51
|
Li P, Sofuoglu SE, Aviyente S, Maiti T. Coupled support tensor machine classification for multimodal neuroimaging data. Stat Anal Data Min 2022. [DOI: 10.1002/sam.11587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peide Li
- Boehringer Ingelheim Pharmaceuticals Duluth Georgia USA
| | | | - Selin Aviyente
- College of Engineering Michigan State University East Lansing Michigan USA
| | - Tapabrata Maiti
- College of Natural Science Michigan State University East Lansing Michigan USA
| |
Collapse
|
52
|
Pais-Roldán P, Yun SD, Shah NJ. Pre-processing of Sub-millimeter GE-BOLD fMRI Data for Laminar Applications. FRONTIERS IN NEUROIMAGING 2022; 1:869454. [PMID: 37555171 PMCID: PMC10406219 DOI: 10.3389/fnimg.2022.869454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/31/2022] [Indexed: 08/10/2023]
Abstract
Over the past 30 years, brain function has primarily been evaluated non-invasively using functional magnetic resonance imaging (fMRI) with gradient-echo (GE) sequences to measure blood-oxygen-level-dependent (BOLD) signals. Despite the multiple advantages of GE sequences, e.g., higher signal-to-noise ratio, faster acquisitions, etc., their relatively inferior spatial localization compromises the routine use of GE-BOLD in laminar applications. Here, in an attempt to rescue the benefits of GE sequences, we evaluated the effect of existing pre-processing methods on the spatial localization of signals obtained with EPIK, a GE sequence that affords voxel volumes of 0.25 mm3 with near whole-brain coverage. The methods assessed here apply to both task and resting-state fMRI data assuming the availability of reconstructed magnitude and phase images.
Collapse
Affiliation(s)
- Patricia Pais-Roldán
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Seong Dae Yun
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, Molecular Neuroscience and Neuroimaging, Jülich Aachen Research Alliance, Forschungszentrum Jülich, Jülich, Germany
- Jlich Aachen Research Alliance, Brain - Translational Medicine, Aachen, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
53
|
The Alteration of Brain Function by the Improvement of Periodontal Tissues and Occlusal State. Case Rep Dent 2022; 2022:5383893. [PMID: 35527723 PMCID: PMC9068291 DOI: 10.1155/2022/5383893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Objective In this study, we have introduced a case in which the effective blood oxygenation level-dependent signal on functional magnetic resonance imaging (fMRI) was altered by the improvement of periodontal tissue and occlusal function in a patient with periodontitis Stage II Grade B. Material and Methods. A 61-year-old female patient requiring periodontal treatment was diagnosed as having periodontitis Stage II Grade B via clinical and radiographic examinations. Her past medical history included type 2 diabetes, hypertension, and hyperlipidemia. Following the patient's informed written consent, the periodontal initial treatment provided to the patient included tooth brushing instruction and scaling and root planing; however, occlusal adjustment was not performed at this stage. Occlusal force and fMRI results were also evaluated at the initial and reevaluation examinations. Results After the periodontal initial treatment had been performed, it was noted that the patient's periodontal tissue and occlusal force had improved. It was also evident from fMRI that cerebral blood flow had been activated in the insula, primary motor cortex, and premotor cortex. Conclusion This result suggested that the periodontal ligament had recovered and the periodontal ligament neuron had been further subjected to clenching in the insula so that the muscle spindle sensation impacted the motor cortex.
Collapse
|
54
|
Li L, Law C, Marrett S, Chai Y, Huber L, Jezzard P, Bandettini P. Quantification of cerebral blood volume changes caused by visual stimulation at 3 T using DANTE-prepared dual-echo EPI. Magn Reson Med 2022; 87:1846-1862. [PMID: 34817081 PMCID: PMC11913055 DOI: 10.1002/mrm.29099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE We investigate the influence of moving blood-attenuation effects when using "delay alternating with nutation for tailored excitation" (DANTE) pulses in conjunction with blood oxygen level dependent (BOLD) of functional MRI (fMRI) at 3 T. Based on the effects of including DANTE pulses, we propose quantification of cerebral blood volume (CBV) changes following functional stimulation. METHODS Eighteen volunteers in total underwent fMRI scans at 3 T. Seven volunteers were scanned to investigate the effects of DANTE pulses on the fMRI signal. CBV changes in response to visual stimulation were quantified in 11 volunteers using a DANTE-prepared dual-echo EPI sequence. RESULTS The inflow effects from flowing blood in arteries and draining vein effects from flowing blood in large veins can be suppressed by use of a DANTE preparation module. Using DANTE-prepared dual-echo EPI, we quantitatively measured intravascular-weighted microvascular CBV changes of 25.4%, 29.8%, and 32.6% evoked by 1, 5, and 10 Hz visual stimulation, respectively. The extravascular fraction (∆S/S)extra at TE = 30 ms in total BOLD signal was determined to be 64.8 ± 3.4%, which is in line with previous extravascular component estimation at 3 T. Results show that the microvascular CBV changes are linearly dependent on total BOLD changes at TE = 30 ms with a slope of 0.113, and this relation is independent of stimulation frequency and subject. CONCLUSION The DANTE preparation pulses can be incorporated into a standard EPI fMRI sequence for the purpose of minimizing inflow effects and reducing draining veins effects in large vessels. Additionally, the DANTE-prepared dual-echo EPI sequence is a promising fast imaging tool for quantification of intravascular-weighted CBV change in the microvascular space at 3 T.
Collapse
Affiliation(s)
- Linqing Li
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine Law
- Systems Neuroscience and Pain Lab, Stanford University, CA, USA
| | - Sean Marrett
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuhui Chai
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Bandettini
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
55
|
Bayih SG, Jankiewicz M, Alhamud A, van der Kouwe AJW, Meintjes EM. Self-navigated prospective motion correction for 3D-EPI acquisition. Magn Reson Med 2022; 88:211-223. [PMID: 35344618 DOI: 10.1002/mrm.29202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/31/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Although 3D EPI is more susceptible to motion artifacts than 2D EPI, it presents some benefits for functional MRI, including the absence of spin-history artifacts, greater potential for parallel imaging acceleration, and better functional sensitivity in high-resolution imaging. Here we present a self-navigated 3D-EPI sequence suitable for prospective motion-corrected functional MRI without additional hardware or pulses. METHODS For each volume acquisition, the first 24 of the 52 partitions being acquired are accumulated to a new feedback block that was added to the image reconstruction pipeline. After zero-filling the remaining partitions, the feedback block constructs a volumetric self-navigator (vSNav), co-registers it to the reference vSNav acquired during the first volume acquisition, and sends motion estimates to the sequence. The sequence then updates its FOV and acquires subsequent partitions with the adjusted FOV, until the next update is received. The sequence was validated without and with intentional motion in phantom and in vivo on a 3T Skyra. RESULTS For phantom scans, the FOV was updated 0.704 s after acquisition of the vSNav partitions, and for in vivo scans after 0.768 s. Both phantom and in vivo data demonstrated stable motion estimates in the absence of motion. For in vivo acquisitions, prospective head-pose estimates using the vSNav's and retrospective estimates with FLIRT (FMRIB's Linear Image Registration Tool) agreed to within 0.23 mm (< 10% of the slice thickness) and 0.14° in all directions. CONCLUSION Depending when motion occurs during a volume acquisition, the proposed method fully corrects the FOV and recovers image quality within one volume acquisition.
Collapse
Affiliation(s)
- Samuel Getaneh Bayih
- Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Marcin Jankiewicz
- Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Center, University of Cape Town, Cape Town, South Africa
| | - A Alhamud
- Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Center, University of Cape Town, Cape Town, South Africa.,The Modern Pioneer Center and ArSMRM for MRI Training and Development, Tripoli, Libya
| | - André J W van der Kouwe
- Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ernesta M Meintjes
- Biomedical Engineering Research Center, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Center, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
56
|
Rybář M, Daly I. Neural decoding of semantic concepts: A systematic literature review. J Neural Eng 2022; 19. [PMID: 35344941 DOI: 10.1088/1741-2552/ac619a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/27/2022] [Indexed: 11/12/2022]
Abstract
Objective Semantic concepts are coherent entities within our minds. They underpin our thought processes and are a part of the basis for our understanding of the world. Modern neuroscience research is increasingly exploring how individual semantic concepts are encoded within our brains and a number of studies are beginning to reveal key patterns of neural activity that underpin specific concepts. Building upon this basic understanding of the process of semantic neural encoding, neural engineers are beginning to explore tools and methods for semantic decoding: identifying which semantic concepts an individual is focused on at a given moment in time from recordings of their neural activity. In this paper we review the current literature on semantic neural decoding. Approach We conducted this review according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. Specifically, we assess the eligibility of published peer-reviewed reports via a search of PubMed and Google Scholar. We identify a total of 74 studies in which semantic neural decoding is used to attempt to identify individual semantic concepts from neural activity. Results Our review reveals how modern neuroscientific tools have been developed to allow decoding of individual concepts from a range of neuroimaging modalities. We discuss specific neuroimaging methods, experimental designs, and machine learning pipelines that are employed to aid the decoding of semantic concepts. We quantify the efficacy of semantic decoders by measuring information transfer rates. We also discuss current challenges presented by this research area and present some possible solutions. Finally, we discuss some possible emerging and speculative future directions for this research area. Significance Semantic decoding is a rapidly growing area of research. However, despite its increasingly widespread popularity and use in neuroscientific research this is the first literature review focusing on this topic across neuroimaging modalities and with a focus on quantifying the efficacy of semantic decoders.
