51
|
Marcos E, Silva D. Essentials of
de novo
protein design: Methods and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1374] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Enrique Marcos
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Daniel‐Adriano Silva
- Department of BiochemistryUniversity of WashingtonSeattleWashington
- Institute for Protein DesignUniversity of WashingtonSeattleWashington
| |
Collapse
|
52
|
Wood CW, Heal JW, Thomson AR, Bartlett GJ, Ibarra AÁ, Brady RL, Sessions RB, Woolfson DN. ISAMBARD: an open-source computational environment for biomolecular analysis, modelling and design. Bioinformatics 2018; 33:3043-3050. [PMID: 28582565 PMCID: PMC5870769 DOI: 10.1093/bioinformatics/btx352] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/31/2017] [Indexed: 12/03/2022] Open
Abstract
Motivation The rational design of biomolecules is becoming a reality. However, further computational tools are needed to facilitate and accelerate this, and to make it accessible to more users. Results Here we introduce ISAMBARD, a tool for structural analysis, model building and rational design of biomolecules. ISAMBARD is open-source, modular, computationally scalable and intuitive to use. These features allow non-experts to explore biomolecular design in silico. ISAMBARD addresses a standing issue in protein design, namely, how to introduce backbone variability in a controlled manner. This is achieved through the generalization of tools for parametric modelling, describing the overall shape of proteins geometrically, and without input from experimentally determined structures. This will allow backbone conformations for entire folds and assemblies not observed in nature to be generated de novo, that is, to access the ‘dark matter of protein-fold space’. We anticipate that ISAMBARD will find broad applications in biomolecular design, biotechnology and synthetic biology. Availability and implementation A current stable build can be downloaded from the python package index (https://pypi.python.org/pypi/isambard/) with development builds available on GitHub (https://github.com/woolfson-group/) along with documentation, tutorial material and all the scripts used to generate the data described in this paper. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Christopher W Wood
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.,School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Jack W Heal
- School of Chemistry, University of Bristol, Bristol BS8?1TS, UK
| | - Andrew R Thomson
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.,School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gail J Bartlett
- School of Chemistry, University of Bristol, Bristol BS8?1TS, UK
| | - Amaurys Á Ibarra
- School of Biochemistry, University of Bristol, Bristol BS8?1TD, UK
| | - R Leo Brady
- School of Biochemistry, University of Bristol, Bristol BS8?1TD, UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, University of Bristol, Bristol BS8 1TQ, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.,School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
53
|
Polo E, Nitka TA, Neubert E, Erpenbeck L, Vuković L, Kruss S. Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17693-17703. [PMID: 29708725 DOI: 10.1021/acsami.8b04373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Integrins are transmembrane receptors that mediate cell-adhesion, signaling cascades and platelet-mediated blood clotting. Most integrins bind to the common short peptide Arg-Gly-Asp (RGD). The conformational freedom of the RGD motif determines how strong and to which integrins it binds. Here, we present a novel approach to tune binding constants by confining RGD peptide motifs via noncovalent adsorption of single-stranded DNA (ssDNA) anchors onto single-walled carbon nanotubes (SWCNTs). Semiconducting SWCNTs display fluorescence in the near-infrared (nIR) region and are versatile fluorescent building blocks for imaging and biosensing. The basic idea of this approach is that the DNA adsorbed on the SWCNT surface determines the conformational freedom of the RGD motif and affects binding affinities. The RGD motif was conjugated to different ssDNA sequences in both linear ssDNA-RGD and bridged ssDNA-RGD-ssDNA geometries. Molecular dynamics (MD) simulations show that the RGD motif in all the synthesized systems is mostly exposed to solvent and thus available for binding, but its flexibility depends on the exact geometry. The affinity for the human platelet integrin αIIbβ3 could be modulated up to 15-fold by changing the ssDNA sequence. IC50 values varied from 309 nM for (C)20-RGD/SWCNT hybrids to 29 nM for (GT)15-RGD/SWCNT hybrids. When immobilized onto surface adhesion of epithelial cells increased 6-fold for (GT)15-RGD/SWCNTs. (GT)15-RGD/SWCNTs also increased the number of adhering human platelets by a factor of 4.8. Additionally, αIIbβ3 integrins on human platelets were labeled in the nIR by incubating them with these ssDNA-peptide/SWCNT hybrids. In summary, we show that ssDNA-peptide hybrid structures noncovalently adsorb onto SWCNTs and serve as recognition units for cell surface receptors such as integrins. The DNA sequence affects the overall RGD affinity, which is a versatile and straightforward approach to tune binding affinities. In combination with the nIR fluorescence properties of SWCNTs, these new hybrid materials promise many applications in integrin targeting and bioimaging.
Collapse
Affiliation(s)
- Elena Polo
- Institute of Physical Chemistry , Göttingen University , Tammanstrasse 6 , 37077 Göttingen , Germany
| | - Tara A. Nitka
- Department of Chemistry and Biochemistry , The University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Elsa Neubert
- Institute of Physical Chemistry , Göttingen University , Tammanstrasse 6 , 37077 Göttingen , Germany
- University Medical Center, Department of Dermatology , Göttingen University , 37077 Göttingen , Germany
| | - Luise Erpenbeck
- University Medical Center, Department of Dermatology , Göttingen University , 37077 Göttingen , Germany
| | - Lela Vuković
- Department of Chemistry and Biochemistry , The University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Sebastian Kruss
- Institute of Physical Chemistry , Göttingen University , Tammanstrasse 6 , 37077 Göttingen , Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) , 37073 Göttingen , Germany
| |
Collapse
|
54
|
Joh NH, Grigoryan G, Wu Y, DeGrado WF. Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630154 DOI: 10.1098/rstb.2016.0214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ion transporters and channels are able to identify and act on specific substrates among myriads of ions and molecules critical to cellular processes, such as homeostasis, cell signalling, nutrient influx and drug efflux. Recently, we designed Rocker, a minimalist model for Zn2+/H+ co-transport. The success of this effort suggests that de novo membrane protein design has now come of age so as to serve a key approach towards probing the determinants of membrane protein folding, assembly and function. Here, we review general principles that can be used to design membrane proteins, with particular reference to helical assemblies with transport function. We also provide new functional and NMR data that probe the dynamic mechanism of conduction through Rocker.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Nathan H Joh
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA.,Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Yibing Wu
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
55
|
Mann FA, Horlebein J, Meyer NF, Meyer D, Thomas F, Kruss S. Carbon Nanotubes Encapsulated in Coiled-Coil Peptide Barrels. Chemistry 2018; 24:12241-12245. [DOI: 10.1002/chem.201800993] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Florian A. Mann
- Institute of Physical Chemistry; Georg-August Universität Göttingen; Tammannstraße 6 37077 Göttingen Germany
| | - Jan Horlebein
- Institute of Physical Chemistry; Georg-August Universität Göttingen; Tammannstraße 6 37077 Göttingen Germany
| | - Nils Frederik Meyer
- Institute of Organic and Biomolecular Chemistry; Georg-August Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Daniel Meyer
- Institute of Physical Chemistry; Georg-August Universität Göttingen; Tammannstraße 6 37077 Göttingen Germany
| | - Franziska Thomas
- Institute of Organic and Biomolecular Chemistry; Georg-August Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration; Von-Siebold-Strasse 3a 37075 Göttingen Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry; Georg-August Universität Göttingen; Tammannstraße 6 37077 Göttingen Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Humboldtallee 23 37073 Göttingen Germany
| |
Collapse
|
56
|
Chino M, Leone L, Zambrano G, Pirro F, D'Alonzo D, Firpo V, Aref D, Lista L, Maglio O, Nastri F, Lombardi A. Oxidation catalysis by iron and manganese porphyrins within enzyme-like cages. Biopolymers 2018; 109:e23107. [DOI: 10.1002/bip.23107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Linda Leone
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Gerardo Zambrano
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Fabio Pirro
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Vincenzo Firpo
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Diaa Aref
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Liliana Lista
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Ornella Maglio
