51
|
Dalhat MH, Narayan S, Serio H, Arango D. Dissecting the oncogenic properties of essential RNA-modifying enzymes: a focus on NAT10. Oncogene 2024; 43:1077-1086. [PMID: 38409550 PMCID: PMC11092965 DOI: 10.1038/s41388-024-02975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Chemical modifications of ribonucleotides significantly alter the physicochemical properties and functions of RNA. Initially perceived as static and essential marks in ribosomal RNA (rRNA) and transfer RNA (tRNA), recent discoveries unveiled a dynamic landscape of RNA modifications in messenger RNA (mRNA) and other regulatory RNAs. These findings spurred extensive efforts to map the distribution and function of RNA modifications, aiming to elucidate their distribution and functional significance in normal cellular homeostasis and pathological states. Significant dysregulation of RNA modifications is extensively documented in cancers, accentuating the potential of RNA-modifying enzymes as therapeutic targets. However, the essential role of several RNA-modifying enzymes in normal physiological functions raises concerns about potential side effects. A notable example is N-acetyltransferase 10 (NAT10), which is responsible for acetylating cytidines in RNA. While emerging evidence positions NAT10 as an oncogenic factor and a potential target in various cancer types, its essential role in normal cellular processes complicates the development of targeted therapies. This review aims to comprehensively analyze the essential and oncogenic properties of NAT10. We discuss its crucial role in normal cell biology and aging alongside its contribution to cancer development and progression. We advocate for agnostic approaches to disentangling the intertwined essential and oncogenic functions of RNA-modifying enzymes. Such approaches are crucial for understanding the full spectrum of RNA-modifying enzymes and imperative for designing effective and safe therapeutic strategies.
Collapse
Affiliation(s)
- Mahmood H Dalhat
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Sharath Narayan
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
| | - Hannah Serio
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
52
|
Zhou M, Gamage ST, Tran KA, Bartee D, Wei X, Yin B, Berger S, Meier JL, Marmorstein R. Molecular Basis for RNA Cytidine Acetylation by NAT10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587050. [PMID: 38585770 PMCID: PMC10996708 DOI: 10.1101/2024.03.27.587050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Human NAT10 acetylates the N4 position of cytidine in RNA, predominantly on rRNA and tRNA, to facilitate ribosome biogenesis and protein translation. NAT10 has been proposed as a therapeutic target in cancers as well as aging-associated pathologies such as Hutchinson-Gilford Progeria Syndrome (HGPS). The ∼120 kDa NAT10 protein uses its acetyl-CoA-dependent acetyltransferase, ATP-dependent helicase, and RNA binding domains in concert to mediate RNA-specific N4-cytidine acetylation. While the biochemical activity of NAT10 is well known, the molecular basis for catalysis of eukaryotic RNA acetylation remains relatively undefined. To provide molecular insights into the RNA-specific acetylation by NAT10, we determined the single particle cryo-EM structures of Chaetomium thermophilum NAT10 ( Ct NAT10) bound to a bisubstrate cytidine-CoA probe with and without ADP. The structures reveal that NAT10 forms a symmetrical heart-shaped dimer with conserved functional domains surrounding the acetyltransferase active sites harboring the cytidine-CoA probe. Structure-based mutagenesis with analysis of mutants in vitro supports the catalytic role of two conserved active site residues (His548 and Tyr549 in Ct NAT10), and two basic patches, both proximal and distal to the active site for RNA-specific acetylation. Yeast complementation analyses and senescence assays in human cells also implicates NAT10 catalytic activity in yeast thermoadaptation and cellular senescence. Comparison of the NAT10 structure to protein lysine and N-terminal acetyltransferase enzymes reveals an unusually open active site suggesting that these enzymes have been evolutionarily tailored for RNA recognition and cytidine-specific acetylation.
Collapse
|
53
|
Tiwari V, Alam MJ, Bhatia M, Navya M, Banerjee SK. The structure and function of lamin A/C: Special focus on cardiomyopathy and therapeutic interventions. Life Sci 2024; 341:122489. [PMID: 38340979 DOI: 10.1016/j.lfs.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Madhavi Bhatia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Malladi Navya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
54
|
Ma W, Tian Y, Shi L, Liang J, Ouyang Q, Li J, Chen H, Sun H, Ji H, Liu X, Huang W, Gao X, Jin X, Wang X, Liu Y, Yu Y, Guo X, Tian Y, Yang F, Li F, Wang N, Cai B. N-Acetyltransferase 10 represses Uqcr11 and Uqcrb independently of ac4C modification to promote heart regeneration. Nat Commun 2024; 15:2137. [PMID: 38459019 PMCID: PMC10923914 DOI: 10.1038/s41467-024-46458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Translational control is crucial for protein production in various biological contexts. Here, we use Ribo-seq and RNA-seq to show that genes related to oxidative phosphorylation are translationally downregulated during heart regeneration. We find that Nat10 regulates the expression of Uqcr11 and Uqcrb mRNAs in mouse and human cardiomyocytes. In mice, overexpression of Nat10 in cardiomyocytes promotes cardiac regeneration and improves cardiac function after injury. Conversely, treating neonatal mice with Remodelin-a Nat10 pharmacological inhibitor-or genetically removing Nat10 from their cardiomyocytes both inhibit heart regeneration. Mechanistically, Nat10 suppresses the expression of Uqcr11 and Uqcrb independently of its ac4C enzyme activity. This suppression weakens mitochondrial respiration and enhances the glycolytic capacity of the cardiomyocytes, leading to metabolic reprogramming. We also observe that the expression of Nat10 is downregulated in the cardiomyocytes of P7 male pig hearts compared to P1 controls. The levels of Nat10 are also lower in female human failing hearts than non-failing hearts. We further identify the specific binding regions of Nat10, and validate the pro-proliferative effects of Nat10 in cardiomyocytes derived from human embryonic stem cells. Our findings indicate that Nat10 is an epigenetic regulator during heart regeneration and could potentially become a clinical target.
Collapse
Affiliation(s)
- Wenya Ma
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
- Institute of Clinical Pharmacy, NHC Key Laboratory of Cell Transplantation, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, China
| | - Yanan Tian
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Leping Shi
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jing Liang
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qimeng Ouyang
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jianglong Li
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Hongyang Chen
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Hongyue Sun
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Haoyu Ji
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xu Liu
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Laboratory Medicine at The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wei Huang
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xinlu Gao
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiaoyan Jin
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiuxiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yining Liu
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yang Yu
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaofei Guo
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ye Tian
- Department of Pathophysiology and the Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Ning Wang
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.
- Institute of Clinical Pharmacy, NHC Key Laboratory of Cell Transplantation, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, China.
| |
Collapse
|
55
|
Bahnassawy L, Nicolaisen N, Untucht C, Mielich-Süss B, Reinhardt L, Ried JS, Morawe MP, Geist D, Finck A, Käfer E, Korffmann J, Townsend M, Ravikumar B, Lakics V, Cik M, Reinhardt P. Establishment of a high-content imaging assay for tau aggregation in hiPSC-derived neurons differentiated from two protocols to routinely evaluate compounds and genetic perturbations. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100137. [PMID: 38128829 DOI: 10.1016/j.slasd.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Aberrant protein aggregation is a pathological cellular hallmark of many neurodegenerative diseases, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), where the tau protein is aggregating, forming neurofibrillary tangles (NFTs), and propagating from neuron to neuron. These processes have been linked to disease progression and a decline in cognitive function. Various therapeutic approaches aim at the prevention or reduction of tau aggregates in neurons. Human induced pluripotent stem cells (hiPSCs) are a very valuable tool in neuroscience discovery, as they offer access to potentially unlimited amounts of cell types that are affected in disease, including cortical neurons, for in vitro studies. We have generated an in vitro model for tau aggregation that uses hiPSC - derived neurons expressing an aggregation prone, fluorescently tagged version of the human tau protein after lentiviral transduction. Upon addition of tau seeds in the form of recombinant sonicated paired helical filaments (sPHFs), the neurons show robust, disease-like aggregation of the tau protein. The model was developed as a plate-based high content screening assay coupled with an image analysis algorithm to evaluate the impact of small molecules or genetic perturbations on tau. We show that the assay can be used to evaluate small molecules or screen targeted compound libraries. Using siRNA-based gene knockdown, genes of interest can be evaluated, and we could show that a targeted gene library can be screened, by screening nearly 100 deubiquitinating enzymes (DUBs) in that assay. The assay uses an imaging-based readout, a relatively short timeline, quantifies the extent of tau aggregation, and also allows the assessment of cell viability. Furthermore, it can be easily adapted to different hiPSC lines or neuronal subtypes. Taken together, this complex and highly relevant approach can be routinely applied on a weekly basis in the screening funnels of several projects and generates data with a turnaround time of approximately five weeks.
Collapse
Affiliation(s)
- Lamiaa Bahnassawy
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Nathalie Nicolaisen
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Christopher Untucht
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Benjamin Mielich-Süss
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Lydia Reinhardt
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Janina S Ried
- Genomics Research Center, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Martina P Morawe
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Daniela Geist
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Anja Finck
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Elke Käfer
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Jürgen Korffmann
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Matthew Townsend
- Cambridge Research Center, AbbVie Inc., 200 Sidney Street, Cambridge, MA 02139, USA
| | - Brinda Ravikumar
- Cambridge Research Center, AbbVie Inc., 200 Sidney Street, Cambridge, MA 02139, USA
| | - Viktor Lakics
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Miroslav Cik
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany.
| | - Peter Reinhardt
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany.
| |
Collapse
|
56
|
Gao J, Xu P, Wang F, Zhang W, Min M, Urba R, Fan L. Revealing the pharmacological effects of Remodelin against osteosarcoma based on network pharmacology, acRIP-seq and experimental validation. Sci Rep 2024; 14:3577. [PMID: 38347067 PMCID: PMC10861577 DOI: 10.1038/s41598-024-54197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of bone. Remodelin, an inhibitor of the N (4)-Acetylcytidine (ac4C) acetylation modifying enzyme N-acetyltransferase 10 (NAT10), has been shown to have therapeutic effects on cancer in several studies, and our previous studies have confirmed the inhibitory effect of Remodelin on OS cells, however, the mechanism of action has not yet been elucidated. We used network pharmacological analysis to quantify the therapeutic targets of Remodelin against OS. acRIP-seq and RNA-seq were performed to investigate the inhibitory activity of Remodelin on acetylation and its effect on the transcriptome after intervening in OS cells U2OS with Remodelin in vitro. Key target genes were deduced based on their pharmacological properties, combined with network pharmacology results and sequencing results. Finally, the deduced target genes were validated with vitro experiments. Network pharmacological analysis showed that 2291 OS-related target genes and 369 Remodelin-related target genes were obtained, and 116 overlapping genes were identified as Remodelin targets for OS treatment. Sequencing results showed that a total of 13,736 statistically significant ac4C modification peaks were detected by acRIP-seq, including 6938 hypoacetylation modifications and 6798 hyperacetylation modifications. A total of 2350 statistically significant mRNAs were detected by RNA-seq, of which 830 were up-regulated and 1520 were down-regulated. Association analyses identified a total of 382 genes that were Hypoacetylated-down, consistent with inhibition of mRNA acetylation and expression by Remodelin. Five genes, CASP3, ESR2, FGFR2, IGF1 and MAPK1, were identified as key therapeutic targets of Remodelin against OS. Finally, in vitro experiments, CCK-8 and qRT-PCR demonstrated that Remodelin indeed inhibited the proliferation of OS cells and reduced the expression of three genes: ESR2, IGF1, and MAPK1. In conclusion, ESR2, IGF1 and MAPK1 were identified as key therapeutic targets of Remodelin against OS. This reveals the target of Remodelin's pharmacological action on OS and provides new ideas for the treatment of OS.
