51
|
Martinez-Goikoetxea M, Lupas AN. New protein families with hendecad coiled coils in the proteome of life. J Struct Biol 2023; 215:108007. [PMID: 37524272 DOI: 10.1016/j.jsb.2023.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Coiled coils are a widespread and well understood protein fold. Their short and simple repeats underpin considerable structural and functional diversity. The vast majority of coiled coils consist of 7-residue (heptad) sequence repeats, but in essence most combinations of 3- and 4-residue segments, each starting with a residue of the hydrophobic core, are compatible with coiled-coil structure. The most frequent among these other repeat patterns are 11-residue (hendecad, 3 + 4 + 4) repeats. Hendecads are frequently found in low copy number, interspersed between heptads, but some proteins consist largely or entirely of hendecad repeats. Here we describe the first large-scale survey of these proteins in the proteome of life. For this, we scanned the protein sequence database for sequences with 11-residue periodicity that lacked β-strand prediction. We then clustered these by pairwise similarity to construct a map of potential hendecad coiled-coil families. Here we discuss these according to their structural properties, their potential cellular roles, and the evolutionary mechanisms shaping their diversity. We note in particular the continuous amplification of hendecads, both within existing proteins and de novo from previously non-coding sequence, as a powerful mechanism in the genesis of new coiled-coil forms.
Collapse
Affiliation(s)
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany.
| |
Collapse
|
52
|
Otto M, Hoyer-Fender S. ODF2 Negatively Regulates CP110 Levels at the Centrioles/Basal Bodies to Control the Biogenesis of Primary Cilia. Cells 2023; 12:2194. [PMID: 37681926 PMCID: PMC10486571 DOI: 10.3390/cells12172194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Primary cilia are essential sensory organelles that develop when an inhibitory cap consisting of CP110 and other proteins is eliminated. The degradation of CP110 by the ubiquitin-dependent proteasome pathway mediated by NEURL4 and HYLS1 removes the inhibitory cap. Here, we investigated the suitability of rapamycin-mediated dimerization for centriolar recruitment and asked whether the induced recruitment of NEURL4 or HYLS1 to the centriole promotes primary cilia development and CP110 degradation. We used rapamycin-mediated dimerization with ODF2 to induce their targeted recruitment to the centriole. We found decreased CP110 levels in the transfected cells, but independent of rapamycin-mediated dimerization. By knocking down ODF2, we showed that ODF2 controls CP110 levels. The overexpression of ODF2 is not sufficient to promote the formation of primary cilia, but the overexpression of NEURL4 or HYLS1 is. The co-expression of ODF2 and HYLS1 resulted in the formation of tube-like structures, indicating an interaction. Thus, ODF2 controls primary cilia formation by negatively regulating the concentration of CP110 levels. Our data suggest that ODF2 most likely acts as a scaffold for the binding of proteins such as NEURL4 or HYLS1 to mediate CP110 degradation.
Collapse
Affiliation(s)
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology—Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
53
|
Meier K, Jachmann LH, Türköz G, Babu Sait MR, Pérez L, Kepp O, Valdivia RH, Kroemer G, Sixt BS. The Chlamydia effector CpoS modulates the inclusion microenvironment and restricts the interferon response by acting on Rab35. mBio 2023; 14:e0319022. [PMID: 37530528 PMCID: PMC10470785 DOI: 10.1128/mbio.03190-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 08/03/2023] Open
Abstract
The obligate intracellular bacterium Chlamydia trachomatis inserts a family of inclusion membrane (Inc) proteins into the membrane of its vacuole (the inclusion). The Inc CpoS is a critical suppressor of host cellular immune surveillance, but the underlying mechanism remained elusive. By complementing a cpoS mutant with various natural orthologs and variants of CpoS, we linked distinct molecular interactions of CpoS to distinct functions. Unexpectedly, we found CpoS to be essential for the formation of inclusion membrane microdomains that control the spatial organization of multiple Incs involved in signaling and modulation of the host cellular cytoskeleton. While the function of CpoS in microdomains was uncoupled from its role in the suppression of host cellular defenses, we found the ability of CpoS to interact with Rab GTPases to be required not only for the manipulation of membrane trafficking, such as to mediate transport of ceramide-derived lipids (sphingolipids) to the inclusion, but also for the inhibition of Stimulator of interferon genes (STING)-dependent type I interferon responses. Indeed, depletion of Rab35 phenocopied the exacerbated interferon responses observed during infection with CpoS-deficient mutants. Overall, our findings highlight the role of Inc-Inc interactions in shaping the inclusion microenvironment and the modulation of membrane trafficking as a pathogenic immune evasion strategy. IMPORTANCE Chlamydia trachomatis is a prevalent bacterial pathogen that causes blinding ocular scarring and urogenital infections that can lead to infertility and pregnancy complications. Because Chlamydia can only grow within its host cell, boosting the intrinsic defenses of human cells may represent a novel strategy to fight pathogen replication and survival. Hence, CpoS, a Chlamydia protein known to block host cellular defenses, or processes regulated by CpoS, could provide new opportunities for therapeutic intervention. By revealing CpoS as a multifunctional virulence factor and by linking its ability to block host cellular immune signaling to the modulation of membrane trafficking, the present work may provide a foundation for such rationale targeting and advances our understanding of how intracellular bacteria can shape and protect their growth niche.
