51
|
Muria A, Musso PY, Durrieu M, Portugal FR, Ronsin B, Gordon MD, Jeanson R, Isabel G. Social facilitation of long-lasting memory is mediated by CO 2 in Drosophila. Curr Biol 2021; 31:2065-2074.e5. [PMID: 33740428 DOI: 10.1016/j.cub.2021.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/22/2020] [Accepted: 02/17/2021] [Indexed: 01/05/2023]
Abstract
How social interactions influence cognition is a fundamental question, yet rarely addressed at the neurobiological level. It is well established that the presence of conspecifics affects learning and memory performance, but the neural basis of this process has only recently begun to be investigated. In the fruit fly Drosophila melanogaster, the presence of other flies improves retrieval of a long-lasting olfactory memory. Here, we demonstrate that this is a composite memory composed of two distinct elements. One is an individual memory that depends on outputs from the α'β' Kenyon cells (KCs) of the mushroom bodies (MBs), the memory center in the insect brain. The other is a group memory requiring output from the αβ KCs, a distinct sub-part of the MBs. We show that social facilitation of memory increases with group size and is triggered by CO2 released by group members. Among the different known neurons carrying CO2 information in the brain, we establish that the bilateral ventral projection neuron (biVPN), which projects onto the MBs, is necessary for social facilitation. Moreover, we demonstrate that CO2-evoked memory engages a serotoninergic pathway involving the dorsal-paired medial (DPM) neurons, revealing a new role for this pair of serotonergic neurons. Overall, we identified both the sensorial cue and the neural circuit (biVPN>αβ>DPM>αβ) governing social facilitation of memory in flies. This study provides demonstration that being in a group recruits the expression of a cryptic memory and that variations in CO2 concentration can affect cognitive processes in insects.
Collapse
Affiliation(s)
- Aurélie Muria
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Pierre-Yves Musso
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France; Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthias Durrieu
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Felipe Ramon Portugal
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, IRD, 118 route de Narbonne, Bat 4R1, 31062 Toulouse Cedex 9, France; Ecole Nationale Supérieure Formation de l'Enseignement Agricole, Castanet-Tolosan, France
| | - Brice Ronsin
- CBI, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Raphaël Jeanson
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Guillaume Isabel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
52
|
Energetics of stochastic BCM type synaptic plasticity and storing of accurate information. J Comput Neurosci 2021; 49:71-106. [PMID: 33528721 PMCID: PMC8046702 DOI: 10.1007/s10827-020-00775-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/04/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022]
Abstract
Excitatory synaptic signaling in cortical circuits is thought to be metabolically expensive. Two fundamental brain functions, learning and memory, are associated with long-term synaptic plasticity, but we know very little about energetics of these slow biophysical processes. This study investigates the energy requirement of information storing in plastic synapses for an extended version of BCM plasticity with a decay term, stochastic noise, and nonlinear dependence of neuron’s firing rate on synaptic current (adaptation). It is shown that synaptic weights in this model exhibit bistability. In order to analyze the system analytically, it is reduced to a simple dynamic mean-field for a population averaged plastic synaptic current. Next, using the concepts of nonequilibrium thermodynamics, we derive the energy rate (entropy production rate) for plastic synapses and a corresponding Fisher information for coding presynaptic input. That energy, which is of chemical origin, is primarily used for battling fluctuations in the synaptic weights and presynaptic firing rates, and it increases steeply with synaptic weights, and more uniformly though nonlinearly with presynaptic firing. At the onset of synaptic bistability, Fisher information and memory lifetime both increase sharply, by a few orders of magnitude, but the plasticity energy rate changes only mildly. This implies that a huge gain in the precision of stored information does not have to cost large amounts of metabolic energy, which suggests that synaptic information is not directly limited by energy consumption. Interestingly, for very weak synaptic noise, such a limit on synaptic coding accuracy is imposed instead by a derivative of the plasticity energy rate with respect to the mean presynaptic firing, and this relationship has a general character that is independent of the plasticity type. An estimate for primate neocortex reveals that a relative metabolic cost of BCM type synaptic plasticity, as a fraction of neuronal cost related to fast synaptic transmission and spiking, can vary from negligible to substantial, depending on the synaptic noise level and presynaptic firing.
Collapse
|
53
|
Dvořáček J, Kodrík D. Drosophila reward system - A summary of current knowledge. Neurosci Biobehav Rev 2021; 123:301-319. [PMID: 33421541 DOI: 10.1016/j.neubiorev.2020.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 01/19/2023]
Abstract
The fruit fly Drosophila melanogaster brain is the most extensively investigated model of a reward system in insects. Drosophila can discriminate between rewarding and punishing environmental stimuli and consequently undergo associative learning. Functional models, especially those modelling mushroom bodies, are constantly being developed using newly discovered information, adding to the complexity of creating a simple model of the reward system. This review aims to clarify whether its reward system also includes a hedonic component. Neurochemical systems that mediate the 'wanting' component of reward in the Drosophila brain are well documented, however, the systems that mediate the pleasure component of reward in mammals, including those involving the endogenous opioid and endocannabinoid systems, are unlikely to be present in insects. The mushroom body components exhibit differential developmental age and different functional processes. We propose a hypothetical hierarchy of the levels of reinforcement processing in response to particular stimuli, and the parallel processes that take place concurrently. The possible presence of activity-silencing and meta-satiety inducing levels in Drosophila should be further investigated.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
54
|
Siju KP, De Backer JF, Grunwald Kadow IC. Dopamine modulation of sensory processing and adaptive behavior in flies. Cell Tissue Res 2021; 383:207-225. [PMID: 33515291 PMCID: PMC7873103 DOI: 10.1007/s00441-020-03371-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Behavioral flexibility for appropriate action selection is an advantage when animals are faced with decisions that will determine their survival or death. In order to arrive at the right decision, animals evaluate information from their external environment, internal state, and past experiences. How these different signals are integrated and modulated in the brain, and how context- and state-dependent behavioral decisions are controlled are poorly understood questions. Studying the molecules that help convey and integrate such information in neural circuits is an important way to approach these questions. Many years of work in different model organisms have shown that dopamine is a critical neuromodulator for (reward based) associative learning. However, recent findings in vertebrates and invertebrates have demonstrated the complexity and heterogeneity of dopaminergic neuron populations and their functional implications in many adaptive behaviors important for survival. For example, dopaminergic neurons can integrate external sensory information, internal and behavioral states, and learned experience in the decision making circuitry. Several recent advances in methodologies and the availability of a synaptic level connectome of the whole-brain circuitry of Drosophila melanogaster make the fly an attractive system to study the roles of dopamine in decision making and state-dependent behavior. In particular, a learning and memory center-the mushroom body-is richly innervated by dopaminergic neurons that enable it to integrate multi-modal information according to state and context, and to modulate decision-making and behavior.
Collapse
Affiliation(s)
- K. P. Siju
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jean-Francois De Backer
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ilona C. Grunwald Kadow
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
55
|
Eschment M, Franz HR, Güllü N, Hölscher LG, Huh KE, Widmann A. Insulin signaling represents a gating mechanism between different memory phases in Drosophila larvae. PLoS Genet 2020; 16:e1009064. [PMID: 33104728 PMCID: PMC7644093 DOI: 10.1371/journal.pgen.1009064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/05/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
The ability to learn new skills and to store them as memory entities is one of the most impressive features of higher evolved organisms. However, not all memories are created equal; some are short-lived forms, and some are longer lasting. Formation of the latter is energetically costly and by the reason of restricted availability of food or fluctuations in energy expanses, efficient metabolic homeostasis modulating different needs like survival, growth, reproduction, or investment in longer lasting memories is crucial. Whilst equipped with cellular and molecular pre-requisites for formation of a protein synthesis dependent long-term memory (LTM), its existence in the larval stage of Drosophila remains elusive. Considering it from the viewpoint that larval brain structures are completely rebuilt during metamorphosis, and that this process depends completely on accumulated energy stores formed during the larval stage, investing in LTM represents an unnecessary expenditure. However, as an alternative, Drosophila larvae are equipped with the capacity to form a protein synthesis independent so-called larval anaesthesia resistant memory (lARM), which is consolidated in terms of being insensitive to cold-shock treatments. Motivated by the fact that LTM formation causes an increase in energy uptake in Drosophila adults, we tested the idea of whether an energy surplus can induce the formation of LTM in the larval stage. Suprisingly, increasing the metabolic state by feeding Drosophila larvae the disaccharide sucrose directly before aversive olfactory conditioning led to the formation of a protein synthesis dependent longer lasting memory. Moreover, formation of this memory component is accompanied by the suppression of lARM. We ascertained that insulin receptors (InRs) expressed in the mushroom body Kenyon cells suppresses the formation of lARM and induces the formation of a protein synthesis dependent longer lasting memory in Drosophila larvae. Given the numerical simplicity of the larval nervous system this work offers a unique prospect to study the impact of insulin signaling on the formation of protein synthesis dependent memories on a molecular level.
Collapse
Affiliation(s)
- Melanie Eschment
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Hanna R. Franz
- Department of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, Germany
| | - Nazlı Güllü
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Luis G. Hölscher
- Department of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, Germany
| | - Ko-Eun Huh
- Department of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, Germany
| | - Annekathrin Widmann
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, Germany
| |
Collapse
|
56
|
Burdakov D, Peleg-Raibstein D. The hypothalamus as a primary coordinator of memory updating. Physiol Behav 2020; 223:112988. [DOI: 10.1016/j.physbeh.2020.112988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
|
57
|
Ghosh Dastidar S, Das Sharma S, Chakraborty S, Chattarji S, Bhattacharya A, Muddashetty RS. Distinct regulation of bioenergetics and translation by group I mGluR and NMDAR. EMBO Rep 2020; 21:e48037. [PMID: 32351028 PMCID: PMC7271334 DOI: 10.15252/embr.201948037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity is responsible for the high energy consumption in the brain. However, the cellular mechanisms draining ATP upon the arrival of a stimulus are yet to be explored systematically at the post-synapse. Here, we provide evidence that a significant fraction of ATP is consumed upon glutamate stimulation to energize mGluR-induced protein synthesis. We find that both mGluR and NMDAR alter protein synthesis and ATP consumption with distinct kinetics at the synaptic-dendritic compartments. While mGluR activation leads to a rapid and sustained reduction in neuronal ATP levels, NMDAR activation has no immediate impact on the same. ATP consumption correlates inversely with the kinetics of protein synthesis for both receptors. We observe a persistent elevation in protein synthesis within 5 minutes of mGluR activation and a robust inhibition of the same within 2 minutes of NMDAR activation, assessed by the phosphorylation status of eEF2 and metabolic labeling. However, a delayed protein synthesis-dependent ATP expenditure ensues after 15 minutes of NMDAR stimulation. We identify a central role for AMPK in the correlation between protein synthesis and ATP consumption. AMPK is dephosphorylated and inhibited upon mGluR activation, while it is phosphorylated upon NMDAR activation. Perturbing AMPK activity disrupts receptor-specific modulations of eEF2 phosphorylation and protein synthesis. Our observations, therefore, demonstrate that the regulation of the AMPK-eEF2 signaling axis by glutamate receptors alters neuronal protein synthesis and bioenergetics.
Collapse
Affiliation(s)
- Sudhriti Ghosh Dastidar
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Shreya Das Sharma
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- The University of Trans‐Disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Sumita Chakraborty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Sumantra Chattarji
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- National Center for Biological SciencesBangaloreIndia
| | - Aditi Bhattacharya
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Ravi S Muddashetty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| |
Collapse
|
58
|
Cattenoz PB, Giangrande A. Tailoring the immune response to the availability of nutrients. FEBS J 2020; 287:3396-3398. [PMID: 32285627 DOI: 10.1111/febs.15304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The development and the maintenance of an efficient immune system represents a considerable metabolic investment for the organism. Ramond et al. have characterized a new molecular and cellular pathway, inhibiting the immune system in poor diet conditions in the Drosophila larva. Low nutrient conditions lead to the secretion of the adipokine NimB5 by the fat body, which inhibits the proliferation of the immune cells, hence preventing the exhaustion of the resources.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
59
|
Appetitive Memory with Survival Benefit Is Robust Across Aging in Drosophila. J Neurosci 2020; 40:2296-2304. [PMID: 31992587 DOI: 10.1523/jneurosci.2045-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/21/2022] Open
Abstract
The formation of memory declines with advancing age. However, susceptibility to memory impairments depends on several factors, including the robustness of memory, the responsible neural circuits, and the internal state of aged individuals. How age-dependent changes in internal states and neural circuits affect memory formation remains unclear. Here, we show in Drosophila melanogaster that aged flies of both sexes form robust appetitive memory conditioned with nutritious sugar, which suppresses their high mortality rates during starvation. In contrast, aging impairs the formation of appetitive memory conditioned with non-nutritious sugar that lacks survival benefits for the flies. We found that aging enhanced the preference for nutritious sugar over non-nutritious sugar correlated with an age-dependent increase in the expression of Drosophila neuropeptide F, an ortholog of mammalian neuropeptide Y. Furthermore, a subset of dopaminergic neurons that signal the sweet taste of sugar decreases its function with aging, while a subset of dopaminergic neurons that signal the nutritional value of sugar maintains its function with age. Our results suggest that aging impairs the ability to form memories without survival benefits; however, the ability to form memories with survival benefits is maintained through age-dependent changes in the neural circuits and neuropeptides.SIGNIFICANCE STATEMENT The susceptibility to age-dependent memory impairments depends on the strength of the memory, changes in the responsible neurons, and internal states of aged individuals. How age-dependent changes in such internal states affect neural activity and memory formation remains unclear. We show in Drosophila melanogaster that aged flies of both sexes form robust appetitive memory conditioned with nutritious sugar, which has survival benefits for aged flies. In contrast, aging impairs the formation of appetitive memory conditioned with non-nutritious sugar that lacks survival benefits for the flies. Aging changes the neural circuits including dopamine neurons and neuropeptide F-expressing neurons, leading to the age-dependent impairment in memory with insufficient survival benefits and the preservation of the ability to form memory with survival benefits.
Collapse
|
60
|
Abstract
Many aspects of the brain’s design can be understood as the result of evolutionary drive toward metabolic efficiency. In addition to the energetic costs of neural computation and transmission, experimental evidence indicates that synaptic plasticity is metabolically demanding as well. As synaptic plasticity is crucial for learning, we examine how these metabolic costs enter in learning. We find that when synaptic plasticity rules are naively implemented, training neural networks requires extremely large amounts of energy when storing many patterns. We propose that this is avoided by precisely balancing labile forms of synaptic plasticity with more stable forms. This algorithm, termed synaptic caching, boosts energy efficiency manifold and can be used with any plasticity rule, including back-propagation. Our results yield a novel interpretation of the multiple forms of neural synaptic plasticity observed experimentally, including synaptic tagging and capture phenomena. Furthermore, our results are relevant for energy efficient neuromorphic designs. The brain expends a lot of energy. While the organ accounts for only about 2% of a person’s bodyweight, it is responsible for about 20% of our energy use at rest. Neurons use some of this energy to communicate with each other and to process information, but much of the energy is likely used to support learning. A study in fruit flies showed that insects that learned to associate two stimuli and then had their food supply cut off, died 20% earlier than untrained flies. This is thought to be because learning used up the insects’ energy reserves. If learning a single association requires so much energy, how does the brain manage to store vast amounts of data? Li and van Rossum offer an explanation based on a computer model of neural networks. The advantage of using such a model is that it is possible to control and measure conditions more precisely than in the living brain. Analysing the model confirmed that learning many new associations requires large amounts of energy. This is particularly true if the memories must be stored with a high degree of accuracy, and if the neural network contains many stored memories already. The reason that learning consumes so much energy is that forming long-term memories requires neurons to produce new proteins. Using the computer model, Li and van Rossum show that neural networks can overcome this limitation by storing memories initially in a transient form that does not require protein synthesis. Doing so reduces energy requirements by as much as 10-fold. Studies in living brains have shown that transient memories of this type do in fact exist. The current results hence offer a hypothesis as to how the brain can learn in a more energy efficient way. Energy consumption is thought to have placed constraints on brain evolution. It is also often a bottleneck in computers. By revealing how the brain encodes memories energy efficiently, the current findings could thus also inspire new engineering solutions.
Collapse
Affiliation(s)
- Ho Ling Li
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Mark Cw van Rossum
- School of Psychology, University of Nottingham, Nottingham, United Kingdom.,School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
61
|
Frankenhuis WE, Walasek N. Modeling the evolution of sensitive periods. Dev Cogn Neurosci 2020; 41:100715. [PMID: 31999568 PMCID: PMC6994616 DOI: 10.1016/j.dcn.2019.100715] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/09/2019] [Accepted: 10/01/2019] [Indexed: 11/28/2022] Open
Abstract
In the past decade, there has been monumental progress in our understanding of the neurobiological basis of sensitive periods. Little is known, however, about the evolution of sensitive periods. Recent studies have started to address this gap. Biologists have built mathematical models exploring the environmental conditions in which sensitive periods are likely to evolve. These models investigate how mechanisms of plasticity can respond optimally to experience during an individual's lifetime. This paper discusses the central tenets, insights, and predictions of these models, in relation to empirical work on humans and other animals. We also discuss which future models are needed to improve the bridge between theory and data, advancing their synergy. Our paper is written in an accessible manner and for a broad audience. We hope our work will contribute to recently emerging connections between the fields of developmental neuroscience and evolutionary biology.
Collapse
Affiliation(s)
| | - Nicole Walasek
- Behavioural Science Institute, Radboud University, the Netherlands
| |
Collapse
|
62
|
Affiliation(s)
- Nadine Ehmann
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
63
|
Scheunemann L, Lampin-Saint-Amaux A, Schor J, Preat T. A sperm peptide enhances long-term memory in female Drosophila. SCIENCE ADVANCES 2019; 5:eaax3432. [PMID: 31799390 PMCID: PMC6867886 DOI: 10.1126/sciadv.aax3432] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Can mating influence cognitive functions such as learning and memory in a permanent way? We have addressed this question using a combined behavioral and in vivo imaging approach, finding that aversive long-term memory performance strongly increases in Drosophila females in response to sperm transfer following mating. A peptide in the male sperm, the sex peptide, is known to cause marked changes in female reproductive behavior, as well as other behaviors such as dietary preference. Here, we demonstrate that this sex peptide enhances memory by acting on a single pair of serotonergic brain neurons, in which activation of the sex peptide receptor stimulates the cyclic adenosine monophosphate/protein kinase A pathway. We thus reveal a strong effect of mating on memory via the neuromodulatory action of a sperm peptide on the female brain.
Collapse
|
64
|
Harrison JW, Palmer JH, Rittschof CC. Altering social cue perception impacts honey bee aggression with minimal impacts on aggression-related brain gene expression. Sci Rep 2019; 9:14642. [PMID: 31601943 PMCID: PMC6787081 DOI: 10.1038/s41598-019-51223-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/24/2019] [Indexed: 02/01/2023] Open
Abstract
Gene expression changes resulting from social interactions may give rise to long term behavioral change, or simply reflect the activity of neural circuitry associated with behavioral expression. In honey bees, social cues broadly modulate aggressive behavior and brain gene expression. Previous studies suggest that expression changes are limited to contexts in which social cues give rise to stable, relatively long-term changes in behavior. Here we use a traditional beekeeping approach that inhibits aggression, smoke exposure, to deprive individuals of aggression-inducing olfactory cues and evaluate whether behavioral changes occur in absence of expression variation in a set of four biomarker genes (drat, cyp6g1/2, GB53860, inos) associated with aggression in previous studies. We also evaluate two markers of a brain hypoxic response (hif1α, hsf) to determine whether smoke induces molecular changes at all. We find that bees with blocked sensory perception as a result of smoke exposure show a strong, temporary inhibition of aggression relative to bees allowed to perceive normal social cues. However, blocking sensory perception had minimal impacts on aggression-relevant gene expression, althought it did induce a hypoxic molecular response in the brain. Results suggest that certain genes differentiate social cue-induced changes in aggression from long-term modulation of this phenotype.
Collapse
Affiliation(s)
- James W Harrison
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA
| | - Joseph H Palmer
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA
- College of Agriculture, Communities, and the Environment, Kentucky State University, 400 E. Main St., Frankfort, KY, 40601, USA
| | - Clare C Rittschof
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546, USA.
| |
Collapse
|
65
|
Liefting M, Rohmann JL, Le Lann C, Ellers J. What are the costs of learning? Modest trade-offs and constitutive costs do not set the price of fast associative learning ability in a parasitoid wasp. Anim Cogn 2019; 22:851-861. [PMID: 31222547 PMCID: PMC6687694 DOI: 10.1007/s10071-019-01281-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023]
Abstract
Learning ability has been associated with energetic costs that typically become apparent through trade-offs in a wide range of developmental, physiological, and life-history traits. Costs associated with learning ability can be either constitutive or induced, depending on whether they are always incurred or only when information is actively learned and memorized. Using lines of the parasitoid wasp Nasonia vitripennis that were selected for fast associative learning ability, we assessed a range of traits that have previously been identified as potential costs associated with learning. No difference in longevity, lipid reserves, tibia length, egg load, or fecundity was observed between the selected and control lines. All of these traits are considered to potentially lead to constitutive costs in the setup of this study. A gradual reversal to baseline learning after two forms of relaxed selection was indicative of a small constitutive cost of learning ability. We also tested for a trade-off with other memory types formed at later stages, but found no evidence that the mid-term memory that was selected for caused a decrease in performance of other memory types. In conclusion, we observe only one minor effect of a constitutive cost and none of the other costs and trade-offs that are reported in the literature to be of significant value in this case. We, therefore, argue for better inclusion of ecological and economic costs in studies on costs and benefits of learning ability.
Collapse
Affiliation(s)
- Maartje Liefting
- Applied Zoology/Animal Ecology, Freie Universität Berlin, 12163, Berlin, Germany.
- Animal Ecology, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| | - Jessica L Rohmann
- Institute of Public Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Cécile Le Lann
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution) UMR 6553, 263 Avenue du Général Leclerc, 35000, Rennes, France
| | - Jacintha Ellers
- Animal Ecology, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
66
|
Lyutova R, Selcho M, Pfeuffer M, Segebarth D, Habenstein J, Rohwedder A, Frantzmann F, Wegener C, Thum AS, Pauls D. Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells. Nat Commun 2019; 10:3097. [PMID: 31308381 PMCID: PMC6629635 DOI: 10.1038/s41467-019-11092-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Dopaminergic neurons in the brain of the Drosophila larva play a key role in mediating reward information to the mushroom bodies during appetitive olfactory learning and memory. Using optogenetic activation of Kenyon cells we provide evidence that recurrent signaling exists between Kenyon cells and dopaminergic neurons of the primary protocerebral anterior (pPAM) cluster. Optogenetic activation of Kenyon cells paired with odor stimulation is sufficient to induce appetitive memory. Simultaneous impairment of the dopaminergic pPAM neurons abolishes appetitive memory expression. Thus, we argue that dopaminergic pPAM neurons mediate reward information to the Kenyon cells, and in turn receive feedback from Kenyon cells. We further show that this feedback signaling is dependent on short neuropeptide F, but not on acetylcholine known to be important for odor-shock memories in adult flies. Our data suggest that recurrent signaling routes within the larval mushroom body circuitry may represent a mechanism subserving memory stabilization.
Collapse
Affiliation(s)
- Radostina Lyutova
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Maximilian Pfeuffer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Dennis Segebarth
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Würzburg, D-97078, Würzburg, Germany
| | - Jens Habenstein
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.,Department of Behavioral Physiology and Sociobiology, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Astrid Rohwedder
- Department of Genetics, University of Leipzig, D-04103, Leipzig, Germany
| | - Felix Frantzmann
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Andreas S Thum
- Department of Genetics, University of Leipzig, D-04103, Leipzig, Germany
| | - Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|
67
|
Scheunemann L, Plaçais PY, Dromard Y, Schwärzel M, Preat T. Dunce Phosphodiesterase Acts as a Checkpoint for Drosophila Long-Term Memory in a Pair of Serotonergic Neurons. Neuron 2019; 98:350-365.e5. [PMID: 29673482 PMCID: PMC5919781 DOI: 10.1016/j.neuron.2018.03.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/19/2017] [Accepted: 03/16/2018] [Indexed: 01/08/2023]
Abstract
A key function of the brain is to filter essential information and store it in the form of stable, long-term memory (LTM). We demonstrate here that the Dunce (Dnc) phosphodiesterase, an important enzyme that degrades cAMP, acts as a molecular switch that controls LTM formation in Drosophila. We show that, during LTM formation, Dnc is inhibited in the SPN, a pair of newly characterized serotonergic neurons, which stimulates the cAMP/PKA pathway. As a consequence, the SPN activates downstream dopaminergic neurons, opening the gate for LTM formation in the olfactory memory center, the mushroom body. Strikingly, transient inhibition of Dnc in the SPN by RNAi was sufficient to induce LTM formation with a training protocol that normally generates only short-lived memory. Thus, Dnc activity in the SPN acts as a memory checkpoint to guarantee that only the most relevant learned experiences are consolidated into stable memory. Dunce phosphodiesterase is a default inhibitor of long-term memory (LTM) formation Dunce acts in a pair of newly identified serotonergic projection neurons These serotonergic neurons control the activity of LTM-gating dopaminergic neurons
Collapse
Affiliation(s)
- Lisa Scheunemann
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Yann Dromard
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Martin Schwärzel
- Freie Universität Berlin, Department of Biology/Neurobiology, Königin-Luise Str. 28-30, Berlin 14195, Germany
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, ESPCI Paris, PSL Research University, CNRS, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
68
|
Rittschof CC, Vekaria HJ, Palmer JH, Sullivan PG. Biogenic amines and activity levels alter the neural energetic response to aggressive social cues in the honey bee Apis mellifera. J Neurosci Res 2019; 97:991-1003. [PMID: 31090236 DOI: 10.1002/jnr.24443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/18/2023]
Abstract
Mitochondrial activity is highly dynamic in the healthy brain, and it can reflect both the signaling potential and the signaling history of neural circuits. Recent studies spanning invertebrates to mammals have highlighted a role for neural mitochondrial dynamics in learning and memory processes as well as behavior. In the current study, we investigate the interplay between biogenic amine signaling and neural energetics in the honey bee, Apis mellifera. In this species, aggressive behaviors are regulated by neural energetic state and biogenic amine titers, but it is unclear how these mechanisms are linked to impact behavioral expression. We show that brain mitochondrial number is highest in aggression-relevant brain regions and in individual bees that are most responsive to aggressive cues, emphasizing the importance of energetics in modulating this phenotype. We also show that the neural energetic response to alarm pheromone, an aggression inducing social cue, is activity dependent, modulated by the "fight or flight" insect neurotransmitter octopamine. Two other neuroactive compounds known to cause variation in aggression, dopamine, and serotonin, also modulate neural energetic state in aggression-relevant regions of the brain. However, the effects of these compounds on respiration at baseline and following alarm pheromone exposure are distinct, suggesting unique mechanisms underlying variation in mitochondrial respiration in these circuits. These results motivate new explanations for the ways in which biogenic amines alter sensory perception in the context of aggression. Considering neural energetics improves predictions about the regulation of complex and context-dependent behavioral phenotypes.
Collapse
Affiliation(s)
- Clare C Rittschof
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| | - Hemendra J Vekaria
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Joseph H Palmer
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| | - Patrick G Sullivan
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
69
|
Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. Intellectual disability and autism spectrum disorders 'on the fly': insights from Drosophila. Dis Model Mech 2019; 12:dmm039180. [PMID: 31088981 PMCID: PMC6550041 DOI: 10.1242/dmm.039180] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
70
|
Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction-induced memory enhancement. PLoS Biol 2019; 17:e2007097. [PMID: 30883547 PMCID: PMC6438579 DOI: 10.1371/journal.pbio.2007097] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/28/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Dietary restriction (DR; sometimes called calorie restriction) has profound beneficial effects on physiological, psychological, and behavioral outcomes in animals and in humans. We have explored the molecular mechanism of DR-induced memory enhancement and demonstrate that dietary tryptophan-a precursor amino acid for serotonin biosynthesis in the brain-and serotonin receptor 5-hydroxytryptamine receptor 6 (HTR6) are crucial in mediating this process. We show that HTR6 inactivation diminishes DR-induced neurological alterations, including reduced dendritic complexity, increased spine density, and enhanced long-term potentiation (LTP) in hippocampal neurons. Moreover, we find that HTR6-mediated mechanistic target of rapamycin complex 1 (mTORC1) signaling is involved in DR-induced memory improvement. Our results suggest that the HTR6-mediated mTORC1 pathway may function as a nutrient sensor in hippocampal neurons to couple memory performance to dietary intake.
Collapse
|
71
|
Spatial memory and cognitive flexibility trade-offs: to be or not to be flexible, that is the question. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.02.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
72
|
|
73
|
Ziomkiewicz A, Wichary S, Jasienska G. Cognitive costs of reproduction: life-history trade-offs explain cognitive decline during pregnancy in women. Biol Rev Camb Philos Soc 2018; 94:1105-1115. [PMID: 30588733 DOI: 10.1111/brv.12494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022]
Abstract
Life-history theory predicts that access to limited resources leads to trade-offs between competing body functions. Women, who face higher costs of reproduction when compared to men, should be especially vulnerable to these trade-offs. We propose the 'cognitive costs of reproduction hypothesis', which states that energy trade-offs imposed by reproduction may lead to a decline in maternal cognitive function during gestation. In particular, we hypothesize that the decline in cognitive function frequently observed during pregnancy is associated with the allocation of resources between the competing energetic requirements of the mother's brain and the developing foetus. Several distinctive anatomical and physiological features including a high metabolic rate of the brain, large infant size, specific anatomical features of the placenta and trophoblast, and the lack of maternal control over glucose flow through the placenta make the occurrence of these trade-offs likely. Herein, we review several lines of evidence for trade-offs between gestation and cognition that are related to: (i) energy metabolism during reproduction; (ii) energy metabolism of the human brain; (iii) links between energy metabolism and cognitive function; and (iv) links between gestation and cognitive function. We also review evidence for the important roles of cortisol, corticotropin-releasing hormone and sex hormones in mediating the effects of gestation on cognition, and we discuss possible neurophysiological mechanisms underlying the observed effects. The evidence supports the view that energy trade-offs between foetal growth and maternal endocrine and brain function lead to changes in maternal cognition, and that this phenomenon is mediated by neuroendocrine mechanisms involving the hypothalamic-pituitary-adrenal axis, brainstem nucleus locus coeruleus and hippocampus.
Collapse
Affiliation(s)
- Anna Ziomkiewicz
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 50-449, Poland
| | - Szymon Wichary
- Department of Psychophysiology of Cognitive Processes, SWPS University of Social Sciences and Humanities, Warsaw 03-815, Poland.,Department of Cognitive Psychology, Leiden Institute for Brain and Cognition, Leiden University, Leiden 2333AK, The Netherlands
| | - Grazyna Jasienska
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow 31-531, Poland
| |
Collapse
|
74
|
Kelley P, Evans MDR, Kelley J. Making Memories: Why Time Matters. Front Hum Neurosci 2018; 12:400. [PMID: 30386221 PMCID: PMC6198140 DOI: 10.3389/fnhum.2018.00400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 09/18/2018] [Indexed: 11/29/2022] Open
Abstract
In the last decade advances in human neuroscience have identified the critical importance of time in creating long-term memories. Circadian neuroscience has established biological time functions via cellular clocks regulated by photosensitive retinal ganglion cells and the suprachiasmatic nuclei. Individuals have different circadian clocks depending on their chronotypes that vary with genetic, age, and sex. In contrast, social time is determined by time zones, daylight savings time, and education and employment hours. Social time and circadian time differences can lead to circadian desynchronization, sleep deprivation, health problems, and poor cognitive performance. Synchronizing social time to circadian biology leads to better health and learning, as demonstrated in adolescent education. In-day making memories of complex bodies of structured information in education is organized in social time and uses many different learning techniques. Research in the neuroscience of long-term memory (LTM) has demonstrated in-day time spaced learning patterns of three repetitions of information separated by two rest periods are effective in making memories in mammals and humans. This time pattern is based on the intracellular processes required in synaptic plasticity. Circadian desynchronization, sleep deprivation, and memory consolidation in sleep are less well-understood, though there has been considerable progress in neuroscience research in the last decade. The interplay of circadian, in-day and sleep neuroscience research are creating an understanding of making memories in the first 24-h that has already led to interventions that can improve health and learning.
Collapse
Affiliation(s)
- Paul Kelley
- Sleep, Circadian and Memory Neuroscience, The Open University, Milton Keynes, United Kingdom
| | - M. D. R. Evans
- Sociology and Applied Statistics Program, University of Nevada, Reno, Reno, NV, United States
- Sociology, University of Nevada, Reno, Reno, NV, United States
| | - Jonathan Kelley
- Sociology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
75
|
Barajas-Azpeleta R, Wu J, Gill J, Welte R, Seidel C, McKinney S, Dissel S, Si K. Antimicrobial peptides modulate long-term memory. PLoS Genet 2018; 14:e1007440. [PMID: 30312294 PMCID: PMC6224176 DOI: 10.1371/journal.pgen.1007440] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/08/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides act as a host defense mechanism and regulate the commensal microbiome. To obtain a comprehensive view of genes contributing to long-term memory we performed mRNA sequencing from single Drosophila heads following behavioral training that produces long-lasting memory. Surprisingly, we found that Diptericin B, an immune peptide with antimicrobial activity, is upregulated following behavioral training. Deletion and knock down experiments revealed that Diptericin B and another immune peptide, Gram-Negative Bacteria Binding Protein like 3, regulate long-term but not short-term memory or instinctive behavior in Drosophila. Interestingly, removal of DptB in the head fat body and GNBP-like3 in neurons results in memory deficit. That putative antimicrobial peptides influence memory provides an example of how some immune peptides may have been repurposed to influence the function of nervous system. It is becoming evident that the nervous system and immune system share not only some of the same molecular logic but also the same components. Here, we report a novel and unanticipated example of how immune genes influence nervous system function. Exploring how Drosophila form long-lasting memories of certain experiences, we have found that antimicrobial peptides that fight bacteria in the body, are expressed in the head, and control whether an animal will form long-term memory of a food source or an unsuccessful mating experience. Antimicrobial peptides are detected in the brain of many species and has often been associated with dysfunction of the nervous system. This and other recent works, provide an explanation to why antimicrobial peptides may be expressed in the head: they regulate normal functions of the brain. Both eating, and mating engage the immune system in preparation of exposure to external agents including bacteria. We speculate antimicrobial peptides were upregulated in the body to deal with immune challenges and over evolutionary time some of them are co-adopted to activate signaling pathways to convey specific information to the nervous system.
Collapse
Affiliation(s)
| | - Jianping Wu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jason Gill
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Ryan Welte
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Stephane Dissel
- Division of Molecular Biology and Biochemistry, University of Missouri, Kansas City, Missouri, United States of America
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
76
|
Leod KAM, Seas A, Wainwright ML, Mozzachiodi R. Effects of internal and external factors on the budgeting between defensive and non-defensive responses in Aplysia. Behav Brain Res 2018; 349:177-185. [PMID: 29704600 DOI: 10.1016/j.bbr.2018.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Following exposure to aversive stimuli, organisms budget their behaviors by augmenting defensive responses and reducing/suppressing non-defensive behaviors. This budgeting process must be flexible to accommodate modifications in the animal's internal and/or external state that require the normal balance between defensive and non-defensive behaviors to be adjusted. When exposed to aversive stimuli, the mollusk Aplysia budgets its behaviors by concurrently enhancing defensive withdrawal reflexes (an elementary form of learning known as sensitization) and suppressing feeding. Sensitization and feeding suppression are consistently co-expressed following different training protocols and share common temporal domains, suggesting that they are interlocked. In this study, we attempted to uncouple the co-expression of sensitization and feeding suppression using: 1) manipulation of the animal's motivational state through prolonged food deprivation and 2) extended training with aversive stimuli that induces sensitization lasting for weeks. Both manipulations uncoupled the co-expression of the above behavioral changes. Prolonged food deprivation prevented the expression of sensitization, but not of feeding suppression. Following the extended training, sensitization and feeding suppression were co-expressed only for a limited time (i.e., 24 h), after which feeding returned to baseline levels as sensitization persisted for up to seven days. These findings indicate that sensitization and feeding suppression are not interlocked and that their co-expression can be uncoupled by internal (prolonged food deprivation) and external (extended aversive training) factors. The different strategies, by which the co-expression of sensitization and feeding suppression was altered, provide an example of how budgeting strategies triggered by an identical aversive experience can vary depending on the state of the organism.
Collapse
Affiliation(s)
- Kaitlyn A Mac Leod
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Alexandra Seas
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Marcy L Wainwright
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA.
| |
Collapse
|
77
|
Lowenstein EG, Velazquez-Ulloa NA. A Fly's Eye View of Natural and Drug Reward. Front Physiol 2018; 9:407. [PMID: 29720947 PMCID: PMC5915475 DOI: 10.3389/fphys.2018.00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.
Collapse
Affiliation(s)
- Eve G Lowenstein
- Department of Biology, Lewis & Clark College, Portland, OR, United States
| | | |
Collapse
|
78
|
Skora S, Mende F, Zimmer M. Energy Scarcity Promotes a Brain-wide Sleep State Modulated by Insulin Signaling in C. elegans. Cell Rep 2018; 22:953-966. [PMID: 29386137 PMCID: PMC5846868 DOI: 10.1016/j.celrep.2017.12.091] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/16/2017] [Accepted: 12/23/2017] [Indexed: 12/17/2022] Open
Abstract
Neural information processing entails a high energetic cost, but its maintenance is crucial for animal survival. However, the brain’s energy conservation strategies are incompletely understood. Employing functional brain-wide imaging and quantitative behavioral assays, we describe a neuronal strategy in Caenorhabditis elegans that balances energy availability and expenditure. Upon acute food deprivation, animals exhibit a transiently elevated state of arousal, indicated by foraging behaviors and increased responsiveness to food-related cues. In contrast, long-term starvation suppresses these behaviors and biases animals to intermittent sleep episodes. Brain-wide neuronal population dynamics, which are likely energetically costly but important for behavior, are robust to starvation while animals are awake. However, during starvation-induced sleep, brain dynamics are systemically downregulated. Neuromodulation via insulin-like signaling is required to transiently maintain the animals’ arousal state upon acute food deprivation. Our data suggest that the regulation of sleep and wakefulness supports optimal energy allocation. Starvation shifts the behavioral strategy from exploration to intermittent sleep Brain-wide neuronal population dynamics are robust to starvation Neuromodulation via insulin signaling maintains wakefulness during short fasting The insulin receptor DAF-2 acts in a network of sensory neurons and interneurons
Collapse
Affiliation(s)
- Susanne Skora
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Fanny Mende
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
79
|
Rittschof CC, Vekaria HJ, Palmer JH, Sullivan PG. Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera. J Exp Biol 2018; 221:jeb.176917. [DOI: 10.1242/jeb.176917] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Neuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics. The degree and speed of this decline has only been previously observed in the context of brain injury. Furthermore, in the honey bee, age-related increases in aggressive tendency are associated with increased baseline brain mitochondrial respiration, as well as increased plasticity in response to metabolic fuel type in vitro. Similarly, diet restriction and ketone body feeding, which commonly enhance mammalian brain mitochondrial function in vivo, cause increased aggression. Thus, even in normal behavioral contexts, brain mitochondria show a surprising degree of variation in function over both rapid and prolonged timescales, with age predicting both baseline function and plasticity in function. These results suggest that mitochondrial function is integral to modulating aggression-related neuronal signaling. We hypothesize that variation in function reflects mitochondrial calcium buffering activity, and that shifts in mitochondrial function signal to the neuronal soma to regulate gene expression and neural energetic state. Modulating brain energetic state is emerging as a critical component of the regulation of behavior in non-diseased contexts.
Collapse
Affiliation(s)
- Clare C. Rittschof
- Department of Entomology, University of Kentucky, S-225 Ag. Science Center North, Lexington, KY, 40546, USA
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center and the Department of Neuroscience, University of Kentucky, 741 South Limestone Street, 475 BBSRB, Lexington, KY 40536-0509, USA
| | - Joseph H. Palmer
- Department of Entomology, University of Kentucky, S-225 Ag. Science Center North, Lexington, KY, 40546, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center and the Department of Neuroscience, University of Kentucky, 741 South Limestone Street, 475 BBSRB, Lexington, KY 40536-0509, USA
| |
Collapse
|
80
|
Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics 2018; 15:36-59. [PMID: 29134359 PMCID: PMC5794698 DOI: 10.1007/s13311-017-0585-0] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.
Collapse
Affiliation(s)
- Gilliard Lach
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food for Health Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Food for Health Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
81
|
Lhomme P, Carrasco D, Larsson M, Hansson B, Anderson P. A context-dependent induction of natal habitat preference in a generalist herbivorous insect. Behav Ecol 2017. [DOI: 10.1093/beheco/arx173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Patrick Lhomme
- Swedish University of Agricultural Sciences, Division of Chemical Ecology, Department of Plant Protection Biology, Alnarp, Sweden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - David Carrasco
- Swedish University of Agricultural Sciences, Division of Chemical Ecology, Department of Plant Protection Biology, Alnarp, Sweden
| | - Mattias Larsson
- Swedish University of Agricultural Sciences, Division of Chemical Ecology, Department of Plant Protection Biology, Alnarp, Sweden
| | - Bill Hansson
- Swedish University of Agricultural Sciences, Division of Chemical Ecology, Department of Plant Protection Biology, Alnarp, Sweden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Peter Anderson
- Swedish University of Agricultural Sciences, Division of Chemical Ecology, Department of Plant Protection Biology, Alnarp, Sweden
| |
Collapse
|
82
|
Ichinose T, Tanimoto H, Yamagata N. Behavioral Modulation by Spontaneous Activity of Dopamine Neurons. Front Syst Neurosci 2017; 11:88. [PMID: 29321731 PMCID: PMC5732226 DOI: 10.3389/fnsys.2017.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 01/11/2023] Open
Abstract
Dopamine modulates a variety of animal behaviors that range from sleep and learning to courtship and aggression. Besides its well-known phasic firing to natural reward, a substantial number of dopamine neurons (DANs) are known to exhibit ongoing intrinsic activity in the absence of an external stimulus. While accumulating evidence points at functional implications for these intrinsic "spontaneous activities" of DANs in cognitive processes, a causal link to behavior and its underlying mechanisms has yet to be elucidated. Recent physiological studies in the model organism Drosophila melanogaster have uncovered that DANs in the fly brain are also spontaneously active, and that this activity reflects the behavioral/internal states of the animal. Strikingly, genetic manipulation of basal DAN activity resulted in behavioral alterations in the fly, providing critical evidence that links spontaneous DAN activity to behavioral states. Furthermore, circuit-level analyses have started to reveal cellular and molecular mechanisms that mediate or regulate spontaneous DAN activity. Through reviewing recent findings in different animals with the major focus on flies, we will discuss potential roles of this physiological phenomenon in directing animal behaviors.
Collapse
Affiliation(s)
- Toshiharu Ichinose
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | |
Collapse
|
83
|
Bozler J, Kacsoh BZ, Chen H, Theurkauf WE, Weng Z, Bosco G. A systems level approach to temporal expression dynamics in Drosophila reveals clusters of long term memory genes. PLoS Genet 2017; 13:e1007054. [PMID: 29084214 PMCID: PMC5679645 DOI: 10.1371/journal.pgen.1007054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/09/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
The ability to integrate experiential information and recall it in the form of memory is observed in a wide range of taxa, and is a hallmark of highly derived nervous systems. Storage of past experiences is critical for adaptive behaviors that anticipate both adverse and positive environmental factors. The process of memory formation and consolidation involve many synchronized biological events including gene transcription, protein modification, and intracellular trafficking: However, many of these molecular mechanisms remain illusive. With Drosophila as a model system we use a nonassociative memory paradigm and a systems level approach to uncover novel transcriptional patterns. RNA sequencing of Drosophila heads during and after memory formation identified a number of novel memory genes. Tracking the dynamic expression of these genes over time revealed complex gene networks involved in long term memory. In particular, this study focuses on two functional gene clusters of signal peptides and proteases. Bioinformatics network analysis and prediction in combination with high-throughput RNA sequencing identified previously unknown memory genes, which when genetically knocked down resulted in behaviorally validated memory defects.
Collapse
Affiliation(s)
- Julianna Bozler
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Balint Z. Kacsoh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Hao Chen
- Bioinformatics Program, Boston University, Boston, MA, United States of America
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - William E. Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| |
Collapse
|
84
|
Rittschof CC, Schirmeier S. Insect models of central nervous system energy metabolism and its links to behavior. Glia 2017; 66:1160-1175. [DOI: 10.1002/glia.23235] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Clare C. Rittschof
- Department of Entomology; College of Agriculture, Food, and the Environment, University of Kentucky; Lexington Kentucky
| | - Stefanie Schirmeier
- Institut für Neuro-und Verhaltensbiologie, University of Münster; Münster Germany
| |
Collapse
|
85
|
Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Prog Neurobiol 2017; 156:164-188. [DOI: 10.1016/j.pneurobio.2017.05.004] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
|
86
|
Affiliation(s)
- E. Ito
- Department of Biology, Waseda University , Tokyo, Japan
| | - Y. Totani
- Department of Biology, Waseda University , Tokyo, Japan
| | - A. Oike
- Department of Biology, Waseda University , Tokyo, Japan
| |
Collapse
|
87
|
Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nat Commun 2017; 8:15510. [PMID: 28580949 PMCID: PMC5465319 DOI: 10.1038/ncomms15510] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 04/04/2017] [Indexed: 01/02/2023] Open
Abstract
Efficient energy use has constrained the evolution of nervous systems. However, it is unresolved whether energy metabolism may resultantly regulate major brain functions. Our observation that Drosophila flies double their sucrose intake at an early stage of long-term memory formation initiated the investigation of how energy metabolism intervenes in this process. Cellular-resolution imaging of energy metabolism reveals a concurrent elevation of energy consumption in neurons of the mushroom body, the fly's major memory centre. Strikingly, upregulation of mushroom body energy flux is both necessary and sufficient to drive long-term memory formation. This effect is triggered by a specific pair of dopaminergic neurons afferent to the mushroom bodies, via the D5-like DAMB dopamine receptor. Hence, dopamine signalling mediates an energy switch in the mushroom body that controls long-term memory encoding. Our data thus point to an instructional role for energy flux in the execution of demanding higher brain functions. Energy consumption in the brain is thought to respond to changes in neuronal activity, without informational role. Here the authors show that increased energy flux in the mushroom body, driven by a pair of input dopaminergic neurons, is a command for the formation of long-term memory in Drosophila.