Collapse
Affiliation(s)
- Jia Gao
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Peili Xu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Feng Wang
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Wenjie Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Meipeng Min
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Rafi Urba
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Lei Fan
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China.
| |
Collapse
|
57
|
Thalalla Gamage S, Howpay Manage SA, Chu TT, Meier JL. Cytidine Acetylation Across the Tree of Life. Acc Chem Res 2024; 57:338-348. [PMID: 38226431 PMCID: PMC11578069 DOI: 10.1021/acs.accounts.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Acetylation plays a critical role in regulating eukaryotic transcription via the modification of histones. Beyond this well-documented function, a less explored biological frontier is the potential for acetylation to modify and regulate the function of RNA molecules themselves. N4-Acetylcytdine (ac4C) is a minor RNA nucleobase conserved across all three domains of life (archaea, bacteria, and eukarya), a conservation that suggests a fundamental role in biological processes. Unlike many RNA modifications that are controlled by large enzyme families, almost all organisms catalyze ac4C using a homologue of human Nat10, an essential disease-associated acetyltransferase enzyme.A critical step in defining the fundamental functions of RNA modifications has been the development of methods for their sensitive and specific detection. This Account describes recent progress enabling the use of chemical sequencing reactions to map and quantify ac4C with single-nucleotide resolution in RNA. To orient readers, we first provide historical background of the discovery of ac4C and the enzymes that catalyze its formation. Next, we describe mechanistic experiments that led to the development of first- and second-generation sequencing reactions able to determine ac4C's position in a polynucleotide by exploiting the nucleobase's selective susceptibility to reduction by hydride donors. A notable feature of this chemistry, which may serve as a prototype for nucleotide resolution RNA modification sequencing reactions more broadly, is its ability to drive a penetrant and detectable gain of signal specifically at ac4C sites. Emphasizing practical applications, we present how this optimized chemistry can be integrated into experimental workflows capable of sensitive, transcriptome-wide analysis. Such readouts can be applied to quantitatively define the ac4C landscape across the tree of life. For example, in human cell lines and yeast, this method has uncovered that ac4C is highly selective, predominantly occupying dominant sites within rRNA (rRNA) and tRNA (tRNA). By contrast, when we extend these analyses to thermophilic archaea they identify the potential for much more prevalent patterns of cytidine acetylation, leading to the discovery of a role for this modification in adaptation to environmental stress. Nucleotide resolution analyses of ac4C have also allowed for the determination of structure-activity relationships required for short nucleolar RNA (snoRNA)-catalyzed ac4C deposition and the discovery of organisms with unexpectedly divergent tRNA and rRNA acetylation signatures. Finally, we share how these studies have shaped our approach to evaluating novel ac4C sites reported in the literature and highlight unanswered questions and new directions that set the stage for future research in the field.
Collapse
Affiliation(s)
- Supuni Thalalla Gamage
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Shereen A Howpay Manage
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - T Thu Chu
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
58
|
Zhang H, Lu R, Huang J, Li L, Cao Y, Huang C, Chen R, Wang Y, Huang J, Zhao X, Yu J. N4-acetylcytidine modifies primary microRNAs for processing in cancer cells. Cell Mol Life Sci 2024; 81:73. [PMID: 38308713 PMCID: PMC10838262 DOI: 10.1007/s00018-023-05107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 02/05/2024]
Abstract
N4 acetylcytidine (ac4C) modification mainly occurs on tRNA, rRNA, and mRNA, playing an important role in the expression of genetic information. However, it is still unclear whether microRNAs have undergone ac4C modification and their potential physiological and pathological functions. In this study, we identified that NAT10/THUMPD1 acetylates primary microRNAs (pri-miRNAs) with ac4C modification. Knockdown of NAT10 suppresses and augments the expression levels of mature miRNAs and pri-miRNAs, respectively. Molecular mechanism studies found that pri-miRNA ac4C promotes the processing of pri-miRNA into precursor miRNA (pre-miRNA) by enhancing the interaction of pri-miRNA and DGCR8, thereby increasing the biogenesis of mature miRNA. Knockdown of NAT10 attenuates the oncogenic characters of lung cancer cells by regulating miRNA production in cancers. Moreover, NAT10 is highly expressed in various clinical cancers and negatively correlated with poor prognosis. Thus, our results reveal that NAT10 plays a crucial role in cancer initiation and progression by modulating pri-miRNA ac4C to affect miRNA production, which would provide an attractive therapeutic strategy for cancers.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingting Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
59
|
Attar AG, Paturej J, Banigan EJ, Erbas A. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.16.571697. [PMID: 38168411 PMCID: PMC10760070 DOI: 10.1101/2023.12.16.571697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Abnormalities in the shapes of mammalian cell nuclei are hallmarks of a variety of diseases, including progeria, muscular dystrophy, and various cancers. Experiments have shown that there is a causal relationship between chromatin organization and nuclear morphology. Decreases in heterochromatin levels, perturbations to heterochromatin organization, and increases in euchromatin levels all lead to misshapen nuclei, which exhibit deformations, such as nuclear blebs and nuclear ruptures. However, the polymer physical mechanisms of how chromatin governs nuclear shape and integrity are poorly understood. To investigate how heterochromatin and euchromatin, which are thought to microphase separate in vivo , govern nuclear morphology, we implemented a composite coarse-grained polymer and elastic shell model. By varying chromatin volume fraction (density), heterochromatin levels and structure, and heterochromatin-lamina interactions, we show how the spatial organization of chromatin polymer phases within the nucleus could perturb nuclear shape in some scenarios. Increasing the volume fraction of chromatin in the cell nucleus stabilizes the nuclear lamina against large fluctuations. However, surprisingly, we find that increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations in our simulations by a "wetting"-like interaction. In contrast, shape fluctuations are largely insensitive to the internal structure of the heterochromatin, such as the presence or absence of chromatin-chromatin crosslinks. Therefore, our simulations suggest that heterochromatin accumulation at the nuclear periphery could perturb nuclear morphology in a nucleus or nuclear region that is sufficiently soft, while stabilization of the nucleus via heterochromatin likely occurs through mechanisms other than chromatin microphase organization.
Collapse
|
60
|
Amin R, Ha NH, Qiu T, Holewinski R, Lam KC, Lopès A, Liu H, Tran AD, Lee MP, Gamage ST, Andresson T, Goldszmid RS, Meier JL, Hunter KW. Loss of NAT10 disrupts enhancer organization via p300 mislocalization and suppresses transcription of genes necessary for metastasis progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577116. [PMID: 38410432 PMCID: PMC10896336 DOI: 10.1101/2024.01.24.577116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Acetylation of protein and RNA represent a critical event for development and cancer progression. NAT10 is the only known RNA acetylase that catalyzes the N4-actylcytidine (ac4C) modification of RNAs. Here, we show that the loss of NAT10 significantly decreases lung metastasis in allograft and genetically engineered mouse models of breast cancer. NAT10 interacts with a mechanosensitive, metastasis susceptibility protein complex at the nuclear pore. In addition to its canonical role in RNA acetylation, we find that NAT10 interacts with p300 at gene enhancers. NAT10 loss is associated with p300 mislocalization into heterochromatin regions. NAT10 depletion disrupts enhancer organization, leading to alteration of gene transcription necessary for metastatic progression, including reduced myeloid cell-recruiting chemokines that results in a less metastasis-prone tumor microenvironment. Our study uncovers a distinct role of NAT10 in enhancer organization of metastatic tumor cells and suggests its involvement in the tumor-immune crosstalk dictating metastatic outcomes.
Collapse
|
61
|
Dang Y, Li J, Li Y, Wang Y, Zhao Y, Zhao N, Li W, Zhang H, Ye C, Ma H, Zhang L, Liu H, Dong Y, Yao M, Lei Y, Xu Z, Zhang F, Ye W. N-acetyltransferase 10 regulates alphavirus replication via N4-acetylcytidine (ac4C) modification of the lymphocyte antigen six family member E (LY6E) mRNA. J Virol 2024; 98:e0135023. [PMID: 38169284 PMCID: PMC10805074 DOI: 10.1128/jvi.01350-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
Epitranscriptomic RNA modifications can regulate the stability of mRNA and affect cellular and viral RNA functions. The N4-acetylcytidine (ac4C) modification in the RNA viral genome was recently found to promote viral replication; however, the mechanism by which RNA acetylation in the host mRNA regulates viral replication remains unclear. To help elucidate this mechanism, the roles of N-acetyltransferase 10 (NAT10) and ac4C during the infection and replication processes of the alphavirus, Sindbis virus (SINV), were investigated. Cellular NAT10 was upregulated, and ac4C modifications were promoted after alphavirus infection, while the loss of NAT10 or inhibition of its N-acetyltransferase activity reduced alphavirus replication. The NAT10 enhanced alphavirus replication as it helped to maintain the stability of lymphocyte antigen six family member E mRNA, which is a multifunctional interferon-stimulated gene that promotes alphavirus replication. The ac4C modification was thus found to have a non-conventional role in the virus life cycle through regulating host mRNA stability instead of viral mRNA, and its inhibition could be a potential target in the development of new alphavirus antivirals.IMPORTANCEThe role of N4-acetylcytidine (ac4C) modification in host mRNA and virus replication is not yet fully understood. In this study, the role of ac4C in the regulation of Sindbis virus (SINV), a prototype alphavirus infection, was investigated. SINV infection results in increased levels of N-acetyltransferase 10 (NAT10) and increases the ac4C modification level of cellular RNA. The NAT10 was found to positively regulate SINV infection in an N-acetyltransferase activity-dependent manner. Mechanistically, the NAT10 modifies lymphocyte antigen six family member E (LY6E) mRNA-the ac4C modification site within the 3'-untranslated region (UTR) of LY6E mRNA, which is essential for its translation and stability. The findings of this study demonstrate that NAT10 regulated mRNA stability and translation efficiency not only through the 5'-UTR or coding sequence but also via the 3'-UTR region. The ac4C modification of host mRNA stability instead of viral mRNA impacting the viral life cycle was thus identified, indicating that the inhibition of ac4C could be a potential target when developing alphavirus antivirals.
Collapse
Affiliation(s)
- Yamei Dang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yuan Wang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yajing Zhao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Ningbo Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Wanying Li
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
- Department of Pathogenic Biology, School of Preclinical Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - He Liu
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Min Yao
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Wei Ye
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
62
|
Qin G, Bai F, Hu H, Zhang J, Zhan W, Wu Z, Li J, Fu Y, Deng Y. Targeting the NAT10/NPM1 axis abrogates PD-L1 expression and improves the response to immune checkpoint blockade therapy. Mol Med 2024; 30:13. [PMID: 38243170 PMCID: PMC10799409 DOI: 10.1186/s10020-024-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND PD-1/PD-L1 play a crucial role as immune checkpoint inhibitors in various types of cancer. Although our previous study revealed that NPM1 was a novel transcriptional regulator of PD-L1 and stimulated the transcription of PD-L1, the underlying regulatory mechanism remains incompletely characterized. METHODS Various human cancer cell lines were used to validate the role of NPM1 in regulating the transcription of PD-L1. The acetyltransferase NAT10 was identified as a facilitator of NPM1 acetylation by coimmunoprecipitation and mass spectrometry. The potential application of combined NAT10 inhibitor and anti-CTLA4 treatment was evaluated by an animal model. RESULTS We demonstrated that NPM1 enhanced the transcription of PD-L1 in various types of cancer, and the acetylation of NPM1 played a vital role in this process. In particular, NAT10 facilitated the acetylation of NPM1, leading to enhanced transcription and increased expression of PD-L1. Moreover, our findings demonstrated that Remodelin, a compound that inhibits NAT10, effectively reduced NPM1 acetylation, leading to a subsequent decrease in PD-L1 expression. In vivo experiments indicated that Remodelin combined with anti-CTLA-4 therapy had a superior therapeutic effect compared with either treatment alone. Ultimately, we verified that the expression of NAT10 exhibited a positive correlation with the expression of PD-L1 in various types of tumors, serving as an indicator of unfavorable prognosis. CONCLUSION This study suggests that the NAT10/NPM1 axis is a promising therapeutic target in malignant tumors.
Collapse
Affiliation(s)
- Ge Qin
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Fan Bai
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Huabin Hu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Jianwei Zhang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Weixiang Zhan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Zehua Wu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Jianxia Li
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Yang Fu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Yanhong Deng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
| |
Collapse
|
63
|
Hu Z, Lu Y, Cao J, Lin L, Chen X, Zhou Z, Pu J, Chen G, Ma X, Deng Q, Jin Y, Jiang L, Li Y, Li T, Liu J, Zhu S. N-acetyltransferase NAT10 controls cell fates via connecting mRNA cytidine acetylation to chromatin signaling. SCIENCE ADVANCES 2024; 10:eadh9871. [PMID: 38215194 PMCID: PMC10786415 DOI: 10.1126/sciadv.adh9871] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
Cell fate transition involves dynamic changes of gene regulatory network and chromatin landscape, requiring multiple levels of regulation, yet the cross-talk between epitranscriptomic modification and chromatin signaling remains largely unknown. Here, we uncover that suppression of N-acetyltransferase 10 (NAT10), the writer for mRNA N4-acetylcytidine (ac4C) modification, can notably affect human embryonic stem cell (hESC) lineage differentiation and pluripotent reprogramming. With integrative analysis, we identify that NAT10-mediated ac4C modification regulates the protein levels of a subset of its targets, which are strongly enriched for fate-instructive chromatin regulators, and among them, histone chaperone ANP32B is experimentally verified and functionally relevant. Furthermore, NAT10-ac4C-ANP32B axis can modulate the chromatin landscape of their downstream genes (e.g., key regulators of Wnt and TGFβ pathways). Collectively, we show that NAT10 is an essential regulator of cellular plasticity, and its catalyzed mRNA cytidine acetylation represents a critical layer of epitranscriptomic modulation and uncover a previously unrecognized, direct cross-talk between epitranscriptomic modification and chromatin signaling during cell fate transitions.
Collapse
Affiliation(s)
- Zhensheng Hu
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunkun Lu
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lianyu Lin
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xi Chen
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ziyu Zhou
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Pu
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Guo Chen
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaojie Ma
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qian Deng
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Jin
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liling Jiang
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuhan Li
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Saiyong Zhu
- Life Sciences Institute, The Second Affiliated Hospital and School of Medicine, The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
64
|
Luo Q, Zhu J, Wang S, Fu P, Fu B, Huang Z, Li J. Decreased expression of NAT10 in peripheral blood mononuclear cells from new-onset ankylosing spondylitis and its clinical significance. Arthritis Res Ther 2024; 26:7. [PMID: 38167491 PMCID: PMC10759761 DOI: 10.1186/s13075-023-03250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND NAT10 is the firstly recognized RNA acetyltransferase that participates in multiple cellular biological processes and human disease. However, the role of N-acetyltransferase 10 (NAT10) in ankylosing spondylitis (AS) is still poorly elaborated. METHODS Fifty-six patients with New-Onset AS, 52 healthy controls (HC), 20 patients with rheumatoid arthritis (RA) and 16 patients with systemic lupus erythematosus (SLE) were recruited from The First Afliated Hospital of Nanchang University, and their clinical characteristics were recorded. The expression level of NAT10 in peripheral blood mononuclear cell (PBMC) was examined using reverse transcription-quantitative PCR analysis. The correlations between the expression level of NAT10 in the New-Onset AS patients and disease activity of AS were examined, and receiver operating characteristic (ROC) curves were built to evaluate predictive value in AS. Univariate analysis and multivariate regression analysis were used to analyze the risk factors and construct predictive model. RESULTS The mRNA expressions of NAT10 in PBMC from new-onset AS patients were significantly low and there were negative correlation between mRNA NAT10 and ASDAS-CRP, BASDIA in new-onset AS patients. ROC analysis suggested that mRNA NAT10 has value in distinguishing new-onset AS patients from HC, RA and SLE. Furthermore, a novel predictive model based on mRNA NAT10 and neutrophil percentages (N%) was constructed for distinguishing new-onset AS patients from HC (AUC = 0.880, sensitivity = 84.62%, specificity = 76.92%) and the predictive model correlated with the activity of new-onset AS. Furthermore, the predictive model could distinguish new-onset AS patients from RA and SLE (AUC = 0.661, sensitivity = 90.38%, specificity = 47.22%). Moreover, the potential predictive value of the combination of predictive model-HLA-B27 for AS vs. HC with a sensitivity of 92.86% (39/42), a specificity of 100.00% (52/52) and an accuracy of 96.81% (91/94) was superior to that of HLA-B27, which in turn had a sensitivity of 84.44% (38/45), a specificity of 100.00% (52/52) and an accuracy of 92.78% (90/97). CONCLUSION The present study suggested that the decreased mRNA NAT10 may play a role in AS pathogenesis and predictive model based on mRNA NAT10 and N% act as bioindicator for forecast and progression of diseases.
Collapse
Affiliation(s)
- Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Infection and Immunity, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, Jiangxi, 330006, China
| | - Juxiang Zhu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shiqian Wang
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Peng Fu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Biqi Fu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zikun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Infection and Immunity, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, Jiangxi, 330006, China.
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Infection and Immunity, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.
| |
Collapse
|
65
|
Zhang Y, Lei Y, Dong Y, Chen S, Sun S, Zhou F, Zhao Z, Chen B, Wei L, Chen J, Meng Z. Emerging roles of RNA ac4C modification and NAT10 in mammalian development and human diseases. Pharmacol Ther 2024; 253:108576. [PMID: 38065232 DOI: 10.1016/j.pharmthera.2023.108576] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
RNA ac4C modification is a novel and rare chemical modification observed in mRNA. Traditional biochemical studies had primarily associated ac4C modification with tRNA and rRNA until in 2018, Arango D et al. first reported the presence of ac4C modification on mRNA and demonstrated its critical role in mRNA stability and translation regulation. Furthermore, they established that the ac4C modification on mRNA is mediated by the classical N-acetyltransferase NAT10. Subsequent studies have underscored the essential implications of NAT10 and mRNA ac4C modification across both physiological and pathological regulatory processes. In this review, we aimed to explore the discovery history of RNA ac4C modification, its detection methods, and its regulatory mechanisms in disease and physiological development. We offer a forward-looking examination and discourse concerning the employment of RNA ac4C modification as a prospective therapeutic strategy across diverse diseases. Furthermore, we comprehensively summarize the functions and mechanisms of NAT10 in gene expression regulation and pathogenesis independent of RNA ac4C modification.
Collapse
Affiliation(s)
- Yigan Zhang
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China
| | - Shuwen Chen
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fange Zhou
- The First Clinical School of Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lv Wei
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China.
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Zhongji Meng
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
66
|
Rodrigues P, Bangali H, Ali E, Nauryzbaevish AS, Hjazi A, Fenjan MN, Alawadi A, Alsaalamy A, Alasheqi MQ, Mustafa YF. The mechanistic role of NAT10 in cancer: Unraveling the enigmatic web of oncogenic signaling. Pathol Res Pract 2024; 253:154990. [PMID: 38056132 DOI: 10.1016/j.prp.2023.154990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
N-acetyltransferase 10 (NAT10), a versatile enzyme, has gained considerable attention as a significant player in the complex realm of cancer biology. Its enigmatic role in tumorigenesis extends across a wide array of cellular processes, impacting cell growth, differentiation, survival, and genomic stability. Within the intricate network of oncogenic signaling, NAT10 emerges as a crucial agent in multiple cancer types, such as breast, lung, colorectal, and leukemia. This compelling research addresses the intricate complexity of the mechanistic role of NAT10 in cancer development. By elucidating its active participation in essential physiological processes, we investigate the regulatory role of NAT10 in cell cycle checkpoints, coordination of chromatin remodeling, and detailed modulation of the delicate balance between apoptosis and cell survival. Perturbations in NAT10 expression and function have been linked to oncogenesis, metastasis, and drug resistance in a variety of cancer types. Furthermore, the bewildering interactions between NAT10 and key oncogenic factors, such as p53 and c-Myc, are deciphered, providing profound insights into the molecular underpinnings of cancer pathogenesis. Equally intriguing, the paradoxical role of NAT10 as a potential tumor suppressor or oncogene is influenced by context-dependent factors and the cellular microenvironment. This study explores the fascinating interplay of genetic changes, epigenetic changes, and post-translational modifications that shape the dual character of NAT10, revealing the delicate balance between cancer initiation and suppression. Taken together, this overview delves deeply into the enigmatic role of NAT10 in cancer, elucidating its multifaceted roles and its complex interplay with oncogenic networks.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Abdreshov Serik Nauryzbaevish
- Institute of Genetics and Physiology SC MSHE RK, Laboratory of Physiology Lymphatic System, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
67
|
Arun A, Nath AR, Thankachan B, Unnikrishnan MK. Hutchinson-Gilford progeria syndrome: unraveling the genetic basis, symptoms, and advancements in therapeutic approaches. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241305144. [PMID: 39691184 PMCID: PMC11650505 DOI: 10.1177/26330040241305144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Hutchinson-Gilford Progeria syndrome (HGPS) serves as a prominent model for Progeroid syndromes, a group of rare genetic disorders characterized by accelerated aging. This review explores the genetic basis, clinical presentation, and complications of HGPS. HGPS is caused by mutations in the LMNA gene, resulting in the production of a defective structural protein, prelamin A. This protein contains a "CAAX" motif, where C represents cysteine, and its abnormal processing is central to the disease's pathology. HGPS leads to multiple organ systems being affected, including cardiovascular, skeletal, neurological, and dermatological systems, causing severe disability and increased mortality. Cardiovascular issues are particularly significant in HGPS and are crucial for developing therapeutic strategies. Recent advances in treatment modalities offer promise for managing HGPS. Farnesyltransferase inhibitors and genetic interventions, such as CRISPR-Cas9, have shown potential in mitigating progerin-associated symptoms, with encouraging results observed in preclinical and clinical studies. Additionally, emerging therapies such as rapamycin, sulforaphane, and MG132 hold promise in targeting underlying disease mechanisms. Comprehensive management approaches, including growth hormone therapy, retinoids, and dental care, are emphasized to enhance overall patient well-being. Despite progress, further research is essential to unravel the complex pathophysiology of Progeroid syndromes and develop effective treatments. Continued focus on therapies that address progerin accumulation and its downstream effects is vital for improving patient care and outcomes for individuals affected by HGPS and related disorders. This review highlights ongoing efforts to understand and combat Progeroid syndromes, aiming to alleviate the burdens imposed by these debilitating conditions.
Collapse
Affiliation(s)
- Akhil Arun
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara P.O., Kochi, KL 682041, India
| | - Athira Rejith Nath
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| | - Bonny Thankachan
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| | - M. K. Unnikrishnan
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| |
Collapse
|
68
|
Kurian L, Brandes RP. RNA Modification That Breaks the Heart: RNA Acetylase Nat10 Promotes Fibrosis. Circ Res 2023; 133:1003-1005. [PMID: 38060683 DOI: 10.1161/circresaha.123.323866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Affiliation(s)
- Leo Kurian
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany (L.K., R.P.B.)
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Germany (L.K., R.P.B.)