Collapse
Affiliation(s)
- Milan Rybář
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ian Daly
- University of Essex, School of Computer Science and Electronic Engineering, Wivenhoe Park, Colchester, Colchester, Essex, CO4 3SQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
57
|
Imataka S, Enatsu R, Hirano T, Sasagawa A, Arihara M, Kuribara T, Ochi S, Mikuni N. Motor Mapping with Functional Magnetic Resonance Imaging: Comparison with Electrical Cortical Stimulation. Neurol Med Chir (Tokyo) 2022; 62:215-222. [PMID: 35296585 PMCID: PMC9178115 DOI: 10.2176/jns-nmc.2021-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to evaluate motor area mapping using functional magnetic resonance imaging (fMRI) compared with electrical cortical stimulation (ECS). Motor mapping with fMRI and ECS were retrospectively compared in seven patients with refractory epilepsy in which the primary motor (M1) areas were identified by fMRI and ECS mapping between 2012 and 2019. A right finger tapping task was used for fMRI motor mapping. Blood oxygen level-dependent activation was detected in the left precentral gyrus (PreCG) /postcentral gyrus (PostCG) along the "hand knob" of the central sulcus in all seven patients. Bilateral supplementary motor areas (SMAs) were also activated (n = 6), and the cerebellar hemisphere showed activation on the right side (n = 3) and bilateral side (n = 4). Furthermore, the premotor area (PM) and posterior parietal cortex (PPC) were also activated on the left side (n = 1) and bilateral sides (n = 2). The M1 and sensory area (S1) detected by ECS included fMRI-activated PreCG/PostCG areas with broader extent. This study showed that fMRI motor mapping was locationally well correlated to the activation of M1/S1 by ECS, but the spatial extent was not concordant. In addition, the involvement of SMA, PM/PPC, and the cerebellum in simple voluntary movement was also suggested. Combination analysis of fMRI and ECS motor mapping contributes to precise localization of M1/S1.
Collapse
Affiliation(s)
| | - Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University
| | | | | | | | | | - Satoko Ochi
- Department of Neurosurgery, Sapporo Medical University
| | | |
Collapse
|
58
|
Yamashiro A, Saito T, Miyati T. Development of a novel task-based functional magnetic resonance imaging phantom based on a bubble-compression approach. Med Phys 2022; 49:3717-3728. [PMID: 35287246 DOI: 10.1002/mp.15599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Phantoms used in previous functional magnetic resonance imaging (fMRI) studies have drawbacks, such as a complicated circuit and equipment use, a single signal-change rate, and T2 * values that do not correspond to those of living human brains. We aimed to develop a phantom for use in task-based fMRI studies (gradient-echo echo-planar imaging; GRE-EPI) with bioequivalent T1 and T2 * values, using an innovative method to control the rate of signal change. METHODS A gel phantom with T1 and T2 * values equivalent to that of the living brain gray matter was fixed in a 150 mm diameter container, with five holes, each of which could hold a 30-mL syringe. The gel phantom contained microscopic air bubbles; this made it possible to control the percent signal change by injector-induced water pressure changes. Using this phantom, we investigated the percent signal change, derived an equation that can approximately reproduce an arbitrary percent signal change, compared different gel phantom samples, investigated the change in relaxation time and bubble size during signal change, and assessed the change in values in each sample over time. RESULTS The relaxation time of the gel phantom was similar to the literature values for gray matter. The percent signal change achieved was approximately 0-13.51% and was dependent on the water pressure change. The derived equation was y = 0.000008x3 - 0.000771x2 + 0.034222x - 0.026054, with y being the percent signal change and x being the pressure in kPa; the reproducibility was high. No significant difference was detected among samples of gray matter gel phantoms (P > 0.05). The change in the rate of signal change with the change in water pressure was due to the change in T2 * value with the change in bubble size. With pressure increasing from 0 to 151.7 kPa, the T2 * value increased from 52 ms to 85 ms. The newly developed gel phantom was stable for 60 days, but its bubble size changed after 21 days. CONCLUSION We developed a novel phantom for use in fMRI, which could reproduce minute signal changes similar to the blood-oxygen-level-dependent effect and with bioequivalent T1 and T2 * values, and used an innovative method to control the percent signal change by compressing the air contained in the phantom for validation of fMRI using GRE-EPI. This phantom reproduced the percent signal change due to changes in T2 * values, which is very similar to scanning a human body. This phantom is expected to be a powerful tool for advancing the study of task-based fMRI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Akihiro Yamashiro
- Department of Radiology, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano-City, Nagano, 380-8582, Japan.,Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatuno, Kanazawa-City, Ishikawa, 920-0942, Japan
| | - Takaaki Saito
- Department of Radiology, Iiyama Red Cross Hospital, 226-1 Iiyama, Iiyama-City, Nagano, 389-2295, Japan
| | - Tosiaki Miyati
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatuno, Kanazawa-City, Ishikawa, 920-0942, Japan
| |
Collapse
|
59
|
Kawagoe T. Overview of (f)MRI Studies of Cognitive Aging for Non-Experts: Looking through the Lens of Neuroimaging. Life (Basel) 2022; 12:416. [PMID: 35330167 PMCID: PMC8953678 DOI: 10.3390/life12030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
This special issue concerning Brain Functional and Structural Connectivity and Cognition aims to expand our understanding of brain connectivity. Herein, I review related topics including the principle and concepts of functional MRI, brain activation, and functional/structural connectivity in aging for uninitiated readers. Visuospatial attention, one of the well-studied functions in aging, is discussed from the perspective of neuroimaging.
Collapse
Affiliation(s)
- Toshikazu Kawagoe
- Liberal Arts Education Centre, Kyushu Campus, Tokai University, Toroku 9-1-1, Kumamoto-City 862-8652, Kumamoto, Japan
| |
Collapse
|
60
|
Epigenetic MRI: Noninvasive imaging of DNA methylation in the brain. Proc Natl Acad Sci U S A 2022; 119:e2119891119. [PMID: 35235458 PMCID: PMC8915962 DOI: 10.1073/pnas.2119891119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dynamic epigenetic activity is a fundamental mechanism underpinning how the brain changes its function during development and aging and in response to environmental and disease stimuli. We developed a technology called epigenetic MRI (eMRI) that enables noninvasive imaging of DNA methylation in the brain, a major epigenetic mechanism. eMRI reveals strong regional differences in global DNA methylation in pig brains, a model with stronger resemblance to human brains than are rodents. Given the noninvasive nature of eMRI, our results pave the way for a DNA-methylation imaging paradigm for living human brains. We expect eMRI to enable many studies to unravel the molecular control of brain function and disease. Both neuronal and genetic mechanisms regulate brain function. While there are excellent methods to study neuronal activity in vivo, there are no nondestructive methods to measure global gene expression in living brains. Here, we present a method, epigenetic MRI (eMRI), that overcomes this limitation via direct imaging of DNA methylation, a major gene-expression regulator. eMRI exploits the methionine metabolic pathways for DNA methylation to label genomic DNA through 13C-enriched diets. A 13C magnetic resonance spectroscopic imaging method then maps the spatial distribution of labeled DNA. We validated eMRI using pigs, whose brains have stronger similarity to humans in volume and anatomy than rodents, and confirmed efficient 13C-labeling of brain DNA. We also discovered strong regional differences in global DNA methylation. Just as functional MRI measurements of regional neuronal activity have had a transformational effect on neuroscience, we expect that the eMRI signal, both as a measure of regional epigenetic activity and as a possible surrogate for regional gene expression, will enable many new investigations of human brain function, behavior, and disease.
Collapse
|
61
|
Ghosh S, Li N, Schwalm M, Bartelle BB, Xie T, Daher JI, Singh UD, Xie K, DiNapoli N, Evans NB, Chung K, Jasanoff A. Functional dissection of neural circuitry using a genetic reporter for fMRI. Nat Neurosci 2022; 25:390-398. [PMID: 35241803 PMCID: PMC9203076 DOI: 10.1038/s41593-022-01014-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
The complex connectivity of the mammalian brain underlies its function, but understanding how interconnected brain regions interact in neural processing remains a formidable challenge. Here we address this problem by introducing a genetic probe that permits selective functional imaging of distributed neural populations defined by viral labeling techniques. The probe is an engineered enzyme that transduces cytosolic calcium dynamics of probe-expressing cells into localized hemodynamic responses that can be specifically visualized by functional magnetic resonance imaging. Using a viral vector that undergoes retrograde transport, we apply the probe to characterize a brain-wide network of presynaptic inputs to the striatum activated in a deep brain stimulation paradigm in rats. The results reveal engagement of surprisingly diverse projection sources and inform an integrated model of striatal function relevant to reward behavior and therapeutic neurostimulation approaches. Our work thus establishes a strategy for mechanistic analysis of multiregional neural systems in the mammalian brain.
Collapse
Affiliation(s)
- Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Benjamin B. Bartelle
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Tianshu Xie
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Jade I. Daher
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Urvashi D. Singh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Katherine Xie
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Nicholas DiNapoli
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Nicholas B. Evans
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Kwanghun Chung
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139,Correspondence to AJ, phone: 617-452-2538,
| |
Collapse
|
62
|
Singh P, Wa Torek M, Ceglarek A, Fąfrowicz M, Lewandowska K, Marek T, Sikora-Wachowicz B, Oświȩcimka P. Analysis of fMRI Signals from Working Memory Tasks and Resting-State of Brain: Neutrosophic-Entropy-Based Clustering Algorithm. Int J Neural Syst 2022; 32:2250012. [PMID: 35179104 DOI: 10.1142/s0129065722500125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study applies a neutrosophic-entropy-based clustering algorithm (NEBCA) to analyze the fMRI signals. We consider the data obtained from four different working memory tasks and the brain's resting state for the experimental purpose. Three non-overlapping clusters of data related to temporal brain activity are determined and statistically analyzed. Moreover, we used the Uniform Manifold Approximation and Projection (UMAP) method to reduce system dimensionality and present the effectiveness of NEBCA. The results show that using NEBCA, we are able to distinguish between different working memory tasks and resting-state and identify subtle differences in the related activity of brain regions. By analyzing the statistical properties of the entropy inside the clusters, the various regions of interest (ROIs), according to Automated Anatomical Labeling (AAL) atlas crucial for clustering procedure, are determined. The inferior occipital gyrus is established as an important brain region in distinguishing the resting state from the tasks. Moreover, the inferior occipital gyrus and superior parietal lobule are identified as necessary to correct the data discrimination related to the different memory tasks. We verified the statistical significance of the results through the two-sample t-test and analysis of surrogates performed by randomization of the cluster elements. The presented methodology is also appropriate to determine the influence of time of day on brain activity patterns. The differences between working memory tasks and resting-state in the morning are related to a lower index of small-worldness and sleep inertia in the first hours after waking. We also compared the performance of NEBCA to two existing algorithms, KMCA and FKMCA. We showed the advantage of the NEBCA over these algorithms that could not effectively accumulate fMRI signals with higher variability.
Collapse
Affiliation(s)
- Pritpal Singh
- Institute of Theoretical Physics, Jagiellonian University, Kraków 30-348, Poland
| | - Marcin Wa Torek
- Institute of Theoretical Physics, Jagiellonian University, Kraków 30-348, Poland.,Faculty of Computer Science and Telecommunications, Cracow University of Technology, Kraków 31-155, Poland
| | - Anna Ceglarek
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków 30-348, Poland
| | - Magdalena Fąfrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków 30-348, Poland
| | - Koryna Lewandowska
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków 30-348, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków 30-348, Poland
| | - Barbara Sikora-Wachowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków 30-348, Poland
| | - Paweł Oświȩcimka
- Institute of Theoretical Physics, Jagiellonian University, Kraków 30-348, Poland.,Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków 31-342, Poland
| |
Collapse
|
63
|
Fortugno AP, Bakke JR, Babajani-Feremi A, Newman J, Patel TS. Functional Magnetic Resonance Imaging and Applications in Dermatology. JID INNOVATIONS 2022; 1:100015. [PMID: 35024683 PMCID: PMC8669514 DOI: 10.1016/j.xjidi.2021.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/05/2022] Open
Abstract
As a noninvasive imaging modality able to show the dynamic changes in neurologic activity, functional magnetic resonance imaging has revolutionized the ability to both map and further understand the functional regions of the brain. Current applications range from neurosurgical planning to an enormous variety of investigational applications across many diverse specialties. The main purpose of this article is to provide a foundational understanding of how functional magnetic resonance imaging is being used in research by outlining the underlying basic science, specific methods, and direct investigational and clinical applications. In addition, the use of functional magnetic resonance imaging in current dermatological research, especially in relation to studies concerning the skin‒brain axis, is explicitly addressed. This article also touches on the advantages and limitations concerning functional magnetic resonance imaging in comparison with other similar techniques.
Collapse
Affiliation(s)
- Andrew P Fortugno
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Joshua R Bakke
- Kaplan-Amonette Department of Dermatology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Abbas Babajani-Feremi
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Magnetoencephalography Laboratory, Dell Children's Medical Center, Austin, Texas, USA
| | - Justin Newman
- Memphis Radiological Professional Corporation, Germantown, Tennessee, USA
| | - Tejesh S Patel
- Kaplan-Amonette Department of Dermatology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
64
|
Sprenger T, Kits A, Norbeck O, van Niekerk A, Berglund J, Rydén H, Avventi E, Skare S. NeuroMix-A single-scan brain exam. Magn Reson Med 2021; 87:2178-2193. [PMID: 34904751 DOI: 10.1002/mrm.29120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Implement a fast, motion-robust pulse sequence that acquires T1 -weighted, T2 -weighted, T2 * -weighted, T2 fluid-attenuated inversion recovery, and DWI data in one run with only one prescription and one prescan. METHODS A software framework was developed that configures and runs several sequences in one main sequence. Based on that framework, the NeuroMix sequence was implemented, containing motion robust single-shot sequences using EPI and fast spin echo (FSE) readouts (without EPI distortions). Optional multi-shot sequences that provide better contrast, higher resolution, or isotropic resolution could also be run within the NeuroMix sequence. An optimized acquisition order was implemented that minimizes times where no data is acquired. RESULTS NeuroMix is customizable and takes between 1:20 and 4 min for a full brain scan. A comparison with the predecessor EPIMix revealed significant improvements for T2 -weighted and T2 fluid-attenuated inversion recovery, while taking only 8 s longer for a similar configuration. The optional contrasts were less motion robust but offered a significant increase in quality, detail, and contrast. Initial clinical scans on 1 pediatric and 1 adult patient showed encouraging image quality. CONCLUSION The single-shot FSE readouts for T2 -weighted and T2 fluid-attenuated inversion recovery and the optional multishot FSE and 3D-EPI contrasts significantly increased diagnostic value compared with EPIMix, allowing NeuroMix to be considered as a standalone brain MRI application.
Collapse
Affiliation(s)
- Tim Sprenger
- MR Applied Science Laboratory Europe, GE Healthcare, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Annika Kits
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Norbeck
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Adam van Niekerk
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Berglund
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Henric Rydén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Enrico Avventi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Skare
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
65
|
Chen X, Jiang Y, Choi S, Pohmann R, Scheffler K, Kleinfeld D, Yu X. Assessment of single-vessel cerebral blood velocity by phase contrast fMRI. PLoS Biol 2021; 19:e3000923. [PMID: 34499636 PMCID: PMC8454982 DOI: 10.1371/journal.pbio.3000923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Current approaches to high-field functional MRI (fMRI) provide 2 means to map hemodynamics at the level of single vessels in the brain. One is through changes in deoxyhemoglobin in venules, i.e., blood oxygenation level-dependent (BOLD) fMRI, while the second is through changes in arteriole diameter, i.e., cerebral blood volume (CBV) fMRI. Here, we introduce cerebral blood flow-related velocity-based fMRI, denoted CBFv-fMRI, which uses high-resolution phase contrast (PC) MRI to form velocity measurements of flow. We use CBFv-fMRI in measure changes in blood velocity in single penetrating microvessels across rat parietal cortex. In contrast to the venule-dominated BOLD and arteriole-dominated CBV fMRI signals, CBFv-fMRI is comparable from both arterioles and venules. A single fMRI platform is used to map changes in blood pO2 (BOLD), volume (CBV), and velocity (CBFv). This combined high-resolution single-vessel fMRI mapping scheme enables vessel-specific hemodynamic mapping in animal models of normal and diseased states and further has translational potential to map vascular dementia in diseased or injured human brains with ultra-high-field fMRI.
Collapse
Affiliation(s)
- Xuming Chen
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, China
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Sangcheon Choi
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Rolf Pohmann
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, California, United States of America
- Section of Neurobiology, University of California at San Diego, La Jolla, California, United States of America
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| |
Collapse
|
66
|
Viard A, Eustache F, Segobin S. History of Magnetic Resonance Imaging: A Trip Down Memory Lane. Neuroscience 2021; 474:3-13. [PMID: 34242731 DOI: 10.1016/j.neuroscience.2021.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The history of magnetic resonance imaging (MRI) is closely linked to our improved understanding of memory systems, be it in normal functioning or altered due to pathologies. Over the years, brain imaging using MRI has moved from simple volumetric imaging to complex analysis using multiple sequences, allowing the measurement of microstructural integrity and brain activation through a dedicated task or at rest. This review aims at showing how the advent and evolution of magnetic resonance imaging has shaped a better understanding of memory and brain function in humans. We will give a brief overview on the history of MRI, how its evolution brought about concomitant improvement in our understanding of memory systems, going from final-stage observation to risk-prediction via the detection of subtle, but important, alterations in normal brain functioning.
Collapse
Affiliation(s)
- Armelle Viard
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, GIP Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France.
