51
|
Pletnev P, Osterman I, Sergiev P, Bogdanov A, Dontsova O. Survival guide: Escherichia coli in the stationary phase. Acta Naturae 2015; 7:22-33. [PMID: 26798489 PMCID: PMC4717247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This review centers on the stationary phase of bacterial culture. The basic processes specific to the stationary phase, as well as the regulatory mechanisms that allow the bacteria to survive in conditions of stress, are described.
Collapse
Affiliation(s)
- P. Pletnev
- Moscow State University, Chemistry Department, Moscow, 119991, Russia
| | - I. Osterman
- Moscow State University, Chemistry Department, Moscow, 119991, Russia
| | - P. Sergiev
- Moscow State University, Chemistry Department, Moscow, 119991, Russia
| | - A. Bogdanov
- Moscow State University, Chemistry Department, Moscow, 119991, Russia
| | - O. Dontsova
- Moscow State University, Chemistry Department, Moscow, 119991, Russia
| |
Collapse
|
52
|
Čech P, Hoksza D, Svozil D. MultiSETTER: web server for multiple RNA structure comparison. BMC Bioinformatics 2015; 16:253. [PMID: 26264783 PMCID: PMC4531852 DOI: 10.1186/s12859-015-0696-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/05/2015] [Indexed: 12/03/2022] Open
Abstract
Background Understanding the architecture and function of RNA molecules requires methods for comparing and analyzing their tertiary and quaternary structures. While structural superposition of short RNAs is achievable in a reasonable time, large structures represent much bigger challenge. Therefore, we have developed a fast and accurate algorithm for RNA pairwise structure superposition called SETTER and implemented it in the SETTER web server. However, though biological relationships can be inferred by a pairwise structure alignment, key features preserved by evolution can be identified only from a multiple structure alignment. Thus, we extended the SETTER algorithm to the alignment of multiple RNA structures and developed the MultiSETTER algorithm. Results In this paper, we present the updated version of the SETTER web server that implements a user friendly interface to the MultiSETTER algorithm. The server accepts RNA structures either as the list of PDB IDs or as user-defined PDB files. After the superposition is computed, structures are visualized in 3D and several reports and statistics are generated. Conclusion To the best of our knowledge, the MultiSETTER web server is the first publicly available tool for a multiple RNA structure alignment. The MultiSETTER server offers the visual inspection of an alignment in 3D space which may reveal structural and functional relationships not captured by other multiple alignment methods based either on a sequence or on secondary structure motifs.
Collapse
Affiliation(s)
- Petr Čech
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, CZ-166 28, Prague, Czech Republic
| | - David Hoksza
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, CZ-166 28, Prague, Czech Republic. .,Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague, Malostranské nám. 25, CZ-118 00, Prague, Czech Republic.
| | - Daniel Svozil
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, CZ-166 28, Prague, Czech Republic.
| |
Collapse
|
53
|
|
54
|
|
55
|
Abstract
La synthèse des protéines, également appelée traduction, est assurée dans chaque cellule par des machines moléculaires très sophistiquées : les ribosomes. Compte tenu de l’immense quantité de données biologiques à traiter, il arrive régulièrement que ces machines se bloquent et mettent en péril la survie de la cellule. Chez les bactéries, le principal processus de sauvetage des ribosomes bloqués est la trans-traduction. Il est assuré par un acide ribonucléique (ARN) hybride, l’ARN transfert-messager (ARNtm), associé à une petite protéine basique, SmpB (small protein B). Plusieurs autres systèmes de contrôle qualité ont récemment été mis en évidence, révélant un réseau de maintien de la survie cellulaire très sophistiqué. Cette machinerie du contrôle qualité de la synthèse protéique est une cible très prometteuse pour le développement de futurs antibiotiques.
Collapse
|
56
|
Abstract
The transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http://bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from the same organism.