- German Center for Cardiovascular Research (DZHK), Germany (R.P.B.)
| |
Collapse
|
69
|
Shi J, Yang C, Zhang J, Zhao K, Li P, Kong C, Wu X, Sun H, Zheng R, Sun W, Chen L, Kong X. NAT10 Is Involved in Cardiac Remodeling Through ac4C-Mediated Transcriptomic Regulation. Circ Res 2023; 133:989-1002. [PMID: 37955115 DOI: 10.1161/circresaha.122.322244] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Heart failure, characterized by cardiac remodeling, is associated with abnormal epigenetic processes and aberrant gene expression. Here, we aimed to elucidate the effects and mechanisms of NAT10 (N-acetyltransferase 10)-mediated N4-acetylcytidine (ac4C) acetylation during cardiac remodeling. METHODS NAT10 and ac4C expression were detected in both human and mouse subjects with cardiac remodeling through multiple assays. Subsequently, acetylated RNA immunoprecipitation and sequencing, thiol-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), and ribosome sequencing (Ribo-seq) were employed to elucidate the role of ac4C-modified posttranscriptional regulation in cardiac remodeling. Additionally, functional experiments involving the overexpression or knockdown of NAT10 were conducted in mice models challenged with Ang II (angiotensin II) and transverse aortic constriction. RESULTS NAT10 expression and RNA ac4C levels were increased in in vitro and in vivo cardiac remodeling models, as well as in patients with cardiac hypertrophy. Silencing and inhibiting NAT10 attenuated Ang II-induced cardiomyocyte hypertrophy and cardiofibroblast activation. Next-generation sequencing revealed ac4C changes in both mice and humans with cardiac hypertrophy were associated with changes in global mRNA abundance, stability, and translation efficiency. Mechanistically, NAT10 could enhance the stability and translation efficiency of CD47 and ROCK2 transcripts by upregulating their mRNA ac4C modification, thereby resulting in an increase in their protein expression during cardiac remodeling. Furthermore, the administration of Remodelin, a NAT10 inhibitor, has been shown to prevent cardiac functional impairments in mice subjected to transverse aortic constriction by suppressing cardiac fibrosis, hypertrophy, and inflammatory responses, while also regulating the expression levels of CD47 and ROCK2 (Rho associated coiled-coil containing protein kinase 2). CONCLUSIONS Therefore, our data suggest that modulating epitranscriptomic processes, such as ac4C acetylation through NAT10, may be a promising therapeutic target against cardiac remodeling.
Collapse
Affiliation(s)
- Jing Shi
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China (C.Y.)
| | - Jing Zhang
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Kun Zhao
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Peng Li
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Chuiyu Kong
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Jiangsu, China (C.K.)
| | - Xiaoguang Wu
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Haoliang Sun
- Department of Cardiovascular Surgery (H.S., R.Z.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Rui Zheng
- Department of Cardiovascular Surgery (H.S., R.Z.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Wei Sun
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Lianmin Chen
- Changzhou Medical Center of the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University and Department of Cardiology of the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China (L.C.)
| | - Xiangqing Kong
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China (X.K.)
| |
Collapse
|
70
|
Liu Y, Huang H, Zhang C, Fan H. N-acetyltransferase 10 promotes the progression of oral squamous cell carcinoma through N4-acetylcytidine RNA acetylation of MMP1 mRNA. Cancer Sci 2023; 114:4202-4215. [PMID: 37705232 PMCID: PMC10637085 DOI: 10.1111/cas.15946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
The pathogenesis of oral squamous cell carcinoma (OSCC) remains unclear. Therefore, clarifying its pathogenesis and molecular-level development mechanism has become the focus of OSCC research. N-acetyltransferase 10 (NAT10) is a crucial enzyme involved in mRNA acetylation, regulating target gene expression and biological functions of various diseases through mediating N4-acetylcytidine (ac4C) acetylation. However, its role in OSCC progression is not well understood. In this study, we showed that NAT10 was significantly upregulated in OSCC tissues compared to normal oral tissues. Moreover, lentivirus-mediated NAT10 knockdown markedly suppressed cell proliferation, migration, and invasion in two OSCC cell lines (SCC-9 and SCC-15). Interestingly, MMP1 was found to be significantly upregulated in OSCC tissues and was a potential target of NAT10. N-acetyltransferase 10 knockdown significantly reduced both the total and ac4C acetylated levels of MMP1 mRNA and decreased its mRNA stability. Xenograft experiments further confirmed the inhibitory effect of NAT10 knockdown on the tumorigenesis and metastasis ability of OSCC cells and decreased MMP1 expression in vivo. Additionally, NAT10 knockdown impaired the proliferation, migration, and invasion abilities in OSCC cell lines in an MMP1-dependent manner. Our results suggest that NAT10 acts as an oncogene in OSCC, and targeting ac4C acetylation could be a promising therapeutic strategy for OSCC treatment.
Collapse
Affiliation(s)
- Yi Liu
- Department of StomatologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Hui Huang
- Department of StomatologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Cun‐bao Zhang
- Department of Stomatology, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineZhejiangChina
| | - Hua‐nan Fan
- Department of StomatologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
71
|
Jebane C, Varlet AA, Karnat M, Hernandez- Cedillo LM, Lecchi A, Bedu F, Desgrouas C, Vigouroux C, Vantyghem MC, Viallat A, Rupprecht JF, Helfer E, Badens C. Enhanced cell viscosity: A new phenotype associated with lamin A/C alterations. iScience 2023; 26:107714. [PMID: 37701573 PMCID: PMC10494210 DOI: 10.1016/j.isci.2023.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Lamin A/C is a well-established key contributor to nuclear stiffness and its role in nucleus mechanical properties has been extensively studied. However, its impact on whole-cell mechanics has been poorly addressed, particularly concerning measurable physical parameters. In this study, we combined microfluidic experiments with theoretical analyses to quantitatively estimate the whole-cell mechanical properties. This allowed us to characterize the mechanical changes induced in cells by lamin A/C alterations and prelamin A accumulation resulting from atazanavir treatment or lipodystrophy-associated LMNA R482W pathogenic variant. Our results reveal a distinctive increase in long-time viscosity as a signature of cells affected by lamin A/C alterations. Furthermore, they show that the whole-cell response to mechanical stress is driven not only by the nucleus but also by the nucleo-cytoskeleton links and the microtubule network. The enhanced cell viscosity assessed with our microfluidic assay could serve as a valuable diagnosis marker for lamin-related diseases.
Collapse
Affiliation(s)
- Cécile Jebane
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | | | - Marc Karnat
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems, Marseille, France
| | | | | | | | | | - Corinne Vigouroux
- Assistance Publique–Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, National Reference Centre for Rares diseases of Insulin-Secretion and Insulin-Sensitivity (PRISIS), Department of Endocrinology, Paris, France
- Sorbonne University, Saint-Antoine Research Centre, Inserm UMR_S938, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Marie-Christine Vantyghem
- Endocrinology, Diabetology and Metabolism Department, Inserm U1190, EGID, Lille University Hospital, Lille, France
| | - Annie Viallat
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems, Marseille, France
| | - Emmanuèle Helfer
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- AP-HM, Laboratoire de Biochimie, Marseille, France
| |
Collapse
|
72
|
Kovacs MT, Vallette M, Wiertsema P, Dingli F, Loew D, Nader GPDF, Piel M, Ceccaldi R. DNA damage induces nuclear envelope rupture through ATR-mediated phosphorylation of lamin A/C. Mol Cell 2023; 83:3659-3668.e10. [PMID: 37832547 PMCID: PMC10597398 DOI: 10.1016/j.molcel.2023.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described. The molecular mechanism(s) of these spontaneous NE rupture events remain to be explored. Here, we show that DNA damage and subsequent ATR activation leads to NE rupture. Upon DNA damage, lamin A/C is phosphorylated in an ATR-dependent manner, leading to changes in lamina assembly and, ultimately, NE rupture. In addition, we show that cancer cells with intrinsic DNA repair defects undergo frequent events of DNA-damage-induced NE rupture, which renders them extremely sensitive to further NE perturbations. Exploiting this NE vulnerability could provide a new angle to complement traditional, DNA-damage-based chemotherapy.
Collapse
Affiliation(s)
| | - Marie Vallette
- Inserm U830, PSL Research University, Institut Curie, 75005 Paris, France
| | - Pauline Wiertsema
- Inserm U830, PSL Research University, Institut Curie, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse Protéomique, 26 rue d'Ulm, Paris 75248 Cedex 05, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse Protéomique, 26 rue d'Ulm, Paris 75248 Cedex 05, France
| | | | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Raphael Ceccaldi
- Inserm U830, PSL Research University, Institut Curie, 75005 Paris, France.
| |
Collapse
|
73
|
Yan S, Lu Z, Yang W, Xu J, Wang Y, Xiong W, Zhu R, Ren L, Chen Z, Wei Q, Liu SM, Feng T, Yuan B, Weng X, Du Y, Zhou X. Antibody-Free Fluorine-Assisted Metabolic Sequencing of RNA N4-Acetylcytidine. J Am Chem Soc 2023; 145:22232-22242. [PMID: 37772932 DOI: 10.1021/jacs.3c08483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
N4-Acetylcytidine (ac4C) has been found to affect a variety of cellular and biological processes. For a mechanistic understanding of the roles of ac4C in biology and disease, we present an antibody-free, fluorine-assisted metabolic sequencing method to detect RNA ac4C, called "FAM-seq". We successfully applied FAM-seq to profile ac4C landscapes in human 293T, HeLa, and MDA cell lines in parallel with the reported acRIP-seq method. By comparison with the classic ac4C antibody sequencing method, we found that FAM-seq is a convenient and reliable method for transcriptome-wide mapping of ac4C. Because this method holds promise for detecting nascent RNA ac4C modifications, we further investigated the role of ac4C in regulating chemotherapy drug resistance in chronic myeloid leukemia. The results indicated that drug development or combination therapy could be enhanced by appreciating the key role of ac4C modification in cancer therapy.
Collapse
Affiliation(s)
- Shen Yan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Ziang Lu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Jinglei Xu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Wei Xiong
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Rongjie Zhu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Linao Ren
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Zhaoxin Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Qi Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China
| | - Tian Feng
- School of Public Health, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Bifeng Yuan
- School of Public Health, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Yuhao Du
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430072, Hubei, PR China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, PR China
| |
Collapse
|
74
|
Yan Q, Zhou J, Wang Z, Ding X, Ma X, Li W, Jia X, Gao SJ, Lu C. NAT10-dependent N 4-acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation. Nat Commun 2023; 14:6327. [PMID: 37816771 PMCID: PMC10564894 DOI: 10.1038/s41467-023-42135-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
N-acetyltransferase 10 (NAT10) is an N4-acetylcytidine (ac4C) writer that catalyzes RNA acetylation at cytidine N4 position on tRNAs, rRNAs and mRNAs. Recently, NAT10 and the associated ac4C have been reported to increase the stability of HIV-1 transcripts. Here, we show that NAT10 catalyzes ac4C addition to the polyadenylated nuclear RNA (PAN), a long non-coding RNA encoded by the oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), triggering viral lytic reactivation from latency. Mutagenesis of ac4C sites in PAN RNA in the context of KSHV infection abolishes PAN ac4C modifications, downregulates the expression of viral lytic genes and reduces virion production. NAT10 knockdown or mutagenesis erases ac4C modifications of PAN RNA and increases its instability, and prevents KSHV reactivation. Furthermore, PAN ac4C modification promotes NAT10 recruitment of IFN-γ-inducible protein-16 (IFI16) mRNA, resulting in its ac4C acetylation, mRNA stability and translation, and eventual inflammasome activation. These results reveal a novel mechanism of viral and host ac4C modifications and the associated complexes as a critical switch of KSHV replication and antiviral immunity.
Collapse
Affiliation(s)
- Qin Yan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
- Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Jing Zhou
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Ziyu Wang
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Xiangya Ding
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China
| | - Xinyue Ma
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
- Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China.
| | - Shou-Jiang Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Chun Lu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China.
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China.
- Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, P. R. China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 211166, Nanjing, P. R. China.
| |
Collapse
|
75
|
Zhang Z, Zhang Y, Cai Y, Li D, He J, Feng Z, Xu Q. NAT10 regulates the LPS-induced inflammatory response via the NOX2-ROS-NF-κB pathway in macrophages. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119521. [PMID: 37307924 DOI: 10.1016/j.bbamcr.2023.119521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Periodontitis is a chronic osteolytic inflammatory disease resulting from complex dynamic interactions among bacterial pathogens and the host immune response. Macrophages play a vital role in the pathogenesis of periodontitis by triggering periodontal inflammation and inducing periodontium destruction. N-Acetyltransferase 10 (NAT10) is an acetyltransferase that has been shown to catalyse N4-acetylcytidine (ac4C) mRNA modification and is related to cellular pathophysiological processes, including the inflammatory immune response. Nevertheless, whether NAT10 regulates the inflammatory response of macrophages in periodontitis remains unclear. In this study, the expression of NAT10 in macrophages was found to decrease during LPS-induced inflammation. NAT10 knockdown significantly reduced the generation of inflammatory factors, while NAT10 overexpression had the opposite effect. RNA sequencing revealed that the differentially expressed genes were enriched in the NF-κB signalling pathway and oxidative stress. Both the NF-κB inhibitor Bay11-7082 and the ROS scavenger N-acetyl-L-cysteine (NAC) could reverse the upregulation of inflammatory factors. NAC inhibited the phosphorylation of NF-κB, but Bay11-7082 had no effect on the production of ROS in NAT10-overexpressing cells, suggesting that NAT10 activated the LPS-induced NF-κB signalling pathway by regulating ROS generation. Furthermore, the expression and stability of Nox2 was promoted after NAT10 overexpression, indicating that Nox2 may be a potential target of NAT10. In vivo, the NAT10 inhibitor Remodelin reduced macrophage infiltration and bone resorption in ligature-induced periodontitis mice. In summary, these results showed that NAT10 accelerated LPS-induced inflammation via the NOX2-ROS-NF-κB pathway in macrophages and that its inhibitor Remodelin might be of potential therapeutic significance in periodontitis treatment.