Collapse
Affiliation(s)
- Karsten Meier
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Lana H. Jachmann
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Gözde Türköz
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Mohammed Rizwan Babu Sait
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Lucía Pérez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Raphael H. Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France
| | - Barbara S. Sixt
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
54
|
Madeo G, Savojardo C, Manfredi M, Martelli PL, Casadio R. CoCoNat: a novel method based on deep learning for coiled-coil prediction. Bioinformatics 2023; 39:btad495. [PMID: 37540220 PMCID: PMC10425188 DOI: 10.1093/bioinformatics/btad495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023] Open
Abstract
MOTIVATION Coiled-coil domains (CCD) are widespread in all organisms and perform several crucial functions. Given their relevance, the computational detection of CCD is very important for protein functional annotation. State-of-the-art prediction methods include the precise identification of CCD boundaries, the annotation of the typical heptad repeat pattern along the coiled-coil helices as well as the prediction of the oligomerization state. RESULTS In this article, we describe CoCoNat, a novel method for predicting coiled-coil helix boundaries, residue-level register annotation, and oligomerization state. Our method encodes sequences with the combination of two state-of-the-art protein language models and implements a three-step deep learning procedure concatenated with a Grammatical-Restrained Hidden Conditional Random Field for CCD identification and refinement. A final neural network predicts the oligomerization state. When tested on a blind test set routinely adopted, CoCoNat obtains a performance superior to the current state-of-the-art both for residue-level and segment-level CCD. CoCoNat significantly outperforms the most recent state-of-the-art methods on register annotation and prediction of oligomerization states. AVAILABILITY AND IMPLEMENTATION CoCoNat web server is available at https://coconat.biocomp.unibo.it. Standalone version is available on GitHub at https://github.com/BolognaBiocomp/coconat.
Collapse
Affiliation(s)
- Giovanni Madeo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Matteo Manfredi
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
55
|
Zou Q, Dong Q, Tian D, Mao L, Cao X, Zhu K. Genome-Wide Analysis of TCP Transcription Factors and Their Expression Pattern Analysis of Rose Plants ( Rosa chinensis). Curr Issues Mol Biol 2023; 45:6352-6364. [PMID: 37623220 PMCID: PMC10453170 DOI: 10.3390/cimb45080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
The plant-specific transcription factor TEOSINTE BRANCHED, CYCLOIDEA, AND PROLIFERATING CELL FACTOR (TCP) gene family plays vital roles in various biological processes, including growth and development, hormone signaling, and stress responses. However, there is a limited amount of information regarding the TCP gene family in roses (Rosa sp.). In this study, we identified 18 TCP genes in the rose genome, which were further classified into two subgroups (Group A and Group B) via phylogenetic analysis. Comprehensive characterization of these TCP genes was performed, including gene structure, motif composition, chromosomal location, and expression profiles. Synteny analysis revealed that a few TCP genes are involved in segmental duplication events, indicating that these genes played an important role in the expansion of the TCP gene family in roses. This suggests that segmental duplication events have caused the evolution of the TCP gene family and may have generated new functions. Our study provides an insight into the evolutionary and functional characteristics of the TCP gene family in roses and lays a foundation for the future exploration of the regulatory mechanisms of TCP genes in plant growth and development.
Collapse
Affiliation(s)
| | | | | | | | - Xuerui Cao
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China; (Q.Z.); (Q.D.); (D.T.); (L.M.)
| | - Kaiyuan Zhu
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China; (Q.Z.); (Q.D.); (D.T.); (L.M.)
