridization can increase transposition rate and facilitate colonization of TEs in Saccharomyces cerevisiae × Saccharomyces uvarum interspecific yeast hybrids. Saccharomyces cerevisiae have a small number of active long terminal repeat retrotransposons (Ty elements), whereas their distant relative S. uvarum have lost the Ty elements active in S. cerevisiae. Although the regulation system of Ty elements is known in S. cerevisiae, it is unclear how Ty elements are regulated in other Saccharomyces species, and what mechanisms contributed to the loss of most classes of Ty elements in S. uvarum. Therefore, we first assessed whether TEs could insert in the S. uvarum sub-genome of a S. cerevisiae × S. uvarum hybrid. We induced transposition to occur in these hybrids and developed a sequencing technique to show that Ty elements insert readily and nonrandomly in the S. uvarum genome. We then used an in vivo reporter construct to directly measure transposition rate in hybrids, demonstrating that hybridization itself does not alter rate of mobilization. However, we surprisingly show that species-specific mitochondrial inheritance can change transposition rate by an order of magnitude. Overall, our results provide evidence that hybridization can potentially facilitate the introduction of TEs across species boundaries and alter transposition via mitochondrial transmission, but that this does not lead to unrestrained proliferation of TEs suggested by the genomic shock theory.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Kira Patterson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Erica Alcantara
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
83
|
Lu Z, Peng B, Ebert BE, Dumsday G, Vickers CE. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast. Nat Commun 2021; 12:1051. [PMID: 33594068 PMCID: PMC7886869 DOI: 10.1038/s41467-021-21313-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In metabolic engineering, loss-of-function experiments are used to understand and optimise metabolism. A conditional gene inactivation tool is required when gene deletion is lethal or detrimental to growth. Here, we exploit auxin-inducible protein degradation as a metabolic engineering approach in yeast. We demonstrate its effectiveness using terpenoid production. First, we target an essential prenyl-pyrophosphate metabolism protein, farnesyl pyrophosphate synthase (Erg20p). Degradation successfully redirects metabolic flux toward monoterpene (C10) production. Second, depleting hexokinase-2, a key protein in glucose signalling transduction, lifts glucose repression and boosts production of sesquiterpene (C15) nerolidol to 3.5 g L-1 in flask cultivation. Third, depleting acetyl-CoA carboxylase (Acc1p), another essential protein, delivers growth arrest without diminishing production capacity in nerolidol-producing yeast, providing a strategy to decouple growth and production. These studies demonstrate auxin-mediated protein degradation as an advanced tool for metabolic engineering. It also has potential for broader metabolic perturbation studies to better understand metabolism.
Collapse
Affiliation(s)
- Zeyu Lu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences (SCMB), the University of Queensland, Brisbane, QLD, Australia
| | - Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia.
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, Australia.
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, Australia
| | | | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia.
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
84
|
Co-Chaperone Bag-1 Plays a Role in the Autophagy-Dependent Cell Survival through Beclin 1 Interaction. Molecules 2021; 26:molecules26040854. [PMID: 33561998 PMCID: PMC7914623 DOI: 10.3390/molecules26040854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Expression levels of the major mammalian autophagy regulator Beclin 1 and its interaction with Bcl-2 regulate the switch between autophagic cell survival and apoptotic cell death pathways. However, some of the regulators and the precise mechanisms of these processes still remain elusive. Bag-1 (Bcl-2 associated athanogene-1), a member of BAG family proteins, is a multifunctional pro-survival molecule that possesses critical functions in vital cellular pathways. Herein, we report the role of Bag-1 on Bcl-2/Beclin 1 crosstalk through indirectly interacting with Beclin 1. Pull-down experiments suggested a molecular interaction between Bag-1 and Beclin 1 in breast cancer cell lines. On the other hand, in vitro binding assays showed that Bag-1/Beclin 1 interaction does not occur directly but occurs through a mediator molecule. Bag-1 interaction with p-Beclin 1 (T119), indicator of early autophagy, is increased during nutrient starvation suggesting involvement of Bag-1 in the autophagic regulation. Furthermore, CRISPR/Cas9-mediated Bag-1 knock-out in MCF-7 cells hampered cell survival and proliferation and resulted in decreased levels of total LC3 under starvation. Collectively, we suggest that Bag-1 modulates cell survival/death decision through maintaining macroautophagy as a component of Beclin 1-associated complexes.