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, GIP Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Shailendra Segobin
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, GIP Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| |
Collapse
|
67
|
One-pot synthesis of carboxymethyl-dextran coated iron oxide nanoparticles (CION) for preclinical fMRI and MRA applications. Neuroimage 2021; 238:118213. [PMID: 34116153 PMCID: PMC8418149 DOI: 10.1016/j.neuroimage.2021.118213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Superparamagnetic iron-oxide nanoparticles are robust contrast agents for magnetic resonance imaging (MRI) used for sensitive structural and functional mapping of the cerebral blood volume (CBV) when administered intravenously. To date, many CBV-MRI studies are conducted with Feraheme, manufactured for the clinical treatment of iron-deficiency. Unfortunately, Feraheme is currently not available outside the United States due to commercial and regulatory constraints, making CBV-MRI methods either inaccessible or very costly to achieve. To address this barrier, we developed a simple, one-pot recipe to synthesize Carboxymethyl-dextran coated Iron Oxide Nanoparticles, namely, “CION”, suitable for preclinical CBV-MRI applications. Here we disseminate a step-by-step instruction of our one-pot synthesis protocol, which allows CION to be produced in laboratories with minimal cost. We also characterized different CION-conjugations by manipulating polymer to metal stoichiometric ratio in terms of their size, surface chemistry, and chemical composition, and shifts in MR relaxivity and pharmacokinetics. We performed several proof-of-concept experiments in vivo, demonstrating the utility of CION for functional and structural MRI applications, including hypercapnic CO2 challenge, visual stimulation, targeted optogenetic stimulation, and microangiography. We also present evidence that CION can serve as a cross-modality research platform by showing concurrent in vivo optical and MRI measurement of CBV using fluorescent-labeled CION. The simplicity and cost-effectiveness of our one-pot synthesis method should allow researchers to reproduce CION and tailor the relaxivity and pharmacokinetics according to their imaging needs. It is our hope that this work makes CBV-MRI more openly available and affordable for a variety of research applications.
Collapse
|
68
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
69
|
Paulo DL, Bick SK. Advanced Imaging in Psychiatric Neurosurgery: Toward Personalized Treatment. Neuromodulation 2021; 25:195-201. [PMID: 33788971 DOI: 10.1111/ner.13392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Our aim is to review several recent landmark studies discussing the application of advanced neuroimaging to guide target selection in deep brain stimulation (DBS) for psychiatric disorders. MATERIALS AND METHODS We performed a PubMed literature search of articles related to psychiatric neurosurgery, DBS, diffusion tensor imaging, probabilistic tractography, functional magnetic resonance imaging (MRI), and blood oxygen level-dependent activation. Relevant articles were included in the review. RESULTS Recent advances in neuroimaging, namely the use of diffusion tensor imaging, probabilistic tractography, functional MRI, and Positron emission tomography have provided higher resolution depictions of structural and functional connectivity between regions of interest. Applying these imaging modalities to DBS has increased understanding of the mechanism of action of DBS from the single structure to network level, allowed for new DBS targets to be discovered, and allowed for individualized DBS targeting for psychiatric indications. CONCLUSIONS Advanced neuroimaging techniques may be especially important to guide personalized DBS targeting in psychiatric disorders such as treatment-resistant depression and obsessive-compulsive disorder where symptom profiles and underlying disordered circuitry are more heterogeneous. These articles suggest that advanced imaging can help to further individualize and optimize DBS, a promising next step in improving its efficacy.
Collapse
Affiliation(s)
- Danika L Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
70
|
Razansky D, Klohs J, Ni R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur J Nucl Med Mol Imaging 2021; 48:4152-4170. [PMID: 33594473 PMCID: PMC8566397 DOI: 10.1007/s00259-021-05207-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The ability to non-invasively visualize endogenous chromophores and exogenous probes and sensors across the entire rodent brain with the high spatial and temporal resolution has empowered optoacoustic imaging modalities with unprecedented capacities for interrogating the brain under physiological and diseased conditions. This has rapidly transformed optoacoustic microscopy (OAM) and multi-spectral optoacoustic tomography (MSOT) into emerging research tools to study animal models of brain diseases. In this review, we describe the principles of optoacoustic imaging and showcase recent technical advances that enable high-resolution real-time brain observations in preclinical models. In addition, advanced molecular probe designs allow for efficient visualization of pathophysiological processes playing a central role in a variety of neurodegenerative diseases, brain tumors, and stroke. We describe outstanding challenges in optoacoustic imaging methodologies and propose a future outlook.
Collapse
Affiliation(s)
- Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.
- Institute for Regenerative Medicine, Uiversity of Zurich, Zurich, Switzerland.
| |
Collapse
|
71
|
Online Consumers’ Brain Activities When Purchasing Second-Hand versus New Products That Are Brand-Name or Brand-Less. INFORMATION 2021. [DOI: 10.3390/info12020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is now common to apply functional magnetic resonance imaging to explore which areas of the human brain are activated during the decision-making process. In the study of consumer behaviors, product brand has been identified as a major factor affecting consumer purchase decisions. Prior studies indicate that the brand had a significant impact on brain activation. However, it is unsure if consumers’ brain activation is also significant when purchasing brand-name second-hand products (SHPs). Therefore, the purpose of this study is to verify the areas of brain neuron activation in the context of online auctions among consumers whose purchasing decisions are affected by an SHP’s brand. The results show that a brain region (i.e., the medial prefrontal cortex) activates significantly when comparing the purchasing decision-making process between new items and SHPs. The activation of the insula is also found when an SHP purchasing decision is made. In addition, the dorsolateral prefrontal cortex is activated significantly when purchasing brand-name SHPs. However, due to consumers’ preferences for different brands, there is no significant activation in the ventromedial prefrontal cortex.
Collapse
|
72
|
Lin Z, Tam F, Churchill NW, Schweizer TA, Graham SJ. Tablet Technology for Writing and Drawing during Functional Magnetic Resonance Imaging: A Review. SENSORS 2021; 21:s21020401. [PMID: 33430023 PMCID: PMC7826671 DOI: 10.3390/s21020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful modality to study brain activity. To approximate naturalistic writing and drawing behaviours inside the scanner, many fMRI-compatible tablet technologies have been developed. The digitizing feature of the tablets also allows examination of behavioural kinematics with greater detail than using paper. With enhanced ecological validity, tablet devices have advanced the fields of neuropsychological tests, neurosurgery, and neurolinguistics. Specifically, tablet devices have been used to adopt many traditional paper-based writing and drawing neuropsychological tests for fMRI. In functional neurosurgery, tablet technologies have enabled intra-operative brain mapping during awake craniotomy in brain tumour patients, as well as quantitative tremor assessment for treatment outcome monitoring. Tablet devices also play an important role in identifying the neural correlates of writing in the healthy and diseased brain. The fMRI-compatible tablets provide an excellent platform to support naturalistic motor responses and examine detailed behavioural kinematics.
Collapse
Affiliation(s)
- Zhongmin Lin
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada;
| | - Fred Tam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
| | - Nathan W. Churchill
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (N.W.C.); (T.A.S.)
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (N.W.C.); (T.A.S.)
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Simon J. Graham
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Correspondence:
| |
Collapse
|
73
|
Tsvetanov KA, Henson RNA, Rowe JB. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190631. [PMID: 33190597 PMCID: PMC7741031 DOI: 10.1098/rstb.2019.0631] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Accurate identification of brain function is necessary to understand the neurobiology of cognitive ageing, and thereby promote well-being across the lifespan. A common tool used to investigate neurocognitive ageing is functional magnetic resonance imaging (fMRI). However, although fMRI data are often interpreted in terms of neuronal activity, the blood oxygenation level-dependent (BOLD) signal measured by fMRI includes contributions of both vascular and neuronal factors, which change differentially with age. While some studies investigate vascular ageing factors, the results of these studies are not well known within the field of neurocognitive ageing and therefore vascular confounds in neurocognitive fMRI studies are common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20 have applied techniques to correct for vascular effects. However, neurovascular ageing is not only a confound in fMRI, but an important feature in its own right, to be assessed alongside measures of neuronal ageing. We review current approaches to dissociate neuronal and vascular components of BOLD-fMRI of regional activity and functional connectivity. We highlight emerging evidence that vascular mechanisms in the brain do not simply control blood flow to support the metabolic needs of neurons, but form complex neurovascular interactions that influence neuronal function in health and disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Richard N. A. Henson
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
74
|
Transitional probabilities and expectation for word length impact verbal statistical learning. ACTA PSYCHOLOGICA SINICA 2021. [DOI: 10.3724/sp.j.1041.2021.00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Zhang CY, Lin QH, Kuang LD, Li WX, Gong XF, Calhoun VD. Sparse representation of complex-valued fMRI data based on spatiotemporal concatenation of real and imaginary parts. J Neurosci Methods 2020; 351:109047. [PMID: 33385421 DOI: 10.1016/j.jneumeth.2020.109047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Spatial sparsity has been found to be in line with the intrinsic characteristic of brain activation. However, identifying a sparse representation of complex-valued fMRI data is challenging due to high noise within the phase data. NEW METHODS We propose to reduce the noise by combining real and imaginary parts of complex-valued fMRI data along spatial and temporal dimensions to form a real-valued spatiotemporal concatenation model. This model not only enables flexible usage of existing real-valued sparse representation algorithms but also allows for the reconstruction of complex-valued spatial and temporal components from their real and imaginary estimates. We propose to select components from both real and imaginary estimates to reconstruct the complex-valued component, using phase denoising to recover weak brain activity from high-amplitude noise. RESULTS The K-SVD algorithm was used to obtain a sparse representation within the spatiotemporal concatenation model. The results from simulated and experimental complex-valued fMRI datasets validated the efficacy of our method. COMPARISON WITH EXISTING METHODS Compared to a magnitude-only approach, the proposed method detected additional voxels manifest within several specific regions expected to be involved but likely missing from the magnitude-only data, e.g., in the anterior cingulate cortex region. Simulation results showed that the additional voxels were accurate and unique information from the phase data. Compared to a complex-valued dictionary learning algorithm, our method exhibited lower noise for both magnitude and phase maps. CONCLUSIONS The proposed method is robust to noise and effective for identifying a sparse representation of the natively complex-valued fMRI data.