Collapse
Affiliation(s)
- Corey M Hudson
- Sandia National Laboratories, Department of Systems Biology, Livermore, CA 94551, USA
| | - Kelly P Williams
- Sandia National Laboratories, Department of Systems Biology, Livermore, CA 94551, USA
| |
Collapse
|
57
|
Kurita D, Miller MR, Muto A, Buskirk AR, Himeno H. Rejection of tmRNA·SmpB after GTP hydrolysis by EF-Tu on ribosomes stalled on intact mRNA. RNA (NEW YORK, N.Y.) 2014; 20:1706-1714. [PMID: 25246654 PMCID: PMC4201823 DOI: 10.1261/rna.045773.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
Messenger RNAs lacking a stop codon trap ribosomes at their 3' ends, depleting the pool of ribosomes available for protein synthesis. In bacteria, a remarkable quality control system rescues and recycles stalled ribosomes in a process known as trans-translation. Acting as a tRNA, transfer-messenger RNA (tmRNA) is aminoacylated, delivered by EF-Tu to the ribosomal A site, and accepts the nascent polypeptide. Translation then resumes on a reading frame within tmRNA, encoding a short peptide tag that targets the nascent peptide for degradation by proteases. One unsolved issue in trans-translation is how tmRNA and its protein partner SmpB preferentially recognize stalled ribosomes and not actively translating ones. Here, we examine the effect of the length of the 3' extension of mRNA on each step of trans-translation by pre-steady-state kinetic methods and fluorescence polarization binding assays. Unexpectedly, EF-Tu activation and GTP hydrolysis occur rapidly regardless of the length of the mRNA, although the peptidyl transfer to tmRNA decreases as the mRNA 3' extension increases and the tmRNA·SmpB binds less tightly to the ribosome with an mRNA having a long 3' extension. From these results, we conclude that the tmRNA·SmpB complex dissociates during accommodation due to competition between the downstream mRNA and the C-terminal tail for the mRNA channel. Rejection of the tmRNA·SmpB complex during accommodation is reminiscent of the rejection of near-cognate tRNA from the ribosome in canonical translation.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Mickey R Miller
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Allen R Buskirk
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| |
Collapse
|
58
|
Kurita D, Chadani Y, Muto A, Abo T, Himeno H. ArfA recognizes the lack of mRNA in the mRNA channel after RF2 binding for ribosome rescue. Nucleic Acids Res 2014; 42:13339-52. [PMID: 25355516 PMCID: PMC4245945 DOI: 10.1093/nar/gku1069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which usually acts as a stop codon-specific peptide release factor. It poses a fascinating question of how ArfA and RF2 recognize and rescue the stalled ribosome. Here, we mapped the location of ArfA in the stalled ribosome by directed hydroxyl radical probing. It revealed an ArfA-binding site around the neck region of the 30S subunit in which the N- and C-terminal regions of ArfA are close to the decoding center and the mRNA entry channel, respectively. ArfA and RF2 sequentially enter the ribosome stalled in either the middle or 3′ end of mRNA, whereas RF2 induces a productive conformational change of ArfA only when ribosome is stalled at the 3′ end of mRNA. On the basis of these results, we propose that ArfA functions as the sensor to recognize the target ribosome after RF2 binding.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Yuhei Chadani
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan Department of Biology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| |
Collapse
|
59
|
Ranaei-Siadat E, Mérigoux C, Seijo B, Ponchon L, Saliou JM, Bernauer J, Sanglier-Cianférani S, Dardel F, Vachette P, Nonin-Lecomte S. In vivo tmRNA protection by SmpB and pre-ribosome binding conformation in solution. RNA (NEW YORK, N.Y.) 2014; 20:1607-20. [PMID: 25135523 PMCID: PMC4174442 DOI: 10.1261/rna.045674.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/15/2014] [Indexed: 06/03/2023]
Abstract
TmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region. We use an original approach combining the observation of tmRNA degradation pathways in a heterologous system, the analysis of the tmRNA digests by MS and NMR, and co-overproduction assays of tmRNA and SmpB. We study the conformation in solution of tmRNA alone or in complex with one SmpB before ribosome binding using SAXS. Our data show that Mg(2+) drives compaction of the RNA structure and that, in the absence of Mg(2+), SmpB has a similar effect albeit to a lesser extent. Our results show that tmRNA is intrinsically structured in solution with identical topology to that observed on complexes on ribosomes which should facilitate its subsequent recruitment by the 70S ribosome, free or preloaded with one SmpB molecule.
Collapse
Affiliation(s)
- Ehsan Ranaei-Siadat
- CNRS-UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, 75270 Paris Cedex 06, France Université Paris Descartes, LCRB, Faculté de Pharmacie, 75270 Paris Cedex 06, France
| | - Cécile Mérigoux
- Université Paris-Sud, IBBMC, UMR8619, 91405 Orsay, France CNRS, 91405 Orsay, France
| | - Bili Seijo
- CNRS-UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, 75270 Paris Cedex 06, France Université Paris Descartes, LCRB, Faculté de Pharmacie, 75270 Paris Cedex 06, France
| | - Luc Ponchon
- CNRS-UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, 75270 Paris Cedex 06, France Université Paris Descartes, LCRB, Faculté de Pharmacie, 75270 Paris Cedex 06, France
| | - Jean-Michel Saliou
- CNRS, IPHC-LSMBO, Université Louis Pasteur Bât, 67087 Strasbourg, France
| | - Julie Bernauer
- AMIB, INRIA Saclay-Île de France, 91120 Palaiseau, France LIX, CNRS UMR 7161, École Polytechnique, 91120 Palaiseau, France
| | | | - Fréderic Dardel
- CNRS-UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, 75270 Paris Cedex 06, France Université Paris Descartes, LCRB, Faculté de Pharmacie, 75270 Paris Cedex 06, France
| | - Patrice Vachette
- Université Paris-Sud, IBBMC, UMR8619, 91405 Orsay, France CNRS, 91405 Orsay, France
| | - Sylvie Nonin-Lecomte
- CNRS-UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, 75270 Paris Cedex 06, France Université Paris Descartes, LCRB, Faculté de Pharmacie, 75270 Paris Cedex 06, France
| |
Collapse
|
60
|
Starosta AL, Lassak J, Jung K, Wilson DN. The bacterial translation stress response. FEMS Microbiol Rev 2014; 38:1172-201. [PMID: 25135187 DOI: 10.1111/1574-6976.12083] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Agata L Starosta
- Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
61
|
Akabane S, Ueda T, Nierhaus KH, Takeuchi N. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. PLoS Genet 2014; 10:e1004616. [PMID: 25233460 PMCID: PMC4169044 DOI: 10.1371/journal.pgen.1004616] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/18/2014] [Indexed: 12/13/2022] Open
Abstract
Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subunit. The factor has been suggested to rescue stalled ribosomes in a codon-independent manner. The mechanism of action of this factor was obscure and is addressed here. Using a homologous mitochondria system of purified components, we demonstrate that the integrated ICT1 has no rescue activity. Rather, purified ICT1 binds stoichiometrically to mitochondrial ribosomes in addition to the integrated copy and functions as a general rescue factor, i.e. it releases the polypeptide from the peptidyl tRNA from ribosomes stalled at the end or in the middle of an mRNA or even from non-programmed ribosomes. The data suggest that the unusual termination at a sense codon (AGA/G) of the oxidative-phosphorylation enzymes CO1 and ND6 is also performed by ICT1 challenging a previous model, according to which RF1Lmt/mtRF1a is responsible for the translation termination at non-standard stop codons. We also demonstrate by mutational analyses that the unique insertion sequence present in the N-terminal domain of ICT1 is essential for peptide release rather than for ribosome binding. The function of RF1mt, another member of the class1 RFs in mammalian mitochondria, was also examined and is discussed. Mammalian mitochondrial ICT1, a bacterial ArfB homolog, is interestingly an integral component of the mitoribosome (MRPL58). The mechanism of ribosome rescue by this factor was obscure and is addressed here. Utilizing a homologous mitochondria system of purified components we demonstrate that the integrated ICT1 has no rescue activity, as opposed to a previous model. Rather, purified ICT1 added to mitoribosomes has a general rescue activity; it recycles ribosomes stalled at the end or in the middle of mRNAs and can even hydrolyze peptidyl-tRNA bound to non-programmed ribosomes. These results further imply that ICT1 can function in the translation termination at non-standard stop codons AGA/G in mammalian mitochondria. Our data challenge a previous model claiming that RF1Lmt/mtRF1a is responsible for the translation termination at non-standard stop codons. A mutational study indicates that the unique insertion sequence in ICT1 is essential for peptide release. The function of RF1mt, another member of the class1 RFs in mammalian mitochondria, was also examined and is discussed.
Collapse
Affiliation(s)
- Shiori Akabane
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Knud H. Nierhaus
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nono Takeuchi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
62
|
Miller MR, Buskirk AR. The SmpB C-terminal tail helps tmRNA to recognize and enter stalled ribosomes. Front Microbiol 2014; 5:462. [PMID: 25228900 PMCID: PMC4151336 DOI: 10.3389/fmicb.2014.00462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/14/2014] [Indexed: 11/13/2022] Open
Abstract
In bacteria, transfer-messenger RNA (tmRNA) and SmpB comprise the most common and effective system for rescuing stalled ribosomes. Ribosomes stall on mRNA transcripts lacking stop codons and are rescued as the defective mRNA is swapped for the tmRNA template in a process known as trans-translation. The tmRNA–SmpB complex is recruited to the ribosome independent of a codon–anticodon interaction. Given that the ribosome uses robust discriminatory mechanisms to select against non-cognate tRNAs during canonical decoding, it has been hard to explain how this can happen. Recent structural and biochemical studies show that SmpB licenses tmRNA entry through its interactions with the decoding center and mRNA channel. In particular, the C-terminal tail of SmpB promotes both EFTu activation and accommodation of tmRNA, the former through interactions with 16S rRNA nucleotide G530 and the latter through interactions with the mRNA channel downstream of the A site. Here we present a detailed model of the earliest steps in trans-translation, and in light of these mechanistic considerations, revisit the question of how tmRNA preferentially reacts with stalled, non-translating ribosomes.
Collapse
Affiliation(s)
- Mickey R Miller
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
63
|
Hudson CM, Lau BY, Williams KP. Ends of the line for tmRNA-SmpB. Front Microbiol 2014; 5:421. [PMID: 25165464 PMCID: PMC4131195 DOI: 10.3389/fmicb.2014.00421] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/24/2014] [Indexed: 11/22/2022] Open
Abstract
Genes for the RNA tmRNA and protein SmpB, partners in the trans-translation process that rescues stalled ribosomes, have previously been found in all bacteria and some organelles. During a major update of The tmRNA Website (relocated to http://bioinformatics.sandia.gov/tmrna), including addition of an SmpB sequence database, we found some bacteria that lack functionally significant regions of SmpB. Three groups with reduced genomes have lost the central loop of SmpB, which is thought to improve alanylation and EF-Tu activation: Carsonella, Hodgkinia, and the hemoplasmas (hemotropic Mycoplasma). Carsonella has also lost the SmpB C-terminal tail, thought to stimulate the decoding center of the ribosome. We validate recent identification of tmRNA homologs in oomycete mitochondria by finding partner genes from oomycete nuclei that target SmpB to the mitochondrion. We have moreover identified through exhaustive search a small number of complete, but often highly derived, bacterial genomes that appear to lack a functional copy of either the tmRNA or SmpB gene (but not both). One Carsonella isolate exhibits complete degradation of the tmRNA gene sequence yet its smpB shows no evidence for relaxed selective constraint, relative to other genes in the genome. After loss of the SmpB central loop in the hemoplasmas, one subclade apparently lost tmRNA. Carsonella also exhibits gene overlap such that tmRNA maturation should produce a non-stop smpB mRNA. At least some of the tmRNA/SmpB-deficient strains appear to further lack the ArfA and ArfB backup systems for ribosome rescue. The most frequent neighbors of smpB are the tmRNA gene, a ratA/rnfH unit, and the gene for RNaseR, a known physical and functional partner of tmRNA-SmpB.
Collapse
Affiliation(s)
- Corey M Hudson
- Sandia National Laboratories, Department of Systems Biology Livermore, CA, USA
| | - Britney Y Lau
- Sandia National Laboratories, Department of Systems Biology Livermore, CA, USA
| | - Kelly P Williams
- Sandia National Laboratories, Department of Systems Biology Livermore, CA, USA
| |
Collapse
|
64
|
Shimizu Y. Biochemical aspects of bacterial strategies for handling the incomplete translation processes. Front Microbiol 2014; 5:170. [PMID: 24782856 PMCID: PMC3989591 DOI: 10.3389/fmicb.2014.00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/28/2014] [Indexed: 11/13/2022] Open
Abstract
During protein synthesis in cells, translating ribosomes may encounter abnormal situations that lead to retention of immature peptidyl-tRNA on the ribosome due to failure of suitable termination processes. Bacterial cells handle such situations by employing three systems that rescue the stalled translation machinery. The transfer messenger RNA/small protein B (tmRNA/SmpB) system, also called the trans-translation system, rescues stalled ribosomes by initiating template switching from the incomplete mRNA to the short open reading frame of tmRNA, leading to the production of a protein containing a C-terminal tag that renders it susceptible to proteolysis. The ArfA/RF2 and ArfB systems rescue stalled ribosomes directly by hydrolyzing the immature peptidyl-tRNA remaining on the ribosome. Here, the biochemical aspects of these systems, as clarified by recent studies, are reviewed.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, Quantitative Biology Center - RIKEN Kobe, Hyogo, Japan
| |
Collapse
|
65
|
Himeno H, Kurita D, Muto A. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell. Front Genet 2014; 5:66. [PMID: 24778639 PMCID: PMC3985003 DOI: 10.3389/fgene.2014.00066] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/15/2014] [Indexed: 11/13/2022] Open
Abstract
Transfer messenger RNA (tmRNA; also known as 10Sa RNA or SsrA RNA) is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon–anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of non-functional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.
Collapse
Affiliation(s)
- Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| |
Collapse
|
66
|
Abstract
Problems during gene expression can result in a ribosome that has translated to the 3' end of an mRNA without terminating at a stop codon, forming a nonstop translation complex. The nonstop translation complex contains a ribosome with the mRNA and peptidyl-tRNA engaged, but because there is no codon in the A site, the ribosome cannot elongate or terminate the nascent chain. Recent work has illuminated the importance of resolving these nonstop complexes in bacteria. Transfer-messenger RNA (tmRNA)-SmpB specifically recognizes and resolves nonstop translation complexes in a reaction known as trans-translation. trans-Translation releases the ribosome and promotes degradation of the incomplete nascent polypeptide and problematic mRNA. tmRNA and SmpB have been found in all bacteria and are essential in some species. However, other bacteria can live without trans-translation because they have one of the alternative release factors, ArfA or ArfB. ArfA recruits RF2 to nonstop translation complexes to promote hydrolysis of the peptidyl-tRNAs. ArfB recognizes nonstop translation complexes in a manner similar to tmRNA-SmpB recognition and directly hydrolyzes the peptidyl-tRNAs to release the stalled ribosomes. Genetic studies indicate that most or all species require at least one mechanism to resolve nonstop translation complexes. Consistent with such a requirement, small molecules that inhibit resolution of nonstop translation complexes have broad-spectrum antibacterial activity. These results suggest that resolving nonstop translation complexes is a matter of life or death for bacteria.
Collapse
|
67
|
Giudice E, Macé K, Gillet R. Trans-translation exposed: understanding the structures and functions of tmRNA-SmpB. Front Microbiol 2014; 5:113. [PMID: 24711807 PMCID: PMC3968760 DOI: 10.3389/fmicb.2014.00113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/05/2014] [Indexed: 11/13/2022] Open
Abstract
Ribosome stalling is a serious issue for cell survival. In bacteria, the primary rescue system is trans-translation, performed by tmRNA and its protein partner small protein B (SmpB). Since its discovery almost 20 years ago, biochemical, genetic, and structural studies have paved the way to a better understanding of how this sophisticated process takes place at the cellular and molecular levels. Here we describe the molecular details of trans-translation, with special mention of recent cryo-electron microscopy and crystal structures that have helped explain how the huge tmRNA-SmpB complex targets and delivers stalled ribosomes without interfering with canonical translation.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Translation and Folding Team, Université de Rennes 1, CNRS UMR 6290 IGDR Rennes, France
| | - Kevin Macé
- Translation and Folding Team, Université de Rennes 1, CNRS UMR 6290 IGDR Rennes, France
| | - Reynald Gillet
- Translation and Folding Team, Université de Rennes 1, CNRS UMR 6290 IGDR Rennes, France ; Institut Universitaire de France France
| |
Collapse
|
68
|
Himeno H, Kurita D, Muto A. Mechanism of trans-translation revealed by in vitro studies. Front Microbiol 2014; 5:65. [PMID: 24600445 PMCID: PMC3929946 DOI: 10.3389/fmicb.2014.00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/04/2014] [Indexed: 11/28/2022] Open
Abstract
tmRNA is a bacterial small RNA having a structure resembling the upper half of tRNA and its 3′ end accepts alanine followed by binding to EF-Tu like tRNA. Instead of lacking a lower half of the cloverleaf structure including the anticodon, tmRNA has a short coding sequence for tag-peptide that serves as a target of cellular proteases. An elaborate coordination of two functions as tRNA and mRNA facilitates an irregular translation termed trans-translation: a single polypeptide is synthesized from two mRNA molecules. It allows resumption of translation stalled on a truncated mRNA, producing a chimeric polypeptide comprising the C-terminally truncated polypeptide derived from truncated mRNA and the C-terminal tag-peptide encoded by tmRNA. Trans-translation promotes recycling of the stalled ribosomes in the cell, and the resulting C-terminally tagged polypeptide is preferentially degraded by cellular proteases. Biochemical studies using in vitro trans-translation systems together with structural studies have unveiled the molecular mechanism of trans-translation, during which the upper and lower halves of tRNA are mimicked by the tRNA-like structure of tmRNA and a tmRNA-specific binding protein called SmpB, respectively. They mimic not only the tRNA structure but also its behavior perhaps at every step of the trans-translation process in the ribosome. Furthermore, the C-terminal tail of SmpB, which is unstructured in solution, occupies the mRNA path in the ribosome to play a crucial role in trans-translation, addressing how tmRNA·SmpB recognizes the ribosome stalled on a truncated mRNA.