Collapse
|
85
|
Pais P, Oliveira J, Almeida V, Yilmaz M, Monteiro PT, Teixeira MC. Transcriptome-wide differences between Saccharomyces cerevisiae and Saccharomyces cerevisiae var. boulardii: Clues on host survival and probiotic activity based on promoter sequence variability. Genomics 2021; 113:530-539. [PMID: 33482324 DOI: 10.1016/j.ygeno.2020.11.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Although Saccharomyces cerevisiae and S. cerevisiae var. boulardii share more than 95% genome sequence homology, only S. cerevisiae var. boulardii displays probiotic activity. In this study, the transcriptomic differences exhibited by S. cerevisiae and S. cerevisiae var. boulardii in intestinal like medium were evaluated. S. cerevisiae was found to display stress response overexpression, consistent with higher ability of S. cerevisiae var. boulardii to survive within the human host, while S. cerevisiae var. boulardii exhibited transcriptional patterns associated with probiotic activity, suggesting increased acetate biosynthesis. Resorting to the creation of a S. cerevisiae var. boulardii genomic database within Yeastract+, a possible correlation between loss or gain of transcription factor binding sites in S. cerevisiae var. boulardii promoters and the transcriptomic pattern is discussed. This study suggests that S. cerevisiae var. boulardii probiotic activity, when compared to S. cerevisiae, relies, at least partially, on differential expression regulation, based on promoter variability.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | | | - Vanda Almeida
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Melike Yilmaz
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Pedro T Monteiro
- Department of Computer Science and Engineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal; INESC-ID, Lisbon, Portugal.
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal.
| |
Collapse
|
86
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
87
|
Analysis of tRNA-derived RNA fragments (tRFs) in Cryptococcus spp.: RNAi-independent generation and possible compensatory effects in a RNAi-deficient genotype. Fungal Biol 2021; 125:389-399. [PMID: 33910680 DOI: 10.1016/j.funbio.2020.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 01/03/2023]
Abstract
Small RNAs (sRNAs) are key factors in the regulation of gene expression. Recently, a new class of regulatory sRNAs derived from tRNAs was described, the tRNA-derived RNA fragments (tRFs). Such RNAs range in length from 14 to 30 nucleotides and are produced from both mature and primary tRNA transcripts, with very specific cleavage sites along the tRNA sequence. Although several mechanisms have been proposed for how tRFs mediate regulation of gene expression, the exact mechanism of tRF biogenesis and its dependency upon the RNAi pathway remain unclear. Cryptococcus gattii and Cryptococcus neoformans are basidiomycetous yeasts and important human pathogens. While C. neoformans is RNAi proficient, C. gattii VGII has lost essential RNAi genes. Here, we sought to identify the tRF production profile in C. gattii VGII and C. neoformans in order to assess the RNAi-dependency of tRF production in these fungal species. We developed a RNA-sequencing-based tRF prediction workflow designed to improve the currently available prediction tools. Using this methodology, we were able to identify tRFs in both organisms. Despite the loss of the RNAi pathway, C. gattii VGII displayed a number of identified tRFs that did not differ significantly from those observed in C. neoformans. The analysis of predicted tRF targets revealed that a higher number of targets was found for C. gattii VGII tRFs compared to C. neoformans tRFs. These results support the idea that tRFs are at least partially independent of the canonical RNAi machinery, raising questions about possible compensatory roles of alternative regulatory RNAs in the absence of a functional RNAi pathway.
Collapse
|
88
|
Fofanov MV, Prokopov DY, Kuhl H, Schartl M, Trifonov VA. Evolution of MicroRNA Biogenesis Genes in the Sterlet ( Acipenser ruthenus) and Other Polyploid Vertebrates. Int J Mol Sci 2020; 21:E9562. [PMID: 33334059 PMCID: PMC7765534 DOI: 10.3390/ijms21249562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs play a crucial role in eukaryotic gene regulation. For a long time, only little was known about microRNA-based gene regulatory mechanisms in polyploid animal genomes due to difficulties of polyploid genome assembly. However, in recent years, several polyploid genomes of fish, amphibian, and even invertebrate species have been sequenced and assembled. Here we investigated several key microRNA-associated genes in the recently sequenced sterlet (Acipenser ruthenus) genome, whose lineage has undergone a whole genome duplication around 180 MYA. We show that two paralogs of drosha, dgcr8, xpo1, and xpo5 as well as most ago genes have been retained after the acipenserid-specific whole genome duplication, while ago1 and ago3 genes have lost one paralog. While most diploid vertebrates possess only a single copy of dicer1, we strikingly found four paralogs of this gene in the sterlet genome, derived from a tandem segmental duplication that occurred prior to the last whole genome duplication. ago1,3,4 and exportins1,5 look to be prone to additional segment duplications producing up to four-five paralog copies in ray-finned fishes. We demonstrate for the first time exon microsatellite amplification in the acipenserid drosha2 gene, resulting in a highly variable protein product, which may indicate sub- or neofunctionalization. Paralogous copies of most microRNA metabolism genes exhibit different expression profiles in various tissues and remain functional despite the rediploidization process. Subfunctionalization of microRNA processing gene paralogs may be beneficial for different pathways of microRNA metabolism. Genetic variability of microRNA processing genes may represent a substrate for natural selection, and, by increasing genetic plasticity, could facilitate adaptations to changing environments.
Collapse
Affiliation(s)
- Mikhail V. Fofanov
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Dmitry Yu. Prokopov
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia;
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301 and 310, 12587 Berlin, Germany;
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
- Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, 419 Centennial Hall, San Marcos, TX 78666-4616, USA
| | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| |
Collapse
|
89
|
Lax C, Tahiri G, Patiño-Medina JA, Cánovas-Márquez JT, Pérez-Ruiz JA, Osorio-Concepción M, Navarro E, Calo S. The Evolutionary Significance of RNAi in the Fungal Kingdom. Int J Mol Sci 2020; 21:E9348. [PMID: 33302447 PMCID: PMC7763443 DOI: 10.3390/ijms21249348] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous diversity this kingdom comprises.
Collapse
Affiliation(s)
- Carlos Lax
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Ghizlane Tahiri
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán CP 58030, Mexico;
| | - José T. Cánovas-Márquez
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - José A. Pérez-Ruiz
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Macario Osorio-Concepción
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Eusebio Navarro
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Silvia Calo
- School of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, 51033 Santiago de los Caballeros, Dominican Republic
| |
Collapse
|
90
|
Feng Z, Kovalev N, Nagy PD. Key interplay between the co-opted sorting nexin-BAR proteins and PI3P phosphoinositide in the formation of the tombusvirus replicase. PLoS Pathog 2020; 16:e1009120. [PMID: 33370420 PMCID: PMC7833164 DOI: 10.1371/journal.ppat.1009120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/25/2021] [Accepted: 10/31/2020] [Indexed: 12/27/2022] Open
Abstract
Positive-strand RNA viruses replicate in host cells by forming large viral replication organelles, which harbor numerous membrane-bound viral replicase complexes (VRCs). In spite of its essential role in viral replication, the biogenesis of the VRCs is not fully understood. The authors identified critical roles of cellular membrane-shaping proteins and PI(3)P (phosphatidylinositol 3-phosphate) phosphoinositide, a minor lipid with key functions in endosomal vesicle trafficking and autophagosome biogenesis, in VRC formation for tomato bushy stunt virus (TBSV). The authors show that TBSV co-opts the endosomal SNX-BAR (sorting nexin with Bin/Amphiphysin/Rvs- BAR domain) proteins, which bind to PI(3)P and have membrane-reshaping function during retromer tubular vesicle formation, directly into the VRCs to boost progeny viral RNA synthesis. We find that the viral replication protein-guided recruitment and pro-viral function of the SNX-BAR proteins depends on enrichment of PI(3)P at the site of viral replication. Depletion of SNX-BAR proteins or PI(3)P renders the viral double-stranded (ds)RNA replication intermediate RNAi-sensitive within the VRCs in the surrogate host yeast and in planta and ribonuclease-sensitive in cell-free replicase reconstitution assays in yeast cell extracts or giant unilamellar vesicles (GUVs). Based on our results, we propose that PI(3)P and the co-opted SNX-BAR proteins are coordinately exploited by tombusviruses to promote VRC formation and to play structural roles and stabilize the VRCs during viral replication. Altogether, the interplay between the co-opted SNX-BAR membrane-shaping proteins, PI(3)P and the viral replication proteins leads to stable VRCs, which provide the essential protection of the viral RNAs against the host antiviral responses.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
91
|
Malcı K, Walls LE, Rios-Solis L. Multiplex Genome Engineering Methods for Yeast Cell Factory Development. Front Bioeng Biotechnol 2020; 8:589468. [PMID: 33195154 PMCID: PMC7658401 DOI: 10.3389/fbioe.2020.589468] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
As biotechnological applications of synthetic biology tools including multiplex genome engineering are expanding rapidly, the construction of strategically designed yeast cell factories becomes increasingly possible. This is largely due to recent advancements in genome editing methods like CRISPR/Cas tech and high-throughput omics tools. The model organism, baker's yeast (Saccharomyces cerevisiae) is an important synthetic biology chassis for high-value metabolite production. Multiplex genome engineering approaches can expedite the construction and fine tuning of effective heterologous pathways in yeast cell factories. Numerous multiplex genome editing techniques have emerged to capitalize on this recently. This review focuses on recent advancements in such tools, such as delta integration and rDNA cluster integration coupled with CRISPR-Cas tools to greatly enhance multi-integration efficiency. Examples of pre-placed gate systems which are an innovative alternative approach for multi-copy gene integration were also reviewed. In addition to multiple integration studies, multiplexing of alternative genome editing methods are also discussed. Finally, multiplex genome editing studies involving non-conventional yeasts and the importance of automation for efficient cell factory design and construction are considered. Coupling the CRISPR/Cas system with traditional yeast multiplex genome integration or donor DNA delivery methods expedites strain development through increased efficiency and accuracy. Novel approaches such as pre-placing synthetic sequences in the genome along with improved bioinformatics tools and automation technologies have the potential to further streamline the strain development process. In addition, the techniques discussed to engineer S. cerevisiae, can be adapted for use in other industrially important yeast species for cell factory development.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura E Walls
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
92
|
Modular Modeling of Genetic Circuits in SBML Level 3. Methods Mol Biol 2020. [PMID: 33180292 DOI: 10.1007/978-1-0716-0822-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The System Biology Markup Language (SBML) Level 2 has been used extensively to make models for biological systems of different complexity. However, the lack of modularity was a serious hurdle for its application to Synthetic Biology where genetic circuits are preferably modeled by putting together the models of their components. SBML Level 3 with the Hierarchical Composition Package overcame this limit. Here, we describe how to realize a modular model for a eukaryotic AND gate in SBML Level 3. Circuit modules, such as transcription units and pools of molecules, are modeled separately and connected, to close the circuit, via Python scripts that utilize the libSBML API. Circuit simulations with COPASI confirm the validity of this modeling approach.
Collapse
|
93
|
Vijay N. Loss of inner kinetochore genes is associated with the transition to an unconventional point centromere in budding yeast. PeerJ 2020; 8:e10085. [PMID: 33062452 PMCID: PMC7531349 DOI: 10.7717/peerj.10085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/11/2020] [Indexed: 01/28/2023] Open
Abstract
Background The genomic sequences of centromeres, as well as the set of proteins that recognize and interact with centromeres, are known to quickly diverge between lineages potentially contributing to post-zygotic reproductive isolation. However, the actual sequence of events and processes involved in the divergence of the kinetochore machinery is not known. The patterns of gene loss that occur during evolution concomitant with phenotypic changes have been used to understand the timing and order of molecular changes. Methods I screened the high-quality genomes of twenty budding yeast species for the presence of well-studied kinetochore genes. Based on the conserved gene order and complete genome assemblies, I identified gene loss events. Subsequently, I searched the intergenic regions to identify any un-annotated genes or gene remnants to obtain additional evidence of gene loss. Results My analysis identified the loss of four genes (NKP1, NKP2, CENPL/IML3 and CENPN/CHL4) of the inner kinetochore constitutive centromere-associated network (CCAN/also known as CTF19 complex in yeast) in both the Naumovozyma species for which genome assemblies are available. Surprisingly, this collective loss of four genes of the CCAN/CTF19 complex coincides with the emergence of unconventional centromeres in N. castellii and N. dairenensis. My study suggests a tentative link between the emergence of unconventional point centromeres and the turnover of kinetochore genes in budding yeast.
Collapse
Affiliation(s)
- Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
94
|
Hu Y, Tareen A, Sheu YJ, Ireland WT, Speck C, Li H, Joshua-Tor L, Kinney JB, Stillman B. Evolution of DNA replication origin specification and gene silencing mechanisms. Nat Commun 2020; 11:5175. [PMID: 33056978 PMCID: PMC7560902 DOI: 10.1038/s41467-020-18964-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
DNA replication in eukaryotic cells initiates from replication origins that bind the Origin Recognition Complex (ORC). Origin establishment requires well-defined DNA sequence motifs in Saccharomyces cerevisiae and some other budding yeasts, but most eukaryotes lack sequence-specific origins. A 3.9 Å structure of S. cerevisiae ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) bound to origin DNA revealed that a loop within Orc2 inserts into a DNA minor groove and an α-helix within Orc4 inserts into a DNA major groove. Using a massively parallel origin selection assay coupled with a custom mutual-information-based modeling approach, and a separate analysis of whole-genome replication profiling, here we show that the Orc4 α-helix contributes to the DNA sequence-specificity of origins in S. cerevisiae and Orc4 α-helix mutations change genome-wide origin firing patterns. The DNA sequence specificity of replication origins, mediated by the Orc4 α-helix, has co-evolved with the gain of ORC-Sir4-mediated gene silencing and the loss of RNA interference.
Collapse
Affiliation(s)
- Y Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - A Tareen
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Y-J Sheu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - W T Ireland
- Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - C Speck
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, London, UK
| | - H Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - L Joshua-Tor
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY, 11724, USA
| | - J B Kinney
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - B Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
95
|
Incarbone M, Scheer H, Hily JM, Kuhn L, Erhardt M, Dunoyer P, Altenbach D, Ritzenthaler C. Characterization of a DCL2-Insensitive Tomato Bushy Stunt Virus Isolate Infecting Arabidopsis thaliana. Viruses 2020; 12:E1121. [PMID: 33023227 PMCID: PMC7650723 DOI: 10.3390/v12101121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022] Open
Abstract
Tomato bushy stunt virus (TBSV), the type member of the genus Tombusvirus in the family Tombusviridae is one of the best studied plant viruses. The TBSV natural and experimental host range covers a wide spectrum of plants including agricultural crops, ornamentals, vegetables and Nicotiana benthamiana. However, Arabidopsis thaliana, the well-established model organism in plant biology, genetics and plant-microbe interactions is absent from the list of known TBSV host plant species. Most of our recent knowledge of the virus life cycle has emanated from studies in Saccharomyces cerevisiae, a surrogate host for TBSV that lacks crucial plant antiviral mechanisms such as RNA interference (RNAi). Here, we identified and characterized a TBSV isolate able to infect Arabidopsis with high efficiency. We demonstrated by confocal and 3D electron microscopy that in Arabidopsis TBSV-BS3Ng replicates in association with clustered peroxisomes in which numerous spherules are induced. A dsRNA-centered immunoprecipitation analysis allowed the identification of TBSV-associated host components including DRB2 and DRB4, which perfectly localized to replication sites, and NFD2 that accumulated in larger viral factories in which peroxisomes cluster. By challenging knock-out mutants for key RNAi factors, we showed that TBSV-BS3Ng undergoes a non-canonical RNAi defensive reaction. In fact, unlike other RNA viruses described, no 22nt TBSV-derived small RNA are detected in the absence of DCL4, indicating that this virus is DCL2-insensitive. The new Arabidopsis-TBSV-BS3Ng pathosystem should provide a valuable new model for dissecting plant-virus interactions in complement to Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Marco Incarbone
- Institut de Biologie de Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France; (H.S.); (M.E.); (P.D.)
| | - Hélene Scheer
- Institut de Biologie de Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France; (H.S.); (M.E.); (P.D.)
| | - Jean-Michel Hily
- IFV, Le Grau-Du-Roi, Université de Strasbourg, INRAE, SVQV UNR-A 1131, 68000 Colmar, France;
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, 67000 Strasbourg, France;
| | - Mathieu Erhardt
- Institut de Biologie de Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France; (H.S.); (M.E.); (P.D.)
| | - Patrice Dunoyer
- Institut de Biologie de Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France; (H.S.); (M.E.); (P.D.)
| | - Denise Altenbach
- Bioreba AG, Christoph Merian Ring 7, CH-4153 Reinach, Switzerland;
| | - Christophe Ritzenthaler
- Institut de Biologie de Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France; (H.S.); (M.E.); (P.D.)
| |
Collapse
|
96
|
Role of Non-coding RNAs in Fungal Pathogenesis and Antifungal Drug Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Purpose of Review
Non-coding RNAs (ncRNAs), including regulatory small RNAs (sRNAs) and long non-coding RNAs (lncRNAs), constitute a significant part of eukaryotic genomes; however, their roles in fungi are just starting to emerge. ncRNAs have been shown to regulate gene expression in response to varying environmental conditions (like stress) and response to chemicals, including antifungal drugs. In this review, I highlighted recent studies focusing on the functional roles of ncRNAs in pathogenic fungi.
Recent Findings
Emerging evidence suggests sRNAs (small RNAs) and lncRNAs (long non-coding RNAs) play an important role in fungal pathogenesis and antifungal drug response. Their roles include posttranscriptional gene silencing, histone modification, and chromatin remodeling. Fungal pathogens utilize RNA interference (RNAi) mechanisms to regulate pathogenesis-related genes and can also transfer sRNAs inside the host to suppress host immunity genes to increase virulence. Hosts can also transfer sRNAs to induce RNAi in fungal pathogens to reduce virulence. Additionally, sRNAs and lncRNAs also regulate gene expression in response to antifungal drugs increasing resistance (and possibly tolerance) to drugs.
Summary
Herein, I discuss what is known about ncRNAs in fungal pathogenesis and antifungal drug responses. Advancements in genomic technologies will help identify the ncRNA repertoire in fungal pathogens, and functional studies will elucidate their mechanisms. This will advance our understanding of host-fungal interactions and potentially help develop better treatment strategies.
Collapse
|
97
|
Hénault M, Marsit S, Charron G, Landry CR. The effect of hybridization on transposable element accumulation in an undomesticated fungal species. eLife 2020; 9:e60474. [PMID: 32955438 PMCID: PMC7584455 DOI: 10.7554/elife.60474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can profoundly impact the evolution of genomes and species. A long-standing hypothesis suggests that hybridization could deregulate TEs and trigger their accumulation, although it received mixed support from studies mostly in plants and animals. Here, we tested this hypothesis in fungi using incipient species of the undomesticated yeast Saccharomyces paradoxus. Population genomic data revealed no signature of higher transposition in natural hybrids. As we could not rule out the elimination of past transposition increase signatures by natural selection, we performed a laboratory evolution experiment on a panel of artificial hybrids to measure TE accumulation in the near absence of selection. Changes in TE copy numbers were not predicted by the level of evolutionary divergence between the parents of a hybrid genotype. Rather, they were highly dependent on the individual hybrid genotypes, showing that strong genotype-specific deterministic factors govern TE accumulation in yeast hybrids.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| |
Collapse
|
98
|
Getz MA, Weinberg DE, Drinnenberg IA, Fink GR, Bartel DP. Xrn1p acts at multiple steps in the budding-yeast RNAi pathway to enhance the efficiency of silencing. Nucleic Acids Res 2020; 48:7404-7420. [PMID: 32501509 PMCID: PMC7528652 DOI: 10.1093/nar/gkaa468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 05/20/2020] [Indexed: 01/12/2023] Open
Abstract
RNA interference (RNAi) is a gene-silencing pathway that can play roles in viral defense, transposon silencing, heterochromatin formation and post-transcriptional gene silencing. Although absent from Saccharomyces cerevisiae, RNAi is present in other budding-yeast species, including Naumovozyma castellii, which have an unusual Dicer and a conventional Argonaute that are both required for gene silencing. To identify other factors that act in the budding-yeast pathway, we performed an unbiased genetic selection. This selection identified Xrn1p, the cytoplasmic 5'-to-3' exoribonuclease, as a cofactor of RNAi in budding yeast. Deletion of XRN1 impaired gene silencing in N. castellii, and this impaired silencing was attributable to multiple functions of Xrn1p, including affecting the composition of siRNA species in the cell, influencing the efficiency of siRNA loading into Argonaute, degradation of cleaved passenger strand and degradation of sliced target RNA.
Collapse
Affiliation(s)
- Matthew A Getz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - David E Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - Ines A Drinnenberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA 02142, USA
| |
Collapse
|
99
|
Gao K, Cheng M, Zuo X, Lin J, Hoogewijs K, Murphy MP, Fu XD, Zhang X. Active RNA interference in mitochondria. Cell Res 2020; 31:219-228. [PMID: 32807841 DOI: 10.1038/s41422-020-00394-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
RNA interference (RNAi) has been thought to be a gene-silencing pathway present in most eukaryotic cells to safeguard the genome against retrotransposition. Small interfering RNAs (siRNAs) have also become a powerful tool for studying gene functions. Given the endosymbiotic hypothesis that mitochondria originated from prokaryotes, mitochondria have been generally assumed to lack active RNAi; however, certain bacteria have Argonaute homologs and various reports suggest the presence of specific microRNAs and nuclear genome (nDNA)-encoded Ago2 in the mitochondria. Here we report that transfected siRNAs are not only able to enter the matrix of mitochondria, but also function there to specifically silence targeted mitochondrial transcripts. The mitoRNAi effect is readily detectable at the mRNA level, but only recordable on relatively unstable proteins, such as the mtDNA-encoded complex IV subunits. We also apply mitoRNAi to directly determine the postulated crosstalk between individual respiratory chain complexes, and our result suggests that the controversial observations previously made in patient-derived cells might result from differential adaptation in different cell lines. Our findings bring a new tool to study mitochondrial biology.
Collapse
Affiliation(s)
- Kuanxing Gao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.,Key Laboratory for RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
| | - Man Cheng
- Key Laboratory for RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
| | - Xinxin Zuo
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200433, China
| | - Kurt Hoogewijs
- Department of Organic and Macromolecular Chemistry, University of Ghent, Ghent, 9000, Belgium
| | - Michael P Murphy
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 1TN, UK.,Department of Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093-0651, USA.
| | - Xiaorong Zhang
- Key Laboratory for RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China.
| |
Collapse
|
100
|
Duman-Scheel M. Saccharomyces cerevisiae (Baker's Yeast) as an Interfering RNA Expression and Delivery System. Curr Drug Targets 2020; 20:942-952. [PMID: 30474529 PMCID: PMC6700756 DOI: 10.2174/1389450120666181126123538] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
The broad application of RNA interference for disease prevention is dependent upon the production of dsRNA in an economically feasible, scalable, and sustainable fashion, as well as the identification of safe and effective methods for RNA delivery. Current research has sparked interest in the use of Saccharomyces cerevisiae for these applications. This review examines the potential for commercial development of yeast interfering RNA expression and delivery systems. S. cerevisiae is a genetic model organism that lacks a functional RNA interference system, which may make it an ideal system for expression and accumulation of high levels of recombinant interfering RNA. Moreover, recent studies in a variety of eukaryotic species suggest that this microbe may be an excellent and safe system for interfering RNA delivery. Key areas for further research and development include optimization of interfering RNA expression in S. cerevisiae, industrial-sized scaling of recombinant yeast cultures in which interfering RNA molecules are expressed, the development of methods for large-scale drying of yeast that preserve interfering RNA integrity, and identification of encapsulating agents that promote yeast stability in various environmental conditions. The genetic tractability of S. cerevisiae and a long history of using this microbe in both the food and pharmaceutical industry will facilitate further development of this promising new technology, which has many potential applications of medical importance.
Collapse
Affiliation(s)
- Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN, United States
| |
Collapse
|