| |
Collapse
|
56
|
Tsai TY, Chen CY, Lin TW, Lin TC, Chiu FL, Shih O, Chang MY, Lin YC, Su AC, Chen CM, Jeng US, Kuo HC, Chang CF, Chen YR. Amyloid modifier SERF1a interacts with polyQ-expanded huntingtin-exon 1 via helical interactions and exacerbates polyQ-induced toxicity. Commun Biol 2023; 6:767. [PMID: 37479809 PMCID: PMC10361993 DOI: 10.1038/s42003-023-05142-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Abnormal polyglutamine (polyQ) expansion and fibrillization occur in Huntington's disease (HD). Amyloid modifier SERF enhances amyloid formation, but the underlying mechanism is not revealed. Here, the fibrillization and toxicity effect of SERF1a on Htt-exon1 are examined. SERF1a enhances the fibrillization of and interacts with mutant thioredoxin (Trx)-fused Httex1. NMR studies with Htt peptides show that TrxHttex1-39Q interacts with the helical regions in SERF1a and SERF1a preferentially interacts with the N-terminal 17 residues of Htt. Time-course analysis shows that SERF1a induces mutant TrxHttex1 to a single conformation enriched of β-sheet. Co-expression of SERF1a and Httex1-polyQ in neuroblastoma and lentiviral infection of SERF1a in HD-induced polypotent stem cell (iPSC)-derived neurons demonstrates the detrimental effect of SERF1a in HD. Higher level of SERF1a transcript or protein is detected in HD iPSC, transgenic mice, and HD plasma. Overall, this study provides molecular mechanism for SERF1a and mutant Httex1 to facilitate therapeutic development for HD.
Collapse
Affiliation(s)
- Tien-Ying Tsai
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2. Nankang, Taipei, 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chun-Yu Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Tien-Wei Lin
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Tien-Chang Lin
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Ming-Yun Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Lin
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan.
| |
Collapse
|
57
|
Il Ahn J, Zhang L, Ravishankar H, Fan L, Kirsch K, Zeng Y, Meng L, Park JE, Yun HY, Ghirlando R, Ma B, Ball D, Ku B, Nussinov R, Schmit JD, Heinz WF, Kim SJ, Karpova T, Wang YX, Lee KS. Architectural basis for cylindrical self-assembly governing Plk4-mediated centriole duplication in human cells. Commun Biol 2023; 6:712. [PMID: 37433832 PMCID: PMC10336005 DOI: 10.1038/s42003-023-05067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Proper organization of intracellular assemblies is fundamental for efficient promotion of biochemical processes and optimal assembly functionality. Although advances in imaging technologies have shed light on how the centrosome is organized, how its constituent proteins are coherently architected to elicit downstream events remains poorly understood. Using multidisciplinary approaches, we showed that two long coiled-coil proteins, Cep63 and Cep152, form a heterotetrameric building block that undergoes a stepwise formation into higher molecular weight complexes, ultimately generating a cylindrical architecture around a centriole. Mutants defective in Cep63•Cep152 heterotetramer formation displayed crippled pericentriolar Cep152 organization, polo-like kinase 4 (Plk4) relocalization to the procentriole assembly site, and Plk4-mediated centriole duplication. Given that the organization of pericentriolar materials (PCM) is evolutionarily conserved, this work could serve as a model for investigating the structure and function of PCM in other species, while offering a new direction in probing the organizational defects of PCM-related human diseases.
Collapse
Affiliation(s)
- Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liang Zhang
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harsha Ravishankar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Klara Kirsch
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingjun Meng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, P R China
| | - David Ball
- Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tatiana Karpova
- Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Kyung S Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
58
|
Won SY, Soundararajan P, Irulappan V, Kim JS. In-silico, evolutionary, and functional analysis of CHUP1 and its related proteins in Bienertia sinuspersici-a comparative study across C 3, C 4, CAM, and SCC 4 model plants. PeerJ 2023; 11:e15696. [PMID: 37456874 PMCID: PMC10348308 DOI: 10.7717/peerj.15696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Single-cell C4 (SCC4) plants with bienertioid anatomy carry out photosynthesis in a single cell. Chloroplast movement is the underlying phenomenon, where chloroplast unusual positioning 1 (CHUP1) plays a key role. This study aimed to characterize CHUP1 and CHUP1-like proteins in an SCC4 photosynthetic plant, Bienertia sinuspersici. Also, a comparative analysis of SCC4 CHUP1 was made with C3, C4, and CAM model plants including an extant basal angiosperm, Amborella. The CHUP1 gene exists as a single copy from the basal angiosperms to SCC4 plants. Our analysis identified that Chenopodium quinoa, a recently duplicated allotetraploid, has two copies of CHUP1. In addition, the numbers of CHUP1-like and its associated proteins such as CHUP1-like_a, CHUP1-like_b, HPR, TPR, and ABP varied between the species. Hidden Markov Model analysis showed that the gene size of CHUP1-like_a and CHUP1-like_b of SCC4 species, Bienertia, and Suaeda were enlarged than other plants. Also, we identified that CHUP1-like_a and CHUP1-like_b are absent in Arabidopsis and Amborