51
|
Joseph J, Mathew J, Alexander J. Scaffold Proteins in Autoimmune Disorders. Curr Rheumatol Rev 2024; 20:14-26. [PMID: 37670692 DOI: 10.2174/1573397119666230904151024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Cells transmit information to the external environment and within themselves through signaling molecules that modulate cellular activities. Aberrant cell signaling disturbs cellular homeostasis causing a number of different diseases, including autoimmunity. Scaffold proteins, as the name suggests, serve as the anchor for binding and stabilizing signaling proteins at a particular locale, allowing both intra and intercellular signal amplification and effective signal transmission. Scaffold proteins play a critical role in the functioning of tight junctions present at the intersection of two cells. In addition, they also participate in cleavage formation during cytokinesis, and in the organization of neural synapses, and modulate receptor management outcomes. In autoimmune settings such as lupus, scaffold proteins can lower the cell activation threshold resulting in uncontrolled signaling and hyperactivity. Scaffold proteins, through their binding domains, mediate protein- protein interaction and play numerous roles in cellular communication and homeostasis. This review presents an overview of scaffold proteins, their influence on the different signaling pathways, and their role in the pathogenesis of autoimmune and auto inflammatory diseases. Since these proteins participate in many roles and interact with several other signaling pathways, it is necessary to gain a thorough understanding of these proteins and their nuances to facilitate effective target identification and therapeutic design for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Josna Joseph
- Department of Clinical Immunology & Rheumatology, CMC Vellore, Tamil Nadu, India
| | - John Mathew
- Department of Clinical Immunology & Rheumatology, CMC Vellore, Tamil Nadu, India
| | - Jessy Alexander
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, New York, USA
| |
Collapse
|
52
|
Feng Y, Qiu M, Shao L, Jiang Y, Zhang W, Jiang W, Xin F, Jiang M. Strategies for the biological production of ectoine by using different chassis strains. Biotechnol Adv 2024; 70:108306. [PMID: 38157997 DOI: 10.1016/j.biotechadv.2023.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
As an amino acid derivative and a typical compatible solute, ectoine can assist microorganisms in resisting high osmotic pressure. Own to its long-term moisturizing effects, ectoine shows extensive applications in cosmetics, medicine and other fields. With the rapid development of synthetic biology and fermentation engineering, many biological strategies have been developed to improve the ectoine production and simplify the production process. Currently, the microbial fermentation has been widely used for large scaling ectoine production. Accordingly, this review will introduce the metabolic pathway for ectoine synthesis and also comprehensively evaluate both wild-type and genetically modified strains for ectoine production. Furthermore, process parameters affecting the ectoine production efficiency and adoption of low cost substrates will be evaluated. Lastly, future prospects on the improvement of ectoine production will be proposed.
Collapse
Affiliation(s)
- Yifan Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Min Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lei Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
53
|
Kohorn BD, Yang N, Weinstock M, Asper G, Ball I, Rajiv D. Golgi ELMO1 binds QUA1, QUA2, GAUT9, and ELMO4 and is required for pectin accumulation in Arabidopsis. PLoS One 2023; 18:e0293961. [PMID: 37939087 PMCID: PMC10631678 DOI: 10.1371/journal.pone.0293961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Pectin and its modification influence the plasticity and strength of the plant cell wall controlling cell adhesion, size, shape, and pathogen resistance. The Golgi membrane anchored QUA1, QUA2, and GAUT9 Golgi enzymes synthesize and esterify pectin, which is then secreted and selectively de-esterified to potentiate structure influencing crosslinks in the cell wall. Mutations in members of the family of non-enzymatic ELMO Golgi membrane proteins lead to a reduction of pectin levels, cell adhesion, and hypocotyl tensile strength. Results from immunoprecipitation of Golgi protein complexes reveal that ELMO1-GFP is associated with pectin biosynthesis and modifying enzymes QUA1, QUA2, and GAUT9. In a yeast two and three hybrid assay, ELMO1 can bind directly to QUA1, GAUT9 or ELMO4, but QUA1, QUA2 or GAUT9 do not bind to each other. A yeast 3 hybrid assay provides evidence that ELMO1 can mediate the binding of QUA1 and QUA2. Taken together, these results indicate that the 20 kDa ELMO1 serves to facilitate some aspect of pectin synthesis and modification that leads to sufficient accumulation to allow cell adhesion, and we speculate that ELMOs help to scaffold key enzymes in this process.
Collapse
Affiliation(s)
- Bruce D. Kohorn
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| | - Nuoya Yang
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| | - Margaret Weinstock
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| | - Garrison Asper
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| | - Isabel Ball
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| | - Devaki Rajiv
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| |
Collapse
|
54
|
Han SY, Kim N, Yun G, Lee H, Choi IS. Tandem-biocatalysis reactors constructed by topological evolution of CaCO 3 particles into hollow metal hydroxide spheres. Nat Commun 2023; 14:6828. [PMID: 37884545 PMCID: PMC10603116 DOI: 10.1038/s41467-023-42649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Despite remarkable advances in the design and synthesis of hollow inorganic spheres (HISs), the harsh synthetic conditions have precluded the applications of HISs to biochemical and biological fields. Herein we report a biocompatible strategy for synthesizing metal hydroxide HISs (MH-HISs) by simply mixing CaCO3 particles with metal ions in water. The ion-exchange reaction between Ca2+ and metal ions leads to the structural and chemical evolution from solid CaCO3 particles to hollow MH-HISs via core-shell and yolk-shell structures, while enabling the encapsulation of enzymes to the shells without loss of catalytic activities. The biocompatible protocol makes multienzymatic cascade reactions achievable, with great recyclability due to mechanical durability of MH-HISs.
Collapse
Affiliation(s)
- Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Gyeongwon Yun
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Hojae Lee
- Department of Chemistry, Hallym University, Chuncheon, 24252, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
55
|
Kahsai AW, Shah KS, Shim PJ, Lee MA, Shreiber BN, Schwalb AM, Zhang X, Kwon HY, Huang LY, Soderblom EJ, Ahn S, Lefkowitz RJ. Signal transduction at GPCRs: Allosteric activation of the ERK MAPK by β-arrestin. Proc Natl Acad Sci U S A 2023; 120:e2303794120. [PMID: 37844230 PMCID: PMC10614829 DOI: 10.1073/pnas.2303794120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
β-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. β-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. β-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, β-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by β-arrestins. Here, we demonstrate that β-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that β-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which β-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state β-arrestin 2 is more robust than by active-state β-arrestin 1, highlighting differential capacities of β-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which β-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.
Collapse
Affiliation(s)
- Alem W. Kahsai
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Kunal S. Shah
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Duke University School of Medicine, Duke University Medical Center, Durham, NC27710
| | - Paul J. Shim
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Department of Medicine, College of Medicine, The University of Arizona, Phoenix, AZ85004
| | - Mason A. Lee
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Bowie N. Shreiber
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Allison M. Schwalb
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Duke University School of Medicine, Duke University Medical Center, Durham, NC27710
| | - Xingdong Zhang
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Henry Y. Kwon
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- General Surgery Residency Program, Henry Ford Hospital, Detroit, MI48202
| | - Li-Yin Huang
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Erik J. Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
- Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC27710
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC27710
- Department of Biochemistry, Duke University Medical Center, Durham, NC27710
- Department of Chemistry, Duke University Medical Center, Durham, NC27710
- HHMI, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
56
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
57
|
Brauns F, Iñigo de la Cruz L, Daalman WKG, de Bruin I, Halatek J, Laan L, Frey E. Redundancy and the role of protein copy numbers in the cell polarization machinery of budding yeast. Nat Commun 2023; 14:6504. [PMID: 37845215 PMCID: PMC10579396 DOI: 10.1038/s41467-023-42100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
How can a self-organized cellular function evolve, adapt to perturbations, and acquire new sub-functions? To make progress in answering these basic questions of evolutionary cell biology, we analyze, as a concrete example, the cell polarity machinery of Saccharomyces cerevisiae. This cellular module exhibits an intriguing resilience: it remains operational under genetic perturbations and recovers quickly and reproducibly from the deletion of one of its key components. Using a combination of modeling, conceptual theory, and experiments, we propose that multiple, redundant self-organization mechanisms coexist within the protein network underlying cell polarization and are responsible for the module's resilience and adaptability. Based on our mechanistic understanding of polarity establishment, we hypothesize that scaffold proteins, by introducing new connections in the existing network, can increase the redundancy of mechanisms and thus increase the evolvability of other network components. Moreover, our work gives a perspective on how a complex, redundant cellular module might have evolved from a more rudimental ancestral form.
Collapse
Affiliation(s)
- Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Leila Iñigo de la Cruz
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Werner K-G Daalman
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Ilse de Bruin
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jacob Halatek
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539, Munich, Germany.
| |
Collapse
|
58
|
Song C, Jiao Z, Hou Z, Wang R, Lian C, Xing Y, Luo Q, An Y, Yang F, Wang Y, Sha X, Ruan Z, Ye Y, Liu Z, Li Z, Yin F. Selective Protein of Interest Degradation through the Split-and-Mix Liposome Proteolysis Targeting Chimera Approach. J Am Chem Soc 2023; 145:21860-21870. [PMID: 37708462 DOI: 10.1021/jacs.3c05948] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Proteolysis Targeting Chimera (PROTAC) technology represents a promising new approach for target protein degradation using a cellular ubiquitin-proteasome system. Recently, we developed a split-and-mix nanoplatform based on peptide self-assembly, which could serve as a self-adjustable platform for multifunctional applications. However, the lower drug efficacy limits further biomedical applications of peptide-based SM-PROTAC. In this study, we develop a novel split-and-mix PROTAC system based on liposome self-assembly (LipoSM-PROTAC), concurrent with modification of FA (folate) to enhance its tumor-targeting capabilities. Estrogen receptors (ERα) were chosen as the protein of interest (POI) to validate the efficacy of Lipo degraders. Results demonstrate that this PROTAC can be efficiently and selectively taken up into the cells by FA receptor-positive cells (FR+) and degrade the POI with significantly reduced concentration. Compared to the peptide-based SM-PROTACs, our designed LipoSM-PROTAC system could achieve therapeutic efficacy with a lower concentration and provide opportunities for clinical translational potential. Overall, the LipoSM-based platform shows a higher drug efficacy, which offers promising potential applications for PROTAC and other biomolecule regulations.
Collapse
Affiliation(s)
- Chunli Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zijun Jiao
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Chenshan Lian
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qinhong Luo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
- Department of Pharmacy, Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Fenfang Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuechen Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinrui Sha
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhijun Ruan
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
59
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561337. [PMID: 37873463 PMCID: PMC10592693 DOI: 10.1101/2023.10.08.561337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known, but quantifying this is required to understand the constraints faced by cell systems as they evolve. Here, we use the model organism S. cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, most of the resulting tyrosine phosphorylation is spurious. This provides a suitable system to measure the impact of artificial protein interactions on fitness. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3,500 proteins. Examination of the fitness costs in each strain revealed a strong correlation between the number of spurious pY sites and decreased growth. Moreover, the analysis of pY effects on protein structure and on protein function revealed over 1000 pY events that we predict to be deleterious. However, we also find that a large number of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with bona fide tyrosine kinases. Taken together, our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| |
Collapse
|
60
|
Welles RM, Sojitra KA, Garabedian MV, Xia B, Wang W, Guan M, Regy RM, Gallagher ER, Hammer DA, Mittal J, Good MC. Determinants of Disordered Protein Co-Assembly Into Discrete Condensed Phases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532134. [PMID: 36945618 PMCID: PMC10028963 DOI: 10.1101/2023.03.10.532134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cells harbor numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids resulting in demixing via liquid-liquid phase separation (LLPS). Proteins harboring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modeling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.
Collapse
|
61
|
Yang D, Zhao L, Li Q, Huang L, Qin Y, Wang P, Zhu C, Yan Q. The involvement of the T6SS vgrG gene in the pathogenicity of Pseudomonas plecoglossicida. JOURNAL OF FISH DISEASES 2023; 46:1097-1108. [PMID: 37401135 DOI: 10.1111/jfd.13829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Pseudomonas plecoglossicida, the causative agent of white spot disease of large yellow croaker, has caused serious economic losses to the aquaculture industry. The type VI secretion system (T6SS) is a significant virulence system widely distributed among Gram-negative bacteria. VgrG, a structural and core component of T6SS, is crucial to the function of T6SS. To explore the biological profiles mediated by vgrG gene and its effects on the pathogenicity of P. plecoglossicida, the vgrG gene deletion (ΔvgrG) strain and complementary (C-ΔvgrG) strain were constructed and the differences in pathogenicity and virulence-related characteristics between different strains were analysed. The results showed that vgrG gene deletion significantly affected the virulence-related characteristics of P. plecoglossicida, including chemotaxis, adhesion, and biofilm formation. In addition, the LD50 of ΔvgrG strain was nearly 50-fold higher than that of the NZBD9 strain. Transcriptome data analysis suggested that the vgrG gene may affect the virulence of P. plecoglossicida by regulating the quorum sensing pathway to inhibit the secretion of virulence factors and affect biofilm formation. Besides, deletion of the vgrG gene may reduce bacterial pathogenicity by affecting bacterial signal transduction processes and the ability to adapt to chemotactic substances.
Collapse
Affiliation(s)
- Dou Yang
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Pan Wang
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd, Zhangzhou, China
| | - Chuanzhong Zhu
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd, Zhangzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
62
|
Shamir M, Martin FJO, Woolfson DN, Friedler A. Molecular Mechanism of STIL Coiled-Coil Domain Oligomerization. Int J Mol Sci 2023; 24:14616. [PMID: 37834064 PMCID: PMC10572602 DOI: 10.3390/ijms241914616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Coiled-coil domains (CCDs) play key roles in regulating both healthy cellular processes and the pathogenesis of various diseases by controlling protein self-association and protein-protein interactions. Here, we probe the mechanism of oligomerization of a peptide representing the CCD of the STIL protein, a tetrameric multi-domain protein that is over-expressed in several cancers and associated with metastatic spread. STIL tetramerization is mediated both by an intrinsically disordered domain (STIL400-700) and a structured CCD (STIL CCD718-749). Disrupting STIL oligomerization via the CCD inhibits its activity in vivo. We describe a comprehensive biophysical and structural characterization of the concentration-dependent oligomerization of STIL CCD peptide. We combine analytical ultracentrifugation, fluorescence and circular dichroism spectroscopy to probe the STIL CCD peptide assembly in solution and determine dissociation constants of both the dimerization, (KD = 8 ± 2 µM) and tetramerization (KD = 68 ± 2 µM) of the WT STIL CCD peptide. The higher-order oligomers result in increased thermal stability and cooperativity of association. We suggest that this complex oligomerization mechanism regulates the activated levels of STIL in the cell and during centriole duplication. In addition, we present X-ray crystal structures for the CCD containing destabilising (L736E) and stabilising (Q729L) mutations, which reveal dimeric and tetrameric antiparallel coiled-coil structures, respectively. Overall, this study offers a basis for understanding the structural molecular biology of the STIL protein, and how it might be targeted to discover anti-cancer reagents.
Collapse
Affiliation(s)
- Mai Shamir
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel;
| | - Freddie J. O. Martin
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK;
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK;
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel;
| |
Collapse
|
63
|
Kamra A, Das S, Bhatt P, Solra M, Maity T, Rana S. A transient vesicular glue for amplification and temporal regulation of biocatalytic reaction networks. Chem Sci 2023; 14:9267-9282. [PMID: 37712020 PMCID: PMC10498679 DOI: 10.1039/d3sc00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Regulation of enzyme activity and biocatalytic cascades on compartmentalized cellular components is key to the adaptation of cellular processes such as signal transduction and metabolism in response to varying external conditions. Synthetic molecular glues have enabled enzyme inhibition and regulation of protein-protein interactions. So far, all the molecular glue systems based on covalent interactions operated under steady-state conditions. To emulate dynamic biological processes under dissipative conditions, we introduce herein a transient supramolecular glue with a controllable lifetime. The transient system uses multivalent supramolecular interactions between guanidinium group-bearing surfactants and adenosine triphosphate (ATP), resulting in bilayer vesicle structures. Unlike the conventional chemical agents for dissipative assemblies, ATP here plays the dual role of providing a structural component for the assembly as well as presenting active functional groups to "glue" enzymes on the surface. While gluing of the enzymes on the vesicles achieves augmented catalysis, oscillation of ATP concentration allows temporal control of the catalytic activities similar to the dissipative cellular nanoreactors. We further demonstrate temporal upregulation and control of complex biocatalytic reaction networks on the vesicles. Altogether, the temporal activation of biocatalytic cascades on the dissipative vesicular glue presents an adaptable and dynamic system emulating heterogeneous cellular processes, opening up avenues for effective protocell construction and therapeutic interventions.
Collapse
Affiliation(s)
- Alisha Kamra
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Sourav Das
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Preeti Bhatt
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Manju Solra
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Tanmoy Maity
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science C.V. Raman Road Bangalore 560012 Karnataka India +9180-22932914
| |
Collapse
|
64
|
Cao M, Day AM, Galler M, Latimer HR, Byrne DP, Foy TW, Dwyer E, Bennett E, Palmer J, Morgan BA, Eyers PA, Veal EA. A peroxiredoxin-P38 MAPK scaffold increases MAPK activity by MAP3K-independent mechanisms. Mol Cell 2023; 83:3140-3154.e7. [PMID: 37572670 DOI: 10.1016/j.molcel.2023.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/19/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
Peroxiredoxins (Prdxs) utilize reversibly oxidized cysteine residues to reduce peroxides and promote H2O2 signal transduction, including H2O2-induced activation of P38 MAPK. Prdxs form H2O2-induced disulfide complexes with many proteins, including multiple kinases involved in P38 MAPK signaling. Here, we show that a genetically encoded fusion between a Prdx and P38 MAPK is sufficient to hyperactivate the kinase in yeast and human cells by a mechanism that does not require the H2O2-sensing cysteine of the Prdx. We demonstrate that a P38-Prdx fusion protein compensates for loss of the yeast scaffold protein Mcs4 and MAP3K activity, driving yeast into mitosis. Based on our findings, we propose that the H2O2-induced formation of Prdx-MAPK disulfide complexes provides an alternative scaffold and signaling platform for MAPKK-MAPK signaling. The demonstration that formation of a complex with a Prdx is sufficient to modify the activity of a kinase has broad implications for peroxide-based signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Min Cao
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alison M Day
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Galler
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Heather R Latimer
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Thomas W Foy
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Emilia Dwyer
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Elise Bennett
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jeremy Palmer
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Brian A Morgan
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Elizabeth A Veal
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
65
|
Nadel G, Maik-Rachline G, Seger R. JNK Cascade-Induced Apoptosis-A Unique Role in GqPCR Signaling. Int J Mol Sci 2023; 24:13527. [PMID: 37686335 PMCID: PMC10487481 DOI: 10.3390/ijms241713527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The response of cells to extracellular signals is mediated by a variety of intracellular signaling pathways that determine stimulus-dependent cell fates. One such pathway is the cJun-N-terminal Kinase (JNK) cascade, which is mainly involved in stress-related processes. The cascade transmits its signals via a sequential activation of protein kinases, organized into three to five tiers. Proper regulation is essential for securing a proper cell fate after stimulation, and the mechanisms that regulate this cascade may involve the following: (1) Activatory or inhibitory phosphorylations, which induce or abolish signal transmission. (2) Regulatory dephosphorylation by various phosphatases. (3) Scaffold proteins that bring distinct components of the cascade in close proximity to each other. (4) Dynamic change of subcellular localization of the cascade's components. (5) Degradation of some of the components. In this review, we cover these regulatory mechanisms and emphasize the mechanism by which the JNK cascade transmits apoptotic signals. We also describe the newly discovered PP2A switch, which is an important mechanism for JNK activation that induces apoptosis downstream of the Gq protein coupled receptors. Since the JNK cascade is involved in many cellular processes that determine cell fate, addressing its regulatory mechanisms might reveal new ways to treat JNK-dependent pathologies.
Collapse
Affiliation(s)
| | | | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (G.N.); (G.M.-R.)
| |
Collapse
|
66
|
Gavagan M, Jameson N, Zalatan JG. The Axin scaffold protects the kinase GSK3β from cross-pathway inhibition. eLife 2023; 12:e85444. [PMID: 37548359 PMCID: PMC10442075 DOI: 10.7554/elife.85444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Multiple signaling pathways regulate the kinase GSK3β by inhibitory phosphorylation at Ser9, which then occupies the GSK3β priming pocket and blocks substrate binding. Since this mechanism should affect GSK3β activity toward all primed substrates, it is unclear why Ser9 phosphorylation does not affect other GSK3β-dependent pathways, such as Wnt signaling. We used biochemical reconstitution and cell culture assays to evaluate how Wnt-associated GSK3β is insulated from cross-activation by other signals. We found that the Wnt-specific scaffold protein Axin allosterically protects GSK3β from phosphorylation at Ser9 by upstream kinases, which prevents accumulation of pS9-GSK3β in the Axin•GSK3β complex. Scaffold proteins that protect bound proteins from alternative pathway reactions could provide a general mechanism to insulate signaling pathways from improper crosstalk.
Collapse
Affiliation(s)
- Maire Gavagan
- Department of Chemistry, University of WashingtonSeattleUnited States
| | - Noel Jameson
- Department of Chemistry, University of WashingtonSeattleUnited States
| | - Jesse G Zalatan
- Department of Chemistry, University of WashingtonSeattleUnited States
| |
Collapse
|
67
|
Gonuguntla S, Humphrey RK, Gorantla A, Hao E, Jhala US. Stress-induced pseudokinase TRB3 augments IL1β signaling by interacting with Flightless homolog 1. J Biol Chem 2023; 299:104803. [PMID: 37172723 PMCID: PMC10432976 DOI: 10.1016/j.jbc.2023.104803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Interleukin-1β is one of the most potent inducers of beta cell inflammation in the lead-up to type 1 diabetes. We have previously reported that IL1β-stimulated pancreatic islets from mice with genetic ablation of stress-induced pseudokinase TRB3(TRB3KO) show attenuated activation kinetics for the MAP3K MLK3 and JNK stress kinases. However, JNK signaling constitutes only a portion of the cytokine-induced inflammatory response. Here we report that TRB3KO islets also show a decrease in amplitude and duration of IL1β-induced phosphorylation of TAK1 and IKK, kinases that drive the potent NF-κB proinflammatory signaling pathway. We observed that TRB3KO islets display decreased cytokine-induced beta cell death, preceded by a decrease in select downstream NF-κB targets, including iNOS/NOS2 (inducible nitric oxide synthase), a mediator of beta cell dysfunction and death. Thus, loss of TRB3 attenuates both pathways required for a cytokine-inducible, proapoptotic response in beta cells. In order to better understand the molecular basis of TRB3-enhanced, post-receptor IL1β signaling, we interrogated the TRB3 interactome using coimmunoprecipitation followed by mass spectrometry to identify immunomodulatory protein Flightless homolog 1 (Fli1) as a novel, TRB3-interacting protein. We show that TRB3 binds and disrupts Fli1-dependent sequestration of MyD88, thereby increasing availability of this most proximal adaptor required for IL1β receptor-dependent signaling. Fli1 sequesters MyD88 in a multiprotein complex resulting in a brake on the assembly of downstream signaling complexes. By interacting with Fli1, we propose that TRB3 lifts the brake on IL1β signaling to augment the proinflammatory response in beta cells.
Collapse
Affiliation(s)
- Sumati Gonuguntla
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Rohan K Humphrey
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Akshita Gorantla
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Ergeng Hao
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Ulupi S Jhala
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
68
|
Bardwell L, Thorner J. Mitogen-activated protein kinase (MAPK) cascades-A yeast perspective. Enzymes 2023; 54:137-170. [PMID: 37945169 DOI: 10.1016/bs.enz.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Discovery of the class of protein kinase now dubbed a mitogen (or messenger)-activated protein kinase (MAPK) is an illustrative example of how disparate lines of investigation can converge and reveal an enzyme family universally conserved among eukaryotes, from single-celled microbes to humans. Moreover, elucidation of the circuitry controlling MAPK function defined a now overarching principle in enzyme regulation-the concept of an activation cascade mediated by sequential phosphorylation events. Particularly ground-breaking for this field of exploration were the contributions of genetic approaches conducted using several model organisms, but especially the budding yeast Saccharomyces cerevisiae. Notably, examination of how haploid yeast cells respond to their secreted peptide mating pheromones was crucial in pinpointing genes encoding MAPKs and their upstream activators. Fully contemporaneous biochemical analysis of the activities elicited upon stimulation of mammalian cells by insulin and other growth- and differentiation-inducing factors lead eventually to the demonstration that components homologous to those in yeast were involved. Continued studies of these pathways in yeast were integral to other foundational discoveries in MAPK signaling, including the roles of tethering, scaffolding and docking interactions.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States.
| |
Collapse
|
69
|
Zhang X, Du M, Yang Z, Wang Z, Lim KJ. Biogenesis, Mode of Action and the Interactions of Plant Non-Coding RNAs. Int J Mol Sci 2023; 24:10664. [PMID: 37445841 DOI: 10.3390/ijms241310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs. These non-coding RNAs are now predicted to play important roles in the regulation of gene expression and responses to stress and evolution. In this review, we focus on the synthesis, and mechanisms of non-coding RNAs, and we discuss their impact on gene regulation in plants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Mingjun Du
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
70
|
Serwe G, Kachaner D, Gagnon J, Plutoni C, Lajoie D, Duramé E, Sahmi M, Garrido D, Lefrançois M, Arseneault G, Saba-El-Leil MK, Meloche S, Emery G, Therrien M. CNK2 promotes cancer cell motility by mediating ARF6 activation downstream of AXL signalling. Nat Commun 2023; 14:3560. [PMID: 37322019 PMCID: PMC10272126 DOI: 10.1038/s41467-023-39281-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Cell motility is a critical feature of invasive tumour cells that is governed by complex signal transduction events. Particularly, the underlying mechanisms that bridge extracellular stimuli to the molecular machinery driving motility remain partially understood. Here, we show that the scaffold protein CNK2 promotes cancer cell migration by coupling the pro-metastatic receptor tyrosine kinase AXL to downstream activation of ARF6 GTPase. Mechanistically, AXL signalling induces PI3K-dependent recruitment of CNK2 to the plasma membrane. In turn, CNK2 stimulates ARF6 by associating with cytohesin ARF GEFs and with a novel adaptor protein called SAMD12. ARF6-GTP then controls motile forces by coordinating the respective activation and inhibition of RAC1 and RHOA GTPases. Significantly, genetic ablation of CNK2 or SAMD12 reduces metastasis in a mouse xenograft model. Together, this work identifies CNK2 and its partner SAMD12 as key components of a novel pro-motility pathway in cancer cells, which could be targeted in metastasis.
Collapse
Affiliation(s)
- Guillaume Serwe
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jessica Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Driss Lajoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Eloïse Duramé
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Geneviève Arseneault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Marc K Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
71
|
Canale FP, Neumann J, von Renesse J, Loggi E, Pecoraro M, Vogel I, Zoppi G, Antonini G, Wolf T, Jin W, Zheng X, La Barba G, Birgin E, Forkel M, Nilsson T, Marone R, Mueller H, Pelletier N, Jeker LT, Civenni G, Schlapbach C, Catapano CV, Seifert L, Seifert AM, Gillessen S, De Dosso S, Cristaudi A, Rahbari NN, Ercolani G, Geiger R. Proteomics of immune cells from liver tumors reveals immunotherapy targets. CELL GENOMICS 2023; 3:100331. [PMID: 37388918 PMCID: PMC10300607 DOI: 10.1016/j.xgen.2023.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023]
Abstract
Elucidating the mechanisms by which immune cells become dysfunctional in tumors is critical to developing next-generation immunotherapies. We profiled proteomes of cancer tissue as well as monocyte/macrophages, CD4+ and CD8+ T cells, and NK cells isolated from tumors, liver, and blood of 48 patients with hepatocellular carcinoma. We found that tumor macrophages induce the sphingosine-1-phospate-degrading enzyme SGPL1, which dampened their inflammatory phenotype and anti-tumor function in vivo. We further discovered that the signaling scaffold protein AFAP1L2, typically only found in activated NK cells, is also upregulated in chronically stimulated CD8+ T cells in tumors. Ablation of AFAP1L2 in CD8+ T cells increased their viability upon repeated stimulation and enhanced their anti-tumor activity synergistically with PD-L1 blockade in mouse models. Our data reveal new targets for immunotherapy and provide a resource on immune cell proteomes in liver cancer.
Collapse
Affiliation(s)
- Fernando P. Canale
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Julia Neumann
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Janusz von Renesse
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Elisabetta Loggi
- Hepatology Unit, Department of Medical & Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Pecoraro
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Ian Vogel
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Giada Zoppi
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Gaia Antonini
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Tobias Wolf
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Wenjie Jin
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Xiaoqin Zheng
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Giuliano La Barba
- General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Emrullah Birgin
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Marianne Forkel
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Tobias Nilsson
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Henrik Mueller
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Nadege Pelletier
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Lukas T. Jeker
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Basel, Switzerland
| | - Gianluca Civenni
- Università della Svizzera italiana (USI), Lugano, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carlo V. Catapano
- Università della Svizzera italiana (USI), Lugano, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Adrian M. Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Silke Gillessen
- Università della Svizzera italiana (USI), Lugano, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Sara De Dosso
- Università della Svizzera italiana (USI), Lugano, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Alessandra Cristaudi
- Department of General and Visceral Surgery, Cantonal Hospital Lugano, Lugano, Switzerland
| | - Nuh N. Rahbari
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum - Univeristy of Bologna, Bologna, Italy
- Morgagni-Pierantoni Hospital, Ausl Romagna, Forlì, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Università della Svizzera italiana (USI), Lugano, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| |
Collapse
|
72
|
Dahiya P, Bürstenbinder K. The making of a ring: Assembly and regulation of microtubule-associated proteins during preprophase band formation and division plane set-up. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102366. [PMID: 37068357 DOI: 10.1016/j.pbi.2023.102366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/10/2023]
Abstract
The preprophase band (PPB) is a transient cytokinetic structure that marks the future division plane at the onset of mitosis. The PPB forms a dense cortical ring of mainly microtubules, actin filaments, endoplasmic reticulum, and associated proteins that encircles the nucleus of mitotic cells. After PPB disassembly, the positional information is preserved by the cortical division zone (CDZ). The formation of the PPB and its contribution to timely CDZ set-up involves activities of functionally distinct microtubule-associated proteins (MAPs) that interact physically and genetically to support robust division plane orientation in plants. Recent studies identified two types of plant-specific MAPs as key regulators of PPB formation, the TON1 RECRUITMENT MOTIF (TRM) and IQ67 DOMAIN (IQD) families. Both families share hallmarks of disordered scaffold proteins. Interactions of IQDs and TRMs with multiple binding partners, including the microtubule severing KATANIN1, may provide a molecular framework to coordinate PPB formation, maturation, and disassembly.
Collapse
Affiliation(s)
- Pradeep Dahiya
- Leibniz Institute of Plant Biochemistry, Dept. of Molecular Signal Processing, 06120 Halle/Saale, Germany
| | - Katharina Bürstenbinder
- Leibniz Institute of Plant Biochemistry, Dept. of Molecular Signal Processing, 06120 Halle/Saale, Germany.
| |
Collapse
|
73
|
Pelham JF, Mosier AE, Altshuler SC, Rhodes ML, Kirchhoff CL, Fall WB, Mann C, Baik LS, Chiu JC, Hurley JM. Conformational changes in the negative arm of the circadian clock correlate with dynamic interactomes involved in post-transcriptional regulation. Cell Rep 2023; 42:112376. [PMID: 37043358 PMCID: PMC10562519 DOI: 10.1016/j.celrep.2023.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/16/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Biology is tuned to the Earth's diurnal cycle by the circadian clock, a transcriptional/translational negative feedback loop that regulates physiology via transcriptional activation and other post-transcriptional mechanisms. We hypothesize that circadian post-transcriptional regulation might stem from conformational shifts in the intrinsically disordered proteins that comprise the negative arm of the feedback loop to coordinate variation in negative-arm-centered macromolecular complexes. This work demonstrates temporal conformational fluidity in the negative arm that correlates with 24-h variation in physiologically diverse macromolecular complex components in eukaryotic clock proteins. Short linear motifs on the negative-arm proteins that correspond with the interactors localized to disordered regions and known temporal phosphorylation sites suggesting changes in these macromolecular complexes could be due to conformational changes imparted by the temporal phospho-state. Interactors that oscillate in the macromolecular complexes over circadian time correlate with post-transcriptionally regulated proteins, highlighting how time-of-day variation in the negative-arm protein complexes may tune cellular physiology.
Collapse
Affiliation(s)
- Jacqueline F Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexander E Mosier
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Samuel C Altshuler
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Morgan L Rhodes
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - William B Fall
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Catherine Mann
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lisa S Baik
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
74
|
Dong M, Gao Z, Zhang Y, Cai J, Li J, Xu P, Jiang H, Gu J, Wang J. Ultrasensitive electrochemical biosensor for detection of circulating tumor cells based on a highly efficient enzymatic cascade reaction. RSC Adv 2023; 13:12966-12972. [PMID: 37124001 PMCID: PMC10130820 DOI: 10.1039/d3ra01160g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
There has been great interest in the enzymatic cascade amplification strategy for the electrochemical detection of circulating tumor cells (CTCs). In this work, we designed a highly efficient enzymatic cascade reaction based on a multiwalled carbon nanotubes-chitosan (MWCNTs-CS) composite for detection of CTCs. A high electrochemical effective surface area was obtained for a MWCNTs-CS-modified glassy carbon electrode (GCE) for loading glucose oxidase (GOD), as well as a high loading rate and high electrical activity of the enzyme. As a 'power source', the MWCNTs-CS composites provided a strong driving power for horseradish peroxidase (HRP) on the surface of polystyrene (PS) microspheres, which acted as probes for capturing CTCs and allowed the reaction to proceed with further facilitation of electron transfer. Aptamer, CTCs, and PS microspheres with HRP and anti-epithelial cell adhesion molecule (anti-EpCAM) antibody were assembled on the MWCNTs-CS/GCE to allow for the modulation of enzyme distance at the micrometer level, and thus ultra-long-range signal transmission was made possible. An ultrasensitive response to CTCs was obtained via this proposed sensing strategy, with a linear range from 10 cell mL-1 to 6 × 106 cell mL-1 and a detection limit of 3 cell mL-1. Moreover, this electrochemical sensor possessed the capability to detect CTCs in serum samples with satisfactory accuracy, which indicated great potential for early diagnosis and clinical analysis of cancer.
Collapse
Affiliation(s)
- Min Dong
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Zhihong Gao
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Yating Zhang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jiahui Cai
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jian Li
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Panpan Xu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Hong Jiang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| |
Collapse
|
75
|
Geertjens NHJ, de Vink PJ, Wezeman T, Markvoort AJ, Brunsveld L. Straightforward model construction and analysis of multicomponent biomolecular systems in equilibrium. RSC Chem Biol 2023; 4:252-260. [PMID: 37034407 PMCID: PMC10074561 DOI: 10.1039/d2cb00211f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Mathematical modelling of molecular systems can be extremely helpful in elucidating complex phenomena in (bio)chemistry. However, equilibrium conditions in systems consisting of more than two components, such as for molecular glues bound to two proteins, can typically not be analytically determined without assumptions and (semi-)numerical models are not trivial to derive by the non-expert. Here we present a framework for equilibrium models, geared towards molecular glues and other contemporary multicomponent chemical biology challenges. The framework utilizes a general derivation method capable of generating custom mass-balance models for equilibrium conditions of complex molecular systems, based on the simple, reversible biomolecular reactions describing these systems. Several chemical biology concepts are revisited via the framework to demonstrate the simplicity, generality and validity of the approach. The ease of use of the framework and the ability to both analyze systems and gain additional insights in the underlying parameters driving equilibria formation strongly aids the analysis and understanding of biomolecular systems. New directions for research and analysis are brought forward based on the model formation and system and parameter analysis. This conceptual framework severely reduces the time and expertise requirements which currently impede the broad integration of such valuable equilibrium models into molecular glue development and chemical biology research.
Collapse
Affiliation(s)
- Nick H J Geertjens
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2 Eindhoven 5612 AZ The Netherlands
| | - Pim J de Vink
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2 Eindhoven 5612 AZ The Netherlands
| | - Tim Wezeman
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2 Eindhoven 5612 AZ The Netherlands
| | - Albert J Markvoort
- Computational Biology Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2 Eindhoven 5612 AZ The Netherlands
| |
Collapse
|
76
|
Yang F, Luo Q, Wang Y, Liang H, Wang Y, Hou Z, Wan C, Wang Y, Liu Z, Ye Y, Zhu L, Wu J, Yin F, Li Z. Targeted Biomolecule Regulation Platform: A Split-and-Mix PROTAC Approach. J Am Chem Soc 2023; 145:7879-7887. [PMID: 37001133 DOI: 10.1021/jacs.2c12824] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The development of bifunction al molecules, which can enable targeted RNA degradation, targeted protein acetylation, or targeted protein degradation, remains a time-consuming process that requires tedious optimization. We propose a split-and-mix nanoplatform that serves as a self-adjustable platform capable of facile screening, programmable ligand ratios, self-optimized biomolecule spatial recognition, and multifunctional applications. Herein, we demonstrate the potential of our proposed nanoplatform by showcasing proteolysis-targeting chimeras (PROTACs), namely, split-and-mix PROTAC (SM-PROTAC). We highlight the scope of our platform through the targeted disruption of intracellular therapeutic targets involving ERα, CDK4/6, AR, MEK1/2, BRD2/4, BCR-ABL, etc. These studies confirm the effectiveness and universality of the SM-PROTAC platform for proximity-induced applications. This platform is programmable, with significant potential applications to biomolecule regulation, including the fields of epigenetics, gene editing, and biomolecule modification regulation.
Collapse
Affiliation(s)
- Fenfang Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qinhong Luo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Department of Pharmacy, Department of Gastrointestinal Surgery, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yuechen Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huiting Liang
- Department of Pharmacy, Department of Gastrointestinal Surgery, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yaqi Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Lizhi Zhu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Department of Pharmacy, Department of Gastrointestinal Surgery, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Jianlong Wu
- Department of Pharmacy, Department of Gastrointestinal Surgery, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
77
|
Lu N, Duvall SW, Zhao G, Kowallis KA, Zhang C, Tan W, Sun J, Petitjean HN, Tomares DT, Zhao GP, Childers WS, Zhao W. Scaffold-Scaffold Interaction Facilitates Cell Polarity Development in Caulobacter crescentus. mBio 2023; 14:e0321822. [PMID: 36971555 PMCID: PMC10127582 DOI: 10.1128/mbio.03218-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Caulobacter crescentus
is a well-established bacterial model to study asymmetric cell division for decades. During cell development, the polarization of scaffold protein PopZ from monopolar to bipolar plays a central role in
C. crescentus
asymmetric cell division.
Collapse
|
78
|
Engelhardt S, Trutzenberg A, Kopischke M, Probst K, McCollum C, Hofer J, Hückelhoven R. Barley RIC157, a potential RACB scaffold protein, is involved in susceptibility to powdery mildew. PLANT MOLECULAR BIOLOGY 2023; 111:329-344. [PMID: 36562946 PMCID: PMC10090020 DOI: 10.1007/s11103-022-01329-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/03/2022] [Indexed: 06/15/2023]
Abstract
CRIB motif-containing barley RIC157 is a novel ROP scaffold protein that interacts directly with barley RACB, promotes susceptibility to fungal penetration, and colocalizes with RACB at the haustorial neck. Successful obligate pathogens benefit from host cellular processes. For the biotrophic ascomycete fungus Blumeria hordei (Bh) it has been shown that barley RACB, a small monomeric G-protein (ROP, Rho of plants), is required for full susceptibility to fungal penetration. The susceptibility function of RACB probably lies in its role in cell polarity, which may be co-opted by the pathogen for invasive ingrowth of its haustorium. However, how RACB supports fungal penetration success and which other host proteins coordinate this process is incompletely understood. RIC (ROP-Interactive and CRIB-(Cdc42/Rac Interactive Binding) motif-containing) proteins are considered scaffold proteins which can interact directly with ROPs via a conserved CRIB motif. Here we describe a previously uncharacterized barley RIC protein, RIC157, which can interact directly with RACB in planta. We show that, in the presence of constitutively activated RACB, RIC157 shows a localization at the cell periphery/plasma membrane, whereas it otherwise localizes to the cytoplasm. RIC157 appears to mutually stabilize the plasma membrane localization of the activated ROP. During fungal infection, RIC157 and RACB colocalize at the penetration site, particularly at the haustorial neck. Additionally, transiently overexpressed RIC157 renders barley epidermal cells more susceptible to fungal penetration. We discuss that RIC157 may promote fungal penetration into barley epidermal cells by operating probably downstream of activated RACB.
Collapse
Affiliation(s)
- Stefan Engelhardt
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Adriana Trutzenberg
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Michaela Kopischke
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Katja Probst
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Christopher McCollum
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Johanna Hofer
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
79
|
Miyoshi K, Shimizu S, Shiraki A, Egi M. Ubiquitination of the μ-opioid receptor regulates receptor internalization without affecting G i/o-mediated intracellular signaling or receptor phosphorylation. Biochem Biophys Res Commun 2023; 643:96-104. [PMID: 36592585 DOI: 10.1016/j.bbrc.2022.12.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Opioids are highly potent analgesics but develop tolerance. Previous studies have focused on phosphorylation of the μ-opioid receptor as it is involved in maintaining cellular sensitivity via desensitization, recycling, and degradation of the activated receptor. Recently, ubiquitination, another form of posttranslational modification has attracted attention in terms of triggering intracellular signaling and regulation of the activated receptor. Here, we generated a ubiquitination-deficient mutant of the μ-opioid receptor to investigate whether ubiquitination is involved in driving Gi/o-mediated analgesic signaling, receptor desensitization or subsequent receptor internalization. Our study shows that the Gi/o pathway and receptor phosphorylation do not require ubiquitination. Instead, ubiquitination regulates the internalization efficiency and might help in promoting internalization of the desensitized MOP.
Collapse
Affiliation(s)
- Kentaro Miyoshi
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan
| | - Satoshi Shimizu
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan; Department of Anesthesiology, Shiga University of Medical Science Setatsukinowacho, Otsu City, Shiga Prefecture, Japan.
| | - Atsuko Shiraki
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan
| | - Moritoki Egi
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan
| |
Collapse
|
80
|
Yang C, Liu W, Chen S, Zong X, Yuan P, Chen X, Li X, Li Y, Xue W, Dai J. MOF-Immobilized Two-in-One Engineered Enzymes Enhancing Activity of Biocatalytic Cascade for Tumor Therapy. Adv Healthc Mater 2023; 12:e2203035. [PMID: 36661124 DOI: 10.1002/adhm.202203035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Biocatalytic systems based on enzyme cascade reactions have attracted growing interest in the field of biocatalytic medicine. However, it is a major challenge to reasonably construct enzyme cascade reactions with high stability, selectivity, and catalytic efficiency for the in vivo biocatalytic application. Herein, two-in-one engineered glucose oxidase (GOx-Fe0 ) is fabricated by a biomineralization strategy, through which a nanozyme (Fe0 NP) is anchored within the inner cavity of GOx. Then, GOx-Fe0 is immobilized in a pH-sensitive metal-organic framework (MOF) zeolitic imidazolate framework-8 (ZIF-8) to establish a stable and effective MOF-immobilized two-in-one engineered enzyme, GOx-Fe0 @ZIF-8. In vitro studies show that GOx-Fe0 @ZIF-8 exhibits excellent stability and high pH/glucose selectivity, and the shorter spacing between cascade enzymes can increase the cascade throughput and effectively improve the reaction efficiency of the enzyme cascade. In vivo experiments exhibit that GOx-Fe0 @ZIF-8 solves the instability and systemic toxicity of free enzymes, and achieves deep tumor penetration and significant chemodynamic therapeutic efficacy through a pH/glucose-selective enzyme cascade reaction in tumor site. Taken together, such an orchestrated enzyme engineering strategy can effectively improve enzyme stability, selectivity, and enzyme cascade reaction efficiency via chemical transformations, and also provide a promising strategy for the application of biocatalytic cascade reactions in vivo.
Collapse
Affiliation(s)
- Caiqi Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wen Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Shanfeng Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiaoqing Zong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Pengfei Yuan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xinjie Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiaodi Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yuchao Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
81
|
Nsasra E, Peretz G, Orr I, Yifrach O. Regulating Shaker Kv channel clustering by hetero-oligomerization. Front Mol Biosci 2023; 9:1050942. [PMID: 36699695 PMCID: PMC9868669 DOI: 10.3389/fmolb.2022.1050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Scaffold protein-mediated voltage-dependent ion channel clustering at unique membrane sites, such as nodes of Ranvier or the post-synaptic density plays an important role in determining action potential properties and information coding. Yet, the mechanism(s) by which scaffold protein-ion channel interactions lead to channel clustering and how cluster ion channel density is regulated are mostly unknown. This molecular-cellular gap in understanding channel clustering can be bridged in the case of the prototypical Shaker voltage-activated potassium channel (Kv), as the mechanism underlying the interaction of this channel with its PSD-95 scaffold protein partner is known. According to this mechanism, changes in the length of the intrinsically disordered channel C-terminal chain, brought about by alternative splicing to yield the short A and long B chain subunit variants, dictate affinity to PSD-95 and further controls cluster homo-tetrameric Kv channel density. These results raise the hypothesis that heteromeric subunit assembly serves as a means to regulate Kv channel clustering. Since both clustering variants are expressed in similar fly tissues, it is reasonable to assume that hetero-tetrameric channels carrying different numbers of high- (A) and low-affinity (B) subunits could assemble, thereby giving rise to distinct cluster Kv channel densities. Here, we tested this hypothesis using high-resolution microscopy, combined with quantitative clustering analysis. Our results reveal that the A and B clustering variants can indeed assemble to form heteromeric channels and that controlling the number of the high-affinity A subunits within the hetero-oligomer modulates cluster Kv channel density. The implications of these findings for electrical signaling are discussed.
Collapse
|
82
|
Obayashi H, Wakabayashi R, Kamiya N, Goto M. Supramolecular localization in liquid-liquid phase separation and protein recruitment in confined droplets. Chem Commun (Camb) 2023; 59:414-417. [PMID: 36484713 DOI: 10.1039/d2cc05910j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
This study investigated the localization of artificial peptide supramolecular fibers in liquid-liquid phase separation (LLPS). Hierarchical organization led to the localization of supramolecules in LLPS droplets. Moreover, proteins were recruited into confined droplets by the physical adsorption of proteins on the supramolecules, enabling an enhanced cascade reaction.
Collapse
Affiliation(s)
- Hiroki Obayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. .,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. .,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
83
|
Cho W, Berkley K, Sharma A. Lipid Binding of SH2 Domains. Methods Mol Biol 2023; 2705:239-253. [PMID: 37668978 DOI: 10.1007/978-1-0716-3393-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The Src homology 2 (SH2) domain is a modular protein interaction domain that specifically recognizes the phosphotyrosine (pY) motif of a target molecule. We recently reported that a large majority of human SH2 domains tightly bind membrane lipids, and many show high lipid specificity. Most of them can bind a lipid and the pY motif coincidently because their lipid-binding sites are topologically distinct from pY-binding pockets. Lipid binding of SH2 domain-containing kinases and phosphatases is functionally important because it exerts exquisite spatiotemporal control on protein-protein interaction and cell signaling activities mediated by these proteins. Here, we describe two assays, surface plasmon resonance analysis and fluorescence quenching analysis, which allow quantitative determination of the affinity and specificity of SH2-lipid interaction and high-throughput screening for SH2 domain-lipid-binding inhibitors.
Collapse
Affiliation(s)
- Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.
| | - Kyli Berkley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ashutosh Sharma
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
84
|
Chawla U, Chopra D. Structural Advancement in Shoc2‐MAPK Signaling Pathways in the Treatment of Cancer and Other Diseases. ChemistrySelect 2022. [DOI: 10.1002/slct.202203791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Udeep Chawla
- Innovation and Incubation Centre for Entrepreneurship Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
- The University of Arizona, Department of Chemistry and Biochemistry Tucson AZ85721 United States
| | - Deepak Chopra
- Innovation and Incubation Centre for Entrepreneurship Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
85
|
Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen. Nat Commun 2022; 13:7938. [PMID: 36566249 PMCID: PMC9790007 DOI: 10.1038/s41467-022-35549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.
Collapse
|
86
|
Kinnunen PC, Luker GD, Luker KE, Linderman JJ. Computational modeling implicates protein scaffolding in p38 regulation of Akt. J Theor Biol 2022; 555:111294. [PMID: 36195198 PMCID: PMC10394737 DOI: 10.1016/j.jtbi.2022.111294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
Cells process environmental cues by activating intracellular signaling pathways with numerous interconnections and opportunities for cross-regulation. We employed a systems biology approach to investigate intersections of kinase p38, a context-dependent tumor suppressor or promoter, with Akt and ERK, two kinases known to promote cell survival, proliferation, and drug resistance in cancer. Using live, single cell microscopy, multiplexed fluorescent reporters of p38, Akt, and ERK activities, and a custom automated image-processing pipeline, we detected marked heterogeneity of signaling outputs in breast cancer cells stimulated with chemokine CXCL12 or epidermal growth factor (EGF). Basal activity of p38 correlated inversely with amplitude of Akt and ERK activation in response to either ligand. Remarkably, small molecule inhibitors of p38 immediately decreased basal activities of Akt and ERK but increased the proportion of cells with high amplitude ligand-induced activation of Akt signaling. To identify mechanisms underlying cross-talk of p38 with Akt signaling, we developed a computational model incorporating subcellular compartmentalization of signaling molecules by scaffold proteins. Dynamics of this model revealed that subcellular scaffolding of Akt accounted for observed regulation by p38. The model also predicted that differences in the amount of scaffold protein in a subcellular compartment captured the observed single cell heterogeneity in signaling. Finally, our model predicted that reduction in kinase signaling can be accomplished by both scaffolding and direct kinase inhibition. However, scaffolding inhibition can potentiate future kinase activity by redistribution of pathway components, potentially amplifying oncogenic signaling. These studies reveal how computational modeling can decipher mechanisms of cross-talk between the p38 and Akt signaling pathways and point to scaffold proteins as central regulators of signaling dynamics and amplitude.
Collapse
Affiliation(s)
- Patrick C Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Gary D Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI, 48109 United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Kathryn E Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI, 48109 United States
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States.
| |
Collapse
|
87
|
Mao X, Qiu D, Wei S, Zhang X, Lei J, Mergny JL, Ju H, Zhou J. A Double Hemin Bonded G-Quadruplex Embedded in Metal-Organic Frameworks for Biomimetic Cascade Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54598-54606. [PMID: 36459081 DOI: 10.1021/acsami.2c18473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biocatalytic transformations in living cells, such as enzymatic cascades, function effectively in spatially confined microenvironments. However, mimicking enzyme catalytic cascade processes is challenging. Herein, we report a new dual-Hemin-G-quadruplex (dHemin-G4) DNAzyme with high catalytic activity over noncovalent G4/Hemin and monocovalent counterparts (G4-Hemin and Hemin-G4) by covalently linking hemin to both ends of an intramolecular G4. We use MAF-7, a hydrophilic metal-organic framework (MOF), as the protecting scaffold to integrate a biocatalytic cascade consisting of dHemin-G4 DNAzyme and glucose oxidase (GOx), by a simple and mild method with a single-step encapsulation of both enzymes. Such a MAF-7-confined cascade system shows superior activity over not only traditional G4/Hemin but also other MOFs (ZIF-8 and ZIF-90), which was mainly attributed to high-payload enzyme packaging. Notably, the introduction of hydrophilic G4 allows to avoid the accumulation of hydrophobic hemin on the surface of MAF-7, which decreases cascade biocatalytic activity. Furthermore, MAF-7 as protective coatings endowed the enzyme with excellent recyclability and good operational stability in harsh environments, including elevated temperature, urea, protease, and organic solvents, extending its practical application in biocatalysis. In addition, the incorporated enzymes can be replaced on demand to broaden the scope of catalytic substrates. Taking advantages of these features, the feasibility of dHemin-G4/GOx@MAF-7 systems for biosensing was demonstrated. This study is conducive to devise efficient and stable enzyme catalytic cascades to facilitate applications in biosensing and industrial processes.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
88
|
Mulenga A, Radulovic Z, Porter L, Britten TH, Kim TK, Tirloni L, Gaithuma AK, Adeniyi-Ipadeola GO, Dietrich JK, Moresco JJ, Yates JR. Identification and characterization of proteins that form the inner core Ixodes scapularis tick attachment cement layer. Sci Rep 2022; 12:21300. [PMID: 36494396 PMCID: PMC9734129 DOI: 10.1038/s41598-022-24881-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Ixodes scapularis long-term blood feeding behavior is facilitated by a tick secreted bio adhesive (tick cement) that attaches tick mouthparts to skin tissue and prevents the host from dislodging the attached tick. Understanding tick cement formation is highly sought after as its disruption will prevent tick feeding. This study describes proteins that form the inner core layer of I. scapularis tick cement as disrupting these proteins will likely stop formation of the outer cortical layer. The inner core cement layer completes formation by 24 h of tick attachment. Thus, we used laser-capture microdissection to isolate cement from cryosections of 6 h and 24 h tick attachment sites and to distinguish between early and late inner core cement proteins. LC-MS/MS analysis identified 138 tick cement proteins (TCPs) of which 37 and 35 were unique in cement of 6 and 24 h attached ticks respectively. We grouped TCPs in 14 functional categories: cuticular protein (16%), tick specific proteins of unknown function, cytoskeletal proteins, and enzymes (13% each), enzymes (10%), antioxidant, glycine rich, scaffolding, heat shock, histone, histamine binding, proteases and protease inhibitors, and miscellaneous (3-6% each). Gene ontology analysis confirm that TCPs are enriched for bio adhesive properties. Our data offer insights into tick cement bonding patterns and set the foundation for understanding the molecular basis of I. scapularis tick cement formation.
Collapse
Affiliation(s)
- Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | - Zeljko Radulovic
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Lindsay Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Taylor Hollman Britten
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Alex Kiarie Gaithuma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Grace O Adeniyi-Ipadeola
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jolene K Dietrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
89
|
Westenhoff S, Meszaros P, Schmidt M. Protein motions visualized by femtosecond time-resolved crystallography: The case of photosensory vs photosynthetic proteins. Curr Opin Struct Biol 2022; 77:102481. [PMID: 36252455 DOI: 10.1016/j.sbi.2022.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Proteins are dynamic objects and undergo conformational changes when functioning. These changes range from interconversion between states in equilibrium to ultrafast and coherent structural motions within one perturbed state. Time-resolved serial femtosecond crystallography at free-electron X-ray lasers can unravel structural changes with atomic resolution and down to femtosecond time scales. In this review, we summarize recent advances on detecting structural changes for phytochrome photosensor proteins and a bacterial photosynthetic reaction center. In the phytochrome structural changes are extensive and involve major rearrangements of many amino acids and water molecules, accompanying the regulation of its biochemical activity, whereas in the photosynthetic reaction center protein the structural changes are smaller, more localized, and are optimized to facilitate electron transfer along the chromophores. The detected structural motions underpin the proteins' function, providing a showcase for the importance of detecting ultrafast protein structural dynamics.
Collapse
Affiliation(s)
- Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden.
| | - Petra Meszaros
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Marius Schmidt
- Physics Department, Physic, University of Wisconsin-Milwaukee, 3134 N. Maryland Ave., Milwaukee, WI 53211, United States
| |
Collapse
|
90
|
Kim M, Kim E. Mathematical model of the cell signaling pathway based on the extended Boolean network model with a stochastic process. BMC Bioinformatics 2022; 23:515. [PMID: 36451112 PMCID: PMC9710037 DOI: 10.1186/s12859-022-05077-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In cell signaling pathways, proteins interact with each other to determine cell fate in response to either cell-extrinsic (micro-environmental) or intrinsic cues. One of the well-studied pathways, the mitogen-activated protein kinase (MAPK) signaling pathway, regulates cell processes such as differentiation, proliferation, apoptosis, and survival in response to various micro-environmental stimuli in eukaryotes. Upon micro-environmental stimulus, receptors on the cell membrane become activated. Activated receptors initiate a cascade of protein activation in the MAPK pathway. This activation involves protein binding, creating scaffold proteins, which are known to facilitate effective MAPK signaling transduction. RESULTS This paper presents a novel mathematical model of a cell signaling pathway coordinated by protein scaffolding. The model is based on the extended Boolean network approach with stochastic processes. Protein production or decay in a cell was modeled considering the stochastic process, whereas the protein-protein interactions were modeled based on the extended Boolean network approach. Our model fills a gap in the binary set applied to previous models. The model simultaneously considers the stochastic process directly. Using the model, we simulated a simplified mitogen-activated protein kinase (MAPK) signaling pathway upon stimulation of both a single receptor at the initial time and multiple receptors at several time points. Our simulations showed that the signal is amplified as it travels down to the pathway from the receptor, generating substantially amplified downstream ERK activity. The noise generated by the stochastic process of protein self-activity in the model was also amplified as the signaling propagated through the pathway. CONCLUSIONS The signaling transduction in a simplified MAPK signaling pathway could be explained by a mathematical model based on the extended Boolean network model with a stochastic process. The model simulations demonstrated signaling amplifications when it travels downstream, which was already observed in experimental settings. We also highlight the importance of stochastic activity in regulating protein inactivation.
Collapse
Affiliation(s)
- Minsoo Kim
- grid.35541.360000000121053345Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - Eunjung Kim
- grid.35541.360000000121053345Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| |
Collapse
|
91
|
Tan W, Cheng S, Li Y, Li XY, Lu N, Sun J, Tang G, Yang Y, Cai K, Li X, Ou X, Gao X, Zhao GP, Childers WS, Zhao W. Phase separation modulates the assembly and dynamics of a polarity-related scaffold-signaling hub. Nat Commun 2022; 13:7181. [PMID: 36418326 PMCID: PMC9684454 DOI: 10.1038/s41467-022-35000-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Asymmetric cell division (ACD) produces morphologically and behaviorally distinct cells and is the primary way to generate cell diversity. In the model bacterium Caulobacter crescentus, the polarization of distinct scaffold-signaling hubs at the swarmer and stalked cell poles constitutes the basis of ACD. However, mechanisms involved in the formation of these hubs remain elusive. Here, we show that a swarmer-cell-pole scaffold, PodJ, forms biomolecular condensates both in vitro and in living cells via phase separation. The coiled-coil 4-6 and the intrinsically disordered regions are the primary domains that contribute to biomolecular condensate generation and signaling protein recruitment in PodJ. Moreover, a negative regulation of PodJ phase separation by the stalked-cell-pole scaffold protein SpmX is revealed. SpmX impedes PodJ cell-pole accumulation and affects its recruitment ability. Together, by modulating the assembly and dynamics of scaffold-signaling hubs, phase separation may serve as a general biophysical mechanism that underlies the regulation of ACD in bacteria and other organisms.
Collapse
Affiliation(s)
- Wei Tan
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Sihua Cheng
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Yingying Li
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Xiao-Yang Li
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China ,grid.256922.80000 0000 9139 560XDepartment of Pharmacy, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Ning Lu
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Jingxian Sun
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Guiyue Tang
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Yujiao Yang
- grid.9227.e0000000119573309CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kezhu Cai
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, School of Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xuefei Li
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Xijun Ou
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xiang Gao
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Guo-Ping Zhao
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China ,grid.9227.e0000000119573309CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443State Key Lab of Genetic Engineering & Institutes of Biomedical Sciences, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - W. Seth Childers
- grid.21925.3d0000 0004 1936 9000Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Wei Zhao
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| |
Collapse
|
92
|
Pasquier C, Robichon A. Evolutionary Divergence of Phosphorylation to Regulate Interactive Protein Networks in Lower and Higher Species. Int J Mol Sci 2022; 23:ijms232214429. [PMID: 36430905 PMCID: PMC9697241 DOI: 10.3390/ijms232214429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The phosphorylation of proteins affects their functions in extensively documented circumstances. However, the role of phosphorylation in many interactive networks of proteins remains very elusive due to the experimental limits of exploring the transient interaction in a large complex of assembled proteins induced by stimulation. Previous studies have suggested that phosphorylation is a recent evolutionary process that differently regulates ortholog proteins in numerous lineages of living organisms to create new functions. Despite the fact that numerous phospho-proteins have been compared between species, little is known about the organization of the full phospho-proteome, the role of phosphorylation to orchestrate large interactive networks of proteins, and the intertwined phospho-landscape in these networks. In this report, we aimed to investigate the acquired role of phosphate addition in the phenomenon of protein networking in different orders of living organisms. Our data highlighted the acquired status of phosphorylation in organizing large, connected assemblages in Homo sapiens. The protein networking guided by phosphorylation turned out to be prominent in humans, chaotic in yeast, and weak in flies. Furthermore, the molecular functions of GO annotation enrichment regulated by phosphorylation were found to be drastically different between flies, yeast, and humans, suggesting an evolutionary drift specific to each species.
Collapse
Affiliation(s)
- Claude Pasquier
- I3S, Université Côte d’Azur, Campus SophiaTech, CNRS, 06903 Nice, France
- Correspondence:
| | - Alain Robichon
- INRAE, ISA, Université Côte d’Azur, Campus SophiaTech, CNRS, 06903 Nice, France
| |
Collapse
|
93
|
Wang L, Choi K, Su T, Li B, Wu X, Zhang R, Driskill JH, Li H, Lei H, Guo P, Chen EH, Zheng Y, Pan D. Multiphase coalescence mediates Hippo pathway activation. Cell 2022; 185:4376-4393.e18. [PMID: 36318920 PMCID: PMC9669202 DOI: 10.1016/j.cell.2022.09.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/29/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
The function of biomolecular condensates is often restricted by condensate dissolution. Whether condensates can be suppressed without condensate dissolution is unclear. Here, we show that upstream regulators of the Hippo signaling pathway form functionally antagonizing condensates, and their coalescence into a common phase provides a mode of counteracting the function of biomolecular condensates without condensate dissolution. Specifically, the negative regulator SLMAP forms Hippo-inactivating condensates to facilitate pathway inhibition by the STRIPAK complex. In response to cell-cell contact or osmotic stress, the positive regulators AMOT and KIBRA form Hippo-activating condensates to facilitate pathway activation. The functionally antagonizing SLMAP and AMOT/KIBRA condensates further coalesce into a common phase to inhibit STRIPAK function. These findings provide a paradigm for restricting the activity of biomolecular condensates without condensate dissolution, shed light on the molecular principles of multiphase organization, and offer a conceptual framework for understanding upstream regulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kyungsuk Choi
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting Su
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofeng Wu
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruihui Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongde Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyan Lei
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pengfei Guo
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
94
|
DiRusso CJ, Dashtiahangar M, Gilmore TD. Scaffold proteins as dynamic integrators of biological processes. J Biol Chem 2022; 298:102628. [PMID: 36273588 PMCID: PMC9672449 DOI: 10.1016/j.jbc.2022.102628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/15/2022] Open
Abstract
Scaffold proteins act as molecular hubs for the docking of multiple proteins to organize efficient functional units for signaling cascades. Over 300 human proteins have been characterized as scaffolds, acting in a variety of signaling pathways. While the term scaffold implies a static, supportive platform, it is now clear that scaffolds are not simply inert docking stations but can undergo conformational changes that affect their dependent signaling pathways. In this review, we catalog scaffold proteins that have been shown to undergo actionable conformational changes, with a focus on the role that conformational change plays in the activity of the classic yeast scaffold STE5, as well as three human scaffold proteins (KSR, NEMO, SHANK3) that are integral to well-known signaling pathways (RAS, NF-κB, postsynaptic density). We also discuss scaffold protein conformational changes vis-à-vis liquid-liquid phase separation. Changes in scaffold structure have also been implicated in human disease, and we discuss how aberrant conformational changes may be involved in disease-related dysregulation of scaffold and signaling functions. Finally, we discuss how understanding these conformational dynamics will provide insight into the flexibility of signaling cascades and may enhance our ability to treat scaffold-associated diseases.
Collapse
|
95
|
Zhong N, Gao R, Shen Y, Kou X, Wu J, Huang S, Chen G, Ouyang G. Enzymes-Encapsulated Defective Metal-Organic Framework Hydrogel Coupling with a Smartphone for a Portable Glucose Biosensor. Anal Chem 2022; 94:14385-14393. [PMID: 36205458 DOI: 10.1021/acs.analchem.2c03138] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymes featuring high catalytic efficiency and selectivity have been widely used as the sensing element in analytical chemistry. However, the structural fragility and poor machinability of an enzyme significantly limit its practicability in biosensors. Herein, we develop a robust and sensitive hybrid biosensor by means of co-encapsulating enzymes into a defective metal-organic framework (MOF), followed by a double-crosslinked alginate gelatinization. The defective MOF encapsulation can enhance the stability of enzymes, yet well preserve their biocatalytic function, while the alginate gelatinization allows the MOF biohybrid high stretchability and mechanical strength, which facilitates the integration of a bead-, fiber-, and sheet-like portable biosensor. In this work, the enzymes consisting of glucose oxidase and peroxidase are co-encapsulated into this MOF hydrogel, and it can efficiently convert glucose into a blue-violet product through the biocatalytic cascade of encapsulated enzymes, enabling the colorimetric biosensing of glucose on a miniaturized MOF hydrogel when coupling with a smartphone. Interestingly, this MOF biohybrid hydrogel outputs a stronger sensing signal than the free biohybrid powders, attributed to the catalytic product-accumulated effect of the highly hydrophilic microenvironment of the hydrogel. As a result, this portable biosensor can sensitively and selectively sense glucose with a linear range from 0.05 to 4 mM. Importantly, both the hydrophilic hydrogel and MOF "armor" endow enzymes with high durability, and its sensing activity was well-maintained even after placing the biosensor at room temperature for 30 d. We believe that this MOF biohybrid hydrogel has huge potential for the engineering of next-generation portable biosensors.
Collapse
Affiliation(s)
- Ningyi Zhong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Yujian Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Jiayi Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| |
Collapse
|
96
|
Lim JH, Bae JS, Lee SK, Lee DH. Palmitoyl‑RGD promotes the expression of dermal‑epidermal junction components in HaCaT cells. Mol Med Rep 2022; 26:320. [PMID: 36043531 DOI: 10.3892/mmr.2022.12836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022] Open
Abstract
With age, the dermal‑epidermal junction (DEJ) becomes thinner and production of its protein components decreases; this may be associated with increased fragility and wrinkling of skin. Topical treatment with palmitoyl‑Arg‑Gly‑Asp (PAL‑RGD) improves facial wrinkles, skin elasticity and dermal density in humans. In the present study, the effect of PAL‑RGD on expression of DEJ components, such as laminin and collagen, was assessed. Human HaCaT keratinocytes were treated with PAL‑RGD. The protein expression levels of laminin‑332, collagen IV and collagen XVII were examined by western blotting. Reverse transcription-quantitative PCR was used to analyze laminin subunit (LAM)A3, LAMB3, LAMC2, collagen type IV α 1 chain (COL4A1) and COL17A1 mRNA expression levels. Western blot analysis showed that the expression levels of proteins comprising the DEJ, including laminin α3, β3 and γ2 and collagen IV and XVII demonstrated a significant dose‑dependent increase following PAL‑RGD treatment. Furthermore, PAL‑RGD treatment significantly enhanced LAMA3, LAMB3, LAMC2, COL4A1 and COL17A1 mRNA expression levels. PAL‑RGD may enhance the DEJ by inducing the expression of laminin‑332, collagen IV and collagen XVII.
Collapse
Affiliation(s)
- Joo Hyuck Lim
- Biotechnology Research Institute, Research and Development Division, Celltrion Inc., Incheon 22014, Republic of Korea
| | - Jung Soo Bae
- Biotechnology Research Institute, Research and Development Division, Celltrion Inc., Incheon 22014, Republic of Korea
| | - Seung Ki Lee
- Biotechnology Research Institute, Research and Development Division, Celltrion Inc., Incheon 22014, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
97
|
Thorner J. TOR complex 2 is a master regulator of plasma membrane homeostasis. Biochem J 2022; 479:1917-1940. [PMID: 36149412 PMCID: PMC9555796 DOI: 10.1042/bcj20220388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Collapse
Affiliation(s)
- Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, U.S.A
| |
Collapse
|
98
|
Guo H, Ryan JC, Song X, Mallet A, Zhang M, Pabst V, Decrulle AL, Ejsmont P, Wintermute EH, Lindner AB. Spatial engineering of E. coli with addressable phase-separated RNAs. Cell 2022; 185:3823-3837.e23. [PMID: 36179672 DOI: 10.1016/j.cell.2022.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/25/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
Biochemical processes often require spatial regulation and specific microenvironments. The general lack of organelles in bacteria limits the potential of bioengineering complex intracellular reactions. Here, we demonstrate synthetic membraneless organelles in Escherichia coli termed transcriptionally engineered addressable RNA solvent droplets (TEARS). TEARS are assembled from RNA-binding protein recruiting domains fused to poly-CAG repeats that spontaneously drive liquid-liquid phase separation from the bulk cytoplasm. Targeting TEARS with fluorescent proteins revealed multilayered structures with composition and reaction robustness governed by non-equilibrium dynamics. We show that TEARS provide organelle-like bioprocess isolation for sequestering biochemical pathways, controlling metabolic branch points, buffering mRNA translation rates, and scaffolding protein-protein interactions. We anticipate TEARS to be a simple and versatile tool for spatially controlling E. coli biochemistry. Particularly, the modular design of TEARS enables applications without expression fine-tuning, simplifying the design-build-test cycle of bioengineering.
Collapse
Affiliation(s)
- Haotian Guo
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France.
| | - Joseph C Ryan
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Xiaohu Song
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Adeline Mallet
- Ultrastructural BioImaging UTechS, C2RT, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Mengmeng Zhang
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Victor Pabst
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Antoine L Decrulle
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Paulina Ejsmont
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Edwin H Wintermute
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France.
| |
Collapse
|
99
|
Huang W, Yuan H, Yang H, Tong L, Gao R, Kou X, Wang J, Ma X, Huang S, Zhu F, Chen G, Ouyang G. Photodynamic Hydrogen-Bonded Biohybrid Framework: A Photobiocatalytic Cascade Nanoreactor for Accelerating Diabetic Wound Therapy. JACS AU 2022; 2:2048-2058. [PMID: 36186550 PMCID: PMC9516711 DOI: 10.1021/jacsau.2c00321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 05/15/2023]
Abstract
A diabetic wound causes thousands of infections or deaths around the world each year, and its healing remains a critical challenge because of the ease of multidrug-resistant (MDR) bacterial infection, as well as the intrinsic hyperglycemic and hypoxia microenvironment that inhibits the therapeutic efficiency. Herein, we pioneer the design of a photobiocatalytic cascade nanoreactor via spatially organizing the biocatalysts and photocatalysts utilizing a hydrogen-bonded organic framework (HOF) scaffold for diabetic wound therapy. The HOF scaffold enables it to disperse and stabilize the host cargos, and the formed long-range-ordered mesochannels also facilitate the mass transfer that enhances the cascade activity. This integrated HOF nanoreactor allows the continuous conversion of overexpressed glucose and H2O2 into toxic reactive oxygen species by the photobiocatalytic cascade. As a result, it readily reverses the microenvironment of the diabetes wound and exhibits an extraordinary capacity for wound healing through synergistic photodynamic therapy. This work describes the first example of constructing an all-in-one HOF bioreactor for antimicrobial diabetes wound treatment and showcases the promise of combined biocatalysis and photocatalysis achieved by using an HOF scaffold in biomedicine applications.
Collapse
Affiliation(s)
- Wei Huang
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Haitao Yuan
- Department
of Geriatric Medicine, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Huangsheng Yang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Linjing Tong
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Gao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoxue Kou
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jigang Wang
- Department
of Geriatric Medicine, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Xiaomin Ma
- Cryo-EM
Center, Southern University of Science and
Technology, Shenzhen 518055, China
| | - Siming Huang
- Guangzhou
Municipal and Guangdong Provincial Key Laboratory of Molecular Target
and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Fang Zhu
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
100
|
Gong X, He S, Li R, Chen Y, Tan K, Wan Y, Liu X, Wang F. Monitoring and modulating a catalytic hybridization circuit for self-adaptive bioorthogonal DNA assembly. Chem Sci 2022; 13:10428-10436. [PMID: 36277649 PMCID: PMC9473505 DOI: 10.1039/d2sc03757b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Constructing artificial domino nanoarchitectures, especially dynamic DNA circuits associated with the actuation of biological functions inside live cells, represents a versatile and powerful strategy to regulate the behaviors and fate of various living entities. However, the stepwise operation of conventional DNA circuits always relies on freely diffusing reactants, which substantially slows down their operation rate and efficiency. Herein, a self-adaptive localized catalytic circuit (LCC) is developed to execute the self-sustained bioorthogonal assembly of DNA nanosponges within a crowded intracellular environment. The LCC-generated DNA scaffolds are utilized as versatile templates for realizing the proximity confinement of LCC reactants. Single-molecule-detecting fluorescence correlation spectroscopy (FCS) is used to explore the reaction acceleration of the catalytic circuit. This self-adaptive DNA circuit facilitates the bioorthogonal assembly of highly branched DNA networks for robust and accurate monitoring of miRNA targets. Based on its intriguing and modular design, the LCC system provides a pivotal molecular toolbox for future applications in early disease diagnosis.
Collapse
Affiliation(s)
- Xue Gong
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Kaiyue Tan
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Yeqing Wan
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences Wuhan 430072 China
| |
Collapse
|