51
|
Wu J, Huang S, Zeng Q, Liu S, Wang Q, Mu J, Yu S, Han D, Kang Z. Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1777-1792. [PMID: 29909527 DOI: 10.1007/s00122-018-3113-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
A major stripe rust resistance QTL on chromosome 4BL was localized to a 4.5-Mb interval using comparative QTL mapping methods and validated in 276 wheat genotypes by haplotype analysis. CYMMIT-derived wheat line P10103 was previously identified to have adult plant resistance (APR) to stripe rust in the greenhouse and field. The conventional approach for QTL mapping in common wheat is laborious. Here, we performed QTL detection of APR using a combination of genome-wide scanning and extreme pool-genotyping. SNP-based genetic maps were constructed using the Wheat55 K SNP array to genotype a recombinant inbred line (RIL) population derived from the cross Mingxian 169 × P10103. Five stable QTL were detected across multiple environments. A fter comparing SNP profiles from contrasting, extreme DNA pools of RILs six putative QTL were located to approximate chromosome positions. A major QTL on chromosome 4B was identified in F2:4 contrasting pools from cross Zhengmai 9023 × P10103. A consensus QTL (LOD = 26-40, PVE = 42-55%), named QYr.nwafu-4BL, was defined and localized to a 4.5-Mb interval flanked by SNP markers AX-110963704 and AX-110519862 in chromosome arm 4BL. Based on stripe rust response, marker genotypes, pedigree analysis and mapping data, QYr.nwafu-4BL is likely to be a new APR QTL. The applicability of the SNP-based markers flanking QYr.nwafu-4BL was validated on a diversity panel of 276 wheat lines. The additional minor QTL on chromosomes 4A, 5A, 5B and 6A enhanced the level of resistance conferred by QYr.nwafu-4BL. Marker-assisted pyramiding of QYr.nwafu-4BL and other favorable minor QTL in new wheat cultivars should improve the level of APR to stripe rust.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
52
|
Wu J, Zeng Q, Wang Q, Liu S, Yu S, Mu J, Huang S, Sela H, Distelfeld A, Huang L, Han D, Kang Z. SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1481-1496. [PMID: 29666883 DOI: 10.1007/s00122-018-3092-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/08/2018] [Indexed: 05/12/2023]
Abstract
NGS-assisted super pooling emerging as powerful tool to accelerate gene mapping and haplotype association analysis within target region uncovering specific linkage SNPs or alleles for marker-assisted gene pyramiding. Conventional gene mapping methods to identify genes associated with important agronomic traits require significant amounts of financial support and time. Here, a single nucleotide polymorphism (SNP)-based mapping approach, RNA-Seq and SNP array assisted super pooling analysis, was used for rapid mining of a candidate genomic region for stripe rust resistance gene Yr26 that has been widely used in wheat breeding programs in China. Large DNA and RNA super-pools were genotyped by Wheat SNP Array and sequenced by Illumina HiSeq, respectively. Hundreds of thousands of SNPs were identified and then filtered by multiple filtering criteria. Among selected SNPs, over 900 were found within an overlapping interval of less than 30 Mb as the Yr26 candidate genomic region in the centromeric region of chromosome arm 1BL. The 235 chromosome-specific SNPs were converted into KASP assays to validate the Yr26 interval in different genetic populations. Using a high-resolution mapping population (> 30,000 gametes), we confined Yr26 to a 0.003-cM interval. The Yr26 target region was anchored to the common wheat IWGSC RefSeq v1.0 and wild emmer WEWSeq v.1.0 sequences, from which 488 and 454 kb fragments were obtained. Several candidate genes were identified in the target genomic region, but there was no typical resistance gene in either genome region. Haplotype analysis identified specific SNPs linked to Yr26 and developed robust and breeder-friendly KASP markers. This integration strategy can be applied to accelerate generating many markers closely linked to target genes/QTL for a trait of interest in wheat and other polyploid species.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Hanan Sela
- The Institute for Cereal Crops Improvement, Tel-Aviv University, Tel Aviv, Israel
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- NRGene Ltd., Ness Ziona, Israel
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Neuherberg, Germany
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
53
|
Nsabiyera V, Bariana HS, Qureshi N, Wong D, Hayden MJ, Bansal UK. Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1459-1467. [PMID: 29560515 DOI: 10.1007/s00122-018-3090-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/16/2018] [Indexed: 05/26/2023]
Abstract
A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace Aus27284. Linked markers were developed and validated for their utility in marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. Aus27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the Aus27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome 3B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (3 cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome 3B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin 3BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome 3BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.
Collapse
Affiliation(s)
- Vallence Nsabiyera
- The University of Sydney Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Harbans S Bariana
- The University of Sydney Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Naeela Qureshi
- The University of Sydney Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Debbie Wong
- Department of Economic Development, Jobs, Transport and Resources, La Trobe University AgriBio, Bundoora, VIC, 3083, Australia
| | - Matthew J Hayden
- Department of Economic Development, Jobs, Transport and Resources, La Trobe University AgriBio, Bundoora, VIC, 3083, Australia
| | - Urmil K Bansal
- The University of Sydney Plant Breeding Institute, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
54
|
Lewis CM, Persoons A, Bebber DP, Kigathi RN, Maintz J, Findlay K, Bueno-Sancho V, Corredor-Moreno P, Harrington SA, Kangara N, Berlin A, García R, Germán SE, Hanzalová A, Hodson DP, Hovmøller MS, Huerta-Espino J, Imtiaz M, Mirza JI, Justesen AF, Niks RE, Omrani A, Patpour M, Pretorius ZA, Roohparvar R, Sela H, Singh RP, Steffenson B, Visser B, Fenwick PM, Thomas J, Wulff BBH, Saunders DGO. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun Biol 2018; 1:13. [PMID: 30271900 PMCID: PMC6053080 DOI: 10.1038/s42003-018-0013-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/11/2018] [Indexed: 12/05/2022] Open
Abstract
Wheat stem rust, a devastating disease of wheat and barley caused by the fungal pathogen Puccinia graminis f. sp. tritici, was largely eradicated in Western Europe during the mid-to-late twentieth century. However, isolated outbreaks have occurred in recent years. Here we investigate whether a lack of resistance in modern European varieties, increased presence of its alternate host barberry and changes in climatic conditions could be facilitating its resurgence. We report the first wheat stem rust occurrence in the United Kingdom in nearly 60 years, with only 20% of UK wheat varieties resistant to this strain. Climate changes over the past 25 years also suggest increasingly conducive conditions for infection. Furthermore, we document the first occurrence in decades of P. graminis on barberry in the UK . Our data illustrate that wheat stem rust does occur in the UK and, when climatic conditions are conducive, could severely harm wheat and barley production.
Collapse
Affiliation(s)
- Clare M Lewis
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Rose N Kigathi
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Pwani University, 195-80108, Kilifi, Kenya
| | - Jens Maintz
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kim Findlay
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | | | | | - Anna Berlin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Richard García
- Instituto Nacional de Investigación Agropecuaria (INIA) La Estanzuela, Mailbox 39173, Colonia, Uruguay
| | - Silvia E Germán
- Instituto Nacional de Investigación Agropecuaria (INIA) La Estanzuela, Mailbox 39173, Colonia, Uruguay
| | - Alena Hanzalová
- Crop Research Institute, Ruzyně, 161 06 Praha 6, Czech Republic
| | - David P Hodson
- International Maize and Wheat Improvement Center (CIMMYT), 5689, Addis Ababa, Ethiopia
| | | | | | | | - Javed Iqbal Mirza
- Crop Disease Research Program, National Agriculture Research Center, Islamabad, 44000, Pakistan
| | | | - Rients E Niks
- Wageningen University, Wageningen, 6700, The Netherlands
| | - Ali Omrani
- Faculty of Agriculture, Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, 5166616471, Iran
| | | | | | - Ramin Roohparvar
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), 4119, Karaj, Iran
| | - Hanan Sela
- Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ravi P Singh
- CIMMYT, Apdo. Postal 6-641, D. F. México, 06600, Mexico
| | | | - Botma Visser
- University of the Free State, Bloemfontein, 9301, South Africa
| | | | - Jane Thomas
- National Institute of Agricultural Botany, Cambridge, CB3 0LE, UK
| | | | | |
Collapse
|
55
|
Wu J, Wang Q, Xu L, Chen X, Li B, Mu J, Zeng Q, Huang L, Han D, Kang Z. Combining Single Nucleotide Polymorphism Genotyping Array with Bulked Segregant Analysis to Map a Gene Controlling Adult Plant Resistance to Stripe Rust in Wheat Line 03031-1-5 H62. PHYTOPATHOLOGY 2018; 108:103-113. [PMID: 28832276 DOI: 10.1094/phyto-04-17-0153-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most devastating diseases of wheat worldwide. Growing resistant cultivars is considered the best approach to manage this disease. In order to identify the resistance gene(s) in wheat line 03031-1-5 H62, which displayed high resistance to stripe rust at adult plant stage, a cross was made between 03031-1-5 H62 and susceptible cultivar Avocet S. The mapping population was tested with Chinese P. striiformis f. sp. tritici race CYR32 through artificial inoculation in a field in Yangling, Shaanxi Province and under natural infection in Tianshui, Gansu Province. The segregation ratios indicated that the resistance was conferred by a single dominant gene, temporarily designated as YrH62. A combination of bulked segregant analysis (BSA) with wheat 90K single nucleotide polymorphism (SNP) array was used to identify molecular markers linked to YrH62. A total of 376 polymorphic SNP loci identified from the BSA analysis were located on chromosome 1B, from which 35 kompetitive allele-specific PCR (KASP) markers selected together with 84 simple sequence repeat (SSR) markers on 1B were used to screen polymorphism and a chromosome region associated with rust resistance was identified. To saturate the chromosomal region covering the YrH62 locus, a 660K SNP array was used to identify more SNP markers. To develop tightly linked markers for marker-assisted selection of YrH62 in wheat breeding, 18 SNPs were converted into KASP markers. A final linkage map consisting of 15 KASP and 3 SSR markers was constructed with KASP markers AX-109352427 and AX-109862469 flanking the YrH62 locus in a 1.0 cM interval. YrH62 explained 63.8 and 69.3% of the phenotypic variation for disease severity and infection type, respectively. YrH62 was located near the centromeric region of chromosome 1BS based on the positions of the SSR markers in 1B deletion bins. Based on the origin, responses to P. striiformis f. sp. tritici races, and marker distances, YrH62 is likely different from the other reported stripe rust resistance genes/quantitative trait loci on 1B. The gene and tightly linked KASP markers will be useful for breeding wheat cultivars with resistance to stripe rust.
Collapse
Affiliation(s)
- Jianhui Wu
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Qilin Wang
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Liangsheng Xu
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Xianming Chen
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Bei Li
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Jingmei Mu
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Qingdong Zeng
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Lili Huang
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Dejun Han
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Zhensheng Kang
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| |
Collapse
|
56
|
Wu J, Liu S, Wang Q, Zeng Q, Mu J, Huang S, Yu S, Han D, Kang Z. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:43-58. [PMID: 28965125 DOI: 10.1007/s00122-017-2984-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 05/07/2023]
Abstract
High-throughput SNP array analysis of pooled extreme phenotypes in a segregating population by KASP marker genotyping permitted rapid, cost-effective location of a stripe rust resistance QTL in wheat. German wheat cultivar "Friedrichswerther" has exhibited high levels of adult plant resistance (APR) to stripe rust in field environments for many years. F2:3 lines and F6 recombinant inbred line (RILs) populations derived from a cross between Friedrichswerther and susceptible landrace Mingxian 169 were evaluated in the field in 2013, 2016 and 2017. Illumina 90K iSelect SNP arrays were used to genotype bulked extreme pools and parents; 286 of 1135 polymorphic SNPs were identified on chromosome 6B. Kompetitive Allele-Specific PCR (KASP) markers were used to verify the chromosome region associated with the resistance locus. A linkage map was constructed with 18 KASP-SNP markers, and a major effect QTL was identified within a 1.4 cM interval flanked by KASP markers IWB71602 and IWB55937 in the region 6BL3-0-0.36. The QTL, named QYr.nwafu-6BL, was stable across environments, and explained average 54.4 and 47.8% of the total phenotypic variation in F2:3 lines and F6 RILs, respectively. On the basis of marker genotypes, pedigree analysis and relative genetic distance QYr.nwafu-6BL is likely to be a new APR QTL. Combined high-throughput SNP array genotyping of pooled extremes and validation by KASP assays lowers sequencing costs compared to genome-wide association studies with SNP arrays, and more importantly, permits rapid isolation of major effect QTL in hexaploid wheat as well as improving accuracy of mapping in the QTL region. QYr.nwafu-6BL with flanking KASP markers developed and verified in a subset of 236 diverse lines can be used in marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
57
|
Bueno-Sancho V, Persoons A, Hubbard A, Cabrera-Quio LE, Lewis CM, Corredor-Moreno P, Bunting DCE, Ali S, Chng S, Hodson DP, Madariaga Burrows R, Bryson R, Thomas J, Holdgate S, Saunders DGO. Pathogenomic Analysis of Wheat Yellow Rust Lineages Detects Seasonal Variation and Host Specificity. Genome Biol Evol 2017; 9:3282-3296. [PMID: 29177504 PMCID: PMC5730935 DOI: 10.1093/gbe/evx241] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/27/2022] Open
Abstract
Recent disease outbreaks caused by (re-)emerging plant pathogens have been associated with expansions in pathogen geographic distribution and increased virulence. For example, in the past two decades' wheat yellow (stripe) rust, Puccinia striiformis f. sp. tritici, has seen the emergence of new races that are adapted to warmer temperatures, have expanded virulence profiles, and are more aggressive than previous races, leading to wide-scale epidemics. Here, we used field-based genotyping to generate high-resolution data on P. striiformis genetics and carried out global population analysis. We also undertook comparative analysis of the 2014 and 2013 UK populations and assessed the temporal dynamics and host specificity of distinct pathogen genotypes. Our analysis revealed that P. striiformis lineages recently detected in Europe are extremely diverse and in fact similar to globally dispersed populations. In addition, we identified a considerable shift in the UK P. striiformis population structure including the first identification of one infamous race known as Kranich. Next, by establishing the genotype of both the pathogen and host within a single infected field sample, we uncovered evidence for varietal specificity for genetic groups of P. striiformis. Finally, we found potential seasonal specificity for certain genotypes of the pathogen with several lineages identified only in samples collected in late spring and into the summer, whereas one lineage was identified throughout the wheat growing season. Our discovery of which wheat varieties are susceptible to which specific P. striiformis isolates, and when those isolates are prevalent throughout the year, represents a powerful tool for disease management.
Collapse
Affiliation(s)
| | - Antoine Persoons
- Crop Genetics, John Innes Centre, Norwich Research Park, United Kingdom
| | - Amelia Hubbard
- ational Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Luis Enrique Cabrera-Quio
- Earlham Institute, Norwich Research Park, United Kingdom
- The Sainsbury Laboratory, Norwich Research Park, United Kingdom
| | - Clare M Lewis
- Crop Genetics, John Innes Centre, Norwich Research Park, United Kingdom
| | | | | | - Sajid Ali
- The University of Agriculture, Peshawar, Pakistan
| | - Soonie Chng
- The New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | | | | | - Rosie Bryson
- BASF SE, Agricultural Centre, Limburgerhof, Germany
| | - Jane Thomas
- ational Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Sarah Holdgate
- ational Institute of Agricultural Botany, Cambridge, United Kingdom
| | | |
Collapse
|
58
|
Wu J, Wang Q, Kang Z, Liu S, Li H, Mu J, Dai M, Han D, Zeng Q, Chen X. Development and Validation of KASP-SNP Markers for QTL Underlying Resistance to Stripe Rust in Common Wheat Cultivar P10057. PLANT DISEASE 2017; 101:2079-2087. [PMID: 30677371 DOI: 10.1094/pdis-04-17-0468-re] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust (Puccinia striiformis f. sp. tritici) is among the most important diseases of wheat (Triticum aestivum L.) globally. Utilization of adult plant resistance (APR) constitutes a key tool for maintaining protection against this disease. The CIMMYT wheat cultivar P10057 displayed a high level of APR to stripe rust in germplasm evaluation in field environments. To clarify the genetic basis and identify quantitative trait loci (QTLs) involved in stripe rust resistance in P10057, three wheat populations were used: 150 F5:6 recombinant inbred lines (RILs) derived from the cross Mingxian 169 × P10057, and 161 and 140 F2:3 lines from Avocet S × P10057 and Zhengmai 9023 × P10057, respectively. These three populations were evaluated for infection type (IT) and disease severity (DS) in Shaanxi, Gansu, and Sichuan during the 2014-15 and 2015-16 cropping seasons. Genotyping was performed with Kompetitive Allelic Specific PCR (KASP) and simple sequence repeat (SSR) markers linked to the resistance loci. Using QTL analysis, two genomic regions associated with resistance were found on chromosome arms 2BS and 3BS, respectively. These two stable QTLs, designated Qyrlov.nwafu-2BS and Qyrlov.nwafu-3BS, were detected across all environments and explained average 22.6 to 31.6% and 21.3 to 32.3% of stripe rust severity phenotypic variation, respectively. Qyrlov.nwafu-2BS may be the resistance allele derived from CIMMYT germplasm and Qyrlov.nwafu-3BS likely corresponds to the locus Sr2/Lr27/Yr30/Pbc. The KASP markers IWA5377, IWA2674, and IWA5830 linked to QYrlov.nwafu-2BS and IWB57990 and IWB6491 linked to Qyrlov.nwafu-3BS were reliable for marker-assisted selection (MAS) in the Zhengmai 9023 × P10057 population. These QTLs with KASP markers are expected to contribute in developing wheat cultivars with improved stripe rust resistance.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Haiyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Miaofei Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, United States Department of Agriculture, and Department of Plant Pathology, Washington State University, Pullman, WA
| |
Collapse
|
59
|
Zhang Z, Song L, Han H, Zhou S, Zhang J, Yang X, Li X, Liu W, Li L. Physical Localization of a Locus from Agropyron cristatum Conferring Resistance to Stripe Rust in Common Wheat. Int J Mol Sci 2017; 18:E2403. [PMID: 29137188 PMCID: PMC5713371 DOI: 10.3390/ijms18112403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat-A. cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A. cristatum 6P, ten translocation lines, five deletion lines and the BC₂F₂ and BC₃F₂ populations of two wheat-A. cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015-2016 and 2016-2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm's length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A. cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding.
Collapse
Affiliation(s)
- Zhi Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Liqiang Song
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology of Sciences, Shijiazhuang 050022, China.
| | - Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shenghui Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
60
|
Meyer M, Cox JA, Hitchings MDT, Burgin L, Hort MC, Hodson DP, Gilligan CA. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. NATURE PLANTS 2017; 3:780-786. [PMID: 28947769 DOI: 10.1038/s41477-017-0017-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/16/2017] [Indexed: 05/24/2023]
Abstract
Infectious crop diseases spreading over large agricultural areas pose a threat to food security. Aggressive strains of the obligate pathogenic fungus Puccinia graminis f.sp. tritici (Pgt), causing the crop disease wheat stem rust, have been detected in East Africa and the Middle East, where they lead to substantial economic losses and threaten livelihoods of farmers. The majority of commercially grown wheat cultivars worldwide are susceptible to these emerging strains, which pose a risk to global wheat production, because the fungal spores transmitting the disease can be wind-dispersed over regions and even continents 1-11 . Targeted surveillance and control requires knowledge about airborne dispersal of pathogens, but the complex nature of long-distance dispersal poses significant challenges for quantitative research 12-14 . We combine international field surveys, global meteorological data, a Lagrangian dispersion model and high-performance computational resources to simulate a set of disease outbreak scenarios, tracing billions of stochastic trajectories of fungal spores over dynamically changing host and environmental landscapes for more than a decade. This provides the first quantitative assessment of spore transmission frequencies and amounts amongst all wheat producing countries in Southern/East Africa, the Middle East and Central/South Asia. We identify zones of high air-borne connectivity that geographically correspond with previously postulated wheat rust epidemiological zones (characterized by endemic disease and free movement of inoculum) 10,15 , and regions with genetic similarities in related pathogen populations 16,17 . We quantify the circumstances (routes, timing, outbreak sizes) under which virulent pathogen strains such as 'Ug99' 5,6 pose a threat from long-distance dispersal out of East Africa to the large wheat producing areas in Pakistan and India. Long-term mean spore dispersal trends (predominant direction, frequencies, amounts) are summarized for all countries in the domain (Supplementary Data). Our mechanistic modelling framework can be applied to other geographic areas, adapted for other pathogens and used to provide risk assessments in real-time 3 .
Collapse
Affiliation(s)
- M Meyer
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| | - J A Cox
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - M D T Hitchings
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - L Burgin
- Atmospheric Dispersion and Air Quality (ADAQ), Met Office, Exeter, EX1 3PB, UK
| | - M C Hort
- Atmospheric Dispersion and Air Quality (ADAQ), Met Office, Exeter, EX1 3PB, UK
| | - D P Hodson
- International Maize and Wheat Improvement Center (CIMMYT), PO Box 5689, Addis Ababa, Ethiopia
| | - C A Gilligan
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
61
|
Ali S, Rodriguez-Algaba J, Thach T, Sørensen CK, Hansen JG, Lassen P, Nazari K, Hodson DP, Justesen AF, Hovmøller MS. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages. FRONTIERS IN PLANT SCIENCE 2017; 8:1057. [PMID: 28676811 PMCID: PMC5477562 DOI: 10.3389/fpls.2017.01057] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/31/2017] [Indexed: 05/21/2023]
Abstract
We investigated whether the recent worldwide epidemics of wheat yellow rust were driven by races of few clonal lineage(s) or populations of divergent races. Race phenotyping of 887 genetically diverse Puccinia striiformis isolates sampled in 35 countries during 2009-2015 revealed that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent in Europe, corresponding to widely deployed resistance genes. The highest diversity was observed in South Asian populations, where frequent recombination has been reported, and no particular race was predominant in this area. The results are discussed in light of the role of invasions in shaping pathogen population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease vulnerability of host varieties prior to their deployment at larger scales.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Agroecology, Global Rust Reference Centre, Aarhus UniversitySlagelse, Denmark
| | | | - Tine Thach
- Department of Agroecology, Global Rust Reference Centre, Aarhus UniversitySlagelse, Denmark
| | - Chris K. Sørensen
- Department of Agroecology, Global Rust Reference Centre, Aarhus UniversitySlagelse, Denmark
| | - Jens G. Hansen
- Department of Agroecology, Global Rust Reference Centre, Aarhus UniversitySlagelse, Denmark
| | - Poul Lassen
- Department of Agroecology, Global Rust Reference Centre, Aarhus UniversitySlagelse, Denmark
| | - Kumarse Nazari
- International Center for Agricultural Research in the Dry Areas, Regional Cereal Rust Research Centre, Aegean Agricultural Research Instituteİzmir, Turkey
| | - David P. Hodson
- International Maize and Wheat Improvement Center, CIMMYTAddis Ababa, Ethiopia
| | - Annemarie F. Justesen
- Department of Agroecology, Global Rust Reference Centre, Aarhus UniversitySlagelse, Denmark
| | - Mogens S. Hovmøller
- Department of Agroecology, Global Rust Reference Centre, Aarhus UniversitySlagelse, Denmark
| |
Collapse
|
62
|
Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol Mol Biol Rev 2017; 81:e00066-16. [PMID: 28356329 PMCID: PMC5485802 DOI: 10.1128/mmbr.00066-16] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi and oomycetes are filamentous microorganisms that include a diversity of highly developed pathogens of plants. These are sophisticated modulators of plant processes that secrete an arsenal of effector proteins to target multiple host cell compartments and enable parasitic infection. Genome sequencing revealed complex catalogues of effectors of filamentous pathogens, with some species harboring hundreds of effector genes. Although a large fraction of these effector genes encode secreted proteins with weak or no sequence similarity to known proteins, structural studies have revealed unexpected similarities amid the diversity. This article reviews progress in our understanding of effector structure and function in light of these new insights. We conclude that there is emerging evidence for multiple pathways of evolution of effectors of filamentous plant pathogens but that some families have probably expanded from a common ancestor by duplication and diversification. Conserved folds, such as the oomycete WY and the fungal MAX domains, are not predictive of the precise function of the effectors but serve as a chassis to support protein structural integrity while providing enough plasticity for the effectors to bind different host proteins and evolve unrelated activities inside host cells. Further effector evolution and diversification arise via short linear motifs, domain integration and duplications, and oligomerization.
Collapse
Affiliation(s)
- Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Helen G Pennington
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
63
|
Wu J, Wang Q, Liu S, Huang S, Mu J, Zeng Q, Huang L, Han D, Kang Z. Saturation Mapping of a Major Effect QTL for Stripe Rust Resistance on Wheat Chromosome 2B in Cultivar Napo 63 Using SNP Genotyping Arrays. FRONTIERS IN PLANT SCIENCE 2017; 8:653. [PMID: 28491075 PMCID: PMC5405077 DOI: 10.3389/fpls.2017.00653] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat (Triticum aestivum L.). Widespread deployment of resistant cultivars is the best means of achieving durable disease control. The red grain, spring wheat cultivar Napo 63 produced by CIMMYT in the 1960s shows a high level of adult-plant resistance to stripe rust in the field. To elucidate the genetic basis of resistance in this cultivar we evaluated 224 F2:3 lines and 175 F2:6 recombinant inbred lines (RILs) derived from a cross between Napo 63 and the Pst-susceptible line Avocet S. The maximum disease severity (MDS) data of F2:3 lines and the relative area under the disease progress curve (rAUDPC) data of RILs were collected during the 2014-2015 and 2015-2016 wheat growing seasons, respectively. Combined bulked segregant analysis and 90K single nucleotide polymorphism (SNP) arrays placed 275 of 511 polymorphic SNPs on chromosome 2B. Sixty four KASP markers selected from the 275 SNPs and 76 SSR markers on 2B were used to identify a chromosome region associated with rust response. A major effect QTL, named Qyrnap.nwafu-2BS, was identified by inclusive composite interval mapping and was preliminarily mapped to a 5.46 cM interval flanked by KASP markers 90K-AN34 and 90K-AN36 in chromosome 2BS. Fourteen KASP markers more closely linked to the locus were developed following a 660K SNP array analysis. The QTL region was finally narrowed to a 0.9 cM interval flanked by KASP markers 660K-AN21 and 660K-AN57 in bin region 2BS-1-0.53. The resistance of Napo 63 was stable across all environments, and as a QTL, explained an average 66.1% of the phenotypic variance in MDS of F2:3 lines and 55.7% of the phenotypic variance in rAUDPC of F5:6 RILs. The short genetic interval and flanking KASP markers developed in the study will facilitate marker-assisted selection, gene pyramiding, and eventual positional cloning of Qyrnap.nwafu-2BS.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| |
Collapse
|
64
|
Zhang B, Hua Y, Wang J, Huo Y, Shimono M, Day B, Ma Q. TaADF4, an actin-depolymerizing factor from wheat, is required for resistance to the stripe rust pathogen Puccinia striiformis f. sp. tritici. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1210-1224. [PMID: 27995685 DOI: 10.1111/tpj.13459] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 05/21/2023]
Abstract
Actin filament assembly in plants is a dynamic process, requiring the activity of more than 75 actin-binding proteins. Central to the regulation of filament assembly and stability is the activity of a conserved family of actin-depolymerizing factors (ADFs), whose primarily function is to regulate the severing and depolymerization of actin filaments. In recent years, the activity of ADF proteins has been linked to a variety of cellular processes, including those associated with response to stress. Herein, a wheat ADF gene, TaADF4, was identified and characterized. TaADF4 encodes a 139-amino-acid protein containing five F-actin-binding sites and two G-actin-binding sites, and interacts with wheat (Triticum aestivum) Actin1 (TaACT1), in planta. Following treatment of wheat, separately, with jasmonic acid, abscisic acid or with the avirulent race, CYR23, of the stripe rust pathogen Puccinia striiformis f. sp. tritici, we observed a rapid induction in accumulation of TaADF4 mRNA. Interestingly, accumulation of TaADF4 mRNA was diminished in response to inoculation with a virulent race, CYR31. Silencing of TaADF4 resulted in enhanced susceptibility to CYR23, demonstrating a role for TaADF4 in defense signaling. Using a pharmacological-based approach, coupled with an analysis of host response to pathogen infection, we observed that treatment of plants with the actin-modifying agent latrunculin B enhanced resistance to CYR23, including increased production of reactive oxygen species and enhancement of localized hypersensitive cell death. Taken together, these data support the hypothesis that TaADF4 positively modulates plant immunity in wheat via the modulation of actin cytoskeletal organization.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuan Hua
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Juan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Masaki Shimono
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Qing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
65
|
Hu X, Ma L, Liu T, Wang C, Peng Y, Pu Q, Xu X. Population Genetic Analysis of Puccinia striiformis f. sp. tritici Suggests Two Distinct Populations in Tibet and the Other Regions of China. PLANT DISEASE 2017; 101:288-296. [PMID: 30681929 DOI: 10.1094/pdis-02-16-0190-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease on wheat, seriously threatening wheat production worldwide. China is one of the largest stripe rust epidemic regions in the world. The pathogen sexual reproduction and migration routes between Tibet and the other regions in China are still unknown. In this study, we obtained 961 Pst isolates from 1,391 wheat leaf samples from Gansu (277), Shaanxi (253), Sichuan (172), and Tibet (259), comprising 13 natural populations, and genotyped them with simple sequence repeat (SSR) markers. The isolates can be divided into two distinct clusters based on DAPC and STRUCTURE analyses. The genetic diversity of Longnan (in Gansu) and Yibin (in Sichuan) populations was the highest and lowest among the 13 populations, respectively. The hypothesis of multilocus linkage disequilibrium was rejected for the populations from Linzhi in the Himalayan, Longnan, Hanzhong, Guangyuan, Mianyang, Liangshan, and Chendu in the south Qinling Mountains at the level of P = 0.01, which indicated significant linkage among markers in these populations. Populations in the other regions had extensive gene exchange (Nm > 4); little gene exchange was found between Tibet and the other regions (Nm < 1). The results suggest that the Tibet epidemic region of Pst is highly differentiated from the other epidemic regions in China.
Collapse
Affiliation(s)
- Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijie Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Taiguo Liu
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Conghao Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuelin Peng
- Tibet Agricultural and Animal Husbandry College, Linzhi 860000, China
| | - Qiong Pu
- Tibet Autonomous Region Agricultural Technology Extension and Service Center, Lhasa 850000, Tibet
| | - Xiangming Xu
- NIAB East Malling Research, New Road, East Malling, ME19 6BJ, Kent, U.K
| |
Collapse
|
66
|
Hovmøller MS, Rodriguez-Algaba J, Thach T, Sørensen CK. Race Typing of Puccinia striiformis on Wheat. Methods Mol Biol 2017; 1659:29-40. [PMID: 28856638 DOI: 10.1007/978-1-4939-7249-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A procedure for virulence phenotyping of isolates of yellow (stripe) rust using spray inoculation of wheat seedlings by spores suspended in an engineered fluid, Novec™ 7100, is presented. Differential sets consisting of near-isogenic Avocet lines, selected lines from the "World" and "European" sets, and additional varieties showing race-specificity facilitate a robust assessment of race, irrespectively of geographical and evolutionary origin of isolates. A simple procedure for purification of samples consisting of multiple races is also presented.
Collapse
Affiliation(s)
- Mogens S Hovmøller
- Department of Agroecology, Aarhus University, Forsogsvej 1, 4200, Slagelse, Denmark.
| | | | - Tine Thach
- Department of Agroecology, Aarhus University, Forsogsvej 1, 4200, Slagelse, Denmark
| | - Chris K Sørensen
- Department of Agroecology, Aarhus University, Forsogsvej 1, 4200, Slagelse, Denmark
| |
Collapse
|
67
|
Wang X, Yang B, Li K, Kang Z, Cantu D, Dubcovsky J. A Conserved Puccinia striiformis Protein Interacts with Wheat NPR1 and Reduces Induction of Pathogenesis-Related Genes in Response to Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:977-989. [PMID: 27898286 DOI: 10.1094/mpmi-10-16-0207-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In Arabidopsis, NPR1 is a key transcriptional coregulator of systemic acquired resistance. Upon pathogen challenge, NPR1 translocates from the cytoplasm to the nucleus, in which it interacts with TGA-bZIP transcription factors to activate the expression of several pathogenesis-related (PR) genes. In a screen of a yeast two-hybrid library from wheat leaves infected with Puccinia striiformis f. sp. tritici, we identified a conserved rust protein that interacts with wheat NPR1 and named it PNPi (for Puccinia NPR1 interactor). PNPi interacts with the NPR1/NIM1-like domain of NPR1 via its C-terminal DPBB_1 domain. Using bimolecular fluorescence complementation assays, we detected the interaction between PNPi and wheat NPR1 in the nucleus of Nicotiana benthamiana protoplasts. A yeast three-hybrid assay showed that PNPi interaction with NPR1 competes with the interaction between wheat NPR1 and TGA2.2. In barley transgenic lines overexpressing PNPi, we observed reduced induction of multiple PR genes in the region adjacent to Pseudomonas syringae pv. tomato DC3000 infection. Based on these results, we hypothesize that PNPi has a role in manipulating wheat defense response via its interactions with NPR1.
Collapse
Affiliation(s)
- Xiaodong Wang
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
- 2 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, P. R. China
- 3 College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Agriculture University of Hebei, Baoding, Hebei 071000, P. R. China
| | - Baoju Yang
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
| | - Kun Li
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
| | - Zhensheng Kang
- 2 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, P. R. China
| | - Dario Cantu
- 4 Department of Viticulture and Enology, University of California, Davis, CA 95616, U.S.A
| | - Jorge Dubcovsky
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
- 5 Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, U.S.A
| |
Collapse
|
68
|
Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jørgensen LN, Hovmøller MS, Huerta-Espino J. Disease Impact on Wheat Yield Potential and Prospects of Genetic Control. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:303-22. [PMID: 27296137 DOI: 10.1146/annurev-phyto-080615-095835] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Wheat is grown worldwide in diverse geographical regions, environments, and production systems. Although many diseases and pests are known to reduce grain yield potential and quality, the three rusts and powdery mildew fungi have historically caused major crop losses and continue to remain economically important despite the widespread use of host resistance and fungicides. The evolution and fast spread of virulent and more aggressive race lineages of rust fungi have only worsened the situation. Fusarium head blight, leaf spotting diseases, and, more recently, wheat blast (in South America and Bangladesh) have become diseases of major importance in recent years largely because of intensive production systems, the expansion of conservation agriculture, undesirable crop rotations, or increased dependency on fungicides. High genetic diversity for race-specific and quantitative resistance is known for most diseases; their selection through phenotyping reinforced with molecular strategies offers great promise in achieving more durable resistance and enhancing global wheat productivity.
Collapse
Affiliation(s)
- Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico;
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico;
| | - Jessica Rutkoski
- International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico;
- Department of Plant Science, Cornell University, Ithaca, NY 14853
| | | | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico;
| | - Lise N Jørgensen
- Department of Agroecology, Aarhus University, DK-4200, Slagelse, Denmark
| | - Mogens S Hovmøller
- Department of Agroecology, Aarhus University, DK-4200, Slagelse, Denmark
| | | |
Collapse
|
69
|
Liu C, Pedersen C, Schultz-Larsen T, Aguilar GB, Madriz-Ordeñana K, Hovmøller MS, Thordal-Christensen H. The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases. THE NEW PHYTOLOGIST 2016. [PMID: 27252028 DOI: 10.1111/nph.14034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/25/2016] [Indexed: 05/20/2023]
Abstract
We identified a wheat stripe rust (Puccinia striiformis) effector candidate (PEC6) with pattern-triggered immunity (PTI) suppression function and its corresponding host target. PEC6 compromised PTI host species-independently. In Nicotiana benthamiana, it hampers reactive oxygen species (ROS) accumulation and callose deposition induced by Pseudomonas fluorescens. In Arabidopsis, plants expressing PEC6 were more susceptible to Pseudomonas syringae pv. tomato (Pto) DC3000 ΔAvrPto/ΔAvrPtoB. In wheat, PEC6-suppression of P. fluorescens-elicited PTI was revealed by the fact that it allowed activation of effector-triggered immunity by Pto DC3000. Knocking down of PEC6 expression by virus-mediated host-induced gene silencing decreased the number of rust pustules, uncovering PEC6 as an important pathogenicity factor. PEC6, overexpressed in plant cells without its signal peptide, was localized to the nucleus and cytoplasm. A yeast two-hybrid assay showed that PEC6 interacts with both wheat and Arabidopsis adenosine kinases (ADKs). Knocking down wheat ADK expression by virus-induced gene silencing reduced leaf growth and enhanced the number of rust pustules, indicating that ADK is important in plant development and defence. ADK plays essential roles in regulating metabolism, cytokinin interconversion and methyl transfer reactions, and our data propose a model where PEC6 may affect one of these processes by targeting ADK to favour fungal growth.
Collapse
Affiliation(s)
- Changhai Liu
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| | - Carsten Pedersen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| | - Torsten Schultz-Larsen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| | - Geziel B Aguilar
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| | - Kenneth Madriz-Ordeñana
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| | - Mogens S Hovmøller
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, DK-4200, Denmark
| | - Hans Thordal-Christensen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| |
Collapse
|
70
|
Li K, Hegarty J, Zhang C, Wan A, Wu J, Guedira GB, Chen X, Muñoz-Amatriaín M, Fu D, Dubcovsky J. Fine mapping of barley locus Rps6 conferring resistance to wheat stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:845-859. [PMID: 26875072 PMCID: PMC4799263 DOI: 10.1007/s00122-015-2663-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/22/2015] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE Barley resistance to wheat stripe rust has remained effective for a long time and, therefore, the genes underlying this resistance can be a valuable tool to engineer durable resistance in wheat. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a major disease of wheat that is causing large economic losses in many wheat-growing regions of the world. Deployment of Pst resistance genes has been an effective strategy for controlling this pathogen, but many of these genes have been defeated by new Pst races. In contrast, genes providing resistance to this wheat pathogen in other grass species (nonhost resistance) have been more durable. Barley varieties (Hordeum vulgare ssp. vulgare) are predominately immune to wheat Pst, but we identified three accessions of wild barley (Hordeum vulgare ssp. spontaneum) that are susceptible to Pst. Using these accessions, we mapped a barley locus conferring resistance to Pst on the distal region of chromosome arm 7HL and designated it as Rps6. The detection of the same locus in the cultivated barley 'Tamalpais' and in the Chinese barley 'Y12' by an allelism test suggests that Rps6 may be a frequent component of barley intermediate host resistance to Pst. Using a high-density mapping population (>10,000 gametes) we precisely mapped Rps6 within a 0.14 cM region (~500 kb contig) that is colinear to regions in Brachypodium (<94 kb) and rice (<9 kb). Since no strong candidate gene was identified in these colinear regions, a dedicated positional cloning effort in barley will be required to identify Rps6. The identification of this and other barley genes conferring resistance to Pst can contribute to our understanding of the mechanisms for durable resistance against this devastating wheat pathogen.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Joshua Hegarty
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Chaozhong Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Gina Brown Guedira
- USDA-ARS, Plant Science Research Unit, Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
- USDA-ARS, Wheat Genetics, Quality, Physiology, and Disease Research Unit, Pullman, WA, 99164, USA
| | - María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Daolin Fu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
71
|
Thach T, Ali S, de Vallavieille-Pope C, Justesen A, Hovmøller M. Worldwide population structure of the wheat rust fungus Puccinia striiformis in the past. Fungal Genet Biol 2016; 87:1-8. [DOI: 10.1016/j.fgb.2015.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/23/2022]
|
72
|
Mahmoud AF, Hassan MI, Amein KA. Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate. THE PLANT PATHOLOGY JOURNAL 2015; 31:402-13. [PMID: 26674020 PMCID: PMC4677749 DOI: 10.5423/ppj.oa.12.2014.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/27/2015] [Accepted: 07/05/2015] [Indexed: 06/01/2023]
Abstract
Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 <9 with an average of 7.29, which exceeded the Egyptian bread wheat cultivar Giza-168 (5.58). Thirty three RILs were included among the acceptable range having RRI value >2 <6. However, only 7 RILs showed RRI value <2. Five RILs expressed hypersensitive type of resistance (R) against the pathogen and showed the lowest Average Coefficient of Infection (ACI). Bulked segregant analysis (BSA) with eight simple sequence repeat (SSR), eight sequence-related amplified polymorphism (SRAP) and sixteen random amplified polymorphic DNA (RAPD) markers revealed that three SSR, three SRAP and six RAPD markers were found to be associated with the resistance to yellow rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.
Collapse
Affiliation(s)
- Amer F. Mahmoud
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut,
Egypt
| | - Mohamed I. Hassan
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut,
Egypt
| | - Karam A. Amein
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut,
Egypt
| |
Collapse
|
73
|
Mueth NA, Ramachandran SR, Hulbert SH. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f.sp. tritici). BMC Genomics 2015; 16:718. [PMID: 26391470 PMCID: PMC4578785 DOI: 10.1186/s12864-015-1895-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/06/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is a costly global disease that burdens farmers with yield loss and high fungicide expenses. This sophisticated biotrophic parasite infiltrates wheat leaves and develops infection structures inside host cells, appropriating nutrients while suppressing the plant defense response. Development in most eukaryotes is regulated by small RNA molecules, and the success of host-induced gene silencing technology in Puccinia spp. implies the existence of a functional RNAi system. However, some fungi lack this capability, and small RNAs have not yet been reported in rust fungi. The objective of this study was to determine whether P. striiformis carries an endogenous small RNA repertoire. RESULTS We extracted small RNA from rust-infected wheat flag leaves and performed high-throughput sequencing. Two wheat cultivars were analyzed: one is susceptible; the other displays partial high-temperature adult plant resistance. Fungal-specific reads were identified by mapping to the P. striiformis draft genome and removing reads present in uninfected control libraries. Sequencing and bioinformatics results were verified by RT-PCR. Like other RNAi-equipped fungi, P. striiformis produces large numbers of 20-22 nt sequences with a preference for uracil at the 5' position. Precise post-transcriptional processing and high accumulation of specific sRNA sequences were observed. Some predicted sRNA precursors possess a microRNA-like stem-loop secondary structure; others originate from much longer inverted repeats containing gene sequences. Finally, sRNA-target prediction algorithms were used to obtain a list of putative gene targets in both organisms. Predicted fungal target genes were enriched for kinases and small secreted proteins, while the list of wheat targets included homologs of known plant resistance genes. CONCLUSIONS This work provides an inventory of small RNAs endogenous to an important plant pathogen, enabling further exploration of gene regulation on both sides of the host/parasite interaction. We conclude that small RNAs are likely to play a role in regulating the complex developmental processes involved in stripe rust pathogenicity.
Collapse
Affiliation(s)
- Nicholas A Mueth
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA.
| | | | - Scot H Hulbert
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA.
- Plant Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
74
|
Beddow JM, Pardey PG, Chai Y, Hurley TM, Kriticos DJ, Braun HJ, Park RF, Cuddy WS, Yonow T. Research investment implications of shifts in the global geography of wheat stripe rust. NATURE PLANTS 2015; 1:15132. [PMID: 27251389 DOI: 10.1038/nplants.2015.132] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/04/2015] [Indexed: 05/13/2023]
Abstract
Breeding new crop varieties with resistance to the biotic stresses that undermine crop yields is tantamount to increasing the amount and quality of biological capital in agriculture. However, the success of genes that confer resistance to pests induces a co-evolutionary response that depreciates the biological capital embodied in the crop, as pests evolve the capacity to overcome the crop's new defences. Thus, simply maintaining this biological capital, and the beneficial production and economic outcomes it bestows, requires continual reinvestment in new crop defences. Here we use observed and modelled data on stripe rust occurrence to gauge changes in the geographic spread of the disease over recent decades. We document a significant increase in the spread of stripe rust since 1960, with 88% of the world's wheat production now susceptible to infection. Using a probabilistic Monte Carlo simulation model we estimate that 5.47 million tonnes of wheat are lost to the pathogen each year, equivalent to a loss of US$979 million per year. Comparing the cost of developing stripe-rust-resistant varieties of wheat with the cost of stripe-rust-induced yield losses, we estimate that a sustained annual research investment of at least US$32 million into stripe rust resistance is economically justified.
Collapse
Affiliation(s)
- Jason M Beddow
- International Science and Technology Practice and Policy (InSTePP) Center in the Department of Applied Economics at the University of Minnesota, 1994 Buford Ave, 248 Ruttan Hall, Saint Paul, Minnesota 55108, USA
- Stakman-Bourlaug Cereal Rust Center at the University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, USA
- Commonwealth Scientific and Industrial Research Organization (CSIRO), GPO Box 1700, Canberra, Australian Capital Territory, 2601, Australia
| | - Philip G Pardey
- International Science and Technology Practice and Policy (InSTePP) Center in the Department of Applied Economics at the University of Minnesota, 1994 Buford Ave, 248 Ruttan Hall, Saint Paul, Minnesota 55108, USA
- Stakman-Bourlaug Cereal Rust Center at the University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, USA
- Commonwealth Scientific and Industrial Research Organization (CSIRO), GPO Box 1700, Canberra, Australian Capital Territory, 2601, Australia
| | - Yuan Chai
- International Science and Technology Practice and Policy (InSTePP) Center in the Department of Applied Economics at the University of Minnesota, 1994 Buford Ave, 248 Ruttan Hall, Saint Paul, Minnesota 55108, USA
| | - Terrance M Hurley
- International Science and Technology Practice and Policy (InSTePP) Center in the Department of Applied Economics at the University of Minnesota, 1994 Buford Ave, 248 Ruttan Hall, Saint Paul, Minnesota 55108, USA
- Stakman-Bourlaug Cereal Rust Center at the University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, USA
- Commonwealth Scientific and Industrial Research Organization (CSIRO), GPO Box 1700, Canberra, Australian Capital Territory, 2601, Australia
| | - Darren J Kriticos
- International Science and Technology Practice and Policy (InSTePP) Center in the Department of Applied Economics at the University of Minnesota, 1994 Buford Ave, 248 Ruttan Hall, Saint Paul, Minnesota 55108, USA
- Commonwealth Scientific and Industrial Research Organization (CSIRO), GPO Box 1700, Canberra, Australian Capital Territory, 2601, Australia
| | - Hans-Joachim Braun
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Edo. de México 56237, Mexico
| | - Robert F Park
- Plant Breeding Institute at the University of Sydney, Private Bag 4011, Narellan, New South Wales 2567, Sydney, Australia
| | - William S Cuddy
- New South Wales Department of Primary Industries, NSW DPI, Locked Bag 21, Orange, New South Wales 2800, Australia
| | - Tania Yonow
- International Science and Technology Practice and Policy (InSTePP) Center in the Department of Applied Economics at the University of Minnesota, 1994 Buford Ave, 248 Ruttan Hall, Saint Paul, Minnesota 55108, USA
- Commonwealth Scientific and Industrial Research Organization (CSIRO), GPO Box 1700, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
75
|
Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:613-24. [PMID: 25382230 DOI: 10.1111/pbi.12281] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 05/19/2023]
Abstract
The identification of genetic markers linked to genes of agronomic importance is a major aim of crop research and breeding programmes. Here, we identify markers for Yr15, a major disease resistance gene for wheat yellow rust, using a segregating F2 population. After phenotyping, we implemented RNA sequencing (RNA-Seq) of bulked pools to identify single-nucleotide polymorphisms (SNP) associated with Yr15. Over 27 000 genes with SNPs were identified between the parents, and then classified based on the results from the sequenced bulks. We calculated the bulk frequency ratio (BFR) of SNPs between resistant and susceptible bulks, selecting those showing sixfold enrichment/depletion in the corresponding bulks (BFR > 6). Using additional filtering criteria, we reduced the number of genes with a putative SNP to 175. The 35 SNPs with the highest BFR values were converted into genome-specific KASP assays using an automated bioinformatics pipeline (PolyMarker) which circumvents the limitations associated with the polyploid wheat genome. Twenty-eight assays were polymorphic of which 22 (63%) mapped in the same linkage group as Yr15. Using these markers, we mapped Yr15 to a 0.77-cM interval. The three most closely linked SNPs were tested across varieties and breeding lines representing UK elite germplasm. Two flanking markers were diagnostic in over 99% of lines tested, thus providing a reliable haplotype for marker-assisted selection in these breeding programmes. Our results demonstrate that the proposed methodology can be applied in polyploid F2 populations to generate high-resolution genetic maps across target intervals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cristobal Uauy
- John Innes Centre, Norwich, UK
- National Institute of Agricultural Botany, Cambridge, UK
| |
Collapse
|
76
|
Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C, Thomas J, Kamoun S, Bayles R, Uauy C, Saunders DGO. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol 2015. [PMID: 25723868 DOI: 10.1186/s13059-015-0590-598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Emerging and re-emerging pathogens imperil public health and global food security. Responding to these threats requires improved surveillance and diagnostic systems. Despite their potential, genomic tools have not been readily applied to emerging or re-emerging plant pathogens such as the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici (PST). This is due largely to the obligate parasitic nature of PST, as culturing PST isolates for DNA extraction remains slow and tedious. RESULTS To counteract the limitations associated with culturing PST, we developed and applied a field pathogenomics approach by transcriptome sequencing infected wheat leaves collected from the field in 2013. This enabled us to rapidly gain insights into this emerging pathogen population. We found that the PST population across the United Kingdom (UK) underwent a major shift in recent years. Population genetic structure analyses revealed four distinct lineages that correlated to the phenotypic groups determined through traditional pathology-based virulence assays. Furthermore, the genetic diversity between members of a single population cluster for all 2013 PST field samples was much higher than that displayed by historical UK isolates, revealing a more diverse population of PST. CONCLUSIONS Our field pathogenomics approach uncovered a dramatic shift in the PST population in the UK, likely due to a recent introduction of a diverse set of exotic PST lineages. The methodology described herein accelerates genetic analysis of pathogen populations and circumvents the difficulties associated with obligate plant pathogens. In principle, this strategy can be widely applied to a variety of plant pathogens.
Collapse
|
77
|
Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C, Thomas J, Kamoun S, Bayles R, Uauy C, Saunders DGO. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol 2015; 16:23. [PMID: 25723868 PMCID: PMC4342793 DOI: 10.1186/s13059-015-0590-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/20/2015] [Indexed: 11/28/2022] Open
Abstract
Background Emerging and re-emerging pathogens imperil public health and global food security. Responding to these threats requires improved surveillance and diagnostic systems. Despite their potential, genomic tools have not been readily applied to emerging or re-emerging plant pathogens such as the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici (PST). This is due largely to the obligate parasitic nature of PST, as culturing PST isolates for DNA extraction remains slow and tedious. Results To counteract the limitations associated with culturing PST, we developed and applied a field pathogenomics approach by transcriptome sequencing infected wheat leaves collected from the field in 2013. This enabled us to rapidly gain insights into this emerging pathogen population. We found that the PST population across the United Kingdom (UK) underwent a major shift in recent years. Population genetic structure analyses revealed four distinct lineages that correlated to the phenotypic groups determined through traditional pathology-based virulence assays. Furthermore, the genetic diversity between members of a single population cluster for all 2013 PST field samples was much higher than that displayed by historical UK isolates, revealing a more diverse population of PST. Conclusions Our field pathogenomics approach uncovered a dramatic shift in the PST population in the UK, likely due to a recent introduction of a diverse set of exotic PST lineages. The methodology described herein accelerates genetic analysis of pathogen populations and circumvents the difficulties associated with obligate plant pathogens. In principle, this strategy can be widely applied to a variety of plant pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0590-8) contains supplementary material, which is available to authorized users.
Collapse
|
78
|
Barzman M, Lamichhane JR, Booij K, Boonekamp P, Desneux N, Huber L, Kudsk P, Langrell SRH, Ratnadass A, Ricci P, Sarah JL, Messean A. Research and Development Priorities in the Face of Climate Change and Rapidly Evolving Pests. SUSTAINABLE AGRICULTURE REVIEWS 2015. [DOI: 10.1007/978-3-319-16742-8_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
79
|
Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN. The past, present and future of breeding rust resistant wheat. FRONTIERS IN PLANT SCIENCE 2014; 5:641. [PMID: 25505474 PMCID: PMC4241819 DOI: 10.3389/fpls.2014.00641] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/29/2014] [Indexed: 05/17/2023]
Abstract
Two classes of genes are used for breeding rust resistant wheat. The first class, called R (for resistance) genes, are pathogen race specific in their action, effective at all plant growth stages and probably mostly encode immune receptors of the nucleotide binding leucine rich repeat (NB-LRR) class. The second class is called adult plant resistance genes (APR) because resistance is usually functional only in adult plants, and, in contrast to most R genes, the levels of resistance conferred by single APR genes are only partial and allow considerable disease development. Some but not all APR genes provide resistance to all isolates of a rust pathogen species and a subclass of these provides resistance to several fungal pathogen species. Initial indications are that APR genes encode a more heterogeneous range of proteins than R proteins. Two APR genes, Lr34 and Yr36, have been cloned from wheat and their products are an ABC transporter and a protein kinase, respectively. Lr34 and Sr2 have provided long lasting and widely used (durable) partial resistance and are mainly used in conjunction with other R and APR genes to obtain adequate rust resistance. We caution that some APR genes indeed include race specific, weak R genes which may be of the NB-LRR class. A research priority to better inform rust resistance breeding is to characterize further APR genes in wheat and to understand how they function and how they interact when multiple APR and R genes are stacked in a single genotype by conventional and GM breeding. An important message is do not be complacent about the general durability of all APR genes.
Collapse
Affiliation(s)
- Jeffrey G. Ellis
- Commonwealth Scientific and Industrial Research Organisation, Agriculture FlagshipCanberra, ACT, Australia
| | | | | | | |
Collapse
|
80
|
Sørensen CK, Hovmøller MS, Leconte M, Dedryver F, de Vallavieille-Pope C. New Races of Puccinia striiformis Found in Europe Reveal Race Specificity of Long-Term Effective Adult Plant Resistance in Wheat. PHYTOPATHOLOGY 2014; 104:1042-1051. [PMID: 24624957 DOI: 10.1094/phyto-12-13-0337-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Resistance to Puccinia striiformis was examined in nine wheat recombinant inbred lines (RILs) from a cross between 'Camp Rémy' (resistant parent) and 'Récital' (susceptible parent) using an isolate of a strain common to the northwestern European population before 2011 (old) and two additional isolates, one representing an aggressive and high-temperature-adapted strain (PstS2) and another representing a virulence phenotype new to Europe since 2011 (new). The RILs carried different combinations of quantitative trait loci (QTL) for resistance to P. striiformis. Under greenhouse conditions, the three isolates gave highly contrasting results for infection type, latent period, lesion length, and diseased leaf area. The PstS2 isolate revealed Yr genes and QTL which conferred complete resistance in adult plants. Six QTL had additive effects against the old isolate whereas the effects of these QTL were significantly lower for the new isolate. Furthermore, the new isolate revealed previously undetected resistance in the susceptible parent. Disease severity under field conditions agreed with greenhouse results, except for Camp Rémy being fully resistant to the new isolate and for two RILs being susceptible in the field. These results stress the need of maintaining high genetic diversity for disease resistance in wheat and of using pathogen isolates of diverse origin in studies of host resistance genetics.
Collapse
|
81
|
Segovia V, Hubbard A, Craze M, Bowden S, Wallington E, Bryant R, Greenland A, Bayles R, Uauy C. Yr36 confers partial resistance at temperatures below 18°C to U.K. isolates of Puccinia striiformis. PHYTOPATHOLOGY 2014; 104:871-8. [PMID: 24601983 DOI: 10.1094/phyto-10-13-0295-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wheat yellow (stripe) rust, caused by the obligate biotrophic fungus Puccinia striiformis f. sp. tritici, is a continual threat to wheat fields worldwide. New isolates with increased virulence have recently emerged driving breeding efforts to incorporate disease resistance genes which confer potentially more durable, albeit partial, resistance. Yr36 is one such locus which was recently cloned (WKS1) and described as a high-temperature adult-plant gene being effective only at temperatures above 25°C. We examined the potential use of Yr36 at temperatures below 25°C. Field experiments in the United Kingdom across 2 years show that lines carrying Yr36 provide slow rusting resistance to the yellow rust pathogen. Juvenile and adult Yr36 isogenic lines showed partial resistance at temperatures below 18°C under control environment conditions in tetraploid and hexaploid genetic backgrounds, but not at seedling stage, when inoculated with U.K. P. striiformis isolates. This partial resistance phenotype was similar to that observed previously at temperatures ≥25°C. Transgenic complementation tests and ethyl methanesulfonate mutants showed that the low-temperature partial resistance was due to the WKS1 gene. This study indicates that Yr36 has the potential to be an effective source of partial resistance in temperate wheat growing regions.
Collapse
|
82
|
Chen W, Wellings C, Chen X, Kang Z, Liu T. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. MOLECULAR PLANT PATHOLOGY 2014; 15:433-46. [PMID: 24373199 PMCID: PMC6638732 DOI: 10.1111/mpp.12116] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UNLABELLED Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious disease of wheat occurring in most wheat areas with cool and moist weather conditions during the growing season. The basidiomycete fungus is an obligate biotrophic parasite that is difficult to culture on artificial media. Pst is a macrocyclic, heteroecious fungus that requires both primary (wheat or grasses) and alternate (Berberis or Mahonia spp.) host plants to complete its life cycle. Urediniospores have the capacity for wind dispersal over long distances, which may, under high inoculum pressure, extend to thousands of kilometres from the initial infection sites. Stripe rust, which is considered to be the current major rust disease affecting winter cereal production across the world, has been studied intensively for over a century. This review summarizes the current knowledge of the Pst-wheat pathosystem, with emphasis on the life cycle, uredinial infection process, population biology of the pathogen, genes for stripe rust resistance in wheat and molecular perspectives of wheat-Pst interactions. TAXONOMY The stripe rust pathogen, Puccinia striiformis Westend. (Ps), is classified in kingdom Fungi, phylum Basidiomycota, class Urediniomycetes, order Uredinales, family Pucciniaceae, genus Puccinia. Ps is separated below the species level by host specialization on various grass genera, comprising up to nine formae speciales, of which P. striiformis f. sp. tritici Erikss. (Pst) causes stripe (or yellow) rust on wheat. HOST RANGE Uredinial/telial hosts: Pst mainly infects common wheat (Triticum aestivum L.), durum wheat (T. turgidum var. durum L.), cultivated emmer wheat (T. dicoccum Schrank), wild emmer wheat (T. dicoccoides Korn) and triticale (Triticosecale). Pst can infect certain cultivated barleys (Hordeum vulgare L.) and rye (Secale cereale L.), but generally does not cause severe epidemics. In addition, Pst may infect naturalized and improved pasture grass species, such as Elymus canadensis L., Leymus secalinus Hochst, Agropyron spp. Garetn, Hordeum spp. L., Phalaris spp. L and Bromus unioloides Kunth. Pycnial/aecial (alternative) hosts: Barberry (Berberis chinensis, B. koreana, B. holstii, B. vulgaris, B. shensiana, B. potaninii, B. dolichobotrys, B. heteropoda, etc.) and Oregon grape (Mahonia aquifolium). DISEASE SYMPTOMS Stripe rust appears as a mass of yellow to orange urediniospores erupting from pustules arranged in long, narrow stripes on leaves (usually between veins), leaf sheaths, glumes and awns on susceptible plants. Resistant wheat cultivars are characterized by various infection types from no visual symptoms to small hypersensitive flecks to uredinia surrounded by chlorosis or necrosis with restricted urediniospore production. On seedlings, uredinia produced by the infection of a single urediniospore are not confined by leaf veins, but progressively emerge from the infection site in all directions, potentially covering the entire leaf surface. Individual uredinial pustules are oblong, 0.4-0.7 mm in length and 0.1 mm in width. Urediniospores are broadly ellipsoidal to broadly obovoid, (16-)18-30(-32) × (15-)17-27(-28) μm, with a mean of 24.5 × 21.6 μm, yellow to orange in colour, echinulate, and with 6-18 scattered germ pores. Urediniospores can germinate rapidly when free moisture (rain or dew) occurs on leaf surfaces and when the temperatures range is between 7 and 12 °C. At higher temperatures or during the later growing stages of the host, black telia are often produced, which are pulvinate to oblong, 0.2-0.7 mm in length and 0.1 mm in width. The teliospores are predominantly two-celled, dark brown with thick walls, mostly oblong-clavate, (24-)31-56(-65) × (11-)14-25(-29) μm in length and width, and rounded or flattened at the apex.
Collapse
Affiliation(s)
- Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuan Ming Yuan Road, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
83
|
Ali S, Gladieux P, Rahman H, Saqib MS, Fiaz M, Ahmad H, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C. Inferring the contribution of sexual reproduction, migration and off-season survival to the temporal maintenance of microbial populations: a case study on the wheat fungal pathogenPuccinia striiformisf.sp.tritici. Mol Ecol 2014; 23:603-17. [DOI: 10.1111/mec.12629] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/30/2013] [Accepted: 12/04/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Sajid Ali
- INRA UR 1290 BIOGER-CPP; BP01 78850 Thiverval-Grignon France
- Institute of Biotechnology and Genetic Engineering; The University of Agriculture; Peshawar 25000 Pakistan
- Department of Agroecology; Aarhus University; Flakkebjerg; DK-4200 Slagelse Denmark
| | - Pierre Gladieux
- Department of Plant and Microbial Biology; University of California; Berkeley CA 94720-3102 USA
- Ecologie, Systématique et Evolution; UMR8079; Univ Paris-Sud; 91405 Orsay France
- Ecologie, Systématique et Evolution; UMR8079; CNRS; 91405 Orsay France
| | - Hidayatur Rahman
- Department of Plant Breeding and Genetics; The University of Agriculture; Peshawar 25000 Pakistan
| | - Muhammad S. Saqib
- Department of Plant Breeding and Genetics; The University of Agriculture; Peshawar 25000 Pakistan
| | | | | | - Marc Leconte
- INRA UR 1290 BIOGER-CPP; BP01 78850 Thiverval-Grignon France
| | | | | | - Mogens S. Hovmøller
- Department of Agroecology; Aarhus University; Flakkebjerg; DK-4200 Slagelse Denmark
| | - Jérôme Enjalbert
- INRA UMR 320 Génétique Végétale; Ferme du Moulon; 91190 Gif sur Yvette France
| | | |
Collapse
|
84
|
Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathog 2014; 10:e1003903. [PMID: 24465211 PMCID: PMC3900651 DOI: 10.1371/journal.ppat.1003903] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 12/12/2013] [Indexed: 11/24/2022] Open
Abstract
Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen.
Collapse
Affiliation(s)
- Sajid Ali
- INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture, Peshawar, Pakistan
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Pierre Gladieux
- UMR 8079 Ecologie Systematique Evolution, Univ. Paris-Sud., CNRS-F, Orsay, France
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Marc Leconte
- INRA UR 1290 BIOGER-CPP, Thiverval-Grignon, France
| | | | | | | | - Jérôme Enjalbert
- INRA UMR 320 Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | | |
Collapse
|
85
|
Cantu D, Segovia V, MacLean D, Bayles R, Chen X, Kamoun S, Dubcovsky J, Saunders DGO, Uauy C. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics 2013; 14:270. [PMID: 23607900 PMCID: PMC3640902 DOI: 10.1186/1471-2164-14-270] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat yellow (stripe) rust caused by Puccinia striiformis f. sp. tritici (PST) is one of the most devastating diseases of wheat worldwide. To design effective breeding strategies that maximize the potential for durable disease resistance it is important to understand the molecular basis of PST pathogenicity. In particular, the characterisation of the structure, function and evolutionary dynamics of secreted effector proteins that are detected by host immune receptors can help guide and prioritize breeding efforts. However, to date, our knowledge of the effector repertoire of cereal rust pathogens is limited. RESULTS We re-sequenced genomes of four PST isolates from the US and UK to identify effector candidates and relate them to their distinct virulence profiles. First, we assessed SNP frequencies between all isolates, with heterokaryotic SNPs being over tenfold more frequent (5.29 ± 2.23 SNPs/kb) than homokaryotic SNPs (0.41 ± 0.28 SNPs/kb). Next, we implemented a bioinformatics pipeline to integrate genomics, transcriptomics, and effector-focused annotations to identify and classify effector candidates in PST. RNAseq analysis highlighted transcripts encoding secreted proteins that were significantly enriched in haustoria compared to infected tissue. The expression of 22 candidate effector genes was characterised using qRT-PCR, revealing distinct temporal expression patterns during infection in wheat. Lastly, we identified proteins that displayed non-synonymous substitutions specifically between the two UK isolates PST-87/7 and PST-08/21, which differ in virulence to two wheat varieties. By focusing on polymorphic variants enriched in haustoria, we identified five polymorphic effector candidates between PST-87/7 and PST-08/21 among 2,999 secreted proteins. These allelic variants are now a priority for functional validation as virulence/avirulence effectors in the corresponding wheat varieties. CONCLUSIONS Integration of genomics, transcriptomics, and effector-directed annotation of PST isolates has enabled us to move beyond the single isolate-directed catalogues of effector proteins and develop a framework for mining effector proteins in closely related isolates and relate these back to their defined virulence profiles. This should ultimately lead to more comprehensive understanding of the PST pathogenesis system, an important first step towards developing more effective surveillance and management strategies for one of the most devastating pathogens of wheat.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Viticulture & Enology, University of California Davis, Davis, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer SP, Scagliusi SM, da Silva PR, Wiethölter P, Torres GAM, Lau EY, Consoli L, Chaves ALS. The importance for food security of maintaining rust resistance in wheat. Food Secur 2013. [DOI: 10.1007/s12571-013-0248-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
87
|
Zheng W, Huang L, Huang J, Wang X, Chen X, Zhao J, Guo J, Zhuang H, Qiu C, Liu J, Liu H, Huang X, Pei G, Zhan G, Tang C, Cheng Y, Liu M, Zhang J, Zhao Z, Zhang S, Han Q, Han D, Zhang H, Zhao J, Gao X, Wang J, Ni P, Dong W, Yang L, Yang H, Xu JR, Zhang G, Kang Z. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat Commun 2013; 4:2673. [PMID: 24150273 PMCID: PMC3826619 DOI: 10.1038/ncomms3673] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/26/2013] [Indexed: 11/08/2022] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat. Here we report a 110-Mb draft sequence of Pst isolate CY32, obtained using a 'fosmid-to-fosmid' strategy, to better understand its race evolution and pathogenesis. The Pst genome is highly heterozygous and contains 25,288 protein-coding genes. Compared with non-obligate fungal pathogens, Pst has a more diverse gene composition and more genes encoding secreted proteins. Re-sequencing analysis indicates significant genetic variation among six isolates collected from different continents. Approximately 35% of SNPs are in the coding sequence regions, and half of them are non-synonymous. High genetic diversity in Pst suggests that sexual reproduction has an important role in the origin of different regional races. Our results show the effectiveness of the 'fosmid-to-fosmid' strategy for sequencing dikaryotic genomes and the feasibility of genome analysis to understand race evolution in Pst and other obligate pathogens.
Collapse
Affiliation(s)
- Wenming Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crop in Henan Province and College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province 450002, China
- These authors contributed equally to this work
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- These authors contributed equally to this work
| | - Jinqun Huang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- These authors contributed equally to this work
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianming Chen
- USDA-ARS and Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, USA
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Zhuang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuangzhao Qiu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoliang Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinshan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhongtao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoning Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peixiang Ni
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Wei Dong
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Linfeng Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Gengyun Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
88
|
Sørensen CK, Justesen AF, Hovmøller MS. 3-D imaging of temporal and spatial development of Puccinia striiformis haustoria in wheat. Mycologia 2012; 104:1381-9. [PMID: 22802391 DOI: 10.3852/11-401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Differentiation of haustoria on primary infection hyphae of the fungal pathogen Puccinia striiformis was studied in wheat seedlings with two-photon microscopy in combination with a classical staining technique. Our results showed a significant increase in the average haustorium size 22, 44, 68, 92 and 116 h after inoculation (hai). After 116 hai no significant change was observed until 336 hai. Haustorium morphology also changed significantly during the time of infection. Initially small spherical haustoria were seen, but as they grew the haustoria gradually became apically branched. At 22 hai all observed haustoria were spherical, but at 44 hai most haustoria had an irregular structure, and at 92 hai all observed haustoria appeared branched. Along with the changes of the haustorial body the haustorial neck changed from narrow and slender to having an expanded appearance with a rough and invaginated structure. The structural changes were similar in two susceptible wheat varieties, 514W and Cartago, although the mean haustorium size was larger in 514W than in Cartago at all intervals.
Collapse
Affiliation(s)
- Chris K Sørensen
- Department of Agroecology, Aarhus University, Science and Technology, Slagelse, Denmark.
| | | | | |
Collapse
|
89
|
Barbieri M, Marcel TC, Niks RE, Francia E, Pasquariello M, Mazzamurro V, Garvin DF, Pecchioni N. QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L. Genome 2012; 55:152-63. [PMID: 22321152 DOI: 10.1139/g2012-001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The potential of the model grass Brachypodium distachyon L. (Brachypodium) for studying grass-pathogen interactions is still underexploited. We aimed to identify genomic regions in Brachypodium associated with quantitative resistance to the false brome rust fungus Puccinia brachypodii . The inbred lines Bd3-1 and Bd1-1, differing in their level of resistance to P. brachypodii, were crossed to develop an F(2) population. This was evaluated for reaction to a virulent isolate of P. brachypodii at both the seedling and advanced growth stages. To validate the results obtained on the F(2), resistance was quantified in F(2)-derived F(3) families in two experiments. Disease evaluations showed quantitative and transgressive segregation for resistance. A new AFLP-based Brachypodium linkage map consisting of 203 loci and spanning 812 cM was developed and anchored to the genome sequence with SSR and SNP markers. Three false brome rust resistance QTLs were identified on chromosomes 2, 3, and 4, and they were detected across experiments. This study is the first quantitative trait analysis in Brachypodium. Resistance to P. brachypodii was governed by a few QTLs: two acting at the seedling stage and one acting at both seedling and advanced growth stages. The results obtained offer perspectives to elucidate the molecular basis of quantitative resistance to rust fungi.
Collapse
Affiliation(s)
- Mirko Barbieri
- Dipartimento di Scienze Agrarie e degli Alimenti, Università di Modena e Reggio Emilia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
90
|
de Vallavieille-Pope C, Ali S, Leconte M, Enjalbert J, Delos M, Rouzet J. Virulence Dynamics and Regional Structuring of Puccinia striiformis f. sp. tritici in France Between 1984 and 2009. PLANT DISEASE 2012; 96:131-140. [PMID: 30731861 DOI: 10.1094/pdis-02-11-0078] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding of long-term virulence dynamics of pathogen populations in response to host resistance gene deployment is of major importance for disease management and evolutionary biology. We monitored the virulence dynamics of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust, over 25 years in France. Virulence dynamics was explained by estimates of area associated with resistance genes carried by farmers' cultivars. The epidemics assessed through disease severity significantly correlated with the number of P. striiformis f. sp. tritici isolates collected each year, used to describe virulence dynamics. In the south, the dominance of the Mediterranean pathotype 6E16 and the cultivation of a susceptible cultivar were associated with an epidemic from 1997 to 1999. In the north, five epidemics occurred due to successive acquisition of virulence to the resistance genes Yr7, Yr6, Yr9, Yr17, and Yr32, either by acquisition of the virulence in the previous dominant pathotype or by incursion or selection of one or two new pathotypes. Frequency of pathotypes with Vr7 and Vr6 declined with the reduction in the cultivation of corresponding Yr gene cultivars, whereas the virulence Vr9 persisted longer than the cultivation of Yr9 cultivars. Although the first pathotypes carrying Vr9 decreased, this virulence persisted in other pathotypes even in the absence of Yr9 cultivars. At the regional level, Yr9 cultivars in the north caused a shift from high Vr6 frequency to high Vr9 frequency whereas, in the central region, where Yr9 cultivars were rare, Vr6 remained prevalent.
Collapse
Affiliation(s)
| | - Sajid Ali
- UMR 1290 BIOGER-CPP, INRA-AgroParisTech, BP01, 78850 Thiverval-Grignon, France
| | - Marc Leconte
- UMR 1290 BIOGER-CPP, INRA-AgroParisTech, BP01, 78850 Thiverval-Grignon, France
| | - Jérôme Enjalbert
- UMR 320 Génétique Végétale, INRA, Ferme du Moulon, 91190 Gif sur Yvette, France
| | - Marc Delos
- SRAl, Cité administrative, Bat E, bd Armand Duportal, 31074 Toulouse cedex, France
| | | |
Collapse
|
91
|
Cantu D, Govindarajulu M, Kozik A, Wang M, Chen X, Kojima KK, Jurka J, Michelmore RW, Dubcovsky J. Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. PLoS One 2011; 6:e24230. [PMID: 21909385 PMCID: PMC3164196 DOI: 10.1371/journal.pone.0024230] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/02/2011] [Indexed: 11/19/2022] Open
Abstract
(XLSX) Background The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has radically improved sequencing speed and efficiency with a great reduction in costs compared to traditional sequencing technologies. We used Illumina sequencing to rapidly access the genomic sequence of the highly virulent PST race 130 (PST-130). Methodology/Principal Findings We obtained nearly 80 million high quality paired-end reads (>50x coverage) that were assembled into 29,178 contigs (64.8 Mb), which provide an estimated coverage of at least 88% of the PST genes and are available through GenBank. Extensive micro-synteny with the Puccinia graminis f. sp. tritici (PGTG) genome and high sequence similarity with annotated PGTG genes support the quality of the PST-130 contigs. We characterized the transposable elements present in the PST-130 contigs and using an ab initio gene prediction program we identified and tentatively annotated 22,815 putative coding sequences. We provide examples on the use of comparative approaches to improve gene annotation for both PST and PGTG and to identify candidate effectors. Finally, the assembled contigs provided an inventory of PST repetitive elements, which were annotated and deposited in Repbase. Conclusions/Significance The assembly of the PST-130 genome and the predicted proteins provide useful resources to rapidly identify and clone PST genes and their regulatory regions. Although the automatic gene prediction has limitations, we show that a comparative genomics approach using multiple rust species can greatly improve the quality of gene annotation in these species. The PST-130 sequence will also be useful for comparative studies within PST as more races are sequenced. This study illustrates the power of NGS for rapid and efficient access to genomic sequence in non-model organisms.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Manjula Govindarajulu
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Alex Kozik
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
- Wheat Genetics, Quality, Physiology, and Disease Research Unit, United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Pullman, Washington, United States of America
| | - Kenji K. Kojima
- Genetic Information Research Institute, Mountain View, California, United States of America
| | - Jerzy Jurka
- Genetic Information Research Institute, Mountain View, California, United States of America
| | - Richard W. Michelmore
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Gordon and Betty Moore Foundation, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
92
|
Wulff BBH, Horvath DM, Ward ER. Improving immunity in crops: new tactics in an old game. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:468-76. [PMID: 21531167 DOI: 10.1016/j.pbi.2011.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/18/2011] [Accepted: 04/05/2011] [Indexed: 05/20/2023]
Abstract
Crop disease remains a major cause of yield loss and emerging diseases pose new threats to global food security. Despite the dearth of commercial development to date, progress in using our rapidly expanding knowledge of plant-pathogen interactions to invent new ways of controlling diseases in crops has been good. Many major resistance genes have now been shown to retain function when transferred between species, and evidence indicates that resistance genes are more effective when deployed in a background containing quantitative resistance traits. The EFR pattern-recognition receptor, present in only the Brassicaceae, functions to provide bacterial disease control in the Solanaceae. Knowledge of how transcription activator-like effectors bind DNA is leading to new methods for triggering disease resistance and broader applications in genome engineering.
Collapse
MESH Headings
- Cloning, Molecular
- Crops, Agricultural/genetics
- Crops, Agricultural/immunology
- Crops, Agricultural/microbiology
- Crops, Agricultural/virology
- Disease Resistance
- Gene Expression Regulation, Plant
- Genes, Plant
- Host-Pathogen Interactions
- Plant Diseases/immunology
- Plant Diseases/microbiology
- Plant Diseases/prevention & control
- Plant Diseases/virology
- Plant Immunity
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/microbiology
- Plants, Genetically Modified/virology
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
- Transcriptional Activation
- Transgenes
Collapse
Affiliation(s)
- Brande B H Wulff
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | | | | |
Collapse
|
93
|
Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:143-57. [PMID: 21455722 PMCID: PMC4761445 DOI: 10.1007/s00122-011-1573-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 03/11/2011] [Indexed: 05/03/2023]
Abstract
A mapping population of 186 recombinant inbred lines developed from a cross between UC1110, an adapted California spring wheat, and PI610750, a synthetic derivative from CIMMYT's Wide Cross Program, was evaluated for its response to current California races of stripe rust (Puccinia striiformis f. sp. tritici) in replicated field trials over four seasons (2007-2010) in the northern Sacramento Valley. A genetic map was constructed consisting of 1,494 polymorphic probes (SSRs, DArTs, and ESTs) mapped to 558 unique loci, and QTL analysis revealed the presence of four stripe rust resistance QTL segregating in this population, two from UC1110 (on chromosomes 3BS and 2BS) and two from PI610750 (5AL and 2AS). The two QTL of largest effects (on 3BS and 5AL) were validated in independent populations and their intervals narrowed to 2.5 and 5.3 cM, respectively. The 3BS QTL was shown, by allelism test and genotype, to carry a gene different from the Yr30/Sr2 complex. Mapped position also suggests that the 3BS QTL is associated with a gene different from either Yrns-B1 or YrRub, two stripe rust resistance genes mapped to this region in other studies. The 5AL QTL carries a previously unreported partial stripe rust resistance gene, designated here as Yr48. This paper discusses the individual contributions to resistance of these four QTL, their epistatic interactions, and their potential in durable resistance breeding strategies based on combinations of partial resistance genes.
Collapse
Affiliation(s)
- Iago Lowe
- Department of Plant Sciences, University of California, One Shields Av., Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
94
|
Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011. [PMID: 21455722 DOI: 10.1007/s00122‐011‐1573‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
A mapping population of 186 recombinant inbred lines developed from a cross between UC1110, an adapted California spring wheat, and PI610750, a synthetic derivative from CIMMYT's Wide Cross Program, was evaluated for its response to current California races of stripe rust (Puccinia striiformis f. sp. tritici) in replicated field trials over four seasons (2007-2010) in the northern Sacramento Valley. A genetic map was constructed consisting of 1,494 polymorphic probes (SSRs, DArTs, and ESTs) mapped to 558 unique loci, and QTL analysis revealed the presence of four stripe rust resistance QTL segregating in this population, two from UC1110 (on chromosomes 3BS and 2BS) and two from PI610750 (5AL and 2AS). The two QTL of largest effects (on 3BS and 5AL) were validated in independent populations and their intervals narrowed to 2.5 and 5.3 cM, respectively. The 3BS QTL was shown, by allelism test and genotype, to carry a gene different from the Yr30/Sr2 complex. Mapped position also suggests that the 3BS QTL is associated with a gene different from either Yrns-B1 or YrRub, two stripe rust resistance genes mapped to this region in other studies. The 5AL QTL carries a previously unreported partial stripe rust resistance gene, designated here as Yr48. This paper discusses the individual contributions to resistance of these four QTL, their epistatic interactions, and their potential in durable resistance breeding strategies based on combinations of partial resistance genes.
Collapse
Affiliation(s)
- Iago Lowe
- Department of Plant Sciences, University of California, One Shields Av., Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
95
|
Hovmøller MS, Sørensen CK, Walter S, Justesen AF. Diversity of Puccinia striiformis on cereals and grasses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:197-217. [PMID: 21599494 DOI: 10.1146/annurev-phyto-072910-095230] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Yellow (stripe) rust is a common fungal disease on cereals and grasses. It is caused by Puccinia striiformis sensu lato, which is biotrophic and heteroecious. The pathogen is specialized on the primary host at both species and cultivar levels, whereas several Berberis spp. may serve as alternate hosts. One lineage infects mainly cereals and at least two lineages are restricted to grasses. P. striiformis on cereals has a typical clonal population structure in many areas, resulting from asexual reproduction, but high diversity, suggesting frequent recombination, has been observed in certain areas in Asia. Yellow rust is spreading by airborne spores potentially across long distances, which may contribute to sudden disease epidemics in new areas. This has been the case since 2000, where large-scale epidemics in warmer wheat-growing areas have been ascribed to the emergence of two closely related yellow rust strains with increased aggressiveness and tolerance to warm temperatures.
Collapse
Affiliation(s)
- Mogens S Hovmøller
- Department of Integrated Pest Management, Faculty of Agricultural Sciences, Aarhus University, Denmark.
| | | | | | | |
Collapse
|