Collapse
|
88
|
Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration. EMBO J 2017; 36:1474-1492. [PMID: 28438892 DOI: 10.15252/embj.201695810] [Citation(s) in RCA: 463] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/29/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
Brain cells normally respond adaptively to bioenergetic challenges resulting from ongoing activity in neuronal circuits, and from environmental energetic stressors such as food deprivation and physical exertion. At the cellular level, such adaptive responses include the "strengthening" of existing synapses, the formation of new synapses, and the production of new neurons from stem cells. At the molecular level, bioenergetic challenges result in the activation of transcription factors that induce the expression of proteins that bolster the resistance of neurons to the kinds of metabolic, oxidative, excitotoxic, and proteotoxic stresses involved in the pathogenesis of brain disorders including stroke, and Alzheimer's and Parkinson's diseases. Emerging findings suggest that lifestyles that include intermittent bioenergetic challenges, most notably exercise and dietary energy restriction, can increase the likelihood that the brain will function optimally and in the absence of disease throughout life. Here, we provide an overview of cellular and molecular mechanisms that regulate brain energy metabolism, how such mechanisms are altered during aging and in neurodegenerative disorders, and the potential applications to brain health and disease of interventions that engage pathways involved in neuronal adaptations to metabolic stress.
Collapse
Affiliation(s)
| | - Mark P Mattson
- Laboratory of Neuroscience, National Institute on Aging, Baltimore, MD, USA .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
89
|
Dopaminergic rules of engagement for memory in Drosophila. Curr Opin Neurobiol 2017; 43:56-62. [PMID: 28088703 DOI: 10.1016/j.conb.2016.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 11/21/2022]
Abstract
Dopamine is associated with a variety of conserved responses across species including locomotion, sleep, food consumption, aggression, courtship, addiction and several forms of appetitive and aversive memory. Historically, dopamine has been most prominently associated with dynamics underlying reward, punishment, or salience. Recent emerging evidence from Drosophila supports a role in all of these functions, as well as additional roles in the interplay between external sensation and internal states and forgetting of the very memories dopamine helped encode. We discuss how cell-specific resolution and manipulation are elucidating the rules of dopamine's involvement in encoding valence and memory.
Collapse
|
90
|
|
91
|
Al-Shawaf L. The evolutionary psychology of hunger. Appetite 2016; 105:591-5. [PMID: 27328100 DOI: 10.1016/j.appet.2016.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022]
Abstract
An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses.
Collapse
Affiliation(s)
- Laith Al-Shawaf
- Department of Psychology, Bilkent University, Ankara, Turkey; College of Life Sciences, Wissenschaftskolleg zu Berlin (Institute for Advanced Study), Germany.
| |
Collapse
|
92
|
Smid HM, Vet LE. The complexity of learning, memory and neural processes in an evolutionary ecological context. CURRENT OPINION IN INSECT SCIENCE 2016; 15:61-69. [PMID: 27436733 DOI: 10.1016/j.cois.2016.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 06/06/2023]
Abstract
The ability to learn and form memories is widespread among insects, but there exists considerable natural variation between species and populations in these traits. Variation manifests itself in the way information is stored in different memory forms. This review focuses on ecological factors such as environmental information, spatial aspects of foraging behavior and resource distribution that drive the evolution of this natural variation and discusses the role of different genes and neural networks. We conclude that at the level of individual, population or species, insect learning and memory cannot be described as good or bad. Rather, we argue that insects evolve tailor-made learning and memory types; they gate learned information into memories with high or low persistence. This way, they are prepared to learn and form memory to optimally deal with the specific ecologies of their foraging environments.
Collapse
Affiliation(s)
- Hans M Smid
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Louise Em Vet
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| |
Collapse
|
93
|
Perisse E, Owald D, Barnstedt O, Talbot CB, Huetteroth W, Waddell S. Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body. Neuron 2016; 90:1086-99. [PMID: 27210550 PMCID: PMC4893166 DOI: 10.1016/j.neuron.2016.04.034] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/27/2016] [Accepted: 04/19/2016] [Indexed: 11/23/2022]
Abstract
In Drosophila, negatively reinforcing dopaminergic neurons also provide the inhibitory control of satiety over appetitive memory expression. Here we show that aversive learning causes a persistent depression of the conditioned odor drive to two downstream feed-forward inhibitory GABAergic interneurons of the mushroom body, called MVP2, or mushroom body output neuron (MBON)-γ1pedc>α/β. However, MVP2 neuron output is only essential for expression of short-term aversive memory. Stimulating MVP2 neurons preferentially inhibits the odor-evoked activity of avoidance-directing MBONs and odor-driven avoidance behavior, whereas their inhibition enhances odor avoidance. In contrast, odor-evoked activity of MVP2 neurons is elevated in hungry flies, and their feed-forward inhibition is required for expression of appetitive memory at all times. Moreover, imposing MVP2 activity promotes inappropriate appetitive memory expression in food-satiated flies. Aversive learning and appetitive motivation therefore toggle alternate modes of a common feed-forward inhibitory MVP2 pathway to promote conditioned odor avoidance or approach. Aversive learning reduces odor-specific feed-forward inhibition in mushroom body Feed-forward inhibition selectively inhibits avoidance-directing neural pathways Appetitive motivation increases feed-forward inhibition in the mushroom body Imposing feed-forward inhibition favors appetitive memory expression
Collapse
Affiliation(s)
- Emmanuel Perisse
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - David Owald
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Oliver Barnstedt
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Clifford B Talbot
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Wolf Huetteroth
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK.
| |
Collapse
|
94
|
Landayan D, Wolf FW. Shared neurocircuitry underlying feeding and drugs of abuse in Drosophila. Biomed J 2016; 38:496-509. [PMID: 27013449 PMCID: PMC6138758 DOI: 10.1016/j.bj.2016.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/13/2015] [Indexed: 01/06/2023] Open
Abstract
The neural circuitry and molecules that control the rewarding properties of food and drugs of abuse appear to partially overlap in the mammalian brain. This has raised questions about the extent of the overlap and the precise role of specific circuit elements in reward and in other behaviors associated with feeding regulation and drug responses. The much simpler brain of invertebrates including the fruit fly Drosophila, offers an opportunity to make high-resolution maps of the circuits and molecules that govern behavior. Recent progress in Drosophila has revealed not only some common substrates for the actions of drugs of abuse and for the regulation of feeding, but also a remarkable level of conservation with vertebrates for key neuromodulatory transmitters. We speculate that Drosophila may serve as a model for distinguishing the neural mechanisms underlying normal and pathological motivational states that will be applicable to mammals.
Collapse
Affiliation(s)
- Dan Landayan
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA.
| | - Fred W Wolf
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA.
| |
Collapse
|
95
|
Zwoinska MK, Lind MI, Cortazar-Chinarro M, Ramsden M, Maklakov AA. Selection on learning performance results in the correlated evolution of sexual dimorphism in life history. Evolution 2016; 70:342-57. [DOI: 10.1111/evo.12862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Martyna K. Zwoinska
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Martin I. Lind
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Maria Cortazar-Chinarro
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Mark Ramsden
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Alexei A. Maklakov
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| |
Collapse
|
96
|
Hunger Promotes Fear Extinction by Activation of an Amygdala Microcircuit. Neuropsychopharmacology 2016; 41:431-9. [PMID: 26062787 PMCID: PMC4579557 DOI: 10.1038/npp.2015.163] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/06/2015] [Accepted: 05/28/2015] [Indexed: 01/24/2023]
Abstract
Emotions control evolutionarily-conserved behavior that is central to survival in a natural environment. Imbalance within emotional circuitries, however, may result in malfunction and manifestation of anxiety disorders. Thus, a better understanding of emotional processes and, in particular, the interaction of the networks involved is of considerable clinical relevance. Although neurobiological substrates of emotionally controlled circuitries are increasingly evident, their mutual influences are not. To investigate interactions between hunger and fear, we performed Pavlovian fear conditioning in fasted wild-type mice and in mice with genetic modification of a feeding-related gene. Furthermore, we analyzed in these mice the electrophysiological microcircuits underlying fear extinction. Short-term fasting before fear acquisition specifically impaired long-term fear memory, whereas fasting before fear extinction facilitated extinction learning. Furthermore, genetic deletion of the Y4 receptor reduced appetite and completely impaired fear extinction, a phenomenon that was rescued by fasting. A marked increase in feed-forward inhibition between the basolateral and central amygdala has been proposed as a synaptic correlate of fear extinction and involves activation of the medial intercalated cells. This form of plasticity was lost in Y4KO mice. Fasting before extinction learning, however, resulted in specific activation of the medial intercalated neurons and re-established the enhancement of feed-forward inhibition in this amygdala microcircuit of Y4KO mice. Hence, consolidation of fear and extinction memories is differentially regulated by hunger, suggesting that fasting and modification of feeding-related genes could augment the effectiveness of exposure therapy and provide novel drug targets for treatment of anxiety disorders.
Collapse
|
97
|
Ichinose T, Aso Y, Yamagata N, Abe A, Rubin GM, Tanimoto H. Reward signal in a recurrent circuit drives appetitive long-term memory formation. eLife 2015; 4:e10719. [PMID: 26573957 PMCID: PMC4643015 DOI: 10.7554/elife.10719] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Dopamine signals reward in animal brains. A single presentation of a sugar reward to Drosophila activates distinct subsets of dopamine neurons that independently induce short- and long-term olfactory memories (STM and LTM, respectively). In this study, we show that a recurrent reward circuit underlies the formation and consolidation of LTM. This feedback circuit is composed of a single class of reward-signaling dopamine neurons (PAM-α1) projecting to a restricted region of the mushroom body (MB), and a specific MB output cell type, MBON-α1, whose dendrites arborize that same MB compartment. Both MBON-α1 and PAM-α1 neurons are required during the acquisition and consolidation of appetitive LTM. MBON-α1 additionally mediates the retrieval of LTM, which is dependent on the dopamine receptor signaling in the MB α/β neurons. Our results suggest that a reward signal transforms a nascent memory trace into a stable LTM using a feedback circuit at the cost of memory specificity. DOI:http://dx.doi.org/10.7554/eLife.10719.001 An animal that finds particularly nutritious and palatable food will often develop a long-lasting memory—even if they experience that event only once. One example of this is the ability of the fruit fly Drosophila to form a long-term association between a sugar reward and a specific odor that was present when they received the reward. The consumption of sugar triggers the release of a chemical called dopamine on specific compartments of a brain structure called the mushroom body. Dopamine then acts to modify the connection between cells called “Kenyon cells”, which encode specific odors, and the neurons that send signals out from the mushroom body (called MBONs). The result is the formation of a memory that links the odor with the reward. However, little is known about how this process differs for long-term vs. short-term memories, and how it can occur when the fly has experienced the odor and reward together on only a single occasion. To find out, Ichinose et al. combined behavioral testing of fruit flies with genetics. The results confirmed that the dopamine neurons and the MBONs that project to a single compartment of the mushroom body, called α1, are both required for the formation of long-term odor-reward memories, but not their short-term equivalents. These neurons are called PAM-α1 and MBON-α1, respectively. Unexpectedly, anatomical data revealed that PAM-α1 dopamine neurons receive input from MBON-α1; that is, long-term memory formation involves a feedback circuit: from PAM-α1 to Kenyon cells, then to MBON-α1 and back to PAM-α1. Blocking feedback from the MBON-α1 onto the PAM-α1 neurons shortly after odor-reward training disrupted long-term memory formation. Conversely, blocking feedback at a later stage did not. This suggests that prolonged activation of PAM-α1 by MBON-α1 helps to strengthen newly established memories, converting them into memories that will last for a long time. The discovery of a specific circuit that supports long-term, but not short-term, memory formation in fruit flies is consistent with evidence of distinct mechanisms underlying these processes in mammals. Further work is now required to determine whether feedback circuits similar to those in fruit flies also contribute to reward-based learning in other animals. DOI:http://dx.doi.org/10.7554/eLife.10719.002
Collapse
Affiliation(s)
- Toshiharu Ichinose
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nobuhiro Yamagata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Ayako Abe
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
98
|
Krishnan HC, Lyons LC. Synchrony and desynchrony in circadian clocks: impacts on learning and memory. ACTA ACUST UNITED AC 2015; 22:426-37. [PMID: 26286653 PMCID: PMC4561405 DOI: 10.1101/lm.038877.115] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in phases misaligned with natural circadian activity rhythms. Endogenous circadian oscillators modulate alertness, the acquisition of learning, memory formation, and the recall of memory with examples of circadian modulation of memory observed across phyla from invertebrates to humans. Cognitive performance and memory are significantly diminished when occurring out of phase with natural circadian rhythms. Disruptions in circadian regulation can lead to impairment in the formation of memories and manifestation of other cognitive deficits. This review explores the types of interactions through which the circadian clock modulates cognition, highlights recent progress in identifying mechanistic interactions between the circadian system and the processes involved in memory formation, and outlines methods used to remediate circadian perturbations and reinforce circadian adaptation.
Collapse
Affiliation(s)
- Harini C Krishnan
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
99
|
Huang CW, Wang HD, Bai H, Wu MS, Yen JH, Tatar M, Fu TF, Wang PY. Tequila Regulates Insulin-Like Signaling and Extends Life Span in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2015; 70:1461-9. [PMID: 26265729 DOI: 10.1093/gerona/glv094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/30/2015] [Indexed: 11/13/2022] Open
Abstract
The aging process is a universal phenomenon shared by all living organisms. The identification of longevity genes is important in that the study of these genes is likely to yield significant insights into human senescence. In this study, we have identified Tequila as a novel candidate gene involved in the regulation of longevity in Drosophila melanogaster. We have found that a hypomorphic mutation of Tequila (Teq(f01792)), as well as cell-specific downregulation of Tequila in insulin-producing neurons of the fly, significantly extends life span. Tequila deficiency-induced life-span extension is likely to be associated with reduced insulin-like signaling, because Tequila mutant flies display several common phenotypes of insulin dysregulation, including reduced circulating Drosophila insulin-like peptide 2 (Dilp2), reduced Akt phosphorylation, reduced body size, and altered glucose homeostasis. These observations suggest that Tequila may confer life-span extension by acting as a modulator of Drosophila insulin-like signaling.
Collapse
Affiliation(s)
- Cheng-Wen Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan. Institute of Biotechnology
| | - Horng-Dar Wang
- Institute of Biotechnology, Institute of Systems Neuroscience, and Department of Life Science, National Tsing Hua University, HsinChu, Taiwan
| | - Hua Bai
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, Indiana
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chinan University, Nantou, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
100
|
Function of insulin in snail brain in associative learning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:969-81. [PMID: 26233474 DOI: 10.1007/s00359-015-1032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022]
Abstract
Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla.
Collapse
|