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
- Institute of Biostructures and Bioimages-National Research Council, Via Mezzocannone 16; Napoli 80134 Italy
| | - Flavia Nastri
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| | - Angela Lombardi
- Department of Chemical Sciences; University of Napoli “Federico II,” Via Cintia; Napoli 80126 Italy
| |
Collapse
|
57
|
Zhang Q, Huang H, Zhang L, Wu R, Chung CI, Zhang SQ, Torra J, Schepis A, Coughlin SR, Kornberg TB, Shu X. Visualizing Dynamics of Cell Signaling In Vivo with a Phase Separation-Based Kinase Reporter. Mol Cell 2018; 69:334-346.e4. [PMID: 29307513 PMCID: PMC5788022 DOI: 10.1016/j.molcel.2017.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/18/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
Visualizing dynamics of kinase activity in living animals is essential for mechanistic understanding of cell and developmental biology. We describe GFP-based kinase reporters that phase-separate upon kinase activation via multivalent protein-protein interactions, forming intensively fluorescent droplets. Called SPARK (separation of phases-based activity reporter of kinase), these reporters have large dynamic range (fluorescence change), high brightness, fast kinetics, and are reversible. The SPARK-based protein kinase A (PKA) reporter reveals oscillatory dynamics of PKA activities upon G protein-coupled receptor activation. The SPARK-based extracellular signal-regulated kinase (ERK) reporter unveils transient dynamics of ERK activity during tracheal metamorphosis in live Drosophila. Because of intensive brightness and simple signal pattern, SPARKs allow easy examination of kinase signaling in living animals in a qualitative way. The modular design of SPARK will facilitate development of reporters of other kinases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Luqing Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roland Wu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shao-Qing Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joaquim Torra
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Antonino Schepis
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
58
|
Lawrie J, Song X, Niu W, Guo J. A high throughput approach for the generation of orthogonally interacting protein pairs. Sci Rep 2018; 8:867. [PMID: 29343761 PMCID: PMC5772552 DOI: 10.1038/s41598-018-19281-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/27/2017] [Indexed: 11/17/2022] Open
Abstract
In contrast to the nearly error-free self-assembly of protein architectures in nature, artificial assembly of protein complexes with pre-defined structure and function in vitro is still challenging. To mimic nature's strategy to construct pre-defined three-dimensional protein architectures, highly specific protein-protein interacting pairs are needed. Here we report an effort to create an orthogonally interacting protein pair from its parental pair using a bacteria-based in vivo directed evolution strategy. This high throughput approach features a combination of a negative and a positive selection. The newly developed negative selection from this work was used to remove any protein mutants that retain effective interaction with their parents. The positive selection was used to identify mutant pairs that can engage in effective mutual interaction. By using the cohesin-dockerin protein pair that is responsible for the self-assembly of cellulosome as a model system, we demonstrated that a protein pair that is orthogonal to its parent pair could be readily generated using our strategy. This approach could open new avenues to a wide range of protein-based assembly, such as biocatalysis or nanomaterials, with pre-determined architecture and potentially novel functions and properties.
Collapse
Affiliation(s)
- Justin Lawrie
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Xi Song
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.
| |
Collapse
|
59
|
Arai R. Hierarchical design of artificial proteins and complexes toward synthetic structural biology. Biophys Rev 2017; 10:391-410. [PMID: 29243094 DOI: 10.1007/s12551-017-0376-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
In multiscale structural biology, synthetic approaches are important to demonstrate biophysical principles and mechanisms underlying the structure, function, and action of bio-nanomachines. A central goal of "synthetic structural biology" is the design and construction of artificial proteins and protein complexes as desired. In this paper, I review recent remarkable progress of an array of approaches for hierarchical design of artificial proteins and complexes that signpost the path forward toward synthetic structural biology as an emerging interdisciplinary field. Topics covered include combinatorial and protein-engineering approaches for directed evolution of artificial binding proteins and membrane proteins, binary code strategy for structural and functional de novo proteins, protein nanobuilding block strategy for constructing nano-architectures, protein-metal-organic frameworks for 3D protein complex crystals, and rational and computational approaches for design/creation of artificial proteins and complexes, novel protein folds, ideal/optimized protein structures, novel binding proteins for targeted therapeutics, and self-assembling nanomaterials. Protein designers and engineers look toward a bright future in synthetic structural biology for the next generation of biophysics and biotechnology.
Collapse
Affiliation(s)
- Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa, Nagano 399-4598, Japan. .,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan. .,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
60
|
Enhancement of catalytic activity of a programmed gold nanoparticle superstructure modulated by supramolecular protein assembly. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
61
|
Peptide mediated formation of noble metal nanoparticles — controlling size and spatial arrangement. Curr Opin Chem Biol 2017; 40:138-144. [DOI: 10.1016/j.cbpa.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 02/02/2023]
|
62
|
Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol Adv 2017; 35:575-596. [PMID: 28522213 PMCID: PMC7127164 DOI: 10.1016/j.biotechadv.2017.05.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/23/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Vaccination has been one of the most successful breakthroughs in medical history. In recent years, epitope-based subunit vaccines have been introduced as a safer alternative to traditional vaccines. However, they suffer from limited immunogenicity. Nanotechnology has shown value in solving this issue. Different kinds of nanovaccines have been employed, among which virus-like nanoparticles (VLPs) and self-assembled peptide nanoparticles (SAPNs) seem very promising. Recently, SAPNs have attracted special interest due to their unique properties, including molecular specificity, biodegradability, and biocompatibility. They also resemble pathogens in terms of their size. Their multivalency allows an orderly repetitive display of antigens on their surface, which induces a stronger immune response than single immunogens. In vaccine design, SAPN self-adjuvanticity is regarded an outstanding advantage, since the use of toxic adjuvants is no longer required. SAPNs are usually composed of helical or β-sheet secondary structures and are tailored from natural peptides or de novo structures. Flexibility in subunit selection opens the door to a wide variety of molecules with different characteristics. SAPN engineering is an emerging area, and more novel structures are expected to be generated in the future, particularly with the rapid progress in related computational tools. The aim of this review is to provide a state-of-the-art overview of self-assembled peptide nanoparticles and their use in vaccine design in recent studies. Additionally, principles for their design and the application of computational approaches to vaccine design are summarized.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Golkar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Hajighahramani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
63
|
No YH, Kim NH, Gnapareddy B, Choi B, Kim YT, Dugasani SR, Lee OS, Kim KH, Ko YS, Lee S, Lee SW, Park SH, Eom K, Kim YH. Nature-Inspired Construction of Two-Dimensionally Self-Assembled Peptide on Pristine Graphene. J Phys Chem Lett 2017; 8:3734-3739. [PMID: 28749677 DOI: 10.1021/acs.jpclett.7b00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptide assemblies have received significant attention because of their important role in biology and applications in bionanotechnology. Despite recent efforts to elucidate the principles of peptide self-assembly for developing novel functional devices, peptide self-assembly on two-dimensional nanomaterials has remained challenging. Here, we report nature-inspired two-dimensional peptide self-assembly on pristine graphene via optimization of peptide-peptide and peptide-graphene interactions. Two-dimensional peptide self-assembly was designed based on statistical analyses of >104 protein structures existing in nature and atomistic simulation-based structure predictions. We characterized the structures and surface properties of the self-assembled peptide formed on pristine graphene. Our study provides insights into the formation of peptide assemblies coupled with two-dimensional nanomaterials for further development of nanobiocomposite devices.