Collapse
Affiliation(s)
- Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan ; RNA Research Center, Hirosaki University Hirosaki, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan ; RNA Research Center, Hirosaki University Hirosaki, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| |
Collapse
|
69
|
Miller MR, Buskirk AR. An unusual mechanism for EF-Tu activation during tmRNA-mediated ribosome rescue. RNA (NEW YORK, N.Y.) 2014; 20:228-235. [PMID: 24345396 PMCID: PMC3895274 DOI: 10.1261/rna.042226.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/07/2013] [Indexed: 06/03/2023]
Abstract
In bacteria, ribosomes stalled on truncated mRNAs are rescued by transfer-messenger RNA (tmRNA) and its protein partner SmpB. Acting like tRNA, the aminoacyl-tmRNA/SmpB complex is delivered to the ribosomal A site by EF-Tu and accepts the transfer of the nascent polypeptide. Although SmpB binding within the decoding center is clearly critical for licensing tmRNA entry into the ribosome, it is not known how activation of EF-Tu occurs in the absence of a codon-anticodon interaction. A recent crystal structure revealed that SmpB residue His136 stacks on 16S rRNA nucleotide G530, a critical player in the canonical decoding mechanism. Here we use pre-steady-state kinetic methods to probe the role of this interaction in ribosome rescue. We find that although mutation of His136 does not reduce SmpB's affinity for the ribosomal A-site, it dramatically reduces the rate of GTP hydrolysis by EF-Tu. Surprisingly, the same mutation has little effect on the apparent rate of peptide-bond formation, suggesting that release of EF-Tu from the tmRNA/SmpB complex on the ribosome may occur prior to GTP hydrolysis. Consistent with this idea, we find that peptidyl transfer to tmRNA is relatively insensitive to the antibiotic kirromycin. Taken together, our studies provide a model for the initial stages of ribosomal rescue by tmRNA.
Collapse
|
70
|
Kogure H, Handa Y, Nagata M, Kanai N, Güntert P, Kubota K, Nameki N. Identification of residues required for stalled-ribosome rescue in the codon-independent release factor YaeJ. Nucleic Acids Res 2013; 42:3152-63. [PMID: 24322300 PMCID: PMC3950681 DOI: 10.1093/nar/gkt1280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The YaeJ protein is a codon-independent release factor with peptidyl-tRNA hydrolysis (PTH) activity, and functions as a stalled-ribosome rescue factor in Escherichia coli. To identify residues required for YaeJ function, we performed mutational analysis for in vitro PTH activity towards rescue of ribosomes stalled on a non-stop mRNA, and for ribosome-binding efficiency. We focused on residues conserved among bacterial YaeJ proteins. Additionally, we determined the solution structure of the GGQ domain of YaeJ from E. coli using nuclear magnetic resonance spectroscopy. YaeJ and a human homolog, ICT1, had similar levels of PTH activity, despite various differences in sequence and structure. While no YaeJ-specific residues important for PTH activity occur in the structured GGQ domain, Arg118, Leu119, Lys122, Lys129 and Arg132 in the following C-terminal extension were required for PTH activity. All of these residues are completely conserved among bacteria. The equivalent residues were also found in the C-terminal extension of ICT1, allowing an appropriate sequence alignment between YaeJ and ICT1 proteins from various species. Single amino acid substitutions for each of these residues significantly decreased ribosome-binding efficiency. These biochemical findings provide clues to understanding how YaeJ enters the A-site of stalled ribosomes.
