51
|
Antimicrobial and Anticancer Application of Silver(I) Dipeptide Complexes. Molecules 2021; 26:molecules26216335. [PMID: 34770744 PMCID: PMC8587849 DOI: 10.3390/molecules26216335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
Three silver(I) dipeptide complexes [Ag(GlyGly)]n(NO3)n (AgGlyGly), [Ag2(GlyAla)(NO3)2]n (AgGlyAla) and [Ag2(HGlyAsp)(NO3)]n (AgGlyAsp) were prepared, investigated and characterized by vibrational spectroscopy (mid-IR), elemental and thermogravimetric analysis and mass spectrometry. For AgGlyGly, X-ray crystallography was also performed. Their stability in biological testing media was verified by time-dependent NMR measurements. Their in vitro antimicrobial activity was evaluated against selected pathogenic microorganisms. Moreover, the influence of silver(I) dipeptide complexes on microbial film formation was described. Further, the cytotoxicity of the complexes against selected cancer cells (BLM, MDA-MB-231, HeLa, HCT116, MCF-7 and Jurkat) and fibroblasts (BJ-5ta) using a colorimetric MTS assay was tested, and the selectivity index (SI) was identified. The mechanism of action of Ag(I) dipeptide complexes was elucidated and discussed by the study in terms of their binding affinity toward the CT DNA, the ability to cleave the DNA and the ability to influence numbers of cells within each cell cycle phase. The new silver(I) dipeptide complexes are able to bind into DNA by noncovalent interaction, and the topoisomerase I inhibition study showed that the studied complexes inhibit its activity at a concentration of 15 μM.
Collapse
|
52
|
Sawada T, Fujita M. Orderly Entangled Nanostructures of Metal–Peptide Strands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
53
|
Wang SQ, Mukherjee S, Zaworotko MJ. Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous structures: an emerging class of soft porous crystals. Faraday Discuss 2021; 231:9-50. [PMID: 34318839 DOI: 10.1039/d1fd00037c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coordination networks (CNs) are a class of (usually) crystalline solids typically comprised of metal ions or cluster nodes linked into 2 or 3 dimensions by organic and/or inorganic linker ligands. Whereas CNs tend to exhibit rigid structures and permanent porosity as exemplified by most metal-organic frameworks, MOFs, there exists a small but growing class of CNs that can undergo extreme, reversible structural transformation(s) when exposed to gases, vapours or liquids. These "soft" or "stimuli-responsive" CNs were introduced two decades ago and are attracting increasing attention thanks to two features: the amenability of CNs to design from first principles, thereby enabling crystal engineering of families of related CNs; and the potential utility of soft CNs for adsorptive storage and separation. A small but growing subset of soft CNs exhibit reversible phase transformations between nonporous (closed) and porous (open) structures. These "switching CNs" are distinguished by stepped sorption isotherms coincident with phase transformation and, perhaps counterintuitively, they can exhibit benchmark properties with respect to working capacity (storage) and selectivity (separation). This review addresses fundamental and applied aspects of switching CNs through surveying their sorption properties, analysing the structural transformations that enable switching, discussing structure-function relationships and presenting design principles for crystal engineering of the next generation of switching CNs.
Collapse
Affiliation(s)
- Shi-Qiang Wang
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
| | - Soumya Mukherjee
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland. .,Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
| |
Collapse
|
54
|
Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
55
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
56
|
Jeong S, Zhang L, Kim J, Gong J, Choi J, Ok KM, Lee Y, Kwon S, Lee HS. Conformational Adaptation of β-Peptide Foldamers for the Formation of Metal-Peptide Frameworks. Angew Chem Int Ed Engl 2021; 61:e202108364. [PMID: 34469030 DOI: 10.1002/anie.202108364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Indexed: 11/06/2022]
Abstract
Metal-coordinated frameworks derived from small peptidic ligands have received much attention thanks to peptides' vast structural and functional diversity. Various peptides with partial conformational preferences have been used to build metal-peptide frameworks, however, the use of conformationally constrained β-peptide foldamers has not been explored yet. Herein we report the first metal-coordination-mediated assembly of β-peptide foldamers with 12-helical folding propensity. The coordination of Ag+ to the terminal pyridyl moieties afforded a set of metal-peptide frameworks with unique entangled topologies. Interestingly, formation of the network structures was accompanied by notable conformational distortions of the foldamer ligands. As the first demonstration of new metal-peptide frameworks built from modular β-peptide foldamers, we anticipate that this work will be an important benchmark for further structural evolution and mechanistic investigation.
Collapse
Affiliation(s)
- Seoneun Jeong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Lianjin Zhang
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jaewook Kim
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jonghoon Choi
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
57
|
Miyake R. Constructing multicomponent cooperative functional systems using metal complexes of short flexible peptides. Chem Commun (Camb) 2021; 57:7987-7996. [PMID: 34312645 DOI: 10.1039/d1cc03101e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The construction of cooperative systems comprising several units is an essential challenge for artificial systems toward the development of sophisticated functions comparable to those found in biological systems. Flexible frameworks possessing various functional groups that can form weak intra/intermolecular interactions similar to those observed in biological systems have promising design features for artificial systems used to control cooperative systems. However, it is difficult to construct multiple component systems >1 nm using these flexible units by controlling the arrangement of functional units, beginning with the precise control of the cooperative switching of multiple units. In general, it is difficult for oligopeptides to form stable conformations by themselves, although they have designability and structural features suitable for the development of cooperative systems. Increasing the number of coordination bonds in peptides, which are stronger than hydrogen bonds, can be used to control the assembled peptide structures and stabilize their structures owing to the variety of coordination bonds and selective binding affinity. Thus, metal complexes of artificial short peptides have great potential for the development of multicomponent cooperative systems. Based on this concept, we have developed a series of novel metal complexes of flexible peptides and have achieved, to date, cooperative systems, the formation of giant structures, and precise control over the functional units that are the essential bases for designable multifunctional systems that can be regarded as artificial enzymes. In this feature article, we summarize these results and discuss the principal/essential design of artificial systems.
Collapse
Affiliation(s)
- Ryosuke Miyake
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| |
Collapse
|
58
|
Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120381] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
59
|
Peller M, Lanza A, Wuttke S. MRI‐Active Metal‐Organic Frameworks: Concepts for the Translation from Lab to Clinic. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Peller
- Department of Radiology University Hospital, LMU Munich Munich 80539 Germany
| | - Arianna Lanza
- Center for Nanotechnology Innovation @NEST Istituto Italiano di Tecnologia Pisa 56127 Italy
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Ikerbasque‐Basque Foundation for Science Bilbao 48011 Spain
| |
Collapse
|
60
|
Marsh C, Shearer GC, Knight BT, Paul-Taylor J, Burrows AD. Supramolecular aspects of biomolecule interactions in metal–organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Tay HM, Kyratzis N, Thoonen S, Boer SA, Turner DR, Hua C. Synthetic strategies towards chiral coordination polymers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
62
|
Ji Z, Fan Y, Wu M, Hong M. A flexible microporous framework with temperature-dependent gate-opening behaviours for C2 gases. Chem Commun (Camb) 2021; 57:3785-3788. [PMID: 33735363 DOI: 10.1039/d1cc00014d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we report a two-fold interpenetrating pillar-layer microporous material, whose framework severely shrinks after losing guest molecules and transforms into a stable nonporous one. More importantly, the guest-free framework has rarely seen temperature-dependent gate-opening behaviours for C2 gases around room temperature.
Collapse
Affiliation(s)
- Zhenyu Ji
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | | | | | | |
Collapse
|
63
|
Goeminne R, Krause S, Kaskel S, Verstraelen T, Evans JD. Charting the Complete Thermodynamic Landscape of Gas Adsorption for a Responsive Metal-Organic Framework. J Am Chem Soc 2021; 143:4143-4147. [PMID: 33719416 PMCID: PMC9115754 DOI: 10.1021/jacs.1c00522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 11/30/2022]
Abstract
New nanoporous materials have the ability to revolutionize adsorption and separation processes. In particular, materials with adaptive cavities have high selectivity and may display previously undiscovered phenomena, such as negative gas adsorption (NGA), in which gas is released from the framework upon an increase in pressure. Although the thermodynamic driving force behind this and many other counterintuitive adsorption phenomena have been thoroughly investigated in recent years, several experimental observations remain difficult to explain. This necessitates a comprehensive analysis of gas adsorption akin to the conformational free energy landscapes used to understand the function of proteins. We have constructed the complete thermodynamic landscape of methane adsorption on DUT-49. Traversing this complex landscape reproduces the experimentally observed structural transitions, temperature dependence, and the hysteresis between adsorption and desorption. The complete thermodynamic description presented here provides unparalleled insight into adsorption and provides a framework to understand other adsorbents that challenge our preconceptions.
Collapse
Affiliation(s)
- Ruben Goeminne
- Center
for Molecular Modeling, Ghent University, Tech Lane, Ghent Science Park Campus
A, 9052 Zwijnaarde, Belgium
| | - Simon Krause
- Stratingh
Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Stefan Kaskel
- Department
of Inorganic Chemistry, Technische Universität
Dresden Bergstraße
66, 01062 Dresden, Germany
| | - Toon Verstraelen
- Center
for Molecular Modeling, Ghent University, Tech Lane, Ghent Science Park Campus
A, 9052 Zwijnaarde, Belgium
| | - Jack D. Evans
- Department
of Inorganic Chemistry, Technische Universität
Dresden Bergstraße
66, 01062 Dresden, Germany
| |
Collapse
|
64
|
Liu J, Mukherjee S, Wang F, Fischer RA, Zhang J. Homochiral metal-organic frameworks for enantioseparation. Chem Soc Rev 2021; 50:5706-5745. [PMID: 33972960 DOI: 10.1039/d0cs01236j] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Obtaining homochiral compounds is of high importance to human health and environmental sustainability. Currently, enantioseparation is one of the most effective approaches to obtain homochiral compounds. Thanks to their controlled synthesis and high efficiency, homochiral metal-organic frameworks (HMOFs) are one of the most widely studied porous materials to enable enantioseparation. In this review, we discuss the chiral pocket model in depth as the key to unlock enantioselective separation mechanisms in HMOFs. In particular, we classify our discussion of these chiral pockets (also regarded as "molecular traps") into: (a) achiral/chiral linker based helical channels as a result of packing modality; and (b) chiral pores inherited from chiral ligands. Driven by a number of mechanisms of enantioseparation, conceptual advances have been recently made in the design of HMOFs for achieving high enantioseparation performances. Herein, these are systematically categorised and discussed. Further we elucidate various applications of HMOFs as regards enantioseparation, systematically classifying them into their use for purification and related analytical utility according to the reported examples. Last but not the least, we discuss the challenges and perspectives concerning the rational design of HMOFs and their corresponding enantioseparations.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | |
Collapse
|
65
|
Liu X, Liang T, Zhang R, Ding Q, Wu S, Li C, Lin Y, Ye Y, Zhong Z, Zhou M. Iron-Based Metal-Organic Frameworks in Drug Delivery and Biomedicine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9643-9655. [PMID: 33606494 DOI: 10.1021/acsami.0c21486] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Metal-organic frameworks (MOFs) are crystalline materials comprising metal centers and organic linkers that feature structural rigidity and functional flexibility. These attractive materials offer large surface areas, high porosity, and good chemical stability; they have shown promise in chemistry (H2 separation and catalysis), magnetism, and optics. They have also shown potential for drug delivery following the demonstration in 2006 that chromium-based MOFs can be loaded with ibuprofen. Since then, iron-based MOFs (Fe-MOFs) have been shown to offer high drug loading and excellent biocompatibility. The present review focuses on the synthesis and surface modifications of Fe-MOFs as well as their applications in drug delivery and biomedicine.
Collapse
Affiliation(s)
- Xianbin Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tiantian Liang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rongtao Zhang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qian Ding
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Siqiong Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yun Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
66
|
Piotrowska R, Hesketh T, Wang H, Martin ARG, Bowering D, Zhang C, Hu CT, McPhee SA, Wang T, Park Y, Singla P, McGlone T, Florence A, Tuttle T, Ulijn RV, Chen X. Mechanistic insights of evaporation-induced actuation in supramolecular crystals. NATURE MATERIALS 2021; 20:403-409. [PMID: 32929251 DOI: 10.1038/s41563-020-0799-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Water-responsive materials undergo reversible shape changes upon varying humidity levels. These mechanically robust yet flexible structures can exert substantial forces and hold promise as efficient actuators for energy harvesting, adaptive materials and soft robotics. Here we demonstrate that energy transfer during evaporation-induced actuation of nanoporous tripeptide crystals results from the strengthening of water hydrogen bonding that drives the contraction of the pores. The seamless integration of mobile and structurally bound water inside these pores with a supramolecular network that contains readily deformable aromatic domains translates dehydration-induced mechanical stresses through the crystal lattice, suggesting a general mechanism of efficient water-responsive actuation. The observed strengthening of water bonding complements the accepted understanding of capillary-force-induced reversible contraction for this class of materials. These minimalistic peptide crystals are much simpler in composition compared to natural water-responsive materials, and the insights provided here can be applied more generally for the design of high-energy molecular actuators.
Collapse
Affiliation(s)
- Roxana Piotrowska
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Travis Hesketh
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Haozhen Wang
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA
- PhD Program in Physics, The Graduate Center of the City University of New York, New York, NY, USA
| | - Alan R G Martin
- EPSRC Continuous Manufacturing and Crystallisation Future Research Hub c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology Innovation Centre, University of Strathclyde, Glasgow, UK
| | - Deborah Bowering
- EPSRC Continuous Manufacturing and Crystallisation Future Research Hub c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology Innovation Centre, University of Strathclyde, Glasgow, UK
| | - Chunqiu Zhang
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA
| | - Chunhua T Hu
- Department of Chemistry, New York University, New York, NY, USA
| | - Scott A McPhee
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA
| | - Tong Wang
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA
| | - Yaewon Park
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA
| | - Pulkit Singla
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA
| | - Thomas McGlone
- EPSRC Continuous Manufacturing and Crystallisation Future Research Hub c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology Innovation Centre, University of Strathclyde, Glasgow, UK
| | - Alastair Florence
- EPSRC Continuous Manufacturing and Crystallisation Future Research Hub c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology Innovation Centre, University of Strathclyde, Glasgow, UK
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA.
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Chemistry and Biochemistry, Hunter College, City University of New York, New York, NY, USA.
| | - Xi Chen
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, USA.
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- PhD Program in Physics, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Chemical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
67
|
Liu X, Li J, Gui B, Lin G, Fu Q, Yin S, Liu X, Sun J, Wang C. A Crystalline Three-Dimensional Covalent Organic Framework with Flexible Building Blocks. J Am Chem Soc 2021; 143:2123-2129. [PMID: 33481570 DOI: 10.1021/jacs.0c12505] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The construction of three-dimensional covalent organic frameworks (3D COFs) has proven to be very challenging, as their synthetic driving force mainly comes from the formation of covalent bonds. To facilitate the synthesis, rigid building blocks are always the first choice for designing 3D COFs. In principle, it should be very appealing to construct 3D COFs from flexible building blocks, but there are some obstacles blocking the development of such systems, especially for the designed synthesis and structure determination. Herein, we reported a novel highly crystalline 3D COF (FCOF-5) with flexible C-O single bonds in the building block backbone. By merging 17 continuous rotation electron diffraction data sets, we successfully determined the crystal structure of FCOF-5 to be a 6-fold interpenetrated pts topology. Interestingly, FCOF-5 is flexible and can undergo reversible expansion/contraction upon vapor adsorption/desorption, indicating a breathing motion. Moreover, a smart soft polymer composite film with FCOF-5 was fabricated, which can show a reversible vapor-triggered shape transformation. Therefore, 3D COFs constructed from flexible building blocks can exhibit interesting breathing behavior, and finally, a totally new type of soft porous crystals made of pure organic framework was announced.
Collapse
Affiliation(s)
- Xiaoling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China.,Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Bo Gui
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guiqing Lin
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qiang Fu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Sheng Yin
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuefen Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China.,Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Cheng Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
68
|
Schnitzer T, Paenurk E, Trapp N, Gershoni-Poranne R, Wennemers H. Peptide-Metal Frameworks with Metal Strings Guided by Dispersion Interactions. J Am Chem Soc 2021; 143:644-648. [PMID: 33417437 DOI: 10.1021/jacs.0c11793] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite impressive advances in the construction of metal-organic frameworks (MOFs), the formation of networks from peptidic ligands is difficult, though they are sought after for their modularity and biocompatibility. Herein we present a peptide-metal framework that consists of helical oligoproline ligands and Zn/K (or Zn/Rb). The crystalline network contains pleated nanosheets with the metal ions aligned in strings. This unprecedented architecture derives from under-appreciated London dispersion interactions between the oligoproline ligands that play in concert with the metal coordination to create the network. Hence, the secondary structure of the peptidic ligand represents an additional control element for the creation of new MOF architectures. We anticipate that our results will instruct the design of further peptidic MOFs and enable the generation of versatile biocompatible materials.
Collapse
|
69
|
Ling X, Gong D, Shi W, Xu Z, Han W, Lan G, Li Y, Qin W, Lin W. Nanoscale Metal-Organic Layers Detect Mitochondrial Dysregulation and Chemoresistance via Ratiometric Sensing of Glutathione and pH. J Am Chem Soc 2021; 143:1284-1289. [PMID: 33449698 DOI: 10.1021/jacs.0c11764] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysregulation controls cell death and survival by changing endogenous molecule concentrations and ion flows across the membrane. Here, we report the design of a triply emissive nanoscale metal-organic layer (nMOL), NA@Zr-BTB/F/R, for sensing mitochondrial dysregulation. Zr-BTB nMOL containing Zr6 secondary building units (SBUs) and 2,4,6-tris(4-carboxyphenyl)aniline (BTB-NH2) ligands was postsynthetically functionalized to afford NA@Zr-BTB/F/R by exchanging formate capping groups on the SBUs with glutathione(GSH)-selective (2E)-1-(2'-naphthyl)-3-(4-carboxyphenyl)-2-propen-1-one (NA) and covalent conjugation of pH-sensitive fluorescein (F) and GSH/pH-independent rhodamine-B (R) to the BTB-NH2 ligands. Cell imaging demonstrated NA@Zr-BTB/F/R as a ratiometric sensor for mitochondrial dysregulation and chemotherapy resistance via GSH and pH sensing.
Collapse
Affiliation(s)
| | - Deyan Gong
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
70
|
Cirujano FG, Martín N, Almora-Barrios N, Martí-Gastaldo C. Catalytic activity of a CuGHK peptide-based porous material. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00670c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CuGHK peptide-based porous material acts as a heterogeneous organocatalyst in the Henry reaction due to a periodic distribution of pockets decorated with lysine side chain active sites.
Collapse
Affiliation(s)
- Francisco G. Cirujano
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Valencia, Spain
| | - Nuria Martín
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Valencia, Spain
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Valencia, Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán Martínez no. 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
71
|
Tao K, Xue B, Han S, Aizen R, Shimon LJW, Xu Z, Cao Y, Mei D, Wang W, Gazit E. Bioinspired Suprahelical Frameworks as Scaffolds for Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45192-45201. [PMID: 32924412 PMCID: PMC7549093 DOI: 10.1021/acsami.0c13295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Framework materials have shown promising potential in various biological applications. However, the state-of-the-art components show low biocompatibility or mechanical instability, or cannot integrate both optics and electronics, thus severely limiting their extensive applications in biological systems. Herein, we demonstrate that amide-based bioorganic building blocks, including dipeptides and dipeptide nucleic acids, can self-assemble into hydrogen-bonded suprahelix architectures of controllable handedness, which then form suprahelical frameworks with diverse cavities. Especially, the cavities can be tuned to be hydrophilic or hydrophobic, and the shortest diagonal distance can be modulated from 0.5 to 1.8 nm, with the volume proportion in the unit cell changing from 5 to 60%. Furthermore, the hydrogen bonding networks result in high mechanical rigidity and semiconductively optoelectronic properties, which allow the utilization of the suprahelical frameworks as supramolecular scaffolds for artificial photosynthesis. Our findings reveal amide-based suprahelix architectures acting as bioinspired supramolecular frameworks, thus extending the constituents portfolio and increasing the feasibility of using framework materials for biological applications.
Collapse
Affiliation(s)
- Kai Tao
- State
Key Laboratory of Fluid Power and Mechatronic Systems & Key Laboratory
of Advanced Manufacturing Engineering of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Xue
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Shuyi Han
- China
Petroleum Engineering & Construction Corp. Southwest Company, No. 6th Shenghua Road, High-Tech
Zone, Chengdu 610094, Sichuan, China
| | - Ruth Aizen
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Zhengyu Xu
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Deqing Mei
- State
Key Laboratory of Fluid Power and Mechatronic Systems & Key Laboratory
of Advanced Manufacturing Engineering of Zhejiang Province, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Wang
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Ehud Gazit
- School
of Molecular Cell Biology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
72
|
Effect of comonomer on the Cu-BDC/Poly(NMA-coSAS) foams templating from CO2-in-water emulsion: Adsorptive and bacteriostatic applications. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
73
|
Ma X, Yang Y, Ma R, Zhang Y, Zou X, Zhu S, Ge X, Yuan Y, Zhang W, Zhu G. Inorganic nanocrystal-dynamic porous polymer assemblies with effective energy transfer for sensitive diagnosis of urine copper. Chem Sci 2020; 11:12187-12193. [PMID: 34123225 PMCID: PMC8162459 DOI: 10.1039/d0sc04359a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite their remarkable mechanical, optical, and electrical properties, inorganic particles and dynamic polymer assemblies encounter difficulties in their compatibility with regards to structural order and complexity. Here, covalent organic frameworks (COFs) constructed through reversible coupling reactions were exploited as dynamic porous polymers to prepare inorganic nanocrystal-polymer assemblies. Under an in situ growth process, carbon quantum dots (CDs) were gradually prepared in the COF cavity, with a narrow size distribution (2 ± 0.5 nm). The well-established assemblies achieve effective energy transfer from the inorganic to the organic part (efficiency > 80%), thus rendering a ∼130% increase in quantum yield compared with the pristine COF network. Notably, the hybrid material realizes a simple, selective, and sensitive diagnostic tool for urine copper, surpassing the detection limit of COF solid by 150 times. Beyond the scientific and fundamental interests, such hybrid assemblies are attractive from technological perspectives as well, for example, in energy storage, electronics, catalysis, and optics. Despite their remarkable mechanical, optical, and electrical properties, inorganic particles and dynamic polymer assemblies encounter difficulties in their compatibility with regards to structural order and complexity.![]()
Collapse
Affiliation(s)
- Xujiao Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University Changchun 130024 China
| | - Yajie Yang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University Changchun 130024 China
| | - Rongchen Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University Changchun 130024 China
| | - Yunfeng Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University Changchun 130024 China
| | - Xiaoqin Zou
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University Changchun 130024 China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Xin Ge
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin University Changchun 130012 China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University Changchun 130024 China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin University Changchun 130012 China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University Changchun 130024 China
| |
Collapse
|
74
|
Pérez-Cejuela HM, Herrero-Martínez JM, Simó-Alfonso EF. Recent Advances in Affinity MOF-Based Sorbents with Sample Preparation Purposes. Molecules 2020; 25:E4216. [PMID: 32938010 PMCID: PMC7571043 DOI: 10.3390/molecules25184216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the recent advances concerning metal-organic frameworks (MOFs) modified with several biomolecules (e.g., amino acids, nucleobases, proteins, antibodies, aptamers, etc.) as ligands to prepare affinity-based sorbents for application in the sample preparation field. The preparation and incorporation strategies of these MOF-based affinity materials were described. Additionally, the different types of ligands that can be employed for the synthesis of these biocomposites and their application as sorbents for the selective extraction of molecules and clean-up of complex real samples is reported. The most important features of the developed biocomposites will be discussed throughout the text in different sections, and several examples will be also commented on in detail.
Collapse
Affiliation(s)
| | | | - Ernesto F. Simó-Alfonso
- Department of Analytical Chemistry, University of Valencia, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain; (H.M.P.-C.); (J.M.H.-M.)
| |
Collapse
|
75
|
Howitz WJ, Wierzbicki M, Cabanela RW, Saliba C, Motavalli A, Tran N, Nowick JS. Interpenetrating Cubes in the X-ray Crystallographic Structure of a Peptide Derived from Medin 19-36. J Am Chem Soc 2020; 142:15870-15875. [PMID: 32816461 DOI: 10.1021/jacs.0c06143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloidogenic peptides and proteins are rich sources of supramolecular assemblies. Sequences derived from well-known amyloids, including Aβ, human islet amyloid polypeptide, and tau have been found to assemble as fibrils, nanosheets, ribbons, and nanotubes. The supramolecular assembly of medin, a 50-amino acid peptide that forms fibrillary deposits in aging human vasculature, has not been heavily investigated. In this work, we present an X-ray crystallographic structure of a cyclic β-sheet peptide derived from the 19-36 region of medin that assembles to form interpenetrating cubes. The edge of each cube is composed of a single peptide, and each vertex is occupied by a divalent metal ion. This structure may be considered a metal-organic framework (MOF) containing a large peptide ligand. This work demonstrates that peptides containing Glu or Asp that are preorganized to adopt β-hairpin structures can serve as ligands and assemble with metal ions to form MOFs.
Collapse
Affiliation(s)
- William J Howitz
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Michał Wierzbicki
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Rudy William Cabanela
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Cindy Saliba
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Ariana Motavalli
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Ngoctran Tran
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| | - James S Nowick
- Department of Chemistry and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
76
|
Liu X, Zhang Q, Knoll W, Liedberg B, Wang Y. Rational Design of Functional Peptide-Gold Hybrid Nanomaterials for Molecular Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000866. [PMID: 32743897 DOI: 10.1002/adma.202000866] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/21/2020] [Indexed: 05/12/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively used for decades in biosensing-related development due to outstanding optical properties. Peptides, as newly realized functional biomolecules, are promising candidates of replacing antibodies, receptors, and substrates for specific molecular interactions. Both peptides and AuNPs are robust and easily synthesized at relatively low cost. Hence, peptide-AuNP-based bio-nano-technological approaches have drawn increasing interest, especially in the field of molecular targeting, cell imaging, drug delivery, and therapy. Many excellent works in these areas have been reported: demonstrating novel ideas, exploring new targets, and facilitating advanced diagnostic and therapeutic technologies. Importantly, some of them also have been employed to address real practical problems, especially in remote and less privileged areas. This contribution focuses on the application of peptide-gold hybrid nanomaterials for various molecular interactions, especially in biosensing/diagnostics and cell targeting/imaging, as well as for the development of highly active antimicrobial/antifouling coating strategies. Rationally designed peptide-gold nanomaterials with functional properties are discussed along with future challenges and opportunities.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Wolfgang Knoll
- Austrian Institute of Technology, Giefinggasse 4, Vienna, 1210, Austria
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
77
|
Yan Y, Carrington EJ, Pétuya R, Whitehead GFS, Verma A, Hylton RK, Tang CC, Berry NG, Darling GR, Dyer MS, Antypov D, Katsoulidis AP, Rosseinsky MJ. Amino Acid Residues Determine the Response of Flexible Metal-Organic Frameworks to Guests. J Am Chem Soc 2020; 142:14903-14913. [PMID: 32786807 PMCID: PMC7472430 DOI: 10.1021/jacs.0c03853] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Flexible metal-organic frameworks (MOFs) undergo structural transformations in response to physical and chemical stimuli. This is hard to control because of feedback between guest uptake and host structure change. We report a family of flexible MOFs based on derivatized amino acid linkers. Their porosity consists of a one-dimensional channel connected to three peripheral pockets. This network structure amplifies small local changes in linker conformation, which are strongly coupled to the guest packing in and the shape of the peripheral pockets, to afford large changes in the global pore geometry that can, for example, segment the pore into four isolated components. The synergy among pore volume, guest packing, and linker conformation that characterizes this family of structures can be determined by the amino acid side chain, because it is repositioned by linker torsion. The resulting control optimizes noncovalent interactions to differentiate the uptake and structure response of host-guest pairs with similar chemistries.
Collapse
Affiliation(s)
- Yong Yan
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | | | - Rémi Pétuya
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | | | - Ajay Verma
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Rebecca K Hylton
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Chiu C Tang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - George R Darling
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Matthew S Dyer
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Dmytro Antypov
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | | | | |
Collapse
|
78
|
Calleros EL, Simonovsky FI, Garty S, Ratner BD. Crosslinked, biodegradable polyurethanes for precision‐porous biomaterials: Synthesis and properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.48943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Shai Garty
- Department of BioengineeringUniversity of Washington Seattle WA 98195 USA
| | - Buddy D. Ratner
- Department of BioengineeringUniversity of Washington Seattle WA 98195 USA
- Department of Chemical EngineeringUniversity of Washington Seattle WA 98195 USA
| |
Collapse
|
79
|
Mukherjee S, Zaworotko MJ. Crystal Engineering of Hybrid Coordination Networks: From Form to Function. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.02.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
80
|
Sun Y, Zheng L, Yang Y, Qian X, Fu T, Li X, Yang Z, Yan H, Cui C, Tan W. Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. NANO-MICRO LETTERS 2020; 12:103. [PMID: 34138099 PMCID: PMC7770922 DOI: 10.1007/s40820-020-00423-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/11/2020] [Indexed: 05/17/2023]
Abstract
Investigation of metal-organic frameworks (MOFs) for biomedical applications has attracted much attention in recent years. MOFs are regarded as a promising class of nanocarriers for drug delivery owing to well-defined structure, ultrahigh surface area and porosity, tunable pore size, and easy chemical functionalization. In this review, the unique properties of MOFs and their advantages as nanocarriers for drug delivery in biomedical applications were discussed in the first section. Then, state-of-the-art strategies to functionalize MOFs with therapeutic agents were summarized, including surface adsorption, pore encapsulation, covalent binding, and functional molecules as building blocks. In the third section, the most recent biological applications of MOFs for intracellular delivery of drugs, proteins, and nucleic acids, especially aptamers, were presented. Finally, challenges and prospects were comprehensively discussed to provide context for future development of MOFs as efficient drug delivery systems.
Collapse
Affiliation(s)
- Yujia Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Liwei Zheng
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xu Qian
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China.
| | - Xiaowei Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - He Yan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China.
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, FL, 32615, USA.
| |
Collapse
|
81
|
Sorrenti A, Jones L, Sevim S, Cao X, deMello AJ, Martí-Gastaldo C, Puigmartí-Luis J. Growing and Shaping Metal-Organic Framework Single Crystals at the Millimeter Scale. J Am Chem Soc 2020; 142:9372-9381. [PMID: 32307978 DOI: 10.1021/jacs.0c01935] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Controlling and understanding the mechanisms that harness crystallization processes is of utmost importance in contemporary materials science and, in particular, in the realm of reticular solids where it still remains a great challenge. In this work, we show that environments mimicking microgravity conditions can harness the size and shape of functional biogenic crystals such as peptide-based metal-organic frameworks (MOFs). In particular, we demonstrate formation of the largest single crystals with controlled nonequilibrium shapes of peptide-based MOFs reported to date (e.g., those featuring curved crystal habits), as opposed to the typical polyhedral microcrystals obtained under bulk crystallization conditions. Such unique nonequilibrium morphologies arise from the interplay between the diffusion-controlled supply of precursors in simulated microgravity environments and the physical constraints imposed during crystal growth. In fact, our method mimics two main strategies of morphogenesis in biomineralization, i.e., spatial and morphological control, both being largely unexplored in the field of self-assembled functional materials. The presented results may open new opportunities to study and understand fundamental questions of relevance to materials science, such as how the size and shape of artificial crystals can influence their properties and functions while providing a strategy to tailor the size and shape of peptide-based MOF single crystals to specific applications.
Collapse
Affiliation(s)
- Alessandro Sorrenti
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Lewis Jones
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Semih Sevim
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Xiaobao Cao
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Josep Puigmartí-Luis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
82
|
Gao X, Ge F, Zheng H. Improving the Stability and Visualizing the Structural Transformation of the Stimuli-Responsive Metal-Organic Frameworks (MOFs). Inorg Chem 2020; 59:5093-5098. [PMID: 32159337 DOI: 10.1021/acs.inorgchem.0c00349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New metal-organic frameworks (MOFs) based on flexible tetra-carboxylate ligands and Cu(II) are designed to gain stimuli-responsive materials. Unstable MOFs can be more stable with unabated flexibility by replacing coordinated solvent molecules with auxiliary N-based ligands. Two of them are intensively studied by in situ single-crystal X-ray diffraction (SCXRD) analysis and the unit cell parameters during transformations have been observed in detail. They undergo exceptional structural transformations which can be divided into two processes: the thermal-responsive phase transition and the solvent-responsive phase transition. The thermal-responsive phase transition takes place in a narrow temperature interval reversibly. However, the solvent-responsive phase transition is a gradual and irreversible process. The stimuli-responsive mechanism has also been explored by comparing the parameters of the crystal structures under different temperatures. Fascinatingly, their exceptional structural transformations correlate with the flexibility of the ligand fragments and the [Cu2(RCOO)4] clusters.
Collapse
Affiliation(s)
- Xiangjing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Fayuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Hegen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
83
|
Song BQ, Yang QY, Wang SQ, Vandichel M, Kumar A, Crowley C, Kumar N, Deng CH, GasconPerez V, Lusi M, Wu H, Zhou W, Zaworotko MJ. Reversible Switching between Nonporous and Porous Phases of a New SIFSIX Coordination Network Induced by a Flexible Linker Ligand. J Am Chem Soc 2020; 142:6896-6901. [PMID: 32216372 DOI: 10.1021/jacs.0c01314] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Closed-to-open structural transformations in flexible coordination networks are of potential utility in gas storage and separation. Herein, we report the first example of a flexible SiF62--pillared square grid material, [Cu(SiF6)(L)2]n (L = 1,4-bis(1-imidazolyl)benzene), SIFSIX-23-Cu. SIFSIX-23-Cu exhibits reversible switching between nonporous (β1) and several porous (α, γ1, γ2, and γ3) phases triggered by exposure to N2, CO2, or H2O. In addition, heating β1 to 433 K resulted in irreversible transformation to a closed polymorph, β2. Single-crystal X-ray diffraction studies revealed that the phase transformations are enabled by rotation and geometrical contortion of L. Density functional theory calculations indicated that L exhibits a low barrier to rotation (as low as 8 kJmol-1) and a rather flat energy surface. In situ neutron powder diffraction studies provided further insight into these sorbate-induced phase changes. SIFSIX-23-Cu combines stability in water for over a year, high CO2 uptake (ca. 216 cm3/g at 195 K), and good thermal stability.
Collapse
Affiliation(s)
- Bai-Qiao Song
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shi-Qiang Wang
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Amrit Kumar
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Clare Crowley
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Naveen Kumar
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Cheng-Hua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Victoria GasconPerez
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matteo Lusi
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Michael J Zaworotko
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
84
|
|
85
|
Norouzi F, Khavasi HR. Iodine decorated-UiO-67 MOF as a fluorescent sensor for the detection of halogenated aromatic hydrocarbons. NEW J CHEM 2020. [DOI: 10.1039/d0nj01149e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An iodine-decorated UiO-67 MOF, UiO-67(I)2 is constructed via the incorporation of iodine groups into the BPDC linker. This decorated MOF exhibited a strong fluorescence response towards halogenated aromatic hydrocarbons (HAHs).
Collapse
Affiliation(s)
- Fataneh Norouzi
- Department of Inorganic Chemistry and Catalysis
- Shahid Beheshti University
- Tehran 1983963113
- Iran
| | - Hamid Reza Khavasi
- Department of Inorganic Chemistry and Catalysis
- Shahid Beheshti University
- Tehran 1983963113
- Iran
| |
Collapse
|
86
|
Lan G, Ni K, You E, Wang M, Culbert A, Jiang X, Lin W. Multifunctional Nanoscale Metal-Organic Layers for Ratiometric pH and Oxygen Sensing. J Am Chem Soc 2019; 141:18964-18969. [PMID: 31747271 DOI: 10.1021/jacs.9b11024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a monolayered version of nanoscale metal-organic frameworks (nMOFs), nanoscale metal-organic layers (nMOLs) represent an emerging class of highly tunable two-dimensional materials for hierarchical functionalization and with facile access to analytes. Here we report the design of the first nMOL-based biosensor for ratiometric pH and oxygen sensing in mitochondria. Cationic Hf12-Ru nMOL was solvothermally synthesized by laterally connecting Hf12 secondary building units (SBUs) with oxygen-sensitive Ru(bpy)32+-derived DBB-Ru ligands (bpy = 2,2'-bipyridine). The Hf12-Ru nMOL was then covalently functionalized with pH-sensitive fluorescein isothiocyanate and pH/oxygen-independent Rhodamine-B isothiocyanate through thiourea linkages to afford Hf12-Ru-F/R as a mitochondria-targeted ratiometric sensor for pH and O2 in live cells. High-resolution confocal microscope imaging with Hf12-Ru-F/R revealed a positive correlation between pH and local O2 concentration in mitochondria. Our work shows the potential of nMOL-based ratiometric biosensors in sensing and imaging of biologically important analytes in live cells.
Collapse
Affiliation(s)
| | | | | | - Maolin Wang
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | | | | | | |
Collapse
|
87
|
Hazra A, van Heerden DP, Sanyal S, Lama P, Esterhuysen C, Barbour LJ. CO 2-induced single-crystal to single-crystal transformations of an interpenetrated flexible MOF explained by in situ crystallographic analysis and molecular modeling. Chem Sci 2019; 10:10018-10024. [PMID: 32015814 PMCID: PMC6977545 DOI: 10.1039/c9sc04043a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
A molecular-level investigation is reported on breathing behaviour of a metal-organic framework (1) in response to CO2 gas pressure. High-pressure gas adsorption shows a pronounced step corresponding to a gate-opening phase transformation from a closed (1cp ) to a large-pore (1lp ) form. A plateau is observed upon desorption corresponding to narrow-pore intermediate form 1np which does not occur during adsorption. These events are corroborated by pressure-gradient differential scanning calorimetry and in situ single-crystal X-ray diffraction analysis under controlled CO2 gas pressure. Complete crystallographic characterisation facilitated a rationalisation of each phase transformation in the series 1cp → 1lp → 1np → 1cp during adsorption and subsequent desorption. Metropolis grand-canonical Monte Carlo simulations and DFT-PBE-D3 interaction energy calculations strongly underpin this first detailed structural investigation of an intermediate phase encountered upon desorption.
Collapse
Affiliation(s)
- Arpan Hazra
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| | - Dewald P van Heerden
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| | - Somananda Sanyal
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| | - Prem Lama
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| | - Catharine Esterhuysen
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| | - Leonard J Barbour
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| |
Collapse
|
88
|
Mu J, He L, Huang P, Chen X. Engineering of Nanoscale Coordination Polymers with Biomolecules for Advanced Applications. Coord Chem Rev 2019; 399:213039. [PMID: 32863398 PMCID: PMC7453726 DOI: 10.1016/j.ccr.2019.213039] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoscale coordination polymers (NCPs) have shown extraordinary advantages in various research areas due to their structural diversity and multifunctionality. Recently, integration of biomolecules with NCPs received extensive attention and the formed hybrid materials exhibit superior properties over the individual NCPs or biomolecules. In this review, the state-of-the-art of approaches to engineer NCPs with different types of guest biomolecules, such as amino acids, nucleic acids, enzymes and lipids are systematically introduced. Additionally, advanced applications of these biomolecule-NCP composites in the areas of sensing, catalysis, molecular imaging and therapy are thoroughly summarized. Finally, current challenges and prospects are also discussed.
Collapse
Affiliation(s)
- Jing Mu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liangcan He
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
89
|
Liu Y, Gao H, Sheng X, Zhou Y, Wang B, Sha X, Jin M, Zhao J, Liu W. The catalytic performance study of polymerized ionic liquid synthesized in different conditions on alkylation of
o
‐Xylene with styrene. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yonghui Liu
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Huaying Gao
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Xiaoli Sheng
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Beibei Wang
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Xiao Sha
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Maolu Jin
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Wenqi Liu
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| |
Collapse
|
90
|
Zhu A, Yang Q, Mukherjee S, Kumar A, Deng C, Bezrukov AA, Shivanna M, Zaworotko MJ. Tuning the Gate‐Opening Pressure in a Switching pcu Coordination Network, X‐pcu‐5‐Zn, by Pillar‐Ligand Substitution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ai‐Xin Zhu
- Faculty of Chemistry and Chemical EngineeringYunnan Normal University Kunming 650500 China
- Department of Chemical Sciences and Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Qing‐Yuan Yang
- Department of Chemical Sciences and Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
- School of Chemical Engineering and TechnologyXi'an Jiaotong University Xi'an 710049 China
| | - Soumya Mukherjee
- Department of Chemical Sciences and Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Amrit Kumar
- Department of Chemical Sciences and Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Cheng‐Hua Deng
- Department of Chemical Sciences and Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Andrey A. Bezrukov
- Department of Chemical Sciences and Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Mohana Shivanna
- Department of Chemical Sciences and Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Michael J. Zaworotko
- Department of Chemical Sciences and Bernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| |
Collapse
|
91
|
Zhu AX, Yang QY, Mukherjee S, Kumar A, Deng CH, Bezrukov AA, Shivanna M, Zaworotko MJ. Tuning the Gate-Opening Pressure in a Switching pcu Coordination Network, X-pcu-5-Zn, by Pillar-Ligand Substitution. Angew Chem Int Ed Engl 2019; 58:18212-18217. [PMID: 31588650 DOI: 10.1002/anie.201909977] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Indexed: 11/10/2022]
Abstract
Coordination networks that reversibly switch between closed and open phases are of topical interest since their stepped isotherms can offer higher working capacities for gas-storage applications than the related rigid porous coordination networks. To be of practical utility, the pressures at which switching occurs, the gate-opening and gate-closing pressures, must lie between the storage and delivery pressures. Here we study the effect of linker substitution to fine-tune gate-opening and gate-closing pressure. Specifically, three variants of a previously reported pcu-topology MOF, X-pcu-5-Zn, have been prepared: X-pcu-6-Zn, 6=1,2-bis(4-pyridyl)ethane (bpe), X-pcu-7-Zn, 7=1,2-bis(4-pyridyl)acetylene (bpa), and X-pcu-8-Zn, 8=4,4'-azopyridine (apy). Each exhibited switching isotherms but at different gate-opening pressures. The N2 , CO2 , C2 H2 , and C2 H4 adsorption isotherms consistently indicated that the most flexible dipyridyl organic linker, 6, afforded lower gate-opening and gate-closing pressures. This simple design principle enables a rational control of the switching behavior in adsorbent materials.
Collapse
Affiliation(s)
- Ai-Xin Zhu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China.,Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Qing-Yuan Yang
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Soumya Mukherjee
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Amrit Kumar
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Cheng-Hua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Andrey A Bezrukov
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Mohana Shivanna
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Michael J Zaworotko
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| |
Collapse
|
92
|
Basu Baul TS, Chaurasiya A, Lyčka A, Rojas-León I, Höpfl H. Molecular aggregations of bicyclodioxazastannone produced from multicomponent reactions involving functionalized 2-hydroxybenzaldehydes, α- or β-amino acids and a dimethyltin precursor. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
93
|
Wang Z, Li M, Peng Y, Zhang Z, Chen W, Huang X. An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhi‐Shuo Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University Guangdong 515063 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| | - Mian Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University Guangdong 515063 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| | - Yun‐Lei Peng
- College of ChemistryNankai University Tianjin 300071 China
| | - Zhenjie Zhang
- College of ChemistryNankai University Tianjin 300071 China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanKey Laboratory of Magnetic Resonance in Biological SystemsWuhan Institute of Physics and MathematicsChinese Academy of Sciences Wuhan 430071 China
| | - Xiao‐Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University Guangdong 515063 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| |
Collapse
|
94
|
Wang ZS, Li M, Peng YL, Zhang Z, Chen W, Huang XC. An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture. Angew Chem Int Ed Engl 2019; 58:16071-16076. [PMID: 31469218 DOI: 10.1002/anie.201909046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/29/2019] [Indexed: 11/09/2022]
Abstract
In the evolution of metal-organic frameworks (MOFs) for carbon capture, a lasting challenge is to strike a balance between high uptake capacity/selectivity and low energy cost for regeneration. Meanwhile, these man-made materials have to survive from practical demands such as stability under harsh conditions and feasibility of scale-up synthesis. Reported here is a new MOF, Zn(imPim) (aka. MAF-stu-1), with an imidazole derivative ligand, featuring binding pockets that can accommodate CO2 molecules in a fit-like-a-glove manner. Such a high degree of shape complementarity allows direct observation of the loaded CO2 in the pockets, and warrants its optimal carbon capture performances exceeding the best-performing MOFs nowadays. Coupled with the record thermal (up to 680 °C) and chemical stability, as well as rapid large-scale production, both encoded in the material design, Zn(imPim) represents a most competitive candidate to tackle the immediate problems of carbon dioxide capture.
Collapse
Affiliation(s)
- Zhi-Shuo Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Mian Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Yun-Lei Peng
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
95
|
Suginome S, Sato H, Hori A, Mishima A, Harada Y, Kusaka S, Matsuda R, Pirillo J, Hijikata Y, Aida T. One-Step Synthesis of an Adaptive Nanographene MOF: Adsorbed Gas-Dependent Geometrical Diversity. J Am Chem Soc 2019; 141:15649-15655. [DOI: 10.1021/jacs.9b07732] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shun Suginome
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Sato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akihiro Hori
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Akio Mishima
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yuki Harada
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shinpei Kusaka
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Jenny Pirillo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
96
|
Corella-Ochoa MN, Tapia JB, Rubin HN, Lillo V, González-Cobos J, Núñez-Rico JL, Balestra SR, Almora-Barrios N, Lledós M, Güell-Bara A, Cabezas-Giménez J, Escudero-Adán EC, Vidal-Ferran A, Calero S, Reynolds M, Martí-Gastaldo C, Galán-Mascarós JR. Homochiral Metal–Organic Frameworks for Enantioselective Separations in Liquid Chromatography. J Am Chem Soc 2019; 141:14306-14316. [DOI: 10.1021/jacs.9b06500] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- M. Nieves Corella-Ochoa
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | | | | | - Vanesa Lillo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - Jesús González-Cobos
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - José Luis Núñez-Rico
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - Salvador R.G. Balestra
- Departament of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, Sevilla 41013, Spain
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular, Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Marina Lledós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - Arnau Güell-Bara
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - Juanjo Cabezas-Giménez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel.lí Domingo s/n, Tarragona E-43007, Spain
| | - Eduardo C. Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - Anton Vidal-Ferran
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
- ICREA, Passeig Lluís Companys, 23, Barcelona E-08010, Spain
| | - Sofía Calero
- Departament of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, Sevilla 41013, Spain
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | | | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular, Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna 46980, Spain
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
- ICREA, Passeig Lluís Companys, 23, Barcelona E-08010, Spain
| |
Collapse
|
97
|
Yang H, Trieu TX, Zhao X, Wang Y, Wang Y, Feng P, Bu X. Lock‐and‐Key and Shape‐Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huajun Yang
- Department of Chemistry and Biochemistry California State University Long Beach CA 90840 USA
| | - Thuong Xinh Trieu
- Department of Chemistry and Biochemistry California State University Long Beach CA 90840 USA
| | - Xiang Zhao
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yanxiang Wang
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yong Wang
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Pingyun Feng
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach CA 90840 USA
| |
Collapse
|
98
|
Yang H, Trieu TX, Zhao X, Wang Y, Wang Y, Feng P, Bu X. Lock‐and‐Key and Shape‐Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks. Angew Chem Int Ed Engl 2019; 58:11757-11762. [DOI: 10.1002/anie.201905876] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Huajun Yang
- Department of Chemistry and Biochemistry California State University Long Beach CA 90840 USA
| | - Thuong Xinh Trieu
- Department of Chemistry and Biochemistry California State University Long Beach CA 90840 USA
| | - Xiang Zhao
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yanxiang Wang
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yong Wang
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Pingyun Feng
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach CA 90840 USA
| |
Collapse
|
99
|
Teng P, Gray GM, Zheng M, Singh S, Li X, Wojtas L, van der Vaart A, Cai J. Orthogonal Halogen-Bonding-Driven 3D Supramolecular Assembly of Right-Handed Synthetic Helical Peptides. Angew Chem Int Ed Engl 2019; 58:7778-7782. [PMID: 30957356 PMCID: PMC6534470 DOI: 10.1002/anie.201903259] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 01/08/2023]
Abstract
Peptide-mediated self-assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C-X⋅⋅⋅X-C/C-X⋅⋅⋅π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids of l-sulfono-γ-AApeptides and natural amino acids. The combination of halogen bonding, intra-/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self-assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.
Collapse
Affiliation(s)
- Peng Teng
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Geoffrey M Gray
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Mengmeng Zheng
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Sylvia Singh
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| |
Collapse
|
100
|
Teng P, Gray GM, Zheng M, Singh S, Li X, Wojtas L, van der Vaart A, Cai J. Orthogonal Halogen‐Bonding‐Driven 3D Supramolecular Assembly of Right‐Handed Synthetic Helical Peptides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Peng Teng
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Geoffrey M. Gray
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Mengmeng Zheng
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Sylvia Singh
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Xiaopeng Li
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Arjan van der Vaart
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Jianfeng Cai
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| |
Collapse
|