Collapse
Affiliation(s)
- Zhanqi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yiwen Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yongjie Cai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Di Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zhihui Feng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
76
|
Patrasso EA, Raikundalia S, Arango D. Regulation of the epigenome through RNA modifications. Chromosoma 2023; 132:231-246. [PMID: 37138119 PMCID: PMC10524150 DOI: 10.1007/s00412-023-00794-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
Chemical modifications of nucleotides expand the complexity and functional properties of genomes and transcriptomes. A handful of modifications in DNA bases are part of the epigenome, wherein DNA methylation regulates chromatin structure, transcription, and co-transcriptional RNA processing. In contrast, more than 150 chemical modifications of RNA constitute the epitranscriptome. Ribonucleoside modifications comprise a diverse repertoire of chemical groups, including methylation, acetylation, deamination, isomerization, and oxidation. Such RNA modifications regulate all steps of RNA metabolism, including folding, processing, stability, transport, translation, and RNA's intermolecular interactions. Initially thought to influence all aspects of the post-transcriptional regulation of gene expression exclusively, recent findings uncovered a crosstalk between the epitranscriptome and the epigenome. In other words, RNA modifications feedback to the epigenome to transcriptionally regulate gene expression. The epitranscriptome achieves this feat by directly or indirectly affecting chromatin structure and nuclear organization. This review highlights how chemical modifications in chromatin-associated RNAs (caRNAs) and messenger RNAs (mRNAs) encoding factors involved in transcription, chromatin structure, histone modifications, and nuclear organization affect gene expression transcriptionally.
Collapse
Affiliation(s)
- Emmely A Patrasso
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical and Pharmaceutical Biotechnology Program, IMC University of Applied Sciences, Krems, Austria
| | - Sweta Raikundalia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
77
|
Salim A, Werther P, Hatzopoulos GN, Reymond L, Wombacher R, Gönczy P, Johnsson K. Chemical Probe for Imaging of Polo-like Kinase 4 and Centrioles. JACS AU 2023; 3:2247-2256. [PMID: 37654580 PMCID: PMC10466336 DOI: 10.1021/jacsau.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Polo-like kinase (Plk4) is a serine/threonine-protein kinase that is essential for biogenesis of the centriole organelle and is enriched at centrioles. Herein, we introduce Cen-TCO, a chemical probe based on the Plk4 inhibitor centrinone, to image Plk4 and centrioles in live or fixed cultured human cells. Specifically, we established a bio-orthogonal two-step labeling system that enables the Cen-TCO-mediated imaging of Plk4 by STED super-resolution microscopy. Such direct labeling of Plk4 results in an increased resolution in STED imaging compared with using anti-Plk4 antibodies, underlining the importance of direct labeling strategies for super-resolution microscopy. We anticipate that Cen-TCO will become an important tool for investigating the biology of Plk4 and of centrioles.
Collapse
Affiliation(s)
- Aleksandar Salim
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
- Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Philipp Werther
- Institute
of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Georgios N. Hatzopoulos
- Swiss
Institute for Experimental Cancer Research (ISREC), School of Life
Sciences, Swiss Federal Institute of Technology
Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Luc Reymond
- Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Richard Wombacher
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
- Institute
of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Pierre Gönczy
- Swiss
Institute for Experimental Cancer Research (ISREC), School of Life
Sciences, Swiss Federal Institute of Technology
Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Kai Johnsson
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
- Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
78
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
79
|
Yang Q, Lei X, He J, Peng Y, Zhang Y, Ling R, Wu C, Zhang G, Zheng B, Chen X, Zou B, Fu Z, Zhao L, Liu H, Hu Y, Yu J, Li F, Ye G, Li G. N4-Acetylcytidine Drives Glycolysis Addiction in Gastric Cancer via NAT10/SEPT9/HIF-1α Positive Feedback Loop. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300898. [PMID: 37328448 PMCID: PMC10427357 DOI: 10.1002/advs.202300898] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Indexed: 06/18/2023]
Abstract
Anti-angiogenic therapy has long been considered a promising strategy for solid cancers. Intrinsic resistance to hypoxia is a major cause for the failure of anti-angiogenic therapy, but the underlying mechanism remains unclear. Here, it is revealed that N4-acetylcytidine (ac4C), a newly identified mRNA modification, enhances hypoxia tolerance in gastric cancer (GC) cells by promoting glycolysis addiction. Specifically, acetyltransferase NAT10 transcription is regulated by HIF-1α, a key transcription factor of the cellular response to hypoxia. Further, acRIP-sequencing, Ribosome profiling sequencing, RNA-sequencing, and functional studies confirm that NAT10 in turn activates the HIF-1 pathway and subsequent glucose metabolism reprogramming by mediating SEPT9 mRNA ac4C modification. The formation of the NAT10/SEPT9/HIF-1α positive feedback loop leads to excessive activation of the HIF-1 pathway and induces glycolysis addiction. Combined anti-angiogenesis and ac4C inhibition attenuate hypoxia tolerance and inhibit tumor progression in vivo. This study highlights the critical roles of ac4C in the regulation of glycolysis addiction and proposes a promising strategy to overcome resistance to anti-angiogenic therapy by combining apatinib with ac4C inhibition.
Collapse
Affiliation(s)
- Qingbin Yang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Xuetao Lei
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Jiayong He
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Yanmei Peng
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Yihao Zhang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Ruoyu Ling
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Chaorui Wu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Guofan Zhang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Boyang Zheng
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Xinhua Chen
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Boya Zou
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Ziyi Fu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Liying Zhao
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Hao Liu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Yanfeng Hu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Jiang Yu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Fengping Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Gengtai Ye
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Guoxin Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| |
Collapse
|
80
|
Zheng N, Liu X, Yang Y, Liu Y, Yan F, Zeng Y, Cheng Y, Wu D, Chen C, Wang X. Regulatory roles of NAT10 in airway epithelial cell function and metabolism in pathological conditions. Cell Biol Toxicol 2023; 39:1237-1256. [PMID: 35877022 DOI: 10.1007/s10565-022-09743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
N-acetyltransferase 10 (NAT10), a nuclear acetyltransferase and a member of the GNAT family, plays critical roles in RNA stability and translation processes as well as cell proliferation. Little is known about regulatory effects of NAT10 in lung epithelial cell proliferation. We firstly investigated NTA10 mRNA expression in alveolar epithelial types I and II, basal, ciliated, club, and goblet/mucous epithelia from heathy and patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, lung adenocarcinoma, para-tumor tissue, and systemic sclerosis, respectively. We selected A549 cells for representative of alveolar epithelia or H1299 and H460 cells as airway epithelia with different genetic backgrounds and studied dynamic responses of NAT10-down-regulated epithelia to high temperature, lipopolysaccharide, cigarette smoking extract (CSE), drugs, radiation, and phosphoinositide 3-kinase (PI3K) inhibitors at various doses. We also compared transcriptomic profiles between alveolar and airway epithelia, between cells with or without NAT10 down-regulation, between early and late stages, and between challenges. The present study demonstrated that NAT10 expression increased in human lung epithelia and varied among epithelial types, challenges, and diseases. Knockdown of NAT10 altered epithelial mitochondrial functions, dynamic responses to LPS, CSE, or PI3K inhibitors, and transcriptomic phenomes. NAT10 regulates biological phenomes, and behaviors are more complex and are dependent upon multiple signal pathways. Thus, NAT10-associated signal pathways can be a new alternative for understanding the disease and developing new biomarkers and targets.
Collapse
Affiliation(s)
- Nannan Zheng
- Department of Respiratory Medicine, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xuanqi Liu
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ying Yang
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yifei Liu
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Furong Yan
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yiming Zeng
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Yunfeng Cheng
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Duojiao Wu
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China.
| | - Chengshui Chen
- Department of Respiratory Medicine, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Quzhou Hospital of Wenzhou Medical University, Quzhou, Zhejiang Province, China.
| | - Xiangdong Wang
- Jinshan Hospital Centre for Tumor Diagnosis and Therapy, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China.
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
81
|
Wei W, Zhang S, Han H, Wang X, Zheng S, Wang Z, Yang C, Wang L, Ma J, Guo S, Wang J, Liu L, Choe J, Lin S. NAT10-mediated ac4C tRNA modification promotes EGFR mRNA translation and gefitinib resistance in cancer. Cell Rep 2023; 42:112810. [PMID: 37463108 DOI: 10.1016/j.celrep.2023.112810] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
Aberrant RNA modifications are frequently associated with cancers, while the underlying mechanisms and clinical significance remain poorly understood. Here, we find that the ac4C RNA acetyltransferase NAT10 is significantly upregulated in esophageal cancers (ESCAs) and associated with poor ESCA prognosis. In addition, using ESCA cell lines and mouse models, we confirm the critical functions of NAT10 in promoting ESCA tumorigenesis and progression in vitro and in vivo. Mechanistically, NAT10 depletion reduces the abundance of ac4C-modified tRNAs and decreases the translation efficiencies of mRNAs enriched for ac4C-modified tRNA-decoded codons. We further identify EGFR as a key downstream target that facilitates NAT10's oncogenic functions. In terms of clinical significance, we demonstrate that NAT10 depletion and gefitinib treatment synergistically inhibit ESCA progression in vitro and in vivo. Our data indicate the mechanisms underlying ESCA progression at the layer of mRNA translation control and provide molecular insights for the development of effective cancer therapeutic strategies.
Collapse
Affiliation(s)
- Wei Wei
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shuishen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Han
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaochen Wang
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Siyi Zheng
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyu Wang
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Chunlong Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lu Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jieyi Ma
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Siyao Guo
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Wang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lianlian Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Junho Choe
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Shuibin Lin
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
82
|
Li JQ, Wang HJ. [Research advances in pharmacotherapy for rare diseases in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:759-766. [PMID: 37529960 PMCID: PMC10414178 DOI: 10.7499/j.issn.1008-8830.2302048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 08/03/2023]
Abstract
There are more than 7 000 rare diseases and approximately 475 million individuals with rare diseases globally, with children accounting for two-thirds of this population. Due to a relatively small patient population and limited financial resources allocated for drug research and development in pharmaceutical enterprises, there are still no drugs approved for the treatment of several thousands of these rare diseases. At present, there are no drugs for 95% of the patients with rare diseases, and consequently, the therapeutic drugs for rare diseases have been designated as orphan drugs. In order to guide pharmaceutical enterprises to strengthen the research and development of orphan drugs, various nations have enacted the acts for rare disease drugs, promoted and simplified the patent application process for orphan drugs, and provided scientific recommendations and guidance for the research and development of orphan drugs. Since there is a relatively high incidence rate of rare diseases in children, this article reviews the latest research on pharmacotherapy for children with rare diseases.