Collapse
Affiliation(s)
- Hiroyuki Kogure
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan, Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main, Germany and Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
71
|
Janssen BD, Garza-Sánchez F, Hayes CS. A-site mRNA cleavage is not required for tmRNA-mediated ssrA-peptide tagging. PLoS One 2013; 8:e81319. [PMID: 24260569 PMCID: PMC3834316 DOI: 10.1371/journal.pone.0081319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli, prolonged translational arrest allows mRNA degradation into the A site of stalled ribosomes. The enzyme that cleaves the A-site codon is not known, but its activity requires RNase II to degrade mRNA downstream of the ribosome. This A-site mRNA cleavage process is thought to function in translation quality control because stalled ribosomes are recycled from A-site truncated transcripts by the tmRNA-SmpB "ribosome rescue" system. During rescue, the tmRNA-encoded ssrA peptide is added to the nascent chain, thereby targeting the tagged protein for degradation after release from the ribosome. Here, we examine the influence of A-site mRNA cleavage upon tmRNA-SmpB activity. Using a model transcript that undergoes stop-codon cleavage in response to inefficient translation termination, we quantify ssrA-peptide tagging of the encoded protein in cells that contain (rnb(+)) or lack (Δrnb) RNase II. A-site mRNA cleavage is reduced approximately three-fold in Δrnb backgrounds, but the efficiency of ssrA-tagging is identical to that of rnb(+) cells. Additionally, pulse-chase analysis demonstrates that paused ribosomes recycle from the test transcripts at similar rates in rnb(+) and Δrnb cells. Together, these results indicate that A-site truncated transcripts are not required for tmRNA-SmpB-mediated ribosome rescue and suggest that A-site mRNA cleavage process may play a role in other recycling pathways.
Collapse
Affiliation(s)
- Brian D. Janssen
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
72
|
Abstract
Each peptide bond of a protein is generated at the peptidyl transferase center (PTC) of the ribosome and then moves through the exit tunnel, which accommodates ever-changing segments of ≈ 40 amino acids of newly translated polypeptide. A class of proteins, called ribosome arrest peptides, contains specific sequences of amino acids (arrest sequences) that interact with distinct components of the PTC-exit tunnel region of the ribosome and arrest their own translation continuation, often in a manner regulated by environmental cues. Thus, the ribosome that has translated an arrest sequence is inactivated for peptidyl transfer, translocation, or termination. The stalled ribosome then changes the configuration or localization of mRNA, resulting in specific biological outputs, including regulation of the target gene expression and downstream events of mRNA/polypeptide maturation or localization. Living organisms thus seem to have integrated potentially harmful arrest sequences into elaborate regulatory mechanisms to express genetic information in productive directions.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| | | |
Collapse
|
73
|
Cougot N, Molza AE, Delesques J, Giudice E, Cavalier A, Rolland JP, Ermel G, Blanco C, Thomas D, Gillet R. Visualizing compaction of polysomes in bacteria. J Mol Biol 2013; 426:377-88. [PMID: 24095898 DOI: 10.1016/j.jmb.2013.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
During protein synthesis, many translating ribosomes are bound together with an mRNA molecule to form polysomes (or polyribosomes). While the spatial organization of bacterial polysomes has been well studied in vitro, little is known about how they cluster when cellular conditions are highly constrained. To better understand this, we used electron tomography, template matching, and three-dimensional modeling to analyze the supramolecular network of ribosomes after induction of translational pauses. In Escherichia coli, we overexpressed an mRNA carrying a polyproline motif known to induce pausing during translation. When working with a strain lacking transfer-messenger RNA, the principle actor in the "trans-translation" rescuing system, the cells survived the hijacking of the translation machinery but this resulted in a sharp modification of the ribosomal network. The results of our experiments demonstrate that single ribosomes are replaced with large amounts of compacted polysomes. These polysomes are highly organized, principally forming hairpins and dimers of hairpins that stack together. We propose that these spatial arrangements help maintain translation efficiency when the rescue systems are absent or overwhelmed.
Collapse
Affiliation(s)
- Nicolas Cougot
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Anne-Elisabeth Molza
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jérémy Delesques
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Emmanuel Giudice
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Annie Cavalier
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jean-Paul Rolland
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Gwennola Ermel
- Université de Rennes 1, EA 1254, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Carlos Blanco
- Université de Rennes 1, EA 1254, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Daniel Thomas
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Reynald Gillet
- Team Translation and Folding, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu, 35042 Rennes Cedex, France; Institut Universitaire de France.
| |
Collapse
|
74
|
Keiler KC, Alumasa JN. The potential of trans-translation inhibitors as antibiotics. Future Microbiol 2013; 8:1235-7. [DOI: 10.2217/fmb.13.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Kenneth C Keiler
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - John N Alumasa
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
75
|
Pittet V, Phister TG, Ziola B. Transcriptome sequence and plasmid copy number analysis of the brewery isolate Pediococcus claussenii ATCC BAA-344 T during growth in beer. PLoS One 2013; 8:e73627. [PMID: 24040005 PMCID: PMC3765258 DOI: 10.1371/journal.pone.0073627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022] Open
Abstract
Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcusclaussenii ATCC BAA-344T (Pc344-358). Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P. claussenii ATCC BAA-344T genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria.