Collapse
Affiliation(s)
- Chao-Ying Zhang
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Qiu-Hua Lin
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Li-Dan Kuang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Wei-Xing Li
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiao-Feng Gong
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
76
|
Roland JL, Hacker CD, Leuthardt EC. A Review of Passive Brain Mapping Techniques in Neurological Surgery. Neurosurgery 2020; 88:15-24. [DOI: 10.1093/neuros/nyaa361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 11/12/2022] Open
Abstract
Abstract
Brain mapping is a quintessential part of neurosurgical practice. Accordingly, much of our understanding of the brain's functional organization, and in particular the motor homunculus, is largely attributable to the clinical investigations of past neurosurgeons. Traditionally mapping was invasive and involved the application of electrical current to the exposed brain to observe focal disruption of function or to elicit overt actions. More recently, a wide variety of techniques have been developed that do not require electrical stimulation and often do not require any explicit participation by the subject. Collectively we refer to these as passive mapping modalities. Here we review the spectrum of passive mapping used by neurosurgeons for mapping and surgical planning that ranges from invasive intracranial recordings to noninvasive imaging as well as regimented task-based protocols to completely task-free paradigms that can be performed intraoperatively while under anesthesia.
Collapse
Affiliation(s)
- Jarod L Roland
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Carl D Hacker
- Department of Neurological Surgery, Washington University in St Louis, St Louis, Missouri
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
77
|
Barry RL, Conrad BN, Maki S, Watchmaker JM, McKeithan LJ, Box BA, Weinberg QR, Smith SA, Gore JC. Multi-shot acquisitions for stimulus-evoked spinal cord BOLD fMRI. Magn Reson Med 2020; 85:2016-2026. [PMID: 33169877 DOI: 10.1002/mrm.28570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE To demonstrate the feasibility of 3D multi-shot magnetic resonance imaging acquisitions for stimulus-evoked blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in the human spinal cord in vivo. METHODS Two fMRI studies were performed at 3T. The first study was a hypercapnic gas challenge where data were acquired from healthy volunteers using a multi-shot 3D fast field echo (FFE) sequence as well as single-shot multi-slice echo-planar imaging (EPI). In the second study, another cohort of healthy volunteers performed an upper extremity motor task while fMRI data were acquired using a 3D multi-shot acquisition. RESULTS Both 2D-EPI and 3D-FFE were shown to be sensitive to BOLD signal changes in the cervical spinal cord, and had comparable contrast-to-noise ratios in gray matter. FFE exhibited much less signal drop-out and weaker geometric distortions compared to EPI. In the motor paradigm study, the mean number of active voxels was highest in the ventral gray matter horns ipsilateral to the side of the task and at the spinal level associated with innervation of finger extensors. CONCLUSIONS Highly multi-shot acquisition sequences such as 3D-FFE are well suited for stimulus-evoked spinal cord BOLD fMRI.
Collapse
Affiliation(s)
- Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Benjamin N Conrad
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Satoshi Maki
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Watchmaker
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lydia J McKeithan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bailey A Box
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quinn R Weinberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
78
|
Abstract
Neurovascular uncoupling (NVU) is one of the most important confounds of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMR imaging) in the setting of focal brain lesions such as brain tumors. This article reviews the assessment of NVU related to focal brain lesions with emphasis on the use of cerebrovascular reactivity mapping measurement methods and resting state BOLD fMR imaging metrics in the detection of NVU, as well as the use of amplitude of low-frequency fluctuation metrics to mitigate the effects of NVU on clinical fMR imaging activation.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA.
| |
Collapse
|
79
|
He Y, Wang M, Yu X. High spatiotemporal vessel-specific hemodynamic mapping with multi-echo single-vessel fMRI. J Cereb Blood Flow Metab 2020; 40:2098-2114. [PMID: 31696765 PMCID: PMC7786852 DOI: 10.1177/0271678x19886240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High-resolution fMRI enables noninvasive mapping of the hemodynamic responses from individual penetrating vessels in animal brains. Here, a 2D multi-echo single-vessel fMRI (MESV-fMRI) method has been developed to map the fMRI signal from arterioles and venules with a 100 ms sampling rate at multiple echo times (TE, 3-30 ms) and short acquisition windows (<1 ms). The T2*-weighted signal shows the increased extravascular effect on venule voxels as a function of TE. In contrast, the arteriole voxels show an increased fMRI signal with earlier onset than venules voxels at the short TE (3 ms) with increased blood inflow and volume effects. MESV-fMRI enables vessel-specific T2* mapping and presents T2*-based fMRI time courses with higher contrast-to-noise ratios (CNRs) than the T2*-weighted fMRI signal at a given TE. The vessel-specific T2* mapping also allows semi-quantitative estimation of the oxygen saturation levels (Y) and their changes (ΔY) at a given blood volume fraction upon neuronal activation. The MESV-fMRI method enables vessel-specific T2* measurements with high spatiotemporal resolution for better modeling of the fMRI signal based on the hemodynamic parameters.
Collapse
Affiliation(s)
- Yi He
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, Germany.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Maosen Wang
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, Germany
| | - Xin Yu
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
80
|
Boxerman JL, Quarles CC, Hu LS, Erickson BJ, Gerstner ER, Smits M, Kaufmann TJ, Barboriak DP, Huang RH, Wick W, Weller M, Galanis E, Kalpathy-Cramer J, Shankar L, Jacobs P, Chung C, van den Bent MJ, Chang S, Al Yung WK, Cloughesy TF, Wen PY, Gilbert MR, Rosen BR, Ellingson BM, Schmainda KM. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 2020; 22:1262-1275. [PMID: 32516388 PMCID: PMC7523451 DOI: 10.1093/neuonc/noaa141] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the widespread clinical use of dynamic susceptibility contrast (DSC) MRI, DSC-MRI methodology has not been standardized, hindering its utilization for response assessment in multicenter trials. Recently, the DSC-MRI Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition issued an updated consensus DSC-MRI protocol compatible with the standardized brain tumor imaging protocol (BTIP) for high-grade gliomas that is increasingly used in the clinical setting and is the default MRI protocol for the National Clinical Trials Network. After reviewing the basis for controversy over DSC-MRI protocols, this paper provides evidence-based best practices for clinical DSC-MRI as determined by the Committee, including pulse sequence (gradient echo vs spin echo), BTIP-compliant contrast agent dosing (preload and bolus), flip angle (FA), echo time (TE), and post-processing leakage correction. In summary, full-dose preload, full-dose bolus dosing using intermediate (60°) FA and field strength-dependent TE (40-50 ms at 1.5 T, 20-35 ms at 3 T) provides overall best accuracy and precision for cerebral blood volume estimates. When single-dose contrast agent usage is desired, no-preload, full-dose bolus dosing using low FA (30°) and field strength-dependent TE provides excellent performance, with reduced contrast agent usage and elimination of potential systematic errors introduced by variations in preload dose and incubation time.
Collapse
Affiliation(s)
- Jerrold L Boxerman
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the American Society of Neuroradiology (ASNR)
- Representative of the American Society of Functional Neuroradiology (ASFNR)
| | - Chad C Quarles
- Department of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Leland S Hu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, USA
- Representative of the Alliance for Clinical Trials in Oncology
- Representative of the American Society of Neuroradiology (ASNR)
| | - Bradley J Erickson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC–University Medical Center Rotterdam, Rotterdam, Netherlands
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Timothy J Kaufmann
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Daniel P Barboriak
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Raymond H Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang Wick
- Department of Neurooncology, National Center of Tumor Disease, University Clinic Heidelberg, Heidelberg, Germany
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Evanthia Galanis
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Jayashree Kalpathy-Cramer
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lalitha Shankar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Paula Jacobs
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Martin J van den Bent
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - W K Al Yung
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program and UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute (NCI), Bethesda, Maryland, USA
- Representative of the Radiation Therapy Oncology Group (RTOG)
| | - Bruce R Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin M Ellingson
- UCLA Neuro-Oncology Program and UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Departments of Radiological Sciences, Psychiatry, and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
- Representative of the Ivy Consortium for Early Phase Clinical Trials
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Kathleen M Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
| |
Collapse
|
81
|
Drew PJ, Mateo C, Turner KL, Yu X, Kleinfeld D. Ultra-slow Oscillations in fMRI and Resting-State Connectivity: Neuronal and Vascular Contributions and Technical Confounds. Neuron 2020; 107:782-804. [PMID: 32791040 PMCID: PMC7886622 DOI: 10.1016/j.neuron.2020.07.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022]
Abstract
Ultra-slow, ∼0.1-Hz variations in the oxygenation level of brain blood are widely used as an fMRI-based surrogate of "resting-state" neuronal activity. The temporal correlations among these fluctuations across the brain are interpreted as "functional connections" for maps and neurological diagnostics. Ultra-slow variations in oxygenation follow a cascade. First, they closely track changes in arteriole diameter. Second, interpretable functional connections arise when the ultra-slow changes in amplitude of γ-band neuronal oscillations, which are shared across even far-flung but synaptically connected brain regions, entrain the ∼0.1-Hz vasomotor oscillation in diameter of local arterioles. Significant confounds to estimates of functional connectivity arise from residual vasomotor activity as well as arteriole dynamics driven by self-generated movements and subcortical common modulatory inputs. Last, methodological limitations of fMRI can lead to spurious functional connections. The neuronal generator of ultra-slow variations in γ-band amplitude, including that associated with self-generated movements, remains an open issue.