Collapse
Affiliation(s)
- Young Hyun No
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | | | - Bumjoon Choi
- Department of Biomedical Engineering, Yonsei University , Wonju 26493, Republic of Korea
| | - Yong-Tae Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | | | - One-Sun Lee
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University , P.O. Box 5825, Doha, Qatar
| | - Kook-Han Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Young-Seon Ko
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Seungwoo Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Sang Woo Lee
- Department of Biomedical Engineering, Yonsei University , Wonju 26493, Republic of Korea
| | - Sung Ha Park
- Department of Physics, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University , Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS) , Suwon 16419, Republic of Korea
| |
Collapse
|
64
|
Kobayashi N, Arai R. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks. Curr Opin Biotechnol 2017; 46:57-65. [DOI: 10.1016/j.copbio.2017.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/09/2016] [Accepted: 01/04/2017] [Indexed: 01/03/2023]
|
65
|
Mustata GM, Kim YH, Zhang J, DeGrado WF, Grigoryan G, Wanunu M. Graphene Symmetry Amplified by Designed Peptide Self-Assembly. Biophys J 2017; 110:2507-2516. [PMID: 27276268 PMCID: PMC4906377 DOI: 10.1016/j.bpj.2016.04.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 11/28/2022] Open
Abstract
We present a strategy for designed self-assembly of peptides into two-dimensional monolayer crystals on the surface of graphene and graphite. As predicted by computation, designed peptides assemble on the surface of graphene to form very long, parallel, in-register β-sheets, which we call β-tapes. Peptides extend perpendicularly to the long axis of each β-tape, defining its width, with hydrogen bonds running along the axis. Tapes align on the surface to create highly regular microdomains containing 4-nm pitch striations. Moreover, in agreement with calculations, the atomic structure of the underlying graphene dictates the arrangement of the β-tapes, as they orient along one of six directions defined by graphene’s sixfold symmetry. A cationic-assembled peptide surface is shown here to strongly adhere to DNA, preferentially orienting the double helix along β-tape axes. This orientational preference is well anticipated from calculations, given the underlying peptide layer structure. These studies illustrate how designed peptides can amplify the Ångstrom-level atomic symmetry of a surface onto the micrometer scale, further imparting long-range directional order onto the next level of assembly. The remarkably stable nature of these assemblies under various environmental conditions suggests applications in enzymelike catalysis, biological interfaces for cellular recognition, and two-dimensional platforms for studying DNA-peptide interactions.
Collapse
Affiliation(s)
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology and Department of Chemistry, Sungkyunkwan University, Seoul, Korea; Center for Neuroscience Imaging Research, Institute for Basic Science(IBS), Suwon, Korea.
| | - Jian Zhang
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire; Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire.
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
66
|
Kawamoto M, He P, Ito Y. Green Processing of Carbon Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1602423. [PMID: 27859655 DOI: 10.1002/adma.201602423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/11/2016] [Indexed: 05/19/2023]
Abstract
Carbon nanomaterials (CNMs) from fullerenes, carbon nanotubes, and graphene are promising carbon allotropes for various applications such as energy-conversion devices and biosensors. Because pristine CNMs show substantial van der Waals interactions and a hydrophobic nature, precipitation is observed immediately in most organic solvents and water. This inevitable aggregation leads to poor processability and diminishes the intrinsic properties of the CNMs. Highly toxic and hazardous chemicals are used for chemical and physical modification of CNMs, even though efficient dispersed solutions are obtained. The development of an environmentally friendly dispersion method for both safe and practical processing is a great challenge. Recent green processing approaches for the manipulation of CNMs using chemical and physical modification are highlighted. A summary of the current research progress on: i) energy-efficient and less-toxic chemical modification of CNMs using covalent-bonding functionality and ii) non-covalent-bonding methodologies through physical modification using green solvents and dispersants, and chemical-free mechanical stimuli is provided. Based on these experimental studies, recent advances and challenges for the potential application of green-processable energy-conversion and biological devices are provided. Finally, a conclusion section is provided summarizing the insights from the present studies as well as some future perspectives.
Collapse
Affiliation(s)
- Masuki Kawamoto
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Pan He
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
67
|
Fazelinia H, Balog ERM, Desireddy A, Chakraborty S, Sheehan CJ, Strauss CE, Martinez JS. Genetically Engineered Elastomeric Polymer Network through Protein Zipper Assembly. ChemistrySelect 2017. [DOI: 10.1002/slct.201700456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hossein Fazelinia
- Bioscience Division, MS 888 Los Alamos National Laboratory NM 87545 USA
| | - Eva Rose M. Balog
- Center for Intergrated Nanotechnologies Los Alamos National Laboratory, MS K771 Los Alamos NM 87545 USA
| | - Anil Desireddy
- Center for Intergrated Nanotechnologies Los Alamos National Laboratory, MS K771 Los Alamos NM 87545 USA
| | - Saumen Chakraborty
- Center for Intergrated Nanotechnologies Los Alamos National Laboratory, MS K771 Los Alamos NM 87545 USA
| | - Chris J. Sheehan
- Center for Intergrated Nanotechnologies Los Alamos National Laboratory, MS K771 Los Alamos NM 87545 USA
| | | | - Jennifer S. Martinez
- Center for Intergrated Nanotechnologies Los Alamos National Laboratory, MS K771 Los Alamos NM 87545 USA
- Institute for Material Science Los Alamos National Laboratory NM 87545 USA
| |
Collapse
|
68
|
Garriga R, Jurewicz I, Seyedin S, Bardi N, Totti S, Matta-Domjan B, Velliou EG, Alkhorayef MA, Cebolla VL, Razal JM, Dalton AB, Muñoz E. Multifunctional, biocompatible and pH-responsive carbon nanotube- and graphene oxide/tectomer hybrid composites and coatings. NANOSCALE 2017; 9:7791-7804. [PMID: 28186213 DOI: 10.1039/c6nr09482a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we present a route for non-covalent functionalization of carboxylated multi-walled carbon nanotubes and graphene oxide with novel two-dimensional peptide assemblies. We show that self-assembled amino-terminated biantennary and tetraantennary oligoglycine peptides (referred to as tectomers) effectively coat carboxylated multi-walled carbon nanotubes and also strongly interact with graphene oxide due to electrostatic interactions and hydrogen bonding as the driving force, respectively. The resulting hybrids can be made into free-standing conducting composites or applied in the form of thin, pH-switchable bioadhesive coatings onto graphene oxide fibers. Monitoring of cell viability of pancreatic cell lines, seeded on those CNT hybrids, show that they can be used as two- and three-dimensional scaffolds to tissue engineer tumour models for studying ex vivo the tumour development and response to treatment. This highly versatile method in producing pH-responsive hybrids and coatings offers an attractive platform for a variety of biomedical applications and for the development of functional materials such as smart textiles, sensors and bioelectronic devices.
Collapse
Affiliation(s)
- Rosa Garriga
- Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Mackenzie CO, Grigoryan G. Protein structural motifs in prediction and design. Curr Opin Struct Biol 2017; 44:161-167. [PMID: 28460216 PMCID: PMC5513761 DOI: 10.1016/j.sbi.2017.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/18/2017] [Accepted: 03/28/2017] [Indexed: 01/11/2023]
Abstract
The Protein Data Bank (PDB) has been an integral resource for shaping our fundamental understanding of protein structure and for the advancement of such applications as protein design and structure prediction. Over the years, information from the PDB has been used to generate models ranging from specific structural mechanisms to general statistical potentials. With accumulating structural data, it has become possible to mine for more complete and complex structural observations, deducing more accurate generalizations. Motif libraries, which capture recurring structural features along with their sequence preferences, have exposed modularity in the structural universe and found successful application in various problems of structural biology. Here we summarize recent achievements in this arena, focusing on subdomain level structural patterns and their applications to protein design and structure prediction, and suggest promising future directions as the structural database continues to grow.
Collapse
Affiliation(s)
- Craig O Mackenzie
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Gevorg Grigoryan
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, United States; Department of Computer Science, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
70
|
Paladino A, Marchetti F, Rinaldi S, Colombo G. Protein design: from computer models to artificial intelligence. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Antonella Paladino
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Filippo Marchetti
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Silvia Rinaldi
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Giorgio Colombo
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| |
Collapse
|
71
|
Wang X, Wang M, Lei R, Zhu SF, Zhao Y, Chen C. Chiral Surface of Nanoparticles Determines the Orientation of Adsorbed Transferrin and Its Interaction with Receptors. ACS NANO 2017; 11:4606-4616. [PMID: 28460159 DOI: 10.1021/acsnano.7b00200] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
When nanoparticles are exposed to a physiological environment, a "protein corona" is formed that greatly determines their biological fate. Adsorption of proteins could be influenced by chiral surfaces of nanoparticles; however, very few quantitative studies are available on the interaction of protein with the chiral surface of nanoparticles, and the underlying mechanism remains largely unresolved. We have developed a strategy to quantitatively analyze the adsorption and conformational features of transferrin on gold nanoparticles that are functionalized with d, l, and racemic penicillamine. We used a quartz microbalance platform to monitor the interaction of the adsorbed transferrin with transferrin receptors in HEK cell-derived liposomes. Results show that the chiral surface of nanoparticle determines the orientation and conformation of transferrin, which subsequently affects the interaction and recognition of transferrin with its receptor on the cellular membrane. Transferrin is widely used as a tumor-targeting ligand in cancer treatment and diagnosis since the transferrin receptor is overexpressed on the cell membrane of various types of cancer cells. Thus, the present results will help to expand the knowledge on biological identity of nanoparticles with chiral surfaces in a physiological environment and provide an insight into the rational design of therapeutic nanoparticles.
Collapse
Affiliation(s)
- Xinyi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190, China
- College of Science, Shenyang Agricultural University , Shenyang 110866, China
| | - Mingzhe Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190, China
| | - Rong Lei
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine , Beijing 100029, China
| | - Shui Fang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine , Beijing 100029, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
72
|
Li Z, He P, Chong H, Furube A, Seki K, Yu HH, Tajima K, Ito Y, Kawamoto M. Direct Aqueous Dispersion of Carbon Nanotubes Using Nanoparticle-Formed Fullerenes and Self-Assembled Formation of p/n Heterojunctions with Polythiophene. ACS OMEGA 2017; 2:1625-1632. [PMID: 31457529 PMCID: PMC6641165 DOI: 10.1021/acsomega.7b00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 05/12/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have received much attention because of their potential in optoelectronic applications. Pristine SWCNTs exhibit substantial van der Waals interactions and hydrophobic characteristics, so precipitation occurs immediately in most organic solvents and water. Highly toxic and hazardous chemicals are often used to obtain well-dispersed SWCNTs. Developing environmentally friendly processing methods for safe and practical applications is a great challenge. Here, we demonstrate direct exfoliation of SWCNTs in pure water only with n-type semiconducting fullerene nanoparticles. The resultant SWCNTs can be well-dispersed in water, where they remain essentially unchanged for several weeks. Adding an aqueous solution of p-type semiconducting water-soluble polythiophene yields self-assembled p/n heterojunctions between polythiophene and the nanoparticles. The aqueous-dispersed SWCNTs yield photocurrent responses in solution-processed thin films as a potential application of water-dispersed carbon nanomaterials.
Collapse
Affiliation(s)
- Zha Li
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Pan He
- Emergent Bioengineering Materials
Research Team and Emergent Functional Polymers Research
Team, RIKEN Center for Emergent Matter Science
(CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hui Chong
- Chemistry
Department, KU Leuven, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| | - Akihiro Furube
- Department
of Optical Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan
| | - Kazuhiko Seki
- Nanofilm
Device Group, National Institute of Advanced
Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hsiao-hua Yu
- Institute
of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 11529, Taiwan
| | - Keisuke Tajima
- Emergent Bioengineering Materials
Research Team and Emergent Functional Polymers Research
Team, RIKEN Center for Emergent Matter Science
(CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials
Research Team and Emergent Functional Polymers Research
Team, RIKEN Center for Emergent Matter Science
(CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- E-mail: (Y.I.)
| | - Masuki Kawamoto
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials
Research Team and Emergent Functional Polymers Research
Team, RIKEN Center for Emergent Matter Science
(CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Photocatalysis
International Research Center, Tokyo University
of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- E-mail: (M.K.)
| |
Collapse
|
73
|
Jeong WJ, Kye M, Han SH, Choi JS, Lim YB. Inhibition of Multimolecular RNA-Protein Interactions Using Multitarget-Directed Nanohybrid System. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11537-11545. [PMID: 28287257 DOI: 10.1021/acsami.7b01517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Multitarget-directed ligands (MTDLs) are hybrid ligands obtained by covalently linking active pharmacophores that can act on different targets. We envision that the concept of MTDLs can also be applied to supramolecular bioinorganic nanohybrid systems. Here, we report the inhibition of multimolecular RNA-protein complexes using multitarget-directed peptide-carbon nanotube hybrids (SPCHs). One of the most well-characterized and important RNA-protein interactions, a Rev-response element (RRE) RNA:Rev protein:Crm1 protein interaction system in human immunodeficiency virus type-1, was used as a model of multimolecular RNA-protein interactions. Although all previous studies have targeted only one of the interaction interfaces, that is, either the RRE:Rev interface or the RRE-Rev complex:Crm1 interface, we here have developed multitarget-directed SPCHs that could target both interfaces because the supramolecular nanosystem could be best suited for inhibiting multimolecular RNA-protein complexes that are characterized by large and complex molecular interfaces. The results showed that the single target-directed SPCHs were inhibitory to the single interface comprised only of RNA and protein in vitro, whereas multitarget-directed SPCHs were inhibitory to the multimolecular RNA-protein interfaces both in vitro and in cellulo. The MTDL nanohybrids represent a novel nanotherapeutic system that could be used to treat complex disease targets.
Collapse
Affiliation(s)
- Woo-Jin Jeong
- Department of Materials Science & Engineering, Yonsei University , Seoul 03722, Korea
| | - Mahnseok Kye
- Department of Materials Science & Engineering, Yonsei University , Seoul 03722, Korea
| | - So-Hee Han
- Department of Materials Science & Engineering, Yonsei University , Seoul 03722, Korea
| | - Jun Shik Choi
- Department of Materials Science & Engineering, Yonsei University , Seoul 03722, Korea
| | - Yong-Beom Lim
- Department of Materials Science & Engineering, Yonsei University , Seoul 03722, Korea
| |
Collapse
|
74
|
Abstract
Emerging protein design strategies are enabling the creation of diverse, self-assembling supramolecular structures with precision on the atomic scale. The design possibilities include various types of architectures: finite cages or shells, essentially unbounded two-dimensional and three-dimensional arrays (i.e., crystals), and linear or tubular filaments. In nature, structures of those types are generally symmetric, and, accordingly, symmetry provides a powerful guide for developing new design approaches. Recent design studies have produced numerous protein assemblies in close agreement with geometric specifications. For certain design approaches, a complete list of allowable symmetry combinations that can be used for construction has been articulated, opening a path to a rich diversity of geometrically defined protein materials. Future challenges include improving and elaborating on current strategies and endowing designed protein nanomaterials with properties useful in nanomedicine and material science applications.
Collapse
Affiliation(s)
- Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095.,UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095;
| |
Collapse
|
75
|
Abstract
Computational protein design (CPD), a yet evolving field, includes computer-aided engineering for partial or full de novo designs of proteins of interest. Designs are defined by a requested structure, function, or working environment. This chapter describes the birth and maturation of the field by presenting 101 CPD examples in a chronological order emphasizing achievements and pending challenges. Integrating these aspects presents the plethora of CPD approaches with the hope of providing a "CPD 101". These reflect on the broader structural bioinformatics and computational biophysics field and include: (1) integration of knowledge-based and energy-based methods, (2) hierarchical designated approach towards local, regional, and global motifs and the integration of high- and low-resolution design schemes that fit each such region, (3) systematic differential approaches towards different protein regions, (4) identification of key hot-spot residues and the relative effect of remote regions, (5) assessment of shape-complementarity, electrostatics and solvation effects, (6) integration of thermal plasticity and functional dynamics, (7) negative design, (8) systematic integration of experimental approaches, (9) objective cross-assessment of methods, and (10) successful ranking of potential designs. Future challenges also include dissemination of CPD software to the general use of life-sciences researchers and the emphasis of success within an in vivo milieu. CPD increases our understanding of protein structure and function and the relationships between the two along with the application of such know-how for the benefit of mankind. Applied aspects range from biological drugs, via healthier and tastier food products to nanotechnology and environmentally friendly enzymes replacing toxic chemicals utilized in the industry.
Collapse
|
76
|
Abstract
α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK.
- School of Biochemistry, University of Bristol, BS8 1TD, Bristol, UK.
- BrisSynBio, Life Sciences Building, University of Bristol, BS8 1TQ, Bristol, UK.
| |
Collapse
|
77
|
Liu W, Wang J, Li M, Tang W, Han J. Molecular mechanism of the protective effect of monomer polyvinylpyrrolidone on antioxidants - experimental and computational studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:1015-1027. [PMID: 27748622 DOI: 10.1080/1062936x.2016.1242092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
We previously developed a lutein-polyvinylpyrrolidone (PVP) complex with improved aqueous saturation solubility and stability, though the conjugation mechanism is still unclear. In this paper, experiments with astaxanthin-PVP complex and curcumin-PVP complex were carried out, which indicated that PVP could improve the solubility and stability of astaxanthin and curcumin. We aimed to construct a computational model capable of understanding the protective effect in complexes formed between PVP and antioxidants, through which the binding mode of PVP and antioxidants was investigated with molecular modelling in order to obtain the interactions, binding energy, binding site and surface area between PVP and antioxidants. Solubility enhancement was attributed to the H-bonds between PVP and antioxidants, and the saturation solubility was curcumin > lutein > astaxanthin. Binding energy, binding site and surface area were beneficial for the stability of complex, and the stability enhancement was lutein > astaxanthin > curcumin. The experimental results were in agreement with the computational results. Furthermore, we established a method for the exploration of a similar system with other polymer complexes. Additionally, the proposed PVP model could predict the interactions between PVP and various ligands, such as antioxidants and drugs.
Collapse
Affiliation(s)
- W Liu
- a School of Pharmaceutical Engineering, Shenyang Pharmaceutical University , Shenyang , PR China
| | - J Wang
- b Key Laboratory of Structure-Based Drug Design and Discovery , Shenyang Pharmaceutical University , Shenyang , PR China
| | - M Li
- a School of Pharmaceutical Engineering, Shenyang Pharmaceutical University , Shenyang , PR China
| | - W Tang
- b Key Laboratory of Structure-Based Drug Design and Discovery , Shenyang Pharmaceutical University , Shenyang , PR China
| | - J Han
- a School of Pharmaceutical Engineering, Shenyang Pharmaceutical University , Shenyang , PR China
| |
Collapse
|
78
|
Abstract
Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence-a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure.
Collapse
|
79
|
Design of Redox-Active Peptides: Towards Functional Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [PMID: 27677515 DOI: 10.1007/978-3-319-39196-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In nature, the majority of processes that occur in the cell involve the cycling of electrons and protons, changing the reduction and oxidation state of substrates to alter their chemical reactivity and usefulness in vivo. One of the most relevant examples of these processes is the electron transport chain, a series of oxidoreductase proteins that shuttle electrons through well-defined pathways, concurrently moving protons across the cell membrane. Inspired by these processes, researchers have sought to develop materials to mimic natural systems for a number of applications, including fuel production. The most common cofactors found in proteins to carry out electron transfer are iron sulfur clusters and porphyrin-like molecules. Both types have been studied within natural proteins, such as in photosynthetic machinery or soluble electron carriers; in parallel, an extensive literature has developed over recent years attempting to model and study these cofactors within peptide-based materials. This chapter will focus on major designs that have significantly advanced the field.
Collapse
|
80
|
The coming of age of de novo protein design. Nature 2016; 537:320-7. [DOI: 10.1038/nature19946] [Citation(s) in RCA: 917] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022]
|
81
|
Luo Q, Hou C, Bai Y, Wang R, Liu J. Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chem Rev 2016; 116:13571-13632. [PMID: 27587089 DOI: 10.1021/acs.chemrev.6b00228] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nature endows life with a wide variety of sophisticated, synergistic, and highly functional protein assemblies. Following Nature's inspiration to assemble protein building blocks into exquisite nanostructures is emerging as a fascinating research field. Dictating protein assembly to obtain highly ordered nanostructures and sophisticated functions not only provides a powerful tool to understand the natural protein assembly process but also offers access to advanced biomaterials. Over the past couple of decades, the field of protein assembly has undergone unexpected and rapid developments, and various innovative strategies have been proposed. This Review outlines recent advances in the field of protein assembly and summarizes several strategies, including biotechnological strategies, chemical strategies, and combinations of these approaches, for manipulating proteins to self-assemble into desired nanostructures. The emergent applications of protein assemblies as versatile platforms to design a wide variety of attractive functional materials with improved performances have also been discussed. The goal of this Review is to highlight the importance of this highly interdisciplinary field and to promote its growth in a diverse variety of research fields ranging from nanoscience and material science to synthetic biology.
Collapse
Affiliation(s)
- Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yushi Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macau SAR 999078, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
82
|
Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates TO, Gonen T, King NP, Baker D. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 2016; 353:389-94. [PMID: 27463675 PMCID: PMC5485857 DOI: 10.1126/science.aaf8818] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/21/2016] [Indexed: 12/24/2022]
Abstract
Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization of co-assembling, two-component, 120-subunit icosahedral protein nanostructures with molecular weights (1.8 to 2.8 megadaltons) and dimensions (24 to 40 nanometers in diameter) comparable to those of small viral capsids. Electron microscopy, small-angle x-ray scattering, and x-ray crystallography show that 10 designs spanning three distinct icosahedral architectures form materials closely matching the design models. In vitro assembly of icosahedral complexes from independently purified components occurs rapidly, at rates comparable to those of viral capsids, and enables controlled packaging of molecular cargo through charge complementarity. The ability to design megadalton-scale materials with atomic-level accuracy and controllable assembly opens the door to a new generation of genetically programmable protein-based molecular machines.
Collapse
Affiliation(s)
- Jacob B Bale
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Shane Gonen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yuxi Liu
- Department of Chemistry and Biochemistry, University of California-Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Chantz Thomas
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, University of California-Los Angeles (UCLA), Los Angeles, CA 90095, USA. UCLA-Department of Energy (DOE) Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA. Department of Biological Chemistry and Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California-Los Angeles (UCLA), Los Angeles, CA 90095, USA. UCLA-Department of Energy (DOE) Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
83
|
Norn CH, André I. Computational design of protein self-assembly. Curr Opin Struct Biol 2016; 39:39-45. [DOI: 10.1016/j.sbi.2016.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 01/29/2023]
|
84
|
Regan L, Caballero D, Hinrichsen MR, Virrueta A, Williams DM, O'Hern CS. Protein design: Past, present, and future. Biopolymers 2016; 104:334-50. [PMID: 25784145 DOI: 10.1002/bip.22639] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 01/16/2023]
Abstract
Building on the pioneering work of Ho and DeGrado (J Am Chem Soc 1987, 109, 6751-6758) in the late 1980s, protein design approaches have revealed many fundamental features of protein structure and stability. We are now in the era that the early work presaged - the design of new proteins with practical applications and uses. Here we briefly survey some past milestones in protein design, in addition to highlighting recent progress and future aspirations.
Collapse
Affiliation(s)
- Lynne Regan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT.,Department of Chemistry, Yale University, New Haven, CT.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT
| | - Diego Caballero
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Physics, Yale University, New Haven, CT
| | - Michael R Hinrichsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Alejandro Virrueta
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - Danielle M Williams
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Corey S O'Hern
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Physics, Yale University, New Haven, CT.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT.,Department of Applied Physics, Yale University, New Haven, CT
| |
Collapse
|
85
|
Nanda V. Heterogeneous Epitaxy: Designed Peptides Scale Graphene’s Surface. Biophys J 2016; 110:2291-2292. [DOI: 10.1016/j.bpj.2016.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 11/30/2022] Open
|
86
|
Lizatović R, Aurelius O, Stenström O, Drakenberg T, Akke M, Logan D, André I. A De Novo Designed Coiled-Coil Peptide with a Reversible pH-Induced Oligomerization Switch. Structure 2016; 24:946-55. [DOI: 10.1016/j.str.2016.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 12/01/2022]
|
87
|
Spencer RK, Hochbaum AI. X-ray Crystallographic Structure and Solution Behavior of an Antiparallel Coiled-Coil Hexamer Formed by de Novo Peptides. Biochemistry 2016; 55:3214-23. [DOI: 10.1021/acs.biochem.6b00201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan K. Spencer
- Department of Chemistry and Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California 92697-2575, United States
| | - Allon I. Hochbaum
- Department of Chemistry and Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California 92697-2575, United States
| |
Collapse
|
88
|
Protein-directed self-assembly of a fullerene crystal. Nat Commun 2016; 7:11429. [PMID: 27113637 PMCID: PMC4853425 DOI: 10.1038/ncomms11429] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/23/2016] [Indexed: 01/03/2023] Open
Abstract
Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design. Self-assembly enables complex structures to be fabricated from a few relatively simple components, but requires a detailed understanding of how the constituents may interact. Here, the authors report the rational assembly and crystallographic characterization of a fullerene-protein superstructure.
Collapse
|
89
|
Abstract
Proteins, as the elemental basis of living organisms, mostly execute their biological tasks in the form of supramolecular self-assemblies with subtle architectures, dynamic interactions and versatile functionalities. Inspired by the structural harmony and functional beauty of natural protein self-assemblies to fabricate sophisticated yet highly ordered protein superstructures represents an adventure in the pursuit of nature's supreme wisdom. In this review, we focus on building protein self-assembly systems based on supramolecular strategies and classify recent progress by the types of utilized supramolecular driving forces. Especially, the design strategy, structure control and the thermodynamic/kinetic regulation of the self-assemblies, which will in turn provide insights into the natural biological self-assembly mechanism, are highlighted. In addition, recently, this research field is starting to extend its interest beyond constructing complex morphologies towards the potential applications of the self-assembly systems; several attempts to design functional protein complexes are also discussed. As such, we hope that this review will provide a panoramic sketch of the field and draw a roadmap towards the ultimate construction of advanced protein self-assemblies that even can serve as analogues of their natural counterparts.