Collapse
Affiliation(s)
- Jia-Qi Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hui-Jun Wang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
83
|
Rota Sperti F, Mitteaux J, Zell J, Pipier A, Valverde IE, Monchaud D. The multivalent G-quadruplex (G4)-ligands MultiTASQs allow for versatile click chemistry-based investigations. RSC Chem Biol 2023; 4:456-465. [PMID: 37415864 PMCID: PMC10320843 DOI: 10.1039/d3cb00009e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Chemical biology hinges on multivalent molecular tools that can specifically interrogate and/or manipulate cellular circuitries from the inside. The success of many of these approaches relies on molecular tools that make it possible to visualize biological targets in cells and then isolate them for identification purposes. To this end, click chemistry has become in just a few years a vital tool in offering practically convenient solutions to address highly complicated biological questions. We report here on two clickable molecular tools, the biomimetic G-quadruplex (G4) ligands MultiTASQ and azMultiTASQ, which benefit from the versatility of two types of bioorthogonal chemistry, CuAAC and SPAAC (the discovery of which was very recently awarded the Nobel Prize of chemistry). These two MultiTASQs are used here to both visualize G4s in and identify G4s from human cells. To this end, we developed click chemo-precipitation of G-quadruplexes (G4-click-CP) and in situ G4 click imaging protocols, which provide unique insights into G4 biology in a straightforward and reliable manner.
Collapse
Affiliation(s)
- Francesco Rota Sperti
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Jérémie Mitteaux
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Joanna Zell
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Angélique Pipier
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Ibai E Valverde
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - David Monchaud
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| |
Collapse
|
84
|
Cisneros B, García-Aguirre I, De Ita M, Arrieta-Cruz I, Rosas-Vargas H. Hutchinson-Gilford Progeria Syndrome: Cellular Mechanisms and Therapeutic Perspectives. Arch Med Res 2023; 54:102837. [PMID: 37390702 DOI: 10.1016/j.arcmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
In humans, aging is characterized by a gradual decline of physical and psychological functions, with the concomitant onset of chronic-degenerative diseases, which ultimately lead to death. The study of Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder that recapitulates several features of natural aging, has provided important insights into deciphering the aging process. The genetic origin of HGPS is a de novo point mutation in the LMNA gene that drives the synthesis of progerin, mutant version of lamin A. Progerin is aberrantly anchored to the nuclear envelope disrupting a plethora of molecular processes; nonetheless, how progerin exerts a cascade of deleterious alterations at the cellular and systemic levels is not fully understood. Over the past decade, the use of different cellular and animal models for HGPS has allowed the identification of the molecular mechanisms underlying HGPS, paving the way towards the development of therapeutic treatments against the disease. In this review, we present an updated overview of the biology of HGPS, including its clinical features, description of key cellular processes affected by progerin (nuclear morphology and function, nucleolar activity, mitochondrial function, protein nucleocytoplasmic trafficking and telomere homeostasis), as well as discussion of the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bulmaro Cisneros
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico
| | - Ian García-Aguirre
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Bioengineering Department, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City, Mexico
| | - Marlon De Ita
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Basic Research Department, Research Direction, National Institute of Geriatrics, Ministry of Health, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
85
|
Jiang X, Cheng Y, Zhu Y, Xu C, Li Q, Xing X, Li W, Zou J, Meng L, Azhar M, Cao Y, Tong X, Qin W, Zhu X, Bao J. Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice. Nat Commun 2023; 14:3729. [PMID: 37349316 PMCID: PMC10287700 DOI: 10.1038/s41467-023-39256-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
In mammals, the production of mature oocytes necessitates rigorous regulation of the discontinuous meiotic cell-cycle progression at both the transcriptional and post-transcriptional levels. However, the factors underlying this sophisticated but explicit process remain largely unclear. Here we characterize the function of N-acetyltransferase 10 (Nat10), a writer for N4-acetylcytidine (ac4C) on RNA molecules, in mouse oocyte development. We provide genetic evidence that Nat10 is essential for oocyte meiotic prophase I progression, oocyte growth and maturation by sculpting the maternal transcriptome through timely degradation of poly(A) tail mRNAs. This is achieved through the ac4C deposition on the key CCR4-NOT complex transcripts. Importantly, we devise a method for examining the poly(A) tail length (PAT), termed Hairpin Adaptor-poly(A) tail length (HA-PAT), which outperforms conventional methods in terms of cost, sensitivity, and efficiency. In summary, these findings provide genetic evidence that unveils the indispensable role of maternal Nat10 in oocyte development.
Collapse
Affiliation(s)
- Xue Jiang
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yu Cheng
- School of Information Science and Technology, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yuzhang Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Caoling Xu
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Qiaodan Li
- Laboratory animal center, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Xuemei Xing
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Wenqing Li
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Jiaqi Zou
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Lan Meng
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Muhammad Azhar
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Yuzhu Cao
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), 510600, Guangzhou, China.
| | - Xiaoli Zhu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
| | - Jianqiang Bao
- Reproductive and Genetic Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
- Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), 230001, Hefei, Anhui, China.
| |
Collapse
|
86
|
Sikder K, Phillips E, Zhong Z, Wang N, Saunders J, Mothy D, Kossenkov A, Schneider T, Nichtova Z, Csordas G, Margulies KB, Choi JC. Perinuclear damage from nuclear envelope deterioration elicits stress responses that contribute to LMNA cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528563. [PMID: 36824975 PMCID: PMC9949050 DOI: 10.1101/2023.02.14.528563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Mutations in the LMNA gene encoding nuclear lamins A/C cause a diverse array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the molecular perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis leading to cardiac dysfunction remains elusive. Using a novel cell-type specific Lmna deletion mouse model capable of translatome profiling, we found that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Prior to the onset of cardiac dysfunction, lamin A/C-depleted cardiomyocytes displayed nuclear envelope deterioration, golgi dilation/fragmentation, and CREB3-mediated golgi stress activation. Translatome profiling identified upregulation of Med25, a transcriptional co-factor that can selectively dampen UPR axes. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the golgi or inducing nuclear damage by increased matrix stiffness. Systemic administration of pharmacological modulators of autophagy or ER stress significantly improved the cardiac function. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the development of LMNA cardiomyopathy. Teaser Interplay of stress responses underlying the development of LMNA cardiomyopathy.
Collapse
|
87
|
Dalhat MH, Choudhry H, Khan MI. NAT10, an RNA Cytidine Acetyltransferase, Regulates Ferroptosis in Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12051116. [PMID: 37237981 DOI: 10.3390/antiox12051116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, we reported that N-acetyltransferase 10 (NAT10) regulates fatty acid metabolism through ac4C-dependent RNA modification of key genes in cancer cells. During this work, we noticed ferroptosis as one of the most negatively enriched pathways among other pathways in NAT10-depleted cancer cells. In the current work, we explore the possibility of whether NAT10 acts as an epitranscriptomic regulator of the ferroptosis pathway in cancer cells. Global ac4C levels and expression of NAT10 with other ferroptosis-related genes were assessed via dotblot and RT-qPCR, respectively. Flow cytometry and biochemical analysis were used to assess oxidative stress and ferroptosis features. The ac4C-mediated mRNA stability was conducted using RIP-PCR and mRNA stability assay. Metabolites were profiled using LC-MS/MS. Our results showed significant downregulation in expression of essential genes related to ferroptosis, namely SLC7A11, GCLC, MAP1LC3A, and SLC39A8 in NAT10-depleted cancer cells. Further, we noticed a reduction in cystine uptake and reduced GSH levels, along with elevated ROS, and lipid peroxidation levels in NAT10-depleted cells. Consistently, overproduction of oxPLs, as well as increased mitochondrial depolarization and decreased activities of antioxidant enzymes, support the notion of ferroptosis induction in NAT10-depleted cancer cells. Mechanistically, a reduced ac4C level shortens the half-life of GCLC and SLC7A11 mRNA, resulting in low levels of intracellular cystine and reduced GSH, failing to detoxify ROS, and leading to increased cellular oxPLs, which facilitate ferroptosis induction. Collectively, our findings suggest that NAT10 restrains ferroptosis by stabilizing the SLC7A11 mRNA transcripts in order to avoid oxidative stress that induces oxidation of phospholipids to initiate ferroptosis.
Collapse
Affiliation(s)
- Mahmood Hassan Dalhat
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
88
|
Chillar K, Eriyagama AMDN, Yin Y, Shahsavari S, Halami B, Apostle A, Fang S. Oligonucleotide synthesis under mild deprotection conditions. NEW J CHEM 2023; 47:8714-8722. [PMID: 37915883 PMCID: PMC10617641 DOI: 10.1039/d2nj03845e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Over a hundred non-canonical nucleotides have been found in DNA and RNA. Many of them are sensitive toward nucleophiles. Because known oligonucleotide synthesis technologies require nucleophilic conditions for deprotection, currently there is no suitable technology for their synthesis. The recently disclosed method regarding the use of 1,3-dithian-2-yl-methyl (Dim) for phosphate protection and 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) for amino protection can solve the problem. With Dim-Dmoc protection, oligodeoxynucleotide (ODN) deprotection can be achieved with NaIO4 followed by aniline. Some sensitive groups have been determined to be stable under these conditions. Besides serving as a base, aniline also serves as a nucleophilic scavenger, which prevents deprotection side products from reacting with ODN. For this reason, excess aniline is needed. Here, we report the use of alkyl Dim (aDim) and alkyl Dmoc (aDmoc) for ODN synthesis. With aDim-aDmoc protection, deprotection is achieved with NaIO4 followed by K2CO3. No nucleophilic scavenger such as aniline is needed. Over 10 ODNs including one containing the highly sensitive N4-acetylcytidine were synthesized. Work on extending the method for sensitive RNA synthesis is in progress.
Collapse
Affiliation(s)
- Komal Chillar
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Adikari M D N Eriyagama
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Yipeng Yin
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Shahien Shahsavari
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Bhaskar Halami
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Alexander Apostle
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
89
|
Zhang M, Yang K, Wang QH, Xie L, Liu Q, Wei R, Tao Y, Zheng HL, Lin N, Xu H, Yang L, Wang H, Zhang T, Xue Z, Cao JL, Pan Z. The Cytidine N-Acetyltransferase NAT10 Participates in Peripheral Nerve Injury-Induced Neuropathic Pain by Stabilizing SYT9 Expression in Primary Sensory Neurons. J Neurosci 2023; 43:3009-3027. [PMID: 36898834 PMCID: PMC10146489 DOI: 10.1523/jneurosci.2321-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
RNA N4-acetylcytidine (ac4C) modification is increasingly recognized as an important layer of gene regulation; however, the involvement of ac4C in pain regulation has not been studied. Here, we report that N-acetyltransferase 10 protein (NAT10; the only known ac4C "writer") contributes to the induction and development of neuropathic pain in an ac4C-dependent manner. Peripheral nerve injury increases the levels of NAT10 expression and overall ac4C in injured dorsal root ganglia (DRGs). This upregulation is triggered by the activation of upstream transcription factor 1 (USF1), a transcription factor that binds to the Nat10 promoter. Knock-down or genetic deletion of NAT10 in the DRG abolishes the gain of ac4C sites in Syt9 mRNA and the augmentation of SYT9 protein, resulting in a marked antinociceptive effect in nerve-injured male mice. Conversely, mimicking NAT10 upregulation in the absence of injury evokes the elevation of Syt9 ac4C and SYT9 protein and induces the genesis of neuropathic-pain-like behaviors. These findings demonstrate that USF1-governed NAT10 regulates neuropathic pain by targeting Syt9 ac4C in peripheral nociceptive sensory neurons. Our findings establish NAT10 as a critical endogenous initiator of nociceptive behavior and a promising new target for treating neuropathic pain.SIGNIFICANCE STATEMENT The cytidine N4-acetylcytidine (ac4C), a new epigenetic RNA modification, is crucial for the translation and stability of mRNA, but its role for chronic pain remains unclear. Here, we demonstrate that N-acetyltransferase 10 (NAT10) acts as ac4C N-acetyltransferase and plays an important role in the development and maintenance of neuropathic pain. NAT10 was upregulated via the activation of the transcription factor upstream transcription factor 1 (USF1) in the injured dorsal root ganglion (DRG) after peripheral nerve injury. Since pharmacological or genetic deleting NAT10 in the DRG attenuated the nerve injury-induced nociceptive hypersensitivities partially through suppressing Syt9 mRNA ac4C and stabilizing SYT9 protein level, NAT10 may serve as an effective and novel therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ling Xie
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hong-Li Zheng
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ninghua Lin
- Department of Anesthesiology, Yantai affiliated Hospital of Binzhou Medical University, Yantai 264000, China
| | - Hengjun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongjun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Tingruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhouya Xue
- Department of Anesthesiology, Yancheng affiliated Hospital of Xuzhou Medical University, Yancheng 224008, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
90
|
ZP3 and AIPL1 participate in GVBD of mouse oocytes by affecting the nuclear membrane localization and maturation of farnesylated prelamin A. ZYGOTE 2023; 31:140-148. [PMID: 36533678 DOI: 10.1017/s0967199422000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The low maturation rate of oocytes is an important reason for female infertility and failure of assisted pregnancy. The germinal vesicle breakdown (GVBD) is a landmark event of oocyte maturation. In our previous studies, we found that zona pellucida 3 (ZP3) was strongly concentrated in the nuclear region of germinal vesicle (GV) oocytes and interacted with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) and lamin A to promote GVBD. In the current study, we found that lamin A is mainly concentrated in the nuclear membrane. When ZP3 is knocked down, lamin A will be partially transferred to the nucleus of oocytes. The prelamin A is increased in both the nuclear membrane and nucleus, while phosphorylated lamin A (p-lamin A) is significantly reduced. AIPL1 was also proved to accumulate in the GV region of oocytes, and ZP3 deletion can significantly inhibit the aggregation of AIPL1 in the nuclear region. Similar to ZP3 knockdown, the absence of AIPL1 resulted in a decrease in the occurrence of GVBD, an increase in the amount of prelamin A, and a significant decrease in p-lamin A in oocytes developed in vitro. Finally, we propose the hypothesis that ZP3 can stabilize farnesylated prelamin A on the nuclear membrane of AIPL1, and promote its further processing into mature lamin A, therefore promoting the occurrence of GVBD. This study may be an important supplement for the mechanism of oocyte meiotic resumption and provide new diagnostic targets and treatment clues for infertility patients with oocyte maturation disorder.