Collapse
Affiliation(s)
- Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
| | - Celine Mateo
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany; MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
82
|
Hansen HD, Lindberg U, Ozenne B, Fisher PM, Johansen A, Svarer C, Keller SH, Hansen AE, Knudsen GM. Visual stimuli induce serotonin release in occipital cortex: A simultaneous positron emission tomography/magnetic resonance imaging study. Hum Brain Mapp 2020; 41:4753-4763. [PMID: 32813903 PMCID: PMC7555083 DOI: 10.1002/hbm.25156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
Endogenous serotonin (5-HT) release can be measured noninvasively using positron emission tomography (PET) imaging in combination with certain serotonergic radiotracers. This allows us to investigate effects of pharmacological and nonpharmacological interventions on brain 5-HT levels in living humans. Here, we study the neural responses to a visual stimulus using simultaneous PET/MRI. In a cross-over design, 11 healthy individuals were PET/MRI scanned with the 5-HT1B receptor radioligand [11 C]AZ10419369, which is sensitive to changes in endogenous 5-HT. During the last part of the scan, participants either viewed autobiographical images with positive valence (n = 11) or kept their eyes closed (n = 7). The visual stimuli increased cerebral blood flow (CBF) in the occipital cortex, as measured with pseudo-continuous arterial spin labeling. Simultaneously, we found decreased 5-HT1B receptor binding in the occipital cortex (-3.6 ± 3.6%), indicating synaptic 5-HT release. Using a linear regression model, we found that the change in 5-HT1B receptor binding was significantly negatively associated with change in CBF in the occipital cortex (p = .004). For the first time, we here demonstrate how cerebral 5-HT levels change in response to nonpharmacological stimuli in humans, as measured with PET. Our findings more directly support a link between 5-HT signaling and visual processing and/or visual attention.
Collapse
Affiliation(s)
- Hanne Demant Hansen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Massachusetts, Massachusetts
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen K, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annette Johansen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sune Høgild Keller
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Adam Espe Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
83
|
Zhao L, Zeng W, Shi Y, Nie W, Yang J. Dynamic visual cortical connectivity analysis based on functional magnetic resonance imaging. Brain Behav 2020; 10:e01698. [PMID: 32506636 PMCID: PMC7375061 DOI: 10.1002/brb3.1698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/10/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Studies of brain functional connectivity (FC) and effective connectivity (EC) using the functional magnetic resonance imaging (fMRI) have advanced our understanding of functional organization on visual cortex of human brain. The current studies mainly focus on static or dynamic connectivity, while the relationships between them have not been well characterized especially for static EC (sEC) and dynamic EC (dEC), as well as the consistency characteristics of changing trend of dFCs and dECs, which is of great importance to reveal the neural information processing mechanism in visual cortex region. METHOD In this study, we explore these relationships among several subareas of human visual cortex (V1-V5) by calculating the connection intensity and information flow among them over time by sliding window method, which are defined by Pearson correlation coefficient and Granger causality analysis, respectively, in each window. RESULTS The results demonstrate that there are extensive connections existing in human visual network, which are time-varying both in resting and task-related states. sFC intensity is negatively correlated with the variance of dFC, while sEC intensity is positively correlated with the variance of dEC. Furthermore, we also find that dFC within visual cortex at rest shows more consistency, while dEC shows less compared with task state in changing trend. CONCLUSION Therefore, this study provides novel findings about dynamics of connectivity in human visual cortex from the perspective of functional and effective connectivity.
Collapse
Affiliation(s)
- Le Zhao
- Laboratory of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China.,Department of Neurology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Science, Shanghai, China
| | - Weiming Zeng
- Laboratory of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China.,Department of Neurology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Science, Shanghai, China
| | - Yuhu Shi
- Laboratory of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China.,Department of Neurology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Science, Shanghai, China
| | - Weifang Nie
- Laboratory of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China.,Department of Neurology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Science, Shanghai, China
| | - Jiajun Yang
- Laboratory of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China.,Department of Neurology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Science, Shanghai, China
| |
Collapse
|
84
|
Cai MB, Shvartsman M, Wu A, Zhang H, Zhu X. Incorporating structured assumptions with probabilistic graphical models in fMRI data analysis. Neuropsychologia 2020; 144:107500. [PMID: 32433952 PMCID: PMC7387580 DOI: 10.1016/j.neuropsychologia.2020.107500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 01/27/2023]
Abstract
With the wide adoption of functional magnetic resonance imaging (fMRI) by cognitive neuroscience researchers, large volumes of brain imaging data have been accumulated in recent years. Aggregating these data to derive scientific insights often faces the challenge that fMRI data are high-dimensional, heterogeneous across people, and noisy. These challenges demand the development of computational tools that are tailored both for the neuroscience questions and for the properties of the data. We review a few recently developed algorithms in various domains of fMRI research: fMRI in naturalistic tasks, analyzing full-brain functional connectivity, pattern classification, inferring representational similarity and modeling structured residuals. These algorithms all tackle the challenges in fMRI similarly: they start by making clear statements of assumptions about neural data and existing domain knowledge, incorporate those assumptions and domain knowledge into probabilistic graphical models, and use those models to estimate properties of interest or latent structures in the data. Such approaches can avoid erroneous findings, reduce the impact of noise, better utilize known properties of the data, and better aggregate data across groups of subjects. With these successful cases, we advocate wider adoption of explicit model construction in cognitive neuroscience. Although we focus on fMRI, the principle illustrated here is generally applicable to brain data of other modalities.
Collapse
Affiliation(s)
- Ming Bo Cai
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Japan; Princeton Neuroscience Institute, Princeton University, United States.
| | | | - Anqi Wu
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, United States
| | - Hejia Zhang
- Department of Electrical Engineering, Princeton University, United States
| | - Xia Zhu
- Intel Corporation, United States
| |
Collapse
|
85
|
Toward a neuroscope: An application of high-performance computing for real-time evaluation of brain function using MRI. ACTA ACUST UNITED AC 2020. [DOI: 10.1017/s0424820100172346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Over the past few years, several laboratories have demonstrated that changes in local neuronal activity associated with human brain function can be detected by magnetic resonance imaging and spectroscopy. Using these methods, the effects of sensory and motor stimulation have been observed and cognitive studies have begun. These new methods promise to make possible even more rapid and extensive studies of brain organization and responses than those now in use, such as positron emission tomography.Human brain studies are enormously complex. Signal changes on the order of a few percent must be detected against the background of the complex 3D anatomy of the human brain. Today, most functional MR experiments are performed using several 2D slice images acquired at each time step or stimulation condition of the experimental protocol. It is generally believed that true 3D experiments must be performed for many cognitive experiments. To provide adequate resolution, this requires that data must be acquired faster and/or more efficiently to support 3D functional analysis.
Collapse
|
86
|
Sander CY, Hansen HD, Wey HY. Advances in simultaneous PET/MR for imaging neuroreceptor function. J Cereb Blood Flow Metab 2020; 40:1148-1166. [PMID: 32169011 PMCID: PMC7238372 DOI: 10.1177/0271678x20910038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid imaging using PET/MRI has emerged as a platform for elucidating novel neurobiology, molecular and functional changes in disease, and responses to physiological or pharmacological interventions. For the central nervous system, PET/MRI has provided insights into biochemical processes, linking selective molecular targets and distributed brain function. This review highlights several examples that leverage the strengths of simultaneous PET/MRI, which includes measuring the perturbation of multi-modal imaging signals on dynamic timescales during pharmacological challenges, physiological interventions or behavioral tasks. We discuss important considerations for the experimental design of dynamic PET/MRI studies and data analysis approaches for comparing and quantifying simultaneous PET/MRI data. The primary focus of this review is on functional PET/MRI studies of neurotransmitter and receptor systems, with an emphasis on the dopamine, opioid, serotonin and glutamate systems as molecular neuromodulators. In this context, we provide an overview of studies that employ interventions to alter the activity of neuroreceptors or the release of neurotransmitters. Overall, we emphasize how the synergistic use of simultaneous PET/MRI with appropriate study design and interventions has the potential to expand our knowledge about the molecular and functional dynamics of the living human brain. Finally, we give an outlook on the future opportunities for simultaneous PET/MRI.
Collapse
Affiliation(s)
- Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Hanne D Hansen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA.,Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
87
|
He F, Sullender CT, Zhu H, Williamson MR, Li X, Zhao Z, Jones TA, Xie C, Dunn AK, Luan L. Multimodal mapping of neural activity and cerebral blood flow reveals long-lasting neurovascular dissociations after small-scale strokes. SCIENCE ADVANCES 2020; 6:eaba1933. [PMID: 32494746 PMCID: PMC7244270 DOI: 10.1126/sciadv.aba1933] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/10/2020] [Indexed: 06/02/2023]
Abstract
Neurovascular coupling, the close spatial and temporal relationship between neural activity and hemodynamics, is disrupted in pathological brain states. To understand the altered neurovascular relationship in brain disorders, longitudinal, simultaneous mapping of neural activity and hemodynamics is critical yet challenging to achieve. Here, we use a multimodal neural platform in a mouse model of stroke and realize long-term, spatially resolved tracking of intracortical neural activity and cerebral blood flow in the same brain regions. We observe a pronounced neurovascular dissociation that occurs immediately after small-scale strokes, becomes the most severe a few days after, lasts into chronic periods, and varies with the level of ischemia. Neuronal deficits extend spatiotemporally, whereas restoration of cerebral blood flow occurs sooner and reaches a higher relative value. Our findings reveal the neurovascular impact of ministrokes and inform the limitation of neuroimaging techniques that infer neural activity from hemodynamic responses.