Collapse
Affiliation(s)
- Yushi Bai
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | | | | |
Collapse
|
90
|
Choi JS, Han SH, Kim H, Lim YB. Cyclic Peptide-Decorated Self-Assembled Nanohybrids for Selective Recognition and Detection of Multivalent RNAs. Bioconjug Chem 2016; 27:799-808. [PMID: 26886413 DOI: 10.1021/acs.bioconjchem.6b00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although there has been substantial advancement in the development of nanostructures, the development of self-assembled nanostructures that can selectively recognize multivalent targets has been very difficult. Here we show the proof of concept that topology-controlled peptide nanoassemblies can selectively recognize and detect a multivalent RNA target. We compared the differential behaviors of peptides in a linear or cyclic topology in terms of peptide-gold nanoparticle hybrid nanostructure formation, conformational stabilization, monovalent and multivalent RNA binding in vitro, and multivalent RNA recognition in live cells. When the topology-dependent selectivity amplification of the cyclic peptide hybrids is combined with the noninvasive nature of dark-field microscopy, the cellular localization of the viral Rev response element (RRE) RNA can be monitored in situ. Because intracellular interactions are often mediated by overlapping binding partners with weak affinity, the topology-controlled peptide assemblies can provide a versatile means to convert weak ligands into multivalent ligands with high affinity and selectivity.
Collapse
Affiliation(s)
- Jun Shik Choi
- Translational Research Center for Protein Function Control and Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Korea
| | - So-hee Han
- Translational Research Center for Protein Function Control and Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Korea
| | - Hyoseok Kim
- Translational Research Center for Protein Function Control and Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Korea
| | - Yong-Beom Lim
- Translational Research Center for Protein Function Control and Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Korea
| |
Collapse
|
91
|
Mao X, Simon AJ, Pei H, Shi J, Li J, Huang Q, Plaxco KW, Fan C. Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. Chem Sci 2016; 7:1200-1204. [PMID: 29910875 PMCID: PMC5975834 DOI: 10.1039/c5sc03705k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
Recognition of the fundamental importance of allosteric regulation in biology dates back to not long after its discovery in the 1960s. Our ability to rationally engineer this potentially useful property into normally non-allosteric catalysts, however, remains limited. In response we report a DNA nanotechnology-enabled approach for introducing allostery into catalytic nucleic acids. Specifically, we have grafted one or two copies of a peroxidase-like DNAzyme, hemin-bound G-quadruplex (hemin-G), onto a DNA tetrahedral nanostructure in such a manner as to cause them to interact, modulating their catalytic activity. We achieve allosteric regulation of these catalysts by incorporating dynamically responsive oligonucleotides that respond to specific "effector" molecules (complementary oligonucleotides or small molecules), altering the spacing between the catalytic sites and thus regulating their activity. This designable approach thus enables subtle allosteric modulation in DNAzymes that is potentially of use for nanomedicine and nanomachines.
Collapse
Affiliation(s)
- Xiuhai Mao
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Anna J Simon
- Department of Chemistry and Biomolecular Science and Engineering Program , University of California , Santa Barbara , California 93106 , USA
| | - Hao Pei
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Jiye Shi
- Kellogg College , University of Oxford , Oxford , OX2 6PN , UK
- UCB Pharma , 208 Bath Road, Slough , SL1 3WE , UK .
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Kevin W Plaxco
- Department of Chemistry and Biomolecular Science and Engineering Program , University of California , Santa Barbara , California 93106 , USA
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201200 , China
| |
Collapse
|
92
|
Ko YS, Kim YT, Kim JH, Kim DH, Kim KH, Yun WS, Kim YD, Lee J, Kim YH. Peptide-based bimetallic nanostructures with tailored surface compositions and their oxygen electroreduction activities. CrystEngComm 2016. [DOI: 10.1039/c6ce00841k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
Marchesan S, Prato M. Under the lens: carbon nanotube and protein interaction at the nanoscale. Chem Commun (Camb) 2015; 51:4347-59. [PMID: 25621901 DOI: 10.1039/c4cc09173f] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The combination of the very different chemical natures of carbon nanotubes (CNTs) and proteins gives rise to systems with unprecedented performance, thanks to a rich pool of very diverse chemical, electronic, catalytic and biological properties. Here we review recent advances in the field, including innovative and imaginative aspects from a nanoscale point of view. The tubular nature of CNTs allows for internal protein encapsulation, and also for their external coating by protein cages, affording bottom-up ordering of molecules in hierarchical structures. To achieve such complex systems it is imperative to master the intermolecular forces between CNTs and proteins, including geometry effects (e.g. CNT diameter and curvature) and how they translate into changes in the local environment (e.g. water entropy). The type of interaction between proteins and CNTs has important consequences for the preservation of their structure and, in turn, function. This key aspect cannot be neglected during the design of their conjugation, be it covalent, non-covalent, or based on a combination of both methods. The review concludes with a brief discussion of the very many applications intended for CNT-protein systems that go across various fields of science, from industrial biocatalysis to nanomedicine, from innovative materials to biotechnological tools in molecular biology research.
Collapse
Affiliation(s)
- S Marchesan
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy.
| | | |
Collapse
|
94
|
Bale JB, Park RU, Liu Y, Gonen S, Gonen T, Cascio D, King NP, Yeates TO, Baker D. Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression. Protein Sci 2015; 24:1695-701. [PMID: 26174163 PMCID: PMC4594668 DOI: 10.1002/pro.2748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
Abstract
We recently reported the development of a computational method for the design of coassembling multicomponent protein nanomaterials. While four such materials were validated at high-resolution by X-ray crystallography, low yield of soluble protein prevented X-ray structure determination of a fifth designed material, T33-09. Here we report the design and crystal structure of T33-31, a variant of T33-09 with improved soluble yield resulting from redesign efforts focused on mutating solvent-exposed side chains to charged amino acids. The structure is found to match the computational design model with atomic-level accuracy, providing further validation of the design approach and demonstrating a simple and potentially general means of improving the yield of designed protein nanomaterials.
Collapse
Affiliation(s)
- Jacob B Bale
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Graduate Program in Molecular and Cellular Biology, University of WashingtonSeattle, Washington, 98195
| | - Rachel U Park
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
| | - Yuxi Liu
- Department of Chemistry and Biochemistry, UCLALos Angeles, California, 90095
| | - Shane Gonen
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Janelia Research Campus, Howard Hughes Medical InstituteAshburn, Virginia, 20147
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical InstituteAshburn, Virginia, 20147
| | - Duilio Cascio
- Institute for Genomics and Proteomics, UCLA-DOELos Angeles, California, 90095
| | - Neil P King
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Institute for Protein Design, University of WashingtonSeattle, Washington, 98195
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, UCLALos Angeles, California, 90095
- Institute for Genomics and Proteomics, UCLA-DOELos Angeles, California, 90095
| | - David Baker
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Institute for Protein Design, University of WashingtonSeattle, Washington, 98195
- Howard Hughes Medical Institute, University of WashingtonSeattle, Washington, 98195
| |
Collapse
|
95
|
Miyamoto T, Kuribayashi M, Nagao S, Shomura Y, Higuchi Y, Hirota S. Domain-swapped cytochrome cb562 dimer and its nanocage encapsulating a Zn-SO 4 cluster in the internal cavity. Chem Sci 2015; 6:7336-7342. [PMID: 28791095 PMCID: PMC5519777 DOI: 10.1039/c5sc02428e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
Three domain-swapped cytochrome cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity.