Collapse
Affiliation(s)
- Vanessa Pittet
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Trevor G. Phister
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Barry Ziola
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
76
|
Camenares D, Dulebohn DP, Svetlanov A, Karzai AW. Active and accurate trans-translation requires distinct determinants in the C-terminal tail of SmpB protein and the mRNA-like domain of transfer messenger RNA (tmRNA). J Biol Chem 2013; 288:30527-30542. [PMID: 23986442 DOI: 10.1074/jbc.m113.503896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unproductive ribosome stalling in eubacteria is resolved by the actions of SmpB protein and transfer messenger (tm) RNA. We examined the functional significance of conserved regions of SmpB and tmRNA to the trans-translation process. Our investigations reveal that the N-terminal 20 residues of SmpB, which are located near the ribosomal decoding center, are dispensable for all known SmpB activities. In contrast, a set of conserved residues that reside at the junction between the tmRNA-binding core and the C-terminal tail of SmpB play an important role in tmRNA accommodation. Our data suggest that the highly conserved glycine 132 acts as a flexible hinge that enables movement of the C-terminal tail, thus permitting proper positioning and establishment of the tmRNA open reading frame (ORF) as the surrogate template. To gain further insights into the function of the SmpB C-terminal tail, we examined the tagging activity of hybrid variants of tmRNA and the SmpB protein, in which the tmRNA ORF or the SmpB C-terminal tail was substituted with the equivalent but highly divergent sequences from Francisella tularensis. We observed that the hybrid tmRNA was active but resulted in less accurate selection of the resume codon. Cognate hybrid SmpB was necessary to restore activity. Furthermore, accurate tagging was observed when the identity of the resume codon was reverted from GGC to GCA. Taken together, these data suggest that the engagement of the tmRNA ORF and the selection of the correct translation resumption point are distinct activities that are influenced by independent tmRNA and SmpB determinants.
Collapse
Affiliation(s)
- Devin Camenares
- From the Department of Biochemistry and Cell Biology and; Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | | | - Anton Svetlanov
- From the Department of Biochemistry and Cell Biology and; Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - A Wali Karzai
- From the Department of Biochemistry and Cell Biology and; Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794.
| |
Collapse
|
77
|
Giudice E, Gillet R. The task force that rescues stalled ribosomes in bacteria. Trends Biochem Sci 2013; 38:403-11. [PMID: 23820510 DOI: 10.1016/j.tibs.2013.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022]
Abstract
In bacteria, the main quality control mechanism for rescuing ribosomes that have arrested during translation is trans-translation, performed by transfer-mRNA (tmRNA) associated with small protein B (SmpB). Intriguingly, this very elegant mechanism is not always necessary to maintain cell viability, suggesting the existence of alternatives. Other rescue systems have recently been discovered, revealing a far more complicated story than expected. These include the alternative ribosome rescue factors ArfA and ArfB, the elongation factors EF4 and EF-P, the peptidyl-tRNA hydrolase Pth, and several protein synthesis factors. These discoveries make it possible to describe a large network of factors dedicated to ribosome rescue, thus ensuring cell survival during stresses that induce ribosome stalling.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Translation and Folding Team, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu 35042 Rennes cedex, France
| | | |
Collapse
|
78
|
Chan CW, Chetnani B, Mondragón A. Structure and function of the T-loop structural motif in noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:507-22. [PMID: 23754657 DOI: 10.1002/wrna.1175] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/10/2013] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
Abstract
The T-loop is a frequently occurring five-nucleotide motif found in the structure of noncoding RNAs where it is commonly assumed to play an important role in stabilizing the tertiary RNA structure by facilitating long-range interactions between different regions of the molecule. T-loops were first identified in tRNA(Phe) and a formal consensus sequence for this motif was formulated and later revised based on analyses of the crystal structures of prokaryotic ribosomal RNAs and RNase P and the corresponding primary sequence of their orthologues. In the past decade, several new structures of large RNA molecules have been added to the RCSB Protein Data Bank, including the eukaryotic ribosome, a self-splicing group II intron, numerous synthetases in complex with their cognate transfer RNAs (tRNAs), transfer-messenger RNA (tmRNA) in complex with SmpB, several riboswitches, and a complex of bacterial RNase P bound to its tRNA substrate. In this review, the search for T-loops is extended to these new RNA molecules based on the previously established structure-based criteria. The review highlights and discusses the function and additional roles of T-loops in four broad categories of RNA molecules, namely tRNAs, ribosomal RNAs (rRNAs), P RNAs, and RNA genetic elements. Additionally, the potential application for T-loops as interaction modules is also discussed.
Collapse
Affiliation(s)
- Clarence W Chan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | | |
Collapse
|
79
|
Small molecule inhibitors of trans-translation have broad-spectrum antibiotic activity. Proc Natl Acad Sci U S A 2013; 110:10282-7. [PMID: 23733947 DOI: 10.1073/pnas.1302816110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trans-translation pathway for protein tagging and ribosome release plays a critical role for viability and virulence in a wide range of pathogens but is not found in animals. To explore the use of trans-translation as a target for antibiotic development, a high-throughput screen and secondary screening assays were used to identify small molecule inhibitors of the pathway. Compounds that inhibited protein tagging and proteolysis of tagged proteins were recovered from the screen. One of the most active compounds, KKL-35, inhibited the trans-translation tagging reaction with an IC50 = 0.9 µM. KKL-35 and other compounds identified in the screen exhibited broad-spectrum antibiotic activity, validating trans-translation as a target for drug development. This unique target could play a key role in combating strains of pathogenic bacteria that are resistant to existing antibiotics.