Collapse
Affiliation(s)
- Fei He
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Neuroengineering Initiative, Rice University, 6500 Main Street, Houston, TX 77005, USA
| | - Colin T. Sullender
- Department of Biomedical Engineering, The University of Texas at Austin, 107 E. Dean Keeton Street, 1 University Station, C0800, Austin, TX 78712, USA
| | - Hanlin Zhu
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Michael R. Williamson
- Institute for Neuroscience, The University of Texas at Austin, 1 University Station, Stop C7000, Austin, TX 78712, USA
| | - Xue Li
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Zhengtuo Zhao
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Neuroengineering Initiative, Rice University, 6500 Main Street, Houston, TX 77005, USA
| | - Theresa A. Jones
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Street, Stop A8000, SEA 6.106, Austin, TX 78712, USA
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Neuroengineering Initiative, Rice University, 6500 Main Street, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 E. Dean Keeton Street, 1 University Station, C0800, Austin, TX 78712, USA
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Neuroengineering Initiative, Rice University, 6500 Main Street, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
88
|
Xiao L, Wang J, Kassani PH, Zhang Y, Bai Y, Stephen JM, Wilson TW, Calhoun VD, Wang YP. Multi-Hypergraph Learning-Based Brain Functional Connectivity Analysis in fMRI Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1746-1758. [PMID: 31796393 PMCID: PMC7376954 DOI: 10.1109/tmi.2019.2957097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-interest (ROIs) instead of only two ROIs, and thus characterizes high-order relations among multiple ROIs that cannot be uncovered by a simple graph in the traditional graph based FCN construction methods. Unlike the existing hypergraph based methods where all hyperedges are assumed to have equal weights and only certain topological features are extracted from the hypergraphs, we propose a hypergraph learning based method for FCN construction in this paper. Specifically, we first generate hyperedges from fMRI time series based on sparse representation, then employ hypergraph learning to adaptively learn hyperedge weights, and finally define a hypergraph similarity matrix to represent the FCN. In our proposed method, weighting hyperedges results in better discriminative FCNs across subjects, and the defined hypergraph similarity matrix can better reveal the overall structure of brain network than using those hypergraph topological features. Moreover, we propose a multi-hypergraph learning based method by integrating multi-paradigm fMRI data, where the hyperedge weights associated with each fMRI paradigm are jointly learned and then a unified hypergraph similarity matrix is computed to represent the FCN. We validate the effectiveness of the proposed method on the Philadelphia Neurodevelopmental Cohort dataset for the classification of individuals' learning ability from three paradigms of fMRI data. Experimental results demonstrate that our proposed approach outperforms the traditional graph based methods (i.e., Pearson's correlation and partial correlation with the graphical Lasso) and the existing unweighted hypergraph based methods, which sheds light on how to optimize estimation of FCNs for cognitive and behavioral study.
Collapse
|
89
|
Seidel P, Levine SM, Tahedl M, Schwarzbach JV. Temporal Signal-to-Noise Changes in Combined Multislice- and In-Plane-Accelerated Echo-Planar Imaging with a 20- and 64-Channel Coil. Sci Rep 2020; 10:5536. [PMID: 32218476 PMCID: PMC7099092 DOI: 10.1038/s41598-020-62590-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/17/2020] [Indexed: 11/08/2022] Open
Abstract
Echo-planar imaging (EPI) is the most common method of functional MRI for acquiring the blood oxygenation level-dependent (BOLD) contrast, allowing the acquisition of an entire brain volume within seconds. However, because imaging protocols are limited by hardware (e.g., fast gradient switching), researchers must compromise between spatial resolution, temporal resolution, or whole-brain coverage. Earlier attempts to circumvent this problem included developing protocols in which slices of a volume were acquired faster (i.e., in-plane acceleration (S)) or simultaneously (i.e., multislice acceleration (M)). However, applying acceleration methods can lead to a reduction in the temporal signal-to-noise ratio (tSNR): a critical measure of signal stability over time. Using a 20- and 64-channel receiver coil, we show that enabling S-acceleration consistently yielded a substantial decrease in tSNR, regardless of the receiver coil, whereas M-acceleration yielded less pronounced tSNR decrease. Moreover, tSNR losses tended to occur in temporal, insular, and medial brain regions and were more noticeable with the 20-channel coil, while with the 64-channel coil, the tSNR in lateral frontoparietal regions remained relatively stable up to six-fold M-acceleration producing comparable tSNR to that of no acceleration. Such methodological explorations can guide researchers and clinicians in optimizing imaging protocols depending on the brain regions under investigation.
Collapse
Affiliation(s)
- Philipp Seidel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal
| | - Seth M Levine
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Marlene Tahedl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Jens V Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
90
|
Norbeck O, Sprenger T, Avventi E, Rydén H, Kits A, Berglund J, Skare S. Optimizing 3D EPI for rapid T
1
‐weighted imaging. Magn Reson Med 2020; 84:1441-1455. [DOI: 10.1002/mrm.28222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Ola Norbeck
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Tim Sprenger
- MR Applied Science Laboratory Europe, GE Healthcare Stockholm Sweden
| | - Enrico Avventi
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Henric Rydén
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Annika Kits
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Johan Berglund
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Stefan Skare
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| |
Collapse
|
91
|
Almodovar-Rivera I, Maitra R. Fast Adaptive Smoothing and Thresholding for Improved Activation Detection in Low-Signal fMRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2821-2828. [PMID: 31071023 DOI: 10.1109/tmi.2019.2915052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Functional magnetic resonance imaging is a noninvasive tool for studying cerebral function. Many factors challenge activation detection, especially in low-signal scenarios that arise in the performance of high-level cognitive tasks. We provide a fully automated fast adaptive smoothing and thresholding (FAST) algorithm that uses smoothing and extreme value theory on correlated statistical parametric maps for thresholding. Performance on experiments spanning a range of low-signal settings is very encouraging. The methodology also performs well in a study to identify the cerebral regions that perceive only-auditory-reliable or only-visual-reliable speech stimuli.
Collapse
|
92
|
Gabitov E, Lungu O, Albouy G, Doyon J. Weaker Inter-hemispheric and Local Functional Connectivity of the Somatomotor Cortex During a Motor Skill Acquisition Is Associated With Better Learning. Front Neurol 2019; 10:1242. [PMID: 31827459 PMCID: PMC6890719 DOI: 10.3389/fneur.2019.01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Recently, an increasing interest in investigating interactions between brain regions using functional connectivity (FC) methods has shifted the initial focus of cognitive neuroimaging research from localizing functional circuits based on task activation to mapping brain networks based on intrinsic FC dynamics. Leveraging the advantages of the latter approach, it has been shown that despite primarily invariant intrinsic organization of the large-scale functional networks, interactions between and within these networks significantly differ between various behavioral and cognitive states. These differences presumably indicate transient reconfiguration of functional connections-an instantaneous process that flexibly mediates and calibrates human behavior according to momentary demands of the environment. Nevertheless, the specificity of these reconfigured FC patterns to the task at hand and their relevance to adaptive processes during learning remain elusive. To address this knowledge gap, we investigated (1) to what extent FC within the somatomotor network is reconfigured during motor skill practice, and (2) how these changes are related to learning. We applied a seed-driven FC approach to data collected during a continuous task-free condition, so-called resting state, and during a motor sequence learning task using functional magnetic resonance imaging. During the task, participants repeatedly performed a short five-element sequence with their non-dominant (left) hand. As predicted, such unimanual sequence production was associated with lateralized activation of the right somatomotor cortex (SMC). Using this "active" region as a seed, here we show that unimanual performance of the motor sequence relies on functional segregation between the two SMC and selective integration between the "active" SMC and supplementary motor area. Whereas, greater segregation between the two SMC was associated with gains in performance rate, greater segregation within the "active" SMC itself was associated with more consistent performance by the end of training. Nether the resting-state FC patterns within the somatomotor network nor their relative modulation by the task state predicted these behavioral benefits of learning. Our results suggest that task-induced FC changes reflect reconfiguration of the connectivity patterns within the somatomotor network rather than a simple amplification or silencing of its intrinsic dynamics. Such reconfiguration not only supports motor behavior but may also predict learning.
Collapse
Affiliation(s)
- Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Ovidiu Lungu
- Functional Neuroimaging Unit, Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada.,Département de Psychiatrie et d'Addictologie, Université de Montréal, Montreal, QC, Canada
| | - Geneviève Albouy
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| |
Collapse
|
93
|
Chen X, Sobczak F, Chen Y, Jiang Y, Qian C, Lu Z, Ayata C, Logothetis NK, Yu X. Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus. Nat Commun 2019; 10:5239. [PMID: 31748553 PMCID: PMC6868210 DOI: 10.1038/s41467-019-12850-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023] Open
Abstract
Extensive in vivo imaging studies investigate the hippocampal neural network function, mainly focusing on the dorsal CA1 region given its optical accessibility. Multi-modality fMRI with simultaneous hippocampal electrophysiological recording reveal broad cortical correlation patterns, but the detailed spatial hippocampal functional map remains lacking given the limited fMRI resolution. In particular, hemodynamic responses linked to specific neural activity are unclear at the single-vessel level across hippocampal vasculature, which hinders the deciphering of the hippocampal malfunction in animal models and the translation to critical neurovascular coupling (NVC) patterns for human fMRI. We simultaneously acquired optogenetically-driven neuronal Ca2+ signals with single-vessel blood-oxygen-level-dependent (BOLD) and cerebral-blood-volume (CBV)-fMRI from individual venules and arterioles. Distinct spatiotemporal patterns of hippocampal hemodynamic responses were correlated to optogenetically evoked and spreading depression-like calcium events. The calcium event-related single-vessel hemodynamic modeling revealed significantly reduced NVC efficiency upon spreading depression-like (SDL) events, providing a direct measure of the NVC function at various hippocampal states.