Collapse
|
91
|
Zhang J, Wang S, Liu B. New Insights into the Genetics and Epigenetics of Aging Plasticity. Genes (Basel) 2023; 14:329. [PMID: 36833255 PMCID: PMC9956228 DOI: 10.3390/genes14020329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Biological aging is characterized by irreversible cell cycle blockade, a decreased capacity for tissue regeneration, and an increased risk of age-related diseases and mortality. A variety of genetic and epigenetic factors regulate aging, including the abnormal expression of aging-related genes, increased DNA methylation levels, altered histone modifications, and unbalanced protein translation homeostasis. The epitranscriptome is also closely associated with aging. Aging is regulated by both genetic and epigenetic factors, with significant variability, heterogeneity, and plasticity. Understanding the complex genetic and epigenetic mechanisms of aging will aid the identification of aging-related markers, which may in turn aid the development of effective interventions against this process. This review summarizes the latest research in the field of aging from a genetic and epigenetic perspective. We analyze the relationships between aging-related genes, examine the possibility of reversing the aging process by altering epigenetic age.
Collapse
Affiliation(s)
- Jie Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Shixiao Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Medical School, Lihu Campus, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
92
|
Deng M, Zhang L, Zheng W, Chen J, Du N, Li M, Chen W, Huang Y, Zeng N, Song Y, Chen Y. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:9. [PMID: 36609449 PMCID: PMC9817303 DOI: 10.1186/s13046-022-02586-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND N4-acetylcytidine (ac4C), a widespread modification in human mRNAs that is catalyzed by the N-acetyltransferase 10 (NAT10) enzyme, plays an important role in promoting mRNA stability and translation. However, the biological functions and regulatory mechanisms of NAT10-mediated ac4C were poorly defined. METHODS ac4C mRNA modification status and NAT10 expression levels were analyzed in gastric cancer (GC) samples and compared with the corresponding normal tissues. The biological role of NAT10-mediated ac4C and its upstream and downstream regulatory mechanisms were determined in vitro and in vivo. The therapeutic potential of targeting NAT10 in GC was further explored. RESULTS Here, we demonstrated that both ac4C mRNA modification and its acetyltransferase NAT10 were increased in GC, and increased NAT10 expression was associated with disease progression and poor patient prognosis. Functionally, we found that NAT10 promoted cellular G2/M phase progression, proliferation and tumorigenicity of GC in an ac4C-depedent manner. Mechanistic analyses demonstrated that NAT10 mediated ac4C acetylation of MDM2 transcript and subsequently stabilized MDM2 mRNA, leading to its upregulation and p53 downregulation and thereby facilitating gastric carcinogenesis. In addition, Helicobacter pylori (Hp) infection contributed to NAT10 induction, causing MDM2 overexpression and subsequent p53 degradation. Further investigations revealed that targeting NAT10 with Remodelin showed anti-cancer activity in GC and augmented the anti-tumor activity of MDM2 inhibitors in p53 wild-type GC. CONCLUSIONS These results suggest the critical role of NAT10-mediated ac4C modification in GC oncogenesis and reveal a previously unrecognized signaling cascade involving the Hp-NAT10-MDM2-p53 axis during GC development.
Collapse
Affiliation(s)
- Min Deng
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Long Zhang
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Wenying Zheng
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Jiale Chen
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Nan Du
- grid.488530.20000 0004 1803 6191Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Meiqi Li
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Weiqing Chen
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Yonghong Huang
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Ning Zeng
- grid.417404.20000 0004 1771 3058First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, 510280 China
| | - Yuanbin Song
- grid.488530.20000 0004 1803 6191Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Yongming Chen
- grid.488530.20000 0004 1803 6191Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| |
Collapse
|
93
|
Suleman MT, Alturise F, Alkhalifah T, Khan YD. iDHU-Ensem: Identification of dihydrouridine sites through ensemble learning models. Digit Health 2023; 9:20552076231165963. [PMID: 37009307 PMCID: PMC10064468 DOI: 10.1177/20552076231165963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023] Open
Abstract
Background Dihydrouridine (D) is one of the most significant uridine modifications that have a prominent occurrence in eukaryotes. The folding and conformational flexibility of transfer RNA (tRNA) can be attained through this modification. Objective The modification also triggers lung cancer in humans. The identification of D sites was carried out through conventional laboratory methods; however, those were costly and time-consuming. The readiness of RNA sequences helps in the identification of D sites through computationally intelligent models. However, the most challenging part is turning these biological sequences into distinct vectors. Methods The current research proposed novel feature extraction mechanisms and the identification of D sites in tRNA sequences using ensemble models. The ensemble models were then subjected to evaluation using k-fold cross-validation and independent testing. Results The results revealed that the stacking ensemble model outperformed all the ensemble models by revealing 0.98 accuracy, 0.98 specificity, 0.97 sensitivity, and 0.92 Matthews Correlation Coefficient. The proposed model, iDHU-Ensem, was also compared with pre-existing predictors using an independent test. The accuracy scores have shown that the proposed model in this research study performed better than the available predictors. Conclusion The current research contributed towards the enhancement of D site identification capabilities through computationally intelligent methods. A web-based server, iDHU-Ensem, was also made available for the researchers at https://taseersuleman-idhu-ensem-idhu-ensem.streamlit.app/.
Collapse
Affiliation(s)
- Muhammad Taseer Suleman
- Department of Computer Science, School of systems and technology, University of Management and Technology, Lahore, Pakistan
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
- Fahad Alturise, Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia.
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of systems and technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
94
|
Abdelrahman A, Nielsen MMW, Stage MH, Arnspang EC. Nuclear envelope morphology change upon repetitive treatment with modified antisense oligonucleotides targeting Hutchinson-Gilford Progeria Syndrome. Biochem Biophys Rep 2022; 33:101411. [PMID: 36632198 PMCID: PMC9827026 DOI: 10.1016/j.bbrep.2022.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
We present the influence of treating progeroid fibroblasts with two modified antisense oligonucleotides (ONs) on the nuclear envelope. Two modified ONs were designed to block ribosome binding during translation and spliceosome binding at the cryptic splice site. We analysed the changes in the nuclear morphology of progeria cell nuclei after repetitive transfection with modified ONs as a physical analysis tool for estimating alteration of the gene expression at the protein level. Confocal microscopy was used to image the nuclei, and the nuclear lobulations were quantified to study the changes in the morphology of the nuclear envelope upon treatment. PCR was used to identify the changes in the expression of lamin A and progerin after antisense treatment at the RNA level. We found a significant decrease in the number of nuclear envelope lobulations and a lower progerin expression in progeria cells after transfection with modified ONs.
Collapse
Affiliation(s)
- Asmaa Abdelrahman
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark,Department of Photochemistry, National Research Centre, Dokki, Giza, Egypt
| | - Mette-Marie Wendelboe Nielsen
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark,Department of Mechanical and Electrical Engineering, Faculty of Engineering University of Southern Denmark, Sønderborg, Denmark
| | - Mette Halkjær Stage
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark,Department of Food Science, Faculty of Science, Copenhagen University, Copenhagen, Denmark
| | - Eva Christensen Arnspang
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark,Corresponding author.
| |
Collapse
|
95
|
Zhang X, Zeng J, Wang J, Yang Z, Gao S, Liu H, Li G, Zhang X, Gu Y, Pang D. Revealing the Potential Markers of N(4)-Acetylcytidine through acRIP-seq in Triple-Negative Breast Cancer. Genes (Basel) 2022; 13:2400. [PMID: 36553667 PMCID: PMC9777589 DOI: 10.3390/genes13122400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding the causes of tumorigenesis and progression in triple-receptor negative breast cancer (TNBC) can help the design of novel and personalized therapies and prognostic assessments. Abnormal RNA modification is a recently discovered process in TNBC development. TNBC samples from The Cancer Genome Atlas database were categorized according to the expression level of NAT10, which drives acetylation of cytidine in RNA to N(4)-acetylcytidine (ac4C) and affects mRNA stability. A total of 703 differentially expressed long non-coding RNAs (lncRNAs) were found between high- and low-expressed NAT10 groups in TNBC. Twenty of these lncRNAs were significantly associated with prognosis. Two breast cancer tissues and their paired normal tissues were sequenced at the whole genome level using acetylated RNA immunoprecipitation sequencing (acRIP-seq) technology to identify acetylation features in TNBC, and 180 genes were significantly differentially ac4c acetylated in patients. We also analyzed the genome-wide lncRNA expression profile and constructed a co-expression network, containing 116 ac4C genes and 1080 lncRNAs. Three of these lncRNAs were prognostic risk lncRNAs affected by NAT10 and contained in the network. The corresponding reciprocal pairs were "LINC01614-COL3A1", "OIP5-AS1-USP8", and "RP5-908M14.9-TRIR". These results indicate that RNA ac4c acetylation involves lncRNAs and affects the tumor process and prognosis of TNBC. This will aid the prediction of drug targets and drug sensitivity.
Collapse
Affiliation(s)
- Xingda Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital,150 Haping Road, Harbin 150081, China
| | - Jiaqi Zeng
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Jianyu Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital,150 Haping Road, Harbin 150081, China
| | - Zihan Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital,150 Haping Road, Harbin 150081, China
| | - Song Gao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital,150 Haping Road, Harbin 150081, China
| | - Honghao Liu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital,150 Haping Road, Harbin 150081, China
| | - Xin Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital,150 Haping Road, Harbin 150081, China
| | - Yue Gu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital,150 Haping Road, Harbin 150081, China
| |
Collapse
|
96
|
Cobb AM, De Silva SA, Hayward R, Sek K, Ulferts S, Grosse R, Shanahan CM. Filamentous nuclear actin regulation of PML NBs during the DNA damage response is deregulated by prelamin A. Cell Death Dis 2022; 13:1042. [PMID: 36522328 PMCID: PMC9755150 DOI: 10.1038/s41419-022-05491-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/16/2022]
Abstract
Nuclear actin participates in a continuously expanding list of core processes within eukaryotic nuclei, including the maintenance of genomic integrity. In response to DNA damage, nuclear actin polymerises into filaments that are involved in the repair of damaged DNA through incompletely defined mechanisms. We present data to show that the formation of nuclear F-actin in response to genotoxic stress acts as a scaffold for PML NBs and that these filamentous networks are essential for PML NB fission and recruitment of microbodies to DNA lesions. Further to this, we demonstrate that the accumulation of the toxic lamin A precursor prelamin A induces mislocalisation of nuclear actin to the nuclear envelope and prevents the establishment of nucleoplasmic F-actin networks in response to stress. Consequently, PML NB dynamics and recruitment to DNA lesions is ablated, resulting in impaired DNA damage repair. Inhibition of nuclear export of formin mDia2 restores nuclear F-actin formation by augmenting polymerisation of nuclear actin in response to stress and rescues PML NB localisation to sites of DNA repair, leading to reduced levels of DNA damage.