Collapse
|
80
|
Gutmanas A, Oldfield TJ, Patwardhan A, Sen S, Velankar S, Kleywegt GJ. The role of structural bioinformatics resources in the era of integrative structural biology. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:710-21. [PMID: 23633580 PMCID: PMC3640467 DOI: 10.1107/s0907444913001157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/11/2013] [Indexed: 11/10/2022]
Abstract
The history and the current state of the PDB and EMDB archives is briefly described, as well as some of the challenges that they face. It seems natural that the role of structural biology archives will change from being a pure repository of historic data into becoming an indispensable resource for the wider biomedical community. As part of this transformation, it will be necessary to validate the biomacromolecular structure data and ensure the highest possible quality for the archive holdings, to combine structural data from different spatial scales into a unified resource and to integrate structural data with functional, genetic and taxonomic data as well as other information available in bioinformatics resources. Some recent developments and plans to address these challenges at PDBe are presented.
Collapse
Affiliation(s)
- Aleksandras Gutmanas
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Thomas J. Oldfield
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Ardan Patwardhan
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Sanchayita Sen
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Sameer Velankar
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Gerard J. Kleywegt
- Protein Data Bank in Europe, EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England
| |
Collapse
|
81
|
Inada T. Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:634-42. [PMID: 23416749 DOI: 10.1016/j.bbagrm.2013.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
RNA processing is an essential gene expression step and plays a crucial role to achieve diversity of gene products in eukaryotes. Various aberrant mRNAs transiently produced during RNA processing reactions are recognized and eliminated by specific quality control systems. It has been demonstrated that these mRNA quality control systems stimulate the degradation of aberrant mRNA to prevent the potentially harmful products derived from aberrant mRNAs. Recent studies on quality control systems induced by abnormal translation elongation and termination have revealed that both aberrant mRNAs and proteins are subjected to rapid degradation. In NonStop Decay (NSD) quality control system, a poly(A) tail of nonstop mRNA is translated and the synthesis of poly-lysine sequence results in translation arrest followed by co-translational degradation of aberrant nonstop protein. In No-Go Decay (NGD) quality control system, the specific amino acid sequences of the nascent polypeptide induce ribosome stalling, and the arrest products are ubiquitinated and rapidly degraded by the proteasome. In Nonfunctional rRNA Decay (NRD) quality control system, aberrant ribosomes composed of nonfunctional ribosomal RNAs are also eliminated when aberrant translation elongation complexes are formed on mRNA. I describe recent progresses on the mechanisms of quality control systems and the relationships between quality control systems. This article is part of a Special issue entitled: RNA Decay mechanisms.
Collapse
|
82
|
Rodrigo-Brenni MC, Hegde RS. Design principles of protein biosynthesis-coupled quality control. Dev Cell 2013; 23:896-907. [PMID: 23153486 DOI: 10.1016/j.devcel.2012.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The protein biosynthetic machinery, composed of ribosomes, chaperones, and localization factors, is increasingly found to interact directly with factors dedicated to protein degradation. The coupling of these two opposing processes facilitates quality control of nascent polypeptides at each stage of their maturation. Sequential checkpoints maximize the overall fidelity of protein maturation, minimize the exposure of defective products to the bulk cellular environment, and protect organisms from protein misfolding diseases.
Collapse
|
83
|
Schiano CA, Lathem WW. Post-transcriptional regulation of gene expression in Yersinia species. Front Cell Infect Microbiol 2012; 2:129. [PMID: 23162797 PMCID: PMC3493969 DOI: 10.3389/fcimb.2012.00129] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/03/2012] [Indexed: 11/13/2022] Open
Abstract
Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.
Collapse
Affiliation(s)
- Chelsea A Schiano
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | | |
Collapse
|
84
|
ArfA Recruits RF2 into Stalled Ribosomes. J Mol Biol 2012; 423:624-31. [DOI: 10.1016/j.jmb.2012.08.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/02/2012] [Accepted: 08/15/2012] [Indexed: 11/20/2022]
|
85
|
Graille M, Séraphin B. Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol 2012; 13:727-35. [DOI: 10.1038/nrm3457] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
86
|
Pech M, Nierhaus KH. Three mechanisms in Escherichia coli rescue ribosomes stalled on non-stop mRNAs: one of them requires release factor 2. Mol Microbiol 2012; 86:6-9. [PMID: 22909071 DOI: 10.1111/j.1365-2958.2012.08207.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 11/27/2022]
Abstract
The tmRNA/SmpB system, which is almost universal in bacteria, rescues bacterial ribosomes stalled at the end of non-stop mRNAs (mRNAs lacking a stop codon). In addition, a few bacteria, including Escherichia coli, have developed a second two-component system as reported by Chadani et al. (2012). A small protein, ArfA of 55 amino acids (formerly called YdhL), mediates binding of release factor 2 to the ribosomal A site lacking a complete mRNA codon and thereby triggers translational termination and rescue of the stalled ribosome.
Collapse
Affiliation(s)
- Markus Pech
- Max-Planck-Institut für Molekulare Genetik, Abteilung Vingron, AG Ribosomen, Ihnestr. 73, D-14195, Berlin, Germany
| | | |
Collapse
|
87
|
Abstract
There are three predominant forms of co-translational mRNA surveillance: nonsense-mediated decay (NMD), no-go decay (NGD) and nonstop decay (NSD). Although discussion of these pathways often focuses on mRNA fate, there is growing consensus that there are other important outcomes of these processes that must be simultaneously considered. Here, we seek to highlight similarities between NMD, NGD and NSD and their probable origins on the ribosome during translation.
Collapse
|
88
|
Freeing stalled ribosomes. Nat Rev Mol Cell Biol 2012. [DOI: 10.1038/nrm3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|