Collapse
Affiliation(s)
- Xuming Chen
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- University of Tuebingen, 72074, Tuebingen, Germany
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, 430060, China
| | - Filip Sobczak
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074, Tuebingen, Germany
| | - Yi Chen
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074, Tuebingen, Germany
| | - Yuanyuan Jiang
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, 02129, MA, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, 48824, MI, USA
| | - Zuneng Lu
- Department of Neurology, Wuhan University, Renmin Hospital, Wuhan, 430060, China
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 02129, Boston, USA
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
- Department of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, M13 9PT, UK
| | - Xin Yu
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, 02129, MA, USA.
| |
Collapse
|
94
|
Zhang X, Pan WJ, Keilholz S. The Relationship Between Local Field Potentials and the Blood-Oxygenation-Level Dependent MRI Signal Can Be Non-linear. Front Neurosci 2019; 13:1126. [PMID: 31708727 PMCID: PMC6823197 DOI: 10.3389/fnins.2019.01126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/04/2019] [Indexed: 01/29/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is currently one of the most important neuroimaging methods in neuroscience. The image contrast in fMRI relies on the blood-oxygenation-level dependent (BOLD) signal, which indirectly reflects neural activity through neurovascular coupling. Because the mechanism that links the BOLD signal to neural activities involves multiple complicated processes, where neural activity, regional metabolism, hemodynamics, and the BOLD signal are all inter-connected, understanding the quantitative relationship between the BOLD signal and the underlying neural activities is crucial for interpreting fMRI data. Simultaneous local field potential (LFP) and fMRI recordings provide a method to study neurovascular coupling. There were a few studies that have shown non-linearities in stimulus related responses, but whether there is any non-linearity in LFP—BOLD relationship at rest has not been specifically quantified. In this study, we analyzed the simultaneous LFP and resting state-fMRI data acquired from rodents, and found that the relationship between LFP and BOLD is non-linear under isoflurane (ISO) anesthesia, but linear under dexmedetomidine (DMED) anesthesia. Subsequent analysis suggests that such non-linearity may come from the non-Gaussian distribution of LFP power and switching from LFP power to LFP amplitude can alleviate the problem to a degree. We also confirmed that, despite the non-linearity in the mean LFP—BOLD curve, the Pearson correlation between the two signals is relatively unaffected.
Collapse
Affiliation(s)
- Xiaodi Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Wen-Ju Pan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| |
Collapse
|
95
|
Lee S, Cho H, Kim K, Jun SC. Simultaneous EEG Acquisition System for Multiple Users: Development and Related Issues. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4592. [PMID: 31652579 PMCID: PMC6832946 DOI: 10.3390/s19204592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 11/25/2022]
Abstract
Social interaction is one of humans' most important activities and many efforts have been made to understand the phenomenon. Recently, some investigators have attempted to apply advanced brain signal acquisition systems that allow dynamic brain activities to be measured simultaneously during social interactions. Most studies to date have investigated dyadic interactions, although multilateral interactions are more common in reality. However, it is believed that most studies have focused on such interactions because of methodological limitations, in that it is very difficult to design a well-controlled experiment for multiple users at a reasonable cost. Accordingly, there are few simultaneous acquisition systems for multiple users. In this study, we propose a design framework for an acquisition system that measures EEG data simultaneously in an environment with 10 or more people. Our proposed framework allowed us to acquire EEG data at up to 1 kHz frequency from up to 20 people simultaneously. Details of our acquisition system are described from hardware and software perspectives. In addition, various related issues that arose in the system's development-such as synchronization techniques, system loads, electrodes, and applications-are discussed. In addition, simultaneous visual ERP experiments were conducted with a group of nine people to validate the EEG acquisition framework proposed. We found that our framework worked reasonably well with respect to less than 4 ms delay and average loss rates of 1%. It is expected that this system can be used in various hyperscanning studies, such as those on crowd psychology, large-scale human interactions, and collaborative brain-computer interface, among others.
Collapse
Affiliation(s)
- Sunghan Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Hohyun Cho
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | - Kiseong Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
- R&D Center, BioBrain Inc., Daejeon, 35203, Korea.
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| |
Collapse
|
96
|
Wang W, Zhornitsky S, Chao HH, Levy I, Joormann J, Li CSR. The effects of age on cerebral responses to self-initiated actions during social interactions: An exploratory study. Behav Brain Res 2019; 378:112301. [PMID: 31644928 DOI: 10.1016/j.bbr.2019.112301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
Self-initiated action is critical to social interaction and individuals with social anxiety find it particularly difficult to initiate social interactions. We showed earlier that social exclusion encumbered self-initiated actions in the Cyberball task in young adults. Here, we examined whether the behavioral performance and regional responses during self-initiated actions vary with age in 53 participants (21-74 years; 27 men). Behaviorally, participants were slower in tossing the ball during exclusion (EX) than during fair game (FG) sessions in both men and women. In women but not in men the reaction time (RT) burden (RT_EX - RT_FG; RT prolonged during social exclusion) of ball toss was positively correlated with age despite no observed sex difference in Social Interaction Anxiety Scale scores. The pregenual anterior cingulate cortex, thalamus, left occipital cortex (OC) and left insula/orbitofrontal cortex responded to ball toss in EX vs. FG in negative correlation with age in women but not in men. Further, the activation of left OC fully mediated the relationship between age and RT burden in women. Thus, older women are more encumbered in self-initiated action during social exclusion, although this behavioral burden is not reflected in subjective reports of social anxiety. Age-related diminution in OC activities may reflect the neural processes underlying the difficulty in initiating social interactions in women. Together, the findings identified age-sensitive behavioral and neural processes of self-initiated action in the Cyberball task and suggest the importance of considering age and sex differences in studies of social interaction.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States
| | - Herta H Chao
- Department of Medicine, Yale University, New Haven, CT 06520, United States; VA Connecticut Healthcare System, West Haven, CT 06516, United States
| | - Ifat Levy
- Department of Comparative Medicine, Yale University, New Haven, CT 06520, United States; Department of Neuroscience, Yale University, New Haven, CT 06520, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, United States
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT 06520, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT 06519, United States; Department of Neuroscience, Yale University, New Haven, CT 06520, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
97
|
Afacan O, Estroff JA, Yang E, Barnewolt CE, Connolly SA, Parad RB, Mulkern RV, Warfield SK, Gholipour A. Fetal Echoplanar Imaging: Promises and Challenges. Top Magn Reson Imaging 2019; 28:245-254. [PMID: 31592991 PMCID: PMC6788763 DOI: 10.1097/rmr.0000000000000219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fetal magnetic resonance imaging (MRI) has been gaining increasing interest in both clinical radiology and research. Echoplanar imaging (EPI) offers a unique potential, as it can be used to acquire images very fast. It can be used to freeze motion, or to get multiple images with various contrast mechanisms that allow studying the microstructure and function of the fetal brain and body organs. In this article, we discuss the current clinical and research applications of fetal EPI. This includes T2*-weighted imaging to better identify blood products and vessels, using diffusion-weighted MRI to investigate connections of the developing brain and using functional MRI (fMRI) to identify the functional networks of the developing brain. EPI can also be used as an alternative structural sequence when banding or standing wave artifacts adversely affect the mainstream sequences used routinely in structural fetal MRI. We also discuss the challenges with EPI acquisitions, and potential solutions. As EPI acquisitions are inherently sensitive to susceptibility artifacts, geometric distortions limit the use of high-resolution EPI acquisitions. Also, interslice motion and transmit and receive field inhomogeneities may create significant artifacts in fetal EPI. We conclude by discussing promising research directions to overcome these challenges to improve the use of EPI in clinical and research applications.
Collapse
Affiliation(s)
- Onur Afacan
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Judy A. Estroff
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Carol E. Barnewolt
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Susan A. Connolly
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Richard B. Parad
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert V. Mulkern
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ali Gholipour
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
98
|
Huang Q, Zhang J, Zhang T, Wang H, Yan J. Age-associated reorganization of metabolic brain connectivity in Chinese children. Eur J Nucl Med Mol Imaging 2019; 47:235-246. [DOI: 10.1007/s00259-019-04508-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
|
99
|
Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. Neuroimage 2019; 197:742-760. [DOI: 10.1016/j.neuroimage.2017.07.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
|
100
|
Qiao Y, Li X, Shen H, Zhang X, Sun Y, Hao W, Guo B, Ni D, Gao Z, Guo H, Shang Y. Downward cross-modal plasticity in single-sided deafness. Neuroimage 2019; 197:608-617. [DOI: 10.1016/j.neuroimage.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022] Open
|