Collapse
Affiliation(s)
- Andrew M. Cobb
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Shanelle A. De Silva
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Robert Hayward
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Karolina Sek
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Svenja Ulferts
- grid.5963.9Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Robert Grosse
- grid.5963.9Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Catherine M. Shanahan
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| |
Collapse
|
97
|
Jin C, Wang T, Zhang D, Yang P, Zhang C, Peng W, Jin K, Wang L, Zhou J, Peng C, Tan Y, Ji J, Chen Z, Sun Q, Yang S, Tang J, Feng Y, Sun Y. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac 4C acetylation of KIF23 mRNA. J Exp Clin Cancer Res 2022; 41:345. [PMID: 36522719 PMCID: PMC9753290 DOI: 10.1186/s13046-022-02551-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND N4-acetylcytidine (ac4C) as a significant RNA modification has been reported to maintain the stability of mRNA and to regulate the translation process. However, the roles of both ac4C and its 'writer' protein N-acetyltransferase 10 (NAT10) played in the disease especially colorectal cancer (CRC) are unclear. At this point, we discover the underlying mechanism of NAT10 modulating the progression of CRC via mRNA ac4C modification. METHODS The clinical significance of NAT10 was explored based on the TCGA and GEO data sets and the 80 CRC patients cohort of our hospital. qRT-PCR, dot blot, WB, and IHC were performed to detect the level of NAT10 and ac4C modification in CRC tissues and matched adjacent tissues. CCK-8, colony formation, transwell assay, mouse xenograft, and other in vivo and in vitro experiments were conducted to probe the biological functions of NAT10. The potential mechanisms of NAT10 in CRC were clarified by RNA-seq, RIP-seq, acRIP-seq, luciferase reporter assays, etc. RESULTS: The levels of NAT10 and ac4C modification were significantly upregulated. Also, the high expression of NAT10 had important clinical values like poor prognosis, lymph node metastasis, distant metastasis, etc. Furthermore, the in vitro experiments showed that NAT10 could inhibit apoptosis and enhance the proliferation, migration, and invasion of CRC cells and also arrest them in the G2/M phase. The in vivo experiments discovered that NAT10 could promote tumor growth and liver/lung metastasis. In terms of mechanism, NAT10 could mediate the stability of KIF23 mRNA by binding to its mRNA 3'UTR region and up-regulating its mRNA ac4c modification. And then the protein level of KIF23 was elevated to activate the Wnt/β-catenin pathway and more β-catenin was transported into the nucleus which led to the CRC progression. Besides, the inhibitor of NAT10, remodelin, was applied in vitro and vivo which showed an inhibitory effect on the CRC cells. CONCLUSIONS NAT10 promotes the CRC progression through the NAT10/KIF23/GSK-3β/β-catenin axis and its expression is mediated by GSK-3β which forms a feedback loop. Our findings provide a potential prognosis or therapeutic target for CRC and remodelin deserves more attention.
Collapse
Affiliation(s)
- Chi Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Tuo Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Dongsheng Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Peng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Chuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Wen Peng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Kangpeng Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Jiahui Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Chaofan Peng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Yuqian Tan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Jiangzhou Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Zhihao Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Qingyang Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
| | - Junwei Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
98
|
Du C, Han X, Zhang Y, Guo F, Yuan H, Wang F, Li M, Ning F, Wang W. DARS-AS1 modulates cell proliferation and migration of gastric cancer cells by regulating miR-330-3p/NAT10 axis. Open Med (Wars) 2022; 17:2036-2045. [PMID: 36568518 PMCID: PMC9755708 DOI: 10.1515/med-2022-0583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/01/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
The long noncoding RNA DARS-AS1 was aberrantly expressed and participated in several human cancer progressions, whereas whether DARS-AS1 is involved in human gastric cancer remains unclear. This study aimed to investigate the influence of DARS-AS1 on gastric cancer progression and explore the potential regulatory network of DARS-AS1/miR-330-3p/NAT10. The expression levels of DARS-AS1, miR-330-3p, and NAT10 were measured by quantitative real-time polymerase chain reaction. The CCK-8 assay and Transwell assay were used to determine the cell viability, migration, and invasion capacities, respectively. The target association between miR-330-3p and DARS-AS1 or NAT10 was confirmed using a luciferase reporter assay. In result, DARS-AS1 levels were elevated in tumor tissues and associated with shorter overall survival in patients with gastric cancer. Knockdown of DARS-AS1 could hamper cell viability, migration, and invasion in gastric cancer cells. DARS-AS1 acts as a competitive endogenous RNA to regulate the NAT10 expression by sponging miR-330-3p in gastric cancer cells. In conclusion, DARS-AS1 was elevated in gastric cancer, and DARS-AS1/miR-330-3p/NAT10 signaling offered some new horizons for predicting prognosis and a novel therapeutic method for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Chunjuan Du
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China,Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xia Han
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yanyan Zhang
- Department of Pediatrics, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fengli Guo
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Haibin Yuan
- Department of Health Management, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Mianli Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fangling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Weibo Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, No 324, Jingwuweiqi Road, Jinan, Shandong, 250021, China
| |
Collapse
|
99
|
Ghosh DK, Pande S, Kumar J, Yesodharan D, Nampoothiri S, Radhakrishnan P, Reddy CG, Ranjan A, Girisha KM. The E262K mutation in Lamin A links nuclear proteostasis imbalance to laminopathy-associated premature aging. Aging Cell 2022; 21:e13688. [PMID: 36225129 PMCID: PMC9649601 DOI: 10.1111/acel.13688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023] Open
Abstract
Deleterious, mostly de novo, mutations in the lamin A (LMNA) gene cause spatio-functional nuclear abnormalities that result in several laminopathy-associated progeroid conditions. In this study, exome sequencing in a sixteen-year-old male with manifestations of premature aging led to the identification of a mutation, c.784G>A, in LMNA, resulting in a missense protein variant, p.Glu262Lys (E262K), that aggregates in nucleoplasm. While bioinformatic analyses reveal the instability and pathogenicity of LMNAE262K , local unfolding of the mutation-harboring helical region drives the structural collapse of LMNAE262K into aggregates. The E262K mutation also disrupts SUMOylation of lysine residues by preventing UBE2I binding to LMNAE262K , thereby reducing LMNAE262K degradation, aggregated LMNAE262K sequesters nuclear chaperones, proteasomal proteins, and DNA repair proteins. Consequently, aggregates of LMNAE262K disrupt nuclear proteostasis and DNA repair response. Thus, we report a structure-function association of mutant LMNAE262K with toxicity, which is consistent with the concept that loss of nuclear proteostasis causes early aging in laminopathies.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Shruti Pande
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Jeevan Kumar
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Periyasamy Radhakrishnan
- Suma Genomics Private Limited, Manipal Center for Biotherapeutics Research and Department of Reproductive Science, Manipal Academy of Higher Education, Manipal, India
| | - Chilakala Gangi Reddy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Katta M Girisha
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| |
Collapse
|
100
|
Zheng X, Wang Q, Zhou Y, Zhang D, Geng Y, Hu W, Wu C, Shi Y, Jiang J. N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4-acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1347-1366. [PMID: 36209353 PMCID: PMC9759759 DOI: 10.1002/cac2.12363] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND N-acetyltransferase 10 (NAT10) is the only enzyme known to mediate the N4-acetylcytidine (ac4C) modification of mRNA and is crucial for mRNA stability and translation efficiency. However, its role in cancer development and prognosis has not yet been explored. This study aimed to examine the possible role of NAT10 in colon cancer. METHODS The expression levels of NAT10 were evaluated by immunohistochemical analyses with a colon cancer tissue microarray, and its prognostic value in patients was further analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed to analyze NAT10 expression in harvested colon cancer tissues and cell lines. Stable NAT10-knockdown and NAT10-overexpressing colon cancer cell lines were constructed using lentivirus. The biological functions of NAT10 in colon cancer cell lines were analyzed in vitro by Cell Counting Kit-8 (CCK-8), wound healing, Transwell, cell cycle, and ferroptosis assays. Xenograft models were used to analyze the effect of NAT10 on the tumorigenesis and metastasis of colon cancer cells in vivo. Dot blotting, acetylated RNA immunoprecipitation-qPCR, and RNA stability analyses were performed to explore the mechanism by which NAT10 functions in colon cancer progression. RESULTS NAT10 was upregulated in colon cancer tissues and various colon cancer cell lines. This increased NAT10 expression was associated with shorter patient survival. Knockdown of NAT10 in two colon cancer cell lines (HT-29 and LoVo) impaired the proliferation, migration, invasion, tumor formation and metastasis of these cells, whereas overexpression of NAT10 promoted these abilities. Further analysis revealed that NAT10 exerted a strong effect on the mRNA stability and expression of ferroptosis suppressor protein 1 (FSP1) in HT-29 and LoVo cells. In these cells, FSP1 mRNA was found to be modified by ac4C acetylation, and this epigenetic modification was associated with the inhibition of ferroptosis. CONCLUSIONS Our study revealed that NAT10 plays a critical role in colon cancer development by affecting FSP1 mRNA stability and ferroptosis, suggesting that NAT10 could be a novel prognostic and therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Xiao Zheng
- Department of Tumor Biological Treatmentthe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213003P. R. China,Jiangsu Engineering Research Center for Tumor ImmunotherapyChangzhouJiangsu213003P. R. China,Institute for Cell Therapy of Soochow UniversityChangzhouJiangsu213003P. R. China
| | - Qi Wang
- Department of Tumor Biological Treatmentthe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213003P. R. China,Jiangsu Engineering Research Center for Tumor ImmunotherapyChangzhouJiangsu213003P. R. China,Institute for Cell Therapy of Soochow UniversityChangzhouJiangsu213003P. R. China
| | - You Zhou
- Department of Tumor Biological Treatmentthe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213003P. R. China,Jiangsu Engineering Research Center for Tumor ImmunotherapyChangzhouJiangsu213003P. R. China,Institute for Cell Therapy of Soochow UniversityChangzhouJiangsu213003P. R. China
| | - Dachuan Zhang
- Department of Pathologythe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213003P. R. China
| | - Yiting Geng
- Jiangsu Engineering Research Center for Tumor ImmunotherapyChangzhouJiangsu213003P. R. China,Department of Oncologythe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213003P. R. China
| | - Wenwei Hu
- Jiangsu Engineering Research Center for Tumor ImmunotherapyChangzhouJiangsu213003P. R. China,Department of Oncologythe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213003P. R. China
| | - Changping Wu
- Department of Tumor Biological Treatmentthe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213003P. R. China,Jiangsu Engineering Research Center for Tumor ImmunotherapyChangzhouJiangsu213003P. R. China,Department of Oncologythe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213003P. R. China
| | - Yufang Shi
- Department of Tumor Biological Treatmentthe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213003P. R. China,Jiangsu Engineering Research Center for Tumor ImmunotherapyChangzhouJiangsu213003P. R. China,Institute for Translational Medicine of Soochow UniversitySuzhouJiangsu215000P. R. China,CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031P. R. China
| | - Jingting Jiang
- Department of Tumor Biological Treatmentthe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213003P. R. China,Jiangsu Engineering Research Center for Tumor ImmunotherapyChangzhouJiangsu213003P. R. China,Institute for Cell Therapy of Soochow UniversityChangzhouJiangsu213003P. R. China,State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingJiangsu210023P. R. China
| |
Collapse
|