Protein nanostructures have been gaining in interest, along with developments in new methods for construction of novel nanostructures. We have previously shown that c-type cytochromes and myoglobin form oligomers by domain swapping. Herein, we show that a four-helix bundle protein cyt cb562, with the cyt b562 heme attached to the protein moiety by two Cys residues insertion, forms a domain-swapped dimer. Dimeric cyt cb562 did not dissociate to monomers at 4 °C, whereas dimeric cyt b562 dissociated under the same conditions, showing that heme attachment to the protein moiety stabilizes the domain-swapped structure. According to X-ray crystallographic analysis of dimeric cyt cb562, the two helices in the N-terminal region of one protomer interacted with the other two helices in the C-terminal region of the other protomer, where Lys51–Asp54 served as a hinge loop. The heme coordination structure of the dimer was similar to that of the monomer. In the crystal, three domain-swapped cyt cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity. The Zn–SO4 cluster consisted of fifteen Zn2+ and seven SO42– ions, whereas six additional Zn2+ ions were detected inside the cavity. The cage structure was stabilized by coordination of the amino acid side chains of the dimers to the Zn2+ ions and connection of two four-helix bundle units through the conformation-adjustable hinge loop. These results show that domain swapping can be applied in the construction of unique protein nanostructures.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Mai Kuribayashi
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Satoshi Nagao
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Yasuhito Shomura
- Graduate School of Science and Engineering , Ibaraki University , 4-12-1, Nakanarusawa , Hitachi , Ibaraki 316-8511 , Japan
| | - Yoshiki Higuchi
- Department of Life Science , Graduate School of Life Science , University of Hyogo , 3-2-1 Koto, Kamigori-cho, Ako-gun , Hyogo 678-1297 , Japan.,RIKEN SPring-8 Center , 1-1-1 Koto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Shun Hirota
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| |
Collapse
|
96
|
Computational design of co-assembling protein-DNA nanowires. Nature 2015; 525:230-3. [PMID: 26331548 DOI: 10.1038/nature14874] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/30/2015] [Indexed: 11/09/2022]
Abstract
Biomolecular self-assemblies are of great interest to nanotechnologists because of their functional versatility and their biocompatibility. Over the past decade, sophisticated single-component nanostructures composed exclusively of nucleic acids, peptides and proteins have been reported, and these nanostructures have been used in a wide range of applications, from drug delivery to molecular computing. Despite these successes, the development of hybrid co-assemblies of nucleic acids and proteins has remained elusive. Here we use computational protein design to create a protein-DNA co-assembling nanomaterial whose assembly is driven via non-covalent interactions. To achieve this, a homodimerization interface is engineered onto the Drosophila Engrailed homeodomain (ENH), allowing the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. By varying the arrangement of protein-binding sites on the dsDNA, an irregular bulk nanoparticle or a nanowire with single-molecule width can be spontaneously formed by mixing the protein and dsDNA building blocks. We characterize the protein-DNA nanowire using fluorescence microscopy, atomic force microscopy and X-ray crystallography, confirming that the nanowire is formed via the proposed mechanism. This work lays the foundation for the development of new classes of protein-DNA hybrid materials. Further applications can be explored by incorporating DNA origami, DNA aptamers and/or peptide epitopes into the protein-DNA framework presented here.
Collapse
|
97
|
Rahmani L, Ketabi S. Solvation of alanine and histidine functionalized carbon nanotubes in aqueous media: A Monte Carlo simulation study. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
98
|
De novo protein design: how do we expand into the universe of possible protein structures? Curr Opin Struct Biol 2015; 33:16-26. [DOI: 10.1016/j.sbi.2015.05.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 01/08/2023]
|
99
|
Chino M, Maglio O, Nastri F, Pavone V, DeGrado WF, Lombardi A. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure. Eur J Inorg Chem 2015; 2015:3371-3390. [PMID: 27630532 PMCID: PMC5019575 DOI: 10.1002/ejic.201500470] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/26/2022]
Abstract
A single polypeptide chain may provide an astronomical number of conformers. Nature selected only a trivial number of them through evolution, composing an alphabet of scaffolds, that can afford the complete set of chemical reactions needed to support life. These structural templates are so stable that they allow several mutations without disruption of the global folding, even having the ability to bind several exogenous cofactors. With this perspective, metal cofactors play a crucial role in the regulation and catalysis of several processes. Nature is able to modulate the chemistry of metals, adopting only a few ligands and slightly different geometries. Several scaffolds and metal-binding motifs are representing the focus of intense interest in the literature. This review discusses the widespread four-helix bundle fold, adopted as a scaffold for metal binding sites in the context of de novo protein design to obtain basic biochemical components for biosensing or catalysis. In particular, we describe the rational refinement of structure/function in diiron-oxo protein models from the due ferri (DF) family. The DF proteins were developed by us through an iterative process of design and rigorous characterization, which has allowed a shift from structural to functional models. The examples reported herein demonstrate the importance of the synergic application of de novo design methods as well as spectroscopic and structural characterization to optimize the catalytic performance of artificial enzymes.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Structural and Functional Biology, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco San Francisco, CA 94158, USA
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
100
|
Mou Y, Huang PS, Thomas LM, Mayo SL. Using Molecular Dynamics Simulations as an Aid in the Prediction of Domain Swapping of Computationally Designed Protein Variants. J Mol Biol 2015; 427:2697-706. [PMID: 26101839 DOI: 10.1016/j.jmb.2015.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022]
Abstract
In standard implementations of computational protein design, a positive-design approach is used to predict sequences that will be stable on a given backbone structure. Possible competing states are typically not considered, primarily because appropriate structural models are not available. One potential competing state, the domain-swapped dimer, is especially compelling because it is often nearly identical with its monomeric counterpart, differing by just a few mutations in a hinge region. Molecular dynamics (MD) simulations provide a computational method to sample different conformational states of a structure. Here, we tested whether MD simulations could be used as a post-design screening tool to identify sequence mutations leading to domain-swapped dimers. We hypothesized that a successful computationally designed sequence would have backbone structure and dynamics characteristics similar to that of the input structure and that, in contrast, domain-swapped dimers would exhibit increased backbone flexibility and/or altered structure in the hinge-loop region to accommodate the large conformational change required for domain swapping. While attempting to engineer a homodimer from a 51-amino-acid fragment of the monomeric protein engrailed homeodomain (ENH), we had instead generated a domain-swapped dimer (ENH_DsD). MD simulations on these proteins showed increased B-factors derived from MD simulation in the hinge loop of the ENH_DsD domain-swapped dimer relative to monomeric ENH. Two point mutants of ENH_DsD designed to recover the monomeric fold were then tested with an MD simulation protocol. The MD simulations suggested that one of these mutants would adopt the target monomeric structure, which was subsequently confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Yun Mou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Po-Ssu Huang
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leonard M Thomas
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Stephen L Mayo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|