51
|
Singh A, Yadav A, Phogat J, Dabur R. Dynamics of autophagy and ubiquitin proteasome system coordination and interplay in skeletal muscle atrophy. Curr Mol Pharmacol 2021; 15:475-486. [PMID: 34365963 DOI: 10.2174/1874467214666210806163851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Skeletal muscles are considered the largest reservoirs of the protein pool in the body and are critical for the maintenances of body homeostasis. Skeletal muscle atrophy is supported by various physiopathological conditions that lead to loss of muscle mass and contractile capacity of the skeletal muscle. Lysosomal mediated autophagy and ubiquitin-proteasomal system (UPS) concede the major intracellular systems of muscle protein degradation that result in the loss of mass and strength. Both systems recognize ubiquitination as a signal of degradation through different mechanisms, a sign of dynamic interplay between systems. Hence, growing shreds of evidence suggest the interdependency of autophagy and UPS in the progression of skeletal muscle atrophy under various pathological conditions. Therefore, understanding the molecular dynamics as well associated factors responsible for their interdependency is a necessity for the new therapeutic insights to counteract the muscle loss. Based on current literature, the present review summarizes the factors interplay in between the autophagy and UPS in favor of enhanced proteolysis of skeletal muscle and how they affect the anabolic signaling pathways under various conditions of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ajay Singh
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Jatin Phogat
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| |
Collapse
|
52
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. J Neuropathol Exp Neurol 2021; 80:494-513. [PMID: 33860329 PMCID: PMC8177850 DOI: 10.1093/jnen/nlab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins. This protein aggregation suggests that abnormal proteostasis contributes to aging-related neurodegeneration. A better fundamental understanding of proteins that regulate proteostasis may provide insight into the pathophysiology of neurodegenerative disease and may perhaps reveal novel therapeutic opportunities. The 26S proteasome is the key effector of the ubiquitin-proteasome system responsible for degrading polyubiquitinated proteins. However, additional factors, such as valosin-containing protein (VCP/p97/Cdc48) and C9orf72, play a role in regulation and trafficking of substrates through the normal proteostasis systems of a cell. Nonhuman AAA+ ATPases, such as the disaggregase Hsp104, also provide insights into the biochemical processes that regulate protein aggregation. X-ray crystallography and cryo-electron microscopy (cryo-EM) structures not bound to substrate have provided meaningful information about the 26S proteasome, VCP, and Hsp104. However, recent cryo-EM structures bound to substrate have provided new information about the function and mechanism of these proteostasis factors. Cryo-EM and cryo-electron tomography data combined with biochemical data have also increased the understanding of C9orf72 and its role in maintaining proteostasis. These structural insights provide a foundation for understanding proteostasis mechanisms with near-atomic resolution upon which insights can be gleaned regarding the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
53
|
Wang R, Ascanelli C, Abdelbaki A, Fung A, Rasmusson T, Michaelides I, Roberts K, Lindon C. Selective targeting of non-centrosomal AURKA functions through use of a targeted protein degradation tool. Commun Biol 2021; 4:640. [PMID: 34050235 PMCID: PMC8163823 DOI: 10.1038/s42003-021-02158-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Targeted protein degradation tools are becoming a new therapeutic modality, allowing small molecule ligands to be reformulated as heterobifunctional molecules (PROteolysis Targeting Chimeras, PROTACs) that recruit ubiquitin ligases to targets of interest, leading to ubiquitination and destruction of the targets. Several PROTACs against targets of clinical interest have been described, but detailed descriptions of the cell biology modulated by PROTACs are missing from the literature. Here we describe the functional characterization of a PROTAC derived from AURKA inhibitor MLN8237 (alisertib). We demonstrate efficient and specific destruction of both endogenous and overexpressed AURKA by Cereblon-directed PROTACs. At the subcellular level, we find differential targeting of AURKA on the mitotic spindle compared to centrosomes. The phenotypic consequences of PROTAC treatment are therefore distinct from those mediated by alisertib, and in mitotic cells differentially regulate centrosome- and chromatin- based microtubule spindle assembly pathways. In interphase cells PROTAC-mediated clearance of non-centrosomal AURKA modulates the cytoplasmic role played by AURKA in mitochondrial dynamics, whilst the centrosomal pool is refractory to PROTAC-mediated clearance. Our results point to differential sensitivity of subcellular pools of substrate, governed by substrate conformation or localization-dependent accessibility to PROTAC action, a phenomenon not previously described for this new class of degrader compounds. Wang et al develop tools to target the mitotic regulator AURKA by synthesising PROTACs based on the inhibitor MLN8237. They find that the new PROTAC compound efficiently clears cytoplasmic and mitotic spindle-associated AURKA but does not eliminate AURKA activity from centrosomes, demonstrating the possibility of targeting subpopulations.
Collapse
Affiliation(s)
- Richard Wang
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Alex Fung
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Tim Rasmusson
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.,Bristol Myers Squibb, Cambridge, MA, USA
| | | | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
54
|
Shmueli MD, Sheban D, Eisenberg-Lerner A, Merbl Y. Histone degradation by the proteasome regulates chromatin and cellular plasticity. FEBS J 2021; 289:3304-3316. [PMID: 33914417 PMCID: PMC9292675 DOI: 10.1111/febs.15903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
Histones constitute the primary protein building blocks of the chromatin and play key roles in the dynamic control of chromatin compaction and epigenetic regulation. Histones are regulated by intricate mechanisms that alter their functionality and stability, thereby expanding the regulation of chromatin‐transacting processes. As such, histone degradation is tightly regulated to provide spatiotemporal control of cellular histone abundance. While several mechanisms have been implicated in controlling histone stability, here, we discuss proteasome‐dependent degradation of histones and the protein modifications that are associated with it. We then highlight specific cellular and physiological states that are associated with altered histone degradation by cellular proteasomes.
Collapse
Affiliation(s)
- Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
55
|
Singh A, Phogat J, Yadav A, Dabur R. The dependency of autophagy and ubiquitin proteasome system during skeletal muscle atrophy. Biophys Rev 2021; 13:203-219. [PMID: 33927785 PMCID: PMC8046863 DOI: 10.1007/s12551-021-00789-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Among the four proteolytic systems in the cell, autophagy and the ubiquitin-proteasome system (UPS) are the main proteolytic events that allow for the removal of cell debris and proteins to maintain cellular homeostasis. Previous studies have revealed that these systems perform their functions independently of each other. However, recent studies indicate the existence of regulatory interactions between these proteolytic systems via ubiquitinated tags and a reciprocal regulation mechanism with several crosstalk points. UPS plays an important role in the elimination of short-lived/soluble misfolded proteins, whereas autophagy eliminates defective organelles and persistent insoluble protein aggregates. Both of these systems seem to act independently; however, disruption of one pathway affects the activity of the other pathway and contributes to different pathological conditions. This review summarizes the recent findings on direct and indirect dependencies of autophagy and UPS and their execution at the molecular level along with the important drug targets in skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ajay Singh
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Jatin Phogat
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
56
|
Mechanistic basis for ubiquitin modulation of a protein energy landscape. Proc Natl Acad Sci U S A 2021; 118:2025126118. [PMID: 33723075 DOI: 10.1073/pnas.2025126118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin is a common posttranslational modification canonically associated with targeting proteins to the 26S proteasome for degradation and also plays a role in numerous other nondegradative cellular processes. Ubiquitination at certain sites destabilizes the substrate protein, with consequences for proteasomal processing, while ubiquitination at other sites has little energetic effect. How this site specificity-and, by extension, the myriad effects of ubiquitination on substrate proteins-arises remains unknown. Here, we systematically characterize the atomic-level effects of ubiquitination at various sites on a model protein, barstar, using a combination of NMR, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics simulation. We find that, regardless of the site of modification, ubiquitination does not induce large structural rearrangements in the substrate. Destabilizing modifications, however, increase fluctuations from the native state resulting in exposure of the substrate's C terminus. Both of the sites occur in regions of barstar with relatively high conformational flexibility. Nevertheless, destabilization appears to occur through different thermodynamic mechanisms, involving a reduction in entropy in one case and a loss in enthalpy in another. By contrast, ubiquitination at a nondestabilizing site protects the substrate C terminus through intermittent formation of a structural motif with the last three residues of ubiquitin. Thus, the biophysical effects of ubiquitination at a given site depend greatly on local context. Taken together, our results reveal how a single posttranslational modification can generate a broad array of distinct effects, providing a framework to guide the design of proteins and therapeutics with desired degradation and quality control properties.
Collapse
|
57
|
Proteasome in action: substrate degradation by the 26S proteasome. Biochem Soc Trans 2021; 49:629-644. [PMID: 33729481 PMCID: PMC8106498 DOI: 10.1042/bst20200382] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Ubiquitination is the major criteria for the recognition of a substrate-protein by the 26S proteasome. Additionally, a disordered segment on the substrate — either intrinsic or induced — is critical for proteasome engagement. The proteasome is geared to interact with both of these substrate features and prepare it for degradation. To facilitate substrate accessibility, resting proteasomes are characterised by a peripheral distribution of ubiquitin receptors on the 19S regulatory particle (RP) and a wide-open lateral surface on the ATPase ring. In this substrate accepting state, the internal channel through the ATPase ring is discontinuous, thereby obstructing translocation of potential substrates. The binding of the conjugated ubiquitin to the ubiquitin receptors leads to contraction of the 19S RP. Next, the ATPases engage the substrate at a disordered segment, energetically unravel the polypeptide and translocate it towards the 20S catalytic core (CP). In this substrate engaged state, Rpn11 is repositioned at the pore of the ATPase channel to remove remaining ubiquitin modifications and accelerate translocation. C-termini of five of the six ATPases insert into corresponding lysine-pockets on the 20S α-ring to complete 20S CP gate opening. In the resulting substrate processing state, the ATPase channel is fully contiguous with the translocation channel into the 20S CP, where the substrate is proteolyzed. Complete degradation of a typical ubiquitin-conjugate takes place over a few tens of seconds while hydrolysing tens of ATP molecules in the process (50 kDa/∼50 s/∼80ATP). This article reviews recent insight into biochemical and structural features that underlie substrate recognition and processing by the 26S proteasome.
Collapse
|
58
|
Correa Marrero M, Barrio-Hernandez I. Toward Understanding the Biochemical Determinants of Protein Degradation Rates. ACS OMEGA 2021; 6:5091-5100. [PMID: 33681549 PMCID: PMC7931188 DOI: 10.1021/acsomega.0c05318] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Protein degradation is a key component of the regulation of gene expression and is at the center of several pathogenic processes. Proteins are regularly degraded, but there is large variation in their lifetimes, and the kinetics of protein degradation are not well understood. Many different factors can influence protein degradation rates, painting a highly complex picture. This has been partially unravelled in recent years thanks to invaluable advances in proteomics techniques. In this Mini-Review, we give a global vision of the determinants of protein degradation rates with the backdrop of the current understanding of proteolytic systems to give a contemporary view of the field.
Collapse
Affiliation(s)
- Miguel Correa Marrero
- European
Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10
1SD, United Kingdom
| | - Inigo Barrio-Hernandez
- European
Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10
1SD, United Kingdom
| |
Collapse
|
59
|
Kudriaeva AA, Livneh I, Baranov MS, Ziganshin RH, Tupikin AE, Zaitseva SO, Kabilov MR, Ciechanover A, Belogurov AA. In-depth characterization of ubiquitin turnover in mammalian cells by fluorescence tracking. Cell Chem Biol 2021; 28:1192-1205.e9. [PMID: 33675681 DOI: 10.1016/j.chembiol.2021.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/29/2020] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
Despite almost 40 years having passed from the initial discovery of ubiquitin (Ub), fundamental questions related to its intracellular metabolism are still enigmatic. Here we utilized fluorescent tracking for monitoring ubiquitin turnover in mammalian cells, resulting in obtaining qualitatively new data. In the present study we report (1) short Ub half-life estimated as 4 h; (2) for a median of six Ub molecules per substrate as a dynamic equilibrium between Ub ligases and deubiquitinated enzymes (DUBs); (3) loss on average of one Ub molecule per four acts of engagement of polyubiquitinated substrate by the proteasome; (4) direct correlation between incorporation of Ub into the distinct type of chains and Ub half-life; and (5) critical influence of the single lysine residue K27 on the stability of the whole Ub molecule. Concluding, our data provide a comprehensive understanding of ubiquitin-proteasome system dynamics on the previously unreachable state of the art.
Collapse
Affiliation(s)
- Anna A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation
| | - Ido Livneh
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 3109602 Haifa, Israel
| | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation; Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russian Federation
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation
| | - Alexey E Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentieva 8, 630090 Novosibirsk, Russian Federation
| | - Snizhana O Zaitseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentieva 8, 630090 Novosibirsk, Russian Federation
| | - Aaron Ciechanover
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 3109602 Haifa, Israel
| | - Alexey A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation; Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russian Federation.
| |
Collapse
|
60
|
Wang Q, Dong Z, Su J, Huang J, Xiao P, Tian L, Chen Y, Ma L, Chen X. Ixazomib inhibits myeloma cell proliferation by targeting UBE2K. Biochem Biophys Res Commun 2021; 549:1-7. [PMID: 33647537 DOI: 10.1016/j.bbrc.2021.02.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Ixazomib is a selective, effective, and reversible inhibitor of 20S proteasome and is approved for the treatment of multiple myeloma. Ubiquitin-conjugating enzyme E2 (UBE2K) is involved in the synthesis of K48-linked ubiquitin chains and is the target of certain drugs used for the treatment of tumors. The purpose of this study was to investigate the relationship between ixazomib and UBE2K in myeloma cells. METHODS We used CCK-8 and Annexin V-FITC/propidium iodide kit to detect the effects of ixazomib on survival and apoptosis of RPMI-8226 and U-266 myeloma cell lines. Quantitative polymerase chain reaction and western blot were used to detect the change in gene and protein expression levels of myeloma cells treated with ixazomib. Furthermore, the regulatory effects of ixazomib on UBE2K and its downstream targets were investigated following the overexpression of UBE2K. RESULTS In myeloma cells, ixazomib decreased cell survival and increased apoptosis in a dose-dependent manner. Ixazomib significantly increased the expression of HIST1H2BD, MNAT1, NEK3, and TARS2, while decreasing the expression of HSPA1B and UBE2K. In addition, ixazomib inhibited the proliferation of myeloma cells, blocked cell cycle, induced cell apoptosis, and increased the production of reactive oxygen species by inhibiting UBE2K expression. Lastly, ixazomib regulates mitosis- and apoptosis-related genes by lowering UBE2K expression. CONCLUSION In summary, ixazomib leads to impaired proliferation of myeloma cells by targeting UBE2K.
Collapse
Affiliation(s)
- Qingqing Wang
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Zhigao Dong
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Junnan Su
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Jinmei Huang
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Pingping Xiao
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Lihong Tian
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Yongquan Chen
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Lili Ma
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Xuyan Chen
- Blood Rheumatism Immunology Department, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| |
Collapse
|
61
|
Singh S, Ng J, Sivaraman J. Exploring the "Other" subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol Ther 2021; 224:107809. [PMID: 33607149 DOI: 10.1016/j.pharmthera.2021.107809] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The HECT E3 ligase family regulates key cellular signaling pathways, with its 28 members divided into three subfamilies: NEDD4 subfamily (9 members), HERC subfamily (6 members) and "Other" subfamily (13 members). Here, we focus on the less-explored "Other" subfamily and discuss the recent findings pertaining to their biological roles. The N-terminal regions preceding the conserved HECT domains are significantly diverse in length and sequence composition, and are mostly unstructured, except for short regions that incorporate known substrate-binding domains. In some of the better-characterized "Other" members (e.g., HUWE1, AREL1 and UBE3C), structure analysis shows that the extended region (~ aa 50) adjacent to the HECT domain affects the stability and activity of the protein. The enzymatic activity is also influenced by interactions with different adaptor proteins and inter/intramolecular interactions. Primarily, the "Other" subfamily members assemble atypical ubiquitin linkages, with some cooperating with E3 ligases from the other subfamilies to form branched ubiquitin chains on substrates. Viruses and pathogenic bacteria target and hijack the activities of "Other" subfamily members to evade host immune responses and cause diseases. As such, these HECT E3 ligases have emerged as potential candidates for therapeutic drug development.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
62
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
63
|
Abstract
Ubiquitylation is a critical post-translational modification that controls a wide variety of processes in eukaryotes. Ubiquitin chains of different topologies are specialized for different cellular functions and control the stability, activity, interaction properties, and localization of many different proteins. Recent work has highlighted a role for branched ubiquitin chains in the regulation of cell signaling and protein degradation pathways. Similar to their unbranched counterparts, branched ubiquitin chains are remarkably diverse in terms of their chemical linkages, structures, and the biological information they transmit. In this review, we discuss emerging themes related to the architecture, synthesis, and functions of branched ubiquitin chains. We also describe methodologies that have recently been developed to identify and decode the functions of these branched polymers.
Collapse
|
64
|
Mallela A, Nariya MK, Deeds EJ. Crosstalk and ultrasensitivity in protein degradation pathways. PLoS Comput Biol 2020; 16:e1008492. [PMID: 33370258 PMCID: PMC7793289 DOI: 10.1371/journal.pcbi.1008492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/08/2021] [Accepted: 11/05/2020] [Indexed: 12/05/2022] Open
Abstract
Protein turnover is vital to cellular homeostasis. Many proteins are degraded efficiently only after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiquitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is catalyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme (DUB). Nearly four decades ago, Goldbeter and Koshland discovered that reversible PTM cycles function like on-off switches when the substrates are at saturating concentrations. Although this finding has had profound implications for the understanding of switch-like behavior in biochemical networks, the general behavior of PTM cycles subject to synthesis and degradation has not been studied. Using a mathematical modeling approach, we found that simply introducing protein turnover to a standard modification cycle has profound effects, including significantly reducing the switch-like nature of the response. Our findings suggest that many classic results on PTM cycles may not hold in vivo where protein turnover is ubiquitous. We also found that proteins sharing an E3 ligase can have closely related changes in their expression levels. These results imply that it may be difficult to interpret experimental results obtained from either overexpressing or knocking down protein levels, since changes in protein expression can be coupled via E3 ligase crosstalk. Understanding crosstalk and competition for E3 ligases will be key in ultimately developing a global picture of protein homeostasis. Previous work has shown that substrates of Post-Translational Modification (PTM) cycles can have coupled responses if those substrates share enzymes. This implies that modifications leading to substrate degradation (e.g. ubiquitylation by an E3 ligase) could introduce coupling in concentrations of substrates sharing a ligase. Using mathematical models, we found adding protein turnover to a PTM cycle diminishes both sensitivity and ultrasensitivity, particularly in models admitting long ubiquitin chains. We also found that proteins sharing an E3 ligase can indeed have coupled changes in both expression and sensitivity to signals. These results imply that accounting for crosstalk in protein degradation networks is crucial for the interpretation of results from a wide variety of common experimental perturbations to living systems.
Collapse
Affiliation(s)
- Abhishek Mallela
- Department of Mathematics, University of California Davis, Davis, California, United States of America
| | - Maulik K. Nariya
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric J. Deeds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
65
|
Rogers JM, Nawatha M, Lemma B, Vamisetti GB, Livneh I, Barash U, Vlodavsky I, Ciechanover A, Fushman D, Suga H, Brik A. In vivo modulation of ubiquitin chains by N-methylated non-proteinogenic cyclic peptides. RSC Chem Biol 2020; 2:513-522. [PMID: 34179781 PMCID: PMC8232551 DOI: 10.1039/d0cb00179a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer and other disease states can change the landscape of proteins post-translationally tagged with ubiquitin (Ub) chains. Molecules capable of modulating Ub chains are potential therapeutic agents, but their discovery represents a significant challenge. Recently, it was shown that de novo cyclic peptides, selected from trillion-member random libraries, are capable of binding particular Ub chains. However, these peptides were overwhelmingly proteinogenic, so the prospect of in vivo activity was uncertain. Here, we report the discovery of small, non-proteinogenic cyclic peptides, rich in non-canonical features like N-methylation, which can tightly and specifically bind Lys48-linked Ub chains. These peptides engage three Lys48-linked Ub units simultaneously, block the action of deubiquitinases and the proteasome, induce apoptosis in vitro, and attenuate tumor growth in vivo. This highlights the potential of non-proteinogenic cyclic peptide screening to rapidly find in vivo-active leads, and the targeting of ubiquitin chains as a promising anti-cancer mechanism of action.
Collapse
Affiliation(s)
- Joseph M Rogers
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mickal Nawatha
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Betsegaw Lemma
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ido Livneh
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Uri Barash
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Israel Vlodavsky
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
66
|
Račková L, Csekes E. Proteasome Biology: Chemistry and Bioengineering Insights. Polymers (Basel) 2020; 12:E2909. [PMID: 33291646 PMCID: PMC7761984 DOI: 10.3390/polym12122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Proteasomal degradation provides the crucial machinery for maintaining cellular proteostasis. The biological origins of modulation or impairment of the function of proteasomal complexes may include changes in gene expression of their subunits, ubiquitin mutation, or indirect mechanisms arising from the overall impairment of proteostasis. However, changes in the physico-chemical characteristics of the cellular environment might also meaningfully contribute to altered performance. This review summarizes the effects of physicochemical factors in the cell, such as pH, temperature fluctuations, and reactions with the products of oxidative metabolism, on the function of the proteasome. Furthermore, evidence of the direct interaction of proteasomal complexes with protein aggregates is compared against the knowledge obtained from immobilization biotechnologies. In this regard, factors such as the structures of the natural polymeric scaffolds in the cells, their content of reactive groups or the sequestration of metal ions, and processes at the interface, are discussed here with regard to their influences on proteasomal function.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
67
|
Deol KK, Crowe SO, Du J, Bisbee HA, Guenette RG, Strieter ER. Proteasome-Bound UCH37/UCHL5 Debranches Ubiquitin Chains to Promote Degradation. Mol Cell 2020; 80:796-809.e9. [PMID: 33156996 PMCID: PMC7718437 DOI: 10.1016/j.molcel.2020.10.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/13/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023]
Abstract
The linkage, length, and architecture of ubiquitin (Ub) chains are all important variables in providing tight control over many biological paradigms. There are clear roles for branched architectures in regulating proteasome-mediated degradation, but the proteins that selectively recognize and process these atypical chains are unknown. Here, using synthetic and enzyme-derived ubiquitin chains along with intact mass spectrometry, we report that UCH37/UCHL5, a proteasome-associated deubiquitinase, cleaves K48 branched chains. The activity and selectivity toward branched chains is markedly enhanced by the proteasomal Ub receptor RPN13/ADRM1. Using reconstituted proteasome complexes, we find that chain debranching promotes degradation of substrates modified with branched chains under multi-turnover conditions. These results are further supported by proteome-wide pulse-chase experiments, which show that the loss of UCH37 activity impairs global protein turnover. Our work therefore defines UCH37 as a debranching deubiquitinase important for promoting proteasomal degradation.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sean O Crowe
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiale Du
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Heather A Bisbee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Robert G Guenette
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
68
|
Blount JR, Johnson SL, Todi SV. Unanchored Ubiquitin Chains, Revisited. Front Cell Dev Biol 2020; 8:582361. [PMID: 33195227 PMCID: PMC7659471 DOI: 10.3389/fcell.2020.582361] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
The small modifier protein, ubiquitin, holds a special place in eukaryotic biology because of its myriad post-translational effects that control normal cellular processes and are implicated in various diseases. By being covalently conjugated onto other proteins, ubiquitin changes their interaction landscape - fostering new interactions as well as inhibiting others - and ultimately deciding the fate of its substrates and controlling pathways that span most cell physiology. Ubiquitin can be attached onto other proteins as a monomer or as a poly-ubiquitin chain of diverse structural topologies. Among the types of poly-ubiquitin species generated are ones detached from another substrate - comprising solely ubiquitin as their constituent - referred to as unanchored, or free chains. Considered to be toxic byproducts, these species have recently emerged to have specific physiological functions in immune pathways and during cell stress. Free chains also do not appear to be detrimental to multi-cellular organisms; they can be active members of the ubiquitination process, rather than corollary species awaiting disassembly into mono-ubiquitin. Here, we summarize past and recent studies on unanchored ubiquitin chains, paying special attention to their emerging roles as second messengers in several signaling pathways. These investigations paint complex and flexible outcomes for free ubiquitin chains, and present a revised model of unanchored poly-ubiquitin biology that is in need of additional investigation.
Collapse
Affiliation(s)
- Jessica R Blount
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sean L Johnson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
69
|
Bragança CE, Kraut DA. Mode of targeting to the proteasome determines GFP fate. J Biol Chem 2020; 295:15892-15901. [PMID: 32913119 DOI: 10.1074/jbc.ra120.015235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin-proteasome system is the canonical pathway for protein degradation in eukaryotic cells. GFP is frequently used as a reporter in proteasomal degradation assays. However, there are multiple variants of GFP in use, and these variants have different intrinsic stabilities. Further, there are multiple means by which substrates are targeted to the proteasome, and these differences could also affect the proteasome's ability to unfold and degrade substrates. Herein we investigate how the fate of GFP variants of differing intrinsic stabilities is determined by the mode of targeting to the proteasome. We compared two targeting systems: linear Ub4 degrons and the UBL domain from yeast Rad23, both of which are commonly used in degradation experiments. Surprisingly, the UBL degron allows for degradation of the most stable sGFP-containing substrates, whereas the Ub4 degron does not. Destabilizing the GFP by circular permutation allows degradation with either targeting signal, indicating that domain stability and mode of targeting combine to determine substrate fate. Difficult-to-unfold substrates are released and re-engaged multiple times, with removal of the degradation initiation region providing an alternative clipping pathway that precludes unfolding and degradation; the UBL degron favors degradation of even difficult-to-unfold substrates, whereas the Ub4 degron favors clipping. Finally, we show that the ubiquitin receptor Rpn13 is primarily responsible for the enhanced ability of the proteasome to degrade stable UBL-tagged substrates. Our results indicate that the choice of targeting method and reporter protein are critical to the design of protein degradation experiments.
Collapse
Affiliation(s)
| | - Daniel Adam Kraut
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, USA.
| |
Collapse
|
70
|
Han B. A suite of mathematical solutions to describe ternary complex formation and their application to targeted protein degradation by heterobifunctional ligands. J Biol Chem 2020; 295:15280-15291. [PMID: 32859748 PMCID: PMC7650257 DOI: 10.1074/jbc.ra120.014715] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/25/2020] [Indexed: 01/30/2023] Open
Abstract
Small molecule–induced targeted protein degradation by heterobifunctional ligands or molecular glues represents a new modality in drug development, allowing development of therapeutic agents for targets previously considered undruggable. Successful target engagement requires the formation of a ternary complex (TC) when the ligand brings its target protein in contact with an E3 ubiquitin ligase. Unlike traditional drugs, where target engagement can be described by a simple bimolecular equilibrium equation, similar mathematical tools are currently not available to describe TC formation in a universal manner. This current limitation substantially increases the challenges of developing drugs with targeted protein degradation mechanism. In this article, I provide a full, exact, and universal mathematical description of the TC system at equilibrium for the first time. I have also constructed a comprehensive suite of mathematical tools for quantitative measurement of target engagement and equilibrium constants from experimental data. Mechanistic explanations are provided for many common challenges associated with developing this type of therapeutic agent. Insights from these analyses provide testable hypotheses and grant direction to drug development efforts in this promising area. The mathematical and analytical tools described in this article may also have broader applications in other areas of biology and chemistry in which ternary complexes are observed.
Collapse
Affiliation(s)
- Bomie Han
- Department of Molecular Pharmacology, Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA.
| |
Collapse
|
71
|
Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020; 10:E1141. [PMID: 32759676 PMCID: PMC7463752 DOI: 10.3390/biom10081141] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.
Collapse
Affiliation(s)
- Amanda B. Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sarah K. Gersing
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sven Larsen-Ledet
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sofie V. Nielsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Amelie Stein
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| |
Collapse
|
72
|
Musaus M, Navabpour S, Jarome TJ. The diversity of linkage-specific polyubiquitin chains and their role in synaptic plasticity and memory formation. Neurobiol Learn Mem 2020; 174:107286. [PMID: 32745599 DOI: 10.1016/j.nlm.2020.107286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Over the last 20 years, a number of studies have provided strong support for protein degradation mediated by the ubiquitin-proteasome system in synaptic plasticity and memory formation. In this system, target substrates become covalently modified by the small protein ubiquitin through a series of enzymatic reactions involving hundreds of different ligases. While some substrates will acquire only a single ubiquitin, most will be marked by multiple ubiquitin modifications, which link together at specific lysine sites or the N-terminal methionine on the previous ubiquitin to form a polyubiquitin chain. There are at least eight known linkage-specific polyubiquitin chains a target protein can acquire, many of which are independent of the proteasome, and these chains can be homogenous, mixed, or branched in nature, all of which result in different functional outcomes and fates for the target substrate. However, as the focus has remained on protein degradation, much remains unknown about the role of these diverse ubiquitin chains in the brain, particularly during activity- and learning-dependent synaptic plasticity. Here, we review the different types and functions of ubiquitin chains and summarize evidence suggesting a role for these diverse ubiquitin modifications in synaptic plasticity and memory formation. We conclude by discussing how technological limitations have limited our ability to identify and elucidate the role of different ubiquitin chains in the brain and speculate on the future directions and implications of understanding linkage-specific ubiquitin modifications in activity- and learning-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
73
|
Hua X, Chu GC, Li YM. The Ubiquitin Enigma: Progress in the Detection and Chemical Synthesis of Branched Ubiquitin Chains. Chembiochem 2020; 21:3313-3318. [PMID: 32621561 DOI: 10.1002/cbic.202000295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitin chains with distinct topologies play essential roles in eukaryotic cells. Recently, it was discovered that multiple ubiquitin units can be ligated to more than one lysine residue in the same ubiquitin to form diverse branched ubiquitin chains. Although there is increasing evidence implicating these branched chains in a plethora of biological functions, few mechanistic details have been elucidated. This concept article introduces the function, detection and chemical synthesis of branched ubiquitin chains; and offers some future perspective for this exciting new field.
Collapse
Affiliation(s)
- Xiao Hua
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases, Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Chao Chu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases, Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
74
|
Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Int J Mol Sci 2020; 21:E5312. [PMID: 32726943 PMCID: PMC7432943 DOI: 10.3390/ijms21155312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome's versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome's proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes-USP14, RPN11, and UCH37-are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases.
Collapse
Affiliation(s)
- Ji Yeong Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Srinivasan Muniyappan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
| | - Non-Nuoc Tran
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hyeonjeong Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Sung Bae Lee
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
75
|
Aichem A, Groettrup M. The ubiquitin-like modifier FAT10 - much more than a proteasome-targeting signal. J Cell Sci 2020; 133:133/14/jcs246041. [PMID: 32719056 DOI: 10.1242/jcs.246041] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) also called ubiquitin D (UBD) is a member of the ubiquitin-like modifier (ULM) family. The FAT10 gene is localized in the MHC class I locus and FAT10 protein expression is mainly restricted to cells and organs of the immune system. In all other cell types and tissues, FAT10 expression is highly inducible by the pro-inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor (TNF). Besides ubiquitin, FAT10 is the only ULM which directly targets its substrates for degradation by the 26S proteasome. This poses the question as to why two ULMs sharing the proteasome-targeting function have evolved and how they differ from each other. This Review summarizes the current knowledge of the special structure of FAT10 and highlights its differences from ubiquitin. We discuss how these differences might result in differential outcomes concerning proteasomal degradation mechanisms and non-covalent target interactions. Moreover, recent insights about the structural and functional impact of FAT10 interacting with specific non-covalent interaction partners are reviewed.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland .,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
76
|
Hu X, Wang L, Wang Y, Ji J, Li J, Wang Z, Li C, Zhang Y, Zhang ZR. RNF126-Mediated Reubiquitination Is Required for Proteasomal Degradation of p97-Extracted Membrane Proteins. Mol Cell 2020; 79:320-331.e9. [DOI: 10.1016/j.molcel.2020.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
|
77
|
Tsuchiya H, Endo A, Saeki Y. Multi-Step Ubiquitin Decoding Mechanism for Proteasomal Degradation. Pharmaceuticals (Basel) 2020; 13:ph13060128. [PMID: 32585960 PMCID: PMC7344625 DOI: 10.3390/ph13060128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The 26S proteasome is a 2.5-MDa protease complex responsible for the selective and ATP-dependent degradation of ubiquitylated proteins in eukaryotic cells. Proteasome-mediated protein degradation accounts for ~70% of all cellular proteolysis under basal conditions, and thereby any dysfunction can lead to drastic changes in cell homeostasis. A major function of ubiquitylation is to target proteins for proteasomal degradation. Accompanied by deciphering the structural diversity of ubiquitin chains with eight linkages and chain lengths, the ubiquitin code for proteasomal degradation has been expanding beyond the best-characterized Lys48-linked ubiquitin chains. Whereas polyubiquitylated proteins can be directly recognized by the proteasome, in several cases, these proteins need to be extracted or segregated by the conserved ATPases associated with diverse cellular activities (AAA)-family ATPase p97/valosin-containing protein (VCP) complex and escorted to the proteasome by ubiquitin-like (UBL)–ubiquitin associated (UBA) proteins; these are called substrate-shuttling factors. Furthermore, proteasomes are highly mobile and are appropriately spatiotemporally regulated in response to different cellular environments and stresses. In this review, we highlight an emerging key link between p97, shuttling factors, and proteasome for efficient proteasomal degradation. We also present evidence that proteasome-containing nuclear foci form by liquid–liquid phase separation under acute hyperosmotic stress.
Collapse
|
78
|
Vora SM, Fassler JS, Phillips BT. Centrosomes are required for proper β-catenin processing and Wnt response. Mol Biol Cell 2020; 31:1951-1961. [PMID: 32583737 PMCID: PMC7525817 DOI: 10.1091/mbc.e20-02-0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is central to metazoan development and routinely dysregulated in cancer. Wnt/β-catenin signaling initiates transcriptional reprogramming upon stabilization of the transcription factor β-catenin, which is otherwise posttranslationally processed by a destruction complex and degraded by the proteasome. Since various Wnt signaling components are enriched at centrosomes, we examined the functional contribution of centrosomes to Wnt signaling, β-catenin regulation, and posttranslational modifications. In HEK293 cells depleted of centrosomes we find that β-catenin synthesis and degradation rates are unaffected but that the normal accumulation of β-catenin in response to Wnt signaling is attenuated. This is due to accumulation of a novel high-molecular-weight form of phosphorylated β-catenin that is constitutively degraded in the absence of Wnt. Wnt signaling operates by inhibiting the destruction complex and thereby reducing destruction complex–phosphorylated β-catenin, but high-molecular-weight β-catenin is unexpectedly increased by Wnt signaling. Therefore these studies have identified a pool of β-catenin effectively shielded from regulation by Wnt. We present a model whereby centrosomes prevent inappropriate β-catenin modifications that antagonize normal stabilization by Wnt signals.
Collapse
Affiliation(s)
- Setu M Vora
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| |
Collapse
|
79
|
Branigan E, Carlos Penedo J, Hay RT. Ubiquitin transfer by a RING E3 ligase occurs from a closed E2~ubiquitin conformation. Nat Commun 2020; 11:2846. [PMID: 32503993 PMCID: PMC7275055 DOI: 10.1038/s41467-020-16666-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
Based on extensive structural analysis it was proposed that RING E3 ligases prime the E2~ubiquitin conjugate (E2~Ub) for catalysis by locking it into a closed conformation, where ubiquitin is folded back onto the E2 exposing the restrained thioester bond to attack by substrate nucleophile. However the proposal that the RING dependent closed conformation of E2~Ub represents the active form that mediates ubiquitin transfer has yet to be experimentally tested. To test this hypothesis we use single molecule Förster Resonance Energy Transfer (smFRET) to measure the conformation of a FRET labelled E2~Ub conjugate, which distinguishes between closed and alternative conformations. We describe a real-time FRET assay with a thioester linked E2~Ub conjugate to monitor single ubiquitination events and demonstrate that ubiquitin is transferred to substrate from the closed conformation. These findings are likely to be relevant to all RING E3 catalysed reactions ligating ubiquitin and other ubiquitin-like proteins (Ubls) to substrates.
Collapse
Affiliation(s)
- Emma Branigan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK.
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, St. Andrews, KY16 9ST, UK.
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
80
|
Kim HJ, Kim SY, Kim DH, Park JS, Jeong SH, Choi YW, Kim CH. Crosstalk between HSPA5 arginylation and sequential ubiquitination leads to AKT degradation through autophagy flux. Autophagy 2020; 17:961-979. [PMID: 32164484 DOI: 10.1080/15548627.2020.1740529] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AKT/PKB is downregulated by the ubiquitin-proteasome system (UPS), which plays a key role in cell survival and tumor progression in various types of cancer. The objective of this study was to determine the relationship between the sequential ubiquitination of lysine residues K284 to K214 in AKT and R-HSPA5 (the arginylated form of HSPA5), which contribute to the autophagic/lysosomal degradation of AKT when impaired proteasomal activity induces cellular stress. Results show that proteasome inhibitors (PIs) increased ATE1 (arginyltransferase 1)-mediated R-HSPA5 levels in a reactive oxygen species (ROS)-dependent manner. Further, binding of fully ubiquitinated AKT with R-HSPA5 induced AKT degradation via the autophagy-lysosome pathway. Specifically, the K48 (Lys48)-linked ubiquitinated form of AKT was selectively degraded in the lysosome with R-HSPA5. The deubiquitinase, USP7 (ubiquitin specific peptidase 7), prevented AKT degradation by inhibiting AKT ubiquitination via interaction with AKT. MUL1 (mitochondrial ubiquitin ligase activator of NFKB 1) also played a vital role in the lysosomal degradation of AKT by sequentially ubiquitinating AKT residues K284 to K214 for R-HSPA5-mediated autophagy. Consistent with this finding, despite HSPA5 arginylation, AKT was not degraded in mul1 KO cells. These results suggest that MUL1-mediated sequential ubiquitination of K284 to K214 may serve as a novel mechanism by which AKT is designated for lysosomal degradation. Moreover, binding of R-HSPA5 with fully ubiquitinated AKT is required for the autophagic/lysosomal degradation of AKT. Thus, modulating the MUL1-mediated non-proteasomal proteolysis mechanisms, such as sequential ubiquitination, may prove to be a novel therapeutic approach for cancer treatment.Abbreviations: AKT1: thymoma viral proto-oncogene 1; ATE1: arginyltransferase 1; ATG5: autophagy related 5; CASP3: caspase 3; EGFP: enhanced green fluorescent protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GSK3B; glycogen synthase kinase 3 beta; HA: hemagglutinin; HSPA5/GRP78/BIP: heat shock protein 5; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MUL1: mitochondrial ubiquitin ligase activator of NFKB1; NAC: N-acetylcysteine; NEK2: NIMA (never in mitosis gene a)-related expressed kinase 2; NH4Cl: ammonium chloride; PARP1: poly(ADP-ribose) polymerase family, member 1; PI: proteasome inhibitor; R-HSPA5: arginylated HSPA5; ROS: reactive oxygen species; SQSTM1: sequestome 1; Ub: ubiquitin; USP7: ubiquitin specific peptidase 7.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Ajou University School of Medicine, Oncoprotein Modification and Regulation Research Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sun-Yong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Ajou University School of Medicine, Oncoprotein Modification and Regulation Research Center, Suwon, Republic of Korea
| | - Dae-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Ajou University School of Medicine, Oncoprotein Modification and Regulation Research Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seong Hyun Jeong
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young Won Choi
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Ajou University School of Medicine, Oncoprotein Modification and Regulation Research Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
81
|
Budenholzer L, Breckel C, Hickey CM, Hochstrasser M. The Sts1 nuclear import adapter uses a non-canonical bipartite nuclear localization signal and is directly degraded by the proteasome. J Cell Sci 2020; 133:jcs.236158. [PMID: 32041904 DOI: 10.1242/jcs.236158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
The proteasome is an essential regulator of protein homeostasis. In yeast and many mammalian cells, proteasomes strongly concentrate in the nucleus. Sts1 from the yeast Saccharomyces cerevisiae is an essential protein linked to proteasome nuclear localization. Here, we show that Sts1 contains a non-canonical bipartite nuclear localization signal (NLS) important for both nuclear localization of Sts1 itself and the proteasome. Sts1 binds the karyopherin-α import receptor (Srp1) stoichiometrically, and this requires the NLS. The NLS is essential for viability, and over-expressed Sts1 with an inactive NLS interferes with 26S proteasome import. The Sts1-Srp1 complex binds preferentially to fully assembled 26S proteasomes in vitro Sts1 is itself a rapidly degraded 26S proteasome substrate; notably, this degradation is ubiquitin independent in cells and in vitro and is inhibited by Srp1 binding. Mutants of Sts1 are stabilized, suggesting that its degradation is tightly linked to its role in localizing proteasomes to the nucleus. We propose that Sts1 normally promotes nuclear import of fully assembled proteasomes and is directly degraded by proteasomes without prior ubiquitylation following karyopherin-α release in the nucleus.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Carolyn Breckel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA .,Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
82
|
Buel GR, Chen X, Chari R, O'Neill MJ, Ebelle DL, Jenkins C, Sridharan V, Tarasov SG, Tarasova NI, Andresson T, Walters KJ. Structure of E3 ligase E6AP with a proteasome-binding site provided by substrate receptor hRpn10. Nat Commun 2020; 11:1291. [PMID: 32157086 PMCID: PMC7064531 DOI: 10.1038/s41467-020-15073-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/15/2020] [Indexed: 12/16/2022] Open
Abstract
Regulated proteolysis by proteasomes involves ~800 enzymes for substrate modification with ubiquitin, including ~600 E3 ligases. We report here that E6AP/UBE3A is distinguished from other E3 ligases by having a 12 nM binding site at the proteasome contributed by substrate receptor hRpn10/PSMD4/S5a. Intrinsically disordered by itself, and previously uncharacterized, the E6AP-binding domain in hRpn10 locks into a well-defined helical structure to form an intermolecular 4-helix bundle with the E6AP AZUL, which is unique to this E3. We thus name the hRpn10 AZUL-binding domain RAZUL. We further find in human cells that loss of RAZUL by CRISPR-based gene editing leads to loss of E6AP at proteasomes. Moreover, proteasome-associated ubiquitin is reduced following E6AP knockdown or displacement from proteasomes, suggesting that E6AP ubiquitinates substrates at or for the proteasome. Altogether, our findings indicate E6AP to be a privileged E3 for the proteasome, with a dedicated, high affinity binding site contributed by hRpn10.
Collapse
Affiliation(s)
- Gwen R Buel
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Maura J O'Neill
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Danielle L Ebelle
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Conor Jenkins
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vinidhra Sridharan
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Sergey G Tarasov
- Biophysics Resource, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Nadya I Tarasova
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
83
|
The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat Commun 2020; 11:477. [PMID: 31980598 PMCID: PMC6981147 DOI: 10.1038/s41467-019-13906-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/20/2019] [Indexed: 01/28/2023] Open
Abstract
Proteins are targeted to the proteasome by the attachment of ubiquitin chains, which are markedly varied in structure. Three proteasome subunits–Rpn10, Rpn13, and Rpn1–can recognize ubiquitin chains. Here we report that proteins with single chains of K48-linked ubiquitin are targeted for degradation almost exclusively through binding to Rpn10. Rpn1 can act as a co-receptor with Rpn10 for K63 chains and for certain other chain types. Differences in targeting do not correlate with chain affinity to receptors. Surprisingly, in steady-state assays Rpn13 retarded degradation of various single-chain substrates. Substrates with multiple short ubiquitin chains can be presented for degradation by any of the known receptors, whereas those targeted to the proteasome through a ubiquitin-like domain are degraded most efficiently when bound by Rpn13 or Rpn1. Thus, the proteasome provides an unexpectedly versatile binding platform that can recognize substrates targeted for degradation by ubiquitin chains differing greatly in length and topology. Ubiquitylated proteins are degraded by the proteasome and the three proteasome subunits Rpn10, Rpn13 and Rpn1 recognize ubiquitin chains. Here the authors employ biochemical and kinetic assays and characterise the ubiquitin chain type specificities of these three ubiquitin receptors.
Collapse
|
84
|
Sui X, Li YM. Development of Ubiquitin Tools for Studies of Complex Ubiquitin Processing Protein Machines. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191113161511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Ubiquitination is one of the most extensive post-translational modifications in
eukaryotes and is involved in various physiological processes such as protein degradation,
autophagy, protein interaction, and protein localization. The ubiquitin (Ub)-related protein
machines include Ub-activating enzymes (E1s), Ub-conjugating enzymes (E2s), Ub ligases
(E3s), deubiquitinating enzymes (DUBs), p97, and the proteasomes. In recent years,
the role of DUBs has been extensively studied and relatively well understood. On the
other hand, the functional mechanisms of the other more complex ubiquitin-processing
protein machines (e.g., E3, p97, and proteasomes) are still to be sufficiently well explored
due to their intricate nature. One of the hurdles facing the studies of these complex protein
machines is the challenge of developing tailor-designed structurally defined model substrates,
which unfortunately cannot be directly obtained using recombinant technology. Consequently, the acquisition
and synthesis of the ubiquitin tool molecules are essential for the elucidation of the functions and
structures of the complex ubiquitin-processing protein machines. This paper aims to highlight recent studies on
these protein machines based on the synthetic ubiquitin tool molecules.
Collapse
Affiliation(s)
- Xin Sui
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
85
|
Mendes ML, Fougeras MR, Dittmar G. Analysis of ubiquitin signaling and chain topology cross-talk. J Proteomics 2020; 215:103634. [PMID: 31918034 DOI: 10.1016/j.jprot.2020.103634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/13/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022]
Abstract
Protein ubiquitination is a powerful post-translational modification implicated in many cellular processes. Although ubiquitination is associated with protein degradation, depending on the topology of polyubiquitin chains, protein ubiquitination is connected to non-degradative events in DNA damage response, cell cycle control, immune response, trafficking, intracellular localization, and vesicle fusion events. It has been shown that a ubiquitin chain can contain two or more topologies at the same time. These branched chains add another level of complexity to ubiquitin signaling, increasing its versatility and specificity. Mass spectrometry-based proteomics has been playing an important role in the identification of all types of ubiquitin chains and linkages. This review aims to provide an overview of ubiquitin chain topology and associated signaling pathways and discusses the MS-based proteomic methodologies used to determine such topologies. SIGNIFICANCE: Ubiquitination plays important roles in many cellular processes. Proteins can be monoubiquitinated or polyubiquitinated forming non-branched or branched chains in a high number of possible combinations, each associated with different cellular processes. The detection and the topology of ubiquitin chains is thus of extreme importance in order to explain such processes. Advances in mass spectrometry based proteomics allowed for the discovery and topology mapping of many ubiquitin chains. This review revisits the state of the art in ubiquitin chain identification by mass spectrometry and gives an insight on the implication of such chains in many cellular processes.
Collapse
Affiliation(s)
- Marta L Mendes
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Miriam R Fougeras
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
86
|
Finley D, Prado MA. The Proteasome and Its Network: Engineering for Adaptability. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033985. [PMID: 30833452 DOI: 10.1101/cshperspect.a033985] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains. The many unusual design features of the proteasome may have evolved in part to endow this enzyme with a robust ability to process substrates regardless of their identity. The proteasome plays a major role in preserving protein homeostasis in the cell, which requires adaptation to a wide variety of stress conditions. Modulation of proteasome function is achieved through a large network of proteins that interact with it dynamically, modify it enzymatically, or fine-tune its levels. The resulting adaptability of the proteasome, which is unique among proteases, enables cells to control the output of the ubiquitin-proteasome pathway on a global scale.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
87
|
Hill S, Reichermeier K, Scott DC, Samentar L, Coulombe-Huntington J, Izzi L, Tang X, Ibarra R, Bertomeu T, Moradian A, Sweredoski MJ, Caberoy N, Schulman BA, Sicheri F, Tyers M, Kleiger G. Robust cullin-RING ligase function is established by a multiplicity of poly-ubiquitylation pathways. eLife 2019; 8:e51163. [PMID: 31868589 PMCID: PMC6975927 DOI: 10.7554/elife.51163] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/22/2019] [Indexed: 12/24/2022] Open
Abstract
The cullin-RING ligases (CRLs) form the major family of E3 ubiquitin ligases. The prototypic CRLs in yeast, called SCF enzymes, employ a single E2 enzyme, Cdc34, to build poly-ubiquitin chains required for degradation. In contrast, six different human E2 and E3 enzyme activities, including Cdc34 orthologs UBE2R1 and UBE2R2, appear to mediate SCF-catalyzed substrate polyubiquitylation in vitro. The combinatorial interplay of these enzymes raises questions about genetic buffering of SCFs in human cells and challenges the dogma that E3s alone determine substrate specificity. To enable the quantitative comparisons of SCF-dependent ubiquitylation reactions with physiological enzyme concentrations, mass spectrometry was employed to estimate E2 and E3 levels in cells. In combination with UBE2R1/2, the E2 UBE2D3 and the E3 ARIH1 both promoted SCF-mediated polyubiquitylation in a substrate-specific fashion. Unexpectedly, UBE2R2 alone had negligible ubiquitylation activity at physiological concentrations and the ablation of UBE2R1/2 had no effect on the stability of SCF substrates in cells. A genome-wide CRISPR screen revealed that an additional E2 enzyme, UBE2G1, buffers against the loss of UBE2R1/2. UBE2G1 had robust in vitro chain extension activity with SCF, and UBE2G1 knockdown in cells lacking UBE2R1/2 resulted in stabilization of the SCF substrates p27 and CYCLIN E as well as the CUL2-RING ligase substrate HIF1α. The results demonstrate the human SCF enzyme system is diversified by association with multiple catalytic enzyme partners.
Collapse
Affiliation(s)
- Spencer Hill
- Department of Chemistry and BiochemistryUniversity of NevadaLas VegasUnited States
| | - Kurt Reichermeier
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
- Department of Discovery ProteomicsGenentech IncSouth San FranciscoUnited States
- Department of Discovery OncologyGenentech IncSouth San FranciscoUnited States
| | - Daniel C Scott
- Department of Structural BiologySt Jude Children's Research HospitalMemphisUnited States
| | - Lorena Samentar
- School of Life SciencesUniversity of NevadaLas VegasUnited States
- University of the PhilippinesIloiloPhilippines
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Department of MedicineUniversity of MontrealMontrealCanada
| | - Luisa Izzi
- Institute for Research in Immunology and Cancer, Department of MedicineUniversity of MontrealMontrealCanada
| | - Xiaojing Tang
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Rebeca Ibarra
- Department of Chemistry and BiochemistryUniversity of NevadaLas VegasUnited States
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Department of MedicineUniversity of MontrealMontrealCanada
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman InstituteCalifornia Institute of TechnologyPasadenaUnited States
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman InstituteCalifornia Institute of TechnologyPasadenaUnited States
| | - Nora Caberoy
- School of Life SciencesUniversity of NevadaLas VegasUnited States
| | - Brenda A Schulman
- Max Planck Institute of Biochemistry, Molecular Machines and SignalingMartinsriedGermany
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Department of MedicineUniversity of MontrealMontrealCanada
| | - Gary Kleiger
- Department of Chemistry and BiochemistryUniversity of NevadaLas VegasUnited States
| |
Collapse
|
88
|
Eisele MR, Reed RG, Rudack T, Schweitzer A, Beck F, Nagy I, Pfeifer G, Plitzko JM, Baumeister W, Tomko RJ, Sakata E. Expanded Coverage of the 26S Proteasome Conformational Landscape Reveals Mechanisms of Peptidase Gating. Cell Rep 2019; 24:1301-1315.e5. [PMID: 30067984 PMCID: PMC6140342 DOI: 10.1016/j.celrep.2018.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022] Open
Abstract
The proteasome is the central protease for intracellular protein breakdown. Coordinated binding and hydrolysis of ATP by the six proteasomal ATPase subunits induces conformational changes that drive the unfolding and translocation of substrates into the proteolytic 20S core particle for degradation. Here, we combine genetic and biochemical approaches with cryo-electron microscopy and integrative modeling to dissect the relationship between individual nucleotide binding events and proteasome conformational dynamics. We demonstrate unique impacts of ATP binding by individual ATPases on the proteasome conformational distribution and report two conformational states of the proteasome suggestive of a rotary ATP hydrolysis mechanism. These structures, coupled with functional analyses, reveal key roles for the ATPases Rpt1 and Rpt6 in gating substrate entry into the core particle. This deepened knowledge of proteasome conformational dynamics reveals key elements of intersubunit communication within the proteasome and clarifies the regulation of substrate entry into the proteolytic chamber.
Collapse
Affiliation(s)
- Markus R Eisele
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Randi G Reed
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | - Till Rudack
- Department of Biophysics, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Schweitzer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Florian Beck
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Istvan Nagy
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Günter Pfeifer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA.
| | - Eri Sakata
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
89
|
Greene ER, Dong KC, Martin A. Understanding the 26S proteasome molecular machine from a structural and conformational dynamics perspective. Curr Opin Struct Biol 2019; 61:33-41. [PMID: 31783300 DOI: 10.1016/j.sbi.2019.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Abstract
The 26S proteasome is the essential compartmental protease in eukaryotic cells required for the ubiquitin-dependent clearance of damaged polypeptides and obsolete regulatory proteins. Recently, a combination of high-resolution structural, biochemical, and biophysical studies has provided crucial new insights into the mechanisms of this fascinating molecular machine. A multitude of new cryo-electron microscopy structures provided snapshots of the proteasome during ATP-hydrolysis-driven substrate translocation, and detailed biochemical studies revealed the timing of individual degradation steps, elucidating the mechanisms for substrate selection and the commitment to degradation through conformational transitions. It was uncovered how ubiquitin removal from substrates is mechanically coupled to degradation, and cryo-electron tomography studies gave a glimpse of active proteasomes inside the cell, their subcellular localization, and interactions with protein aggregates. Here, we summarize these advances in our mechanistic understanding of the proteasome, with a particular focus on how its structural features and conformational transitions enable the multi-step degradation process.
Collapse
Affiliation(s)
- Eric R Greene
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ken C Dong
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
90
|
Masuda Y, Saeki Y, Arai N, Kawai H, Kukimoto I, Tanaka K, Masutani C. Stepwise multipolyubiquitination of p53 by the E6AP-E6 ubiquitin ligase complex. J Biol Chem 2019; 294:14860-14875. [PMID: 31492752 DOI: 10.1074/jbc.ra119.008374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/13/2019] [Indexed: 01/01/2023] Open
Abstract
The human papillomavirus (HPV) oncoprotein E6 specifically binds to E6AP (E6-associated protein), a HECT (homologous to the E6AP C terminus)-type ubiquitin ligase, and directs its ligase activity toward the tumor suppressor p53. To examine the biochemical reaction in vitro, we established an efficient reconstitution system for the polyubiquitination of p53 by the E6AP-E6 complex. We demonstrate that E6AP-E6 formed a stable ternary complex with p53, which underwent extensive polyubiquitination when the isolated ternary complex was incubated with E1, E2, and ubiquitin. Mass spectrometry and biochemical analysis of the reaction products identified lysine residues as p53 ubiquitination sites. A p53 mutant with arginine substitutions of its 18 lysine residues was not ubiquitinated. Analysis of additional p53 mutants retaining only one or two intact ubiquitination sites revealed that chain elongation at each of these sites was limited to 5-6-mers. We also determined the size distribution of ubiquitin chains released by en bloc cleavage from polyubiquitinated p53 to be 2-6-mers. Taken together, these results strongly suggest that p53 is multipolyubiquitinated with short chains by E6AP-E6. In addition, analysis of growing chains provided strong evidence for step-by-step chain elongation. Thus, we hypothesize that p53 is polyubiquitinated in a stepwise manner through the back-and-forth movement of the C-lobe, and the permissive distance for the movement of the C-lobe restricts the length of the chains in the E6AP-E6-p53 ternary complex. Finally, we show that multipolyubiquitination at different sites provides a signal for proteasomal degradation.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan .,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Naoko Arai
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hidehiko Kawai
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
91
|
Haakonsen DL, Rape M. Branching Out: Improved Signaling by Heterotypic Ubiquitin Chains. Trends Cell Biol 2019; 29:704-716. [PMID: 31300189 DOI: 10.1016/j.tcb.2019.06.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
Ubiquitin chains of distinct topologies control the stability, interactions, or localization of many proteins in eukaryotic cells, and thus play an essential role in cellular information transfer. It has recently been found that ubiquitin chains can be combined to produce branched conjugates that are characterized by the presence of at least two linkages within the same polymer. Akin to their homotypic counterparts, branched chains elicit a wide array of biological outputs, further expanding the versatility, specificity, and efficiency of ubiquitin-dependent signaling. This review discusses emerging understanding of the synthesis and function of branched ubiquitin chains.
Collapse
Affiliation(s)
- Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
92
|
Deol KK, Lorenz S, Strieter ER. Enzymatic Logic of Ubiquitin Chain Assembly. Front Physiol 2019; 10:835. [PMID: 31333493 PMCID: PMC6624479 DOI: 10.3389/fphys.2019.00835] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
93
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
94
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
95
|
|
96
|
Synthetic ubiquitinated proteins meet the proteasome: Distinct roles of ubiquitin in a chain. Proc Natl Acad Sci U S A 2019; 116:7614-7616. [PMID: 30926663 DOI: 10.1073/pnas.1903405116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
97
|
Rodriques SG, Marblestone AH, Boyden ES. A theoretical analysis of single molecule protein sequencing via weak binding spectra. PLoS One 2019; 14:e0212868. [PMID: 30921350 PMCID: PMC6438480 DOI: 10.1371/journal.pone.0212868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
We propose and theoretically study an approach to massively parallel single molecule peptide sequencing, based on single molecule measurement of the kinetics of probe binding (Havranek, et al., 2013) to the N-termini of immobilized peptides. Unlike previous proposals, this method is robust to both weak and non-specific probe-target affinities, which we demonstrate by applying the method to a range of randomized affinity matrices consisting of relatively low-quality binders. This suggests a novel principle for proteomic measurement whereby highly non-optimized sets of low-affinity binders could be applicable for protein sequencing, thus shifting the burden of amino acid identification from biomolecular design to readout. Measurement of probe occupancy times, or of time-averaged fluorescence, should allow high-accuracy determination of N-terminal amino acid identity for realistic probe sets. The time-averaged fluorescence method scales well to weakly-binding probes with dissociation constants of tens or hundreds of micromolar, and bypasses photobleaching limitations associated with other fluorescence-based approaches to protein sequencing. We argue that this method could lead to an approach with single amino acid resolution and the ability to distinguish many canonical and modified amino acids, even using highly non-optimized probe sets. This readout method should expand the design space for single molecule peptide sequencing by removing constraints on the properties of the fluorescent binding probes.
Collapse
Affiliation(s)
- Samuel G. Rodriques
- Synthetic Neurobiology Group, MIT, Cambridge, MA, United States of America
- Department of Physics, MIT, Cambridge, MA, United States of America
| | | | - Edward S. Boyden
- Synthetic Neurobiology Group, MIT, Cambridge, MA, United States of America
- McGovern Institute, MIT, Cambridge, MA, United States of America
- Media Lab, MIT, Cambridge, MA, United States of America
- Department of Biological Engineering, MIT, Cambridge, MA, United States of America
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, United States of America
- Koch Institute, MIT, Cambridge, MA, United States of America
| |
Collapse
|
98
|
Bard JAM, Bashore C, Dong KC, Martin A. The 26S Proteasome Utilizes a Kinetic Gateway to Prioritize Substrate Degradation. Cell 2019; 177:286-298.e15. [PMID: 30929903 DOI: 10.1016/j.cell.2019.02.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/22/2018] [Accepted: 02/19/2019] [Indexed: 11/28/2022]
Abstract
The 26S proteasome is the principal macromolecular machine responsible for protein degradation in eukaryotes. However, little is known about the detailed kinetics and coordination of the underlying substrate-processing steps of the proteasome, and their correlation with observed conformational states. Here, we used reconstituted 26S proteasomes with unnatural amino-acid-attached fluorophores in a series of FRET- and anisotropy-based assays to probe substrate-proteasome interactions, the individual steps of the processing pathway, and the conformational state of the proteasome itself. We develop a complete kinetic picture of proteasomal degradation, which reveals that the engagement steps prior to substrate commitment are fast relative to subsequent deubiquitination, translocation, and unfolding. Furthermore, we find that non-ideal substrates are rapidly rejected by the proteasome, which thus employs a kinetic proofreading mechanism to ensure degradation fidelity and substrate prioritization.
Collapse
Affiliation(s)
- Jared A M Bard
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Charlene Bashore
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ken C Dong
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
99
|
Single-molecule methods for measuring ubiquitination and protein stability. Methods Enzymol 2019. [PMID: 30910022 DOI: 10.1016/bs.mie.2018.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The ubiquitin-proteasome system (UPS) contributes to changes in cell state and homeostatic maintenance in humans by modulating the stability of about a third of human proteins. For example, cell-cycle regulation requires a central ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), which starts a ubiquitination cascade leading to the degradation of multiple targets. This targeted degradation is mediated by the 26S proteasome, a 2.5-MDa protein complex, which recognizes and degrades ubiquitinated proteins at rates partially controlled by the variations in ubiquitin chain topology. Substrate selectivity of ubiquitin ligases such as the APC/C and of the 26S proteasome from pools of near-identical targets reflects highly regulated kinetic mechanisms. Single-molecule techniques are powerful tools that allow distinction between differential substrate affinities and identification of reaction intermediates in complex mixtures. Here we describe fluorescence-based single-molecule imaging of in vitro ubiquitination reactions catalyzed by the APC/C and ubiquitin-dependent degradation reactions catalyzed by the 26S proteasome.
Collapse
|
100
|
Clague MJ, Urbé S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 2019; 20:338-352. [DOI: 10.1038/s41580-019-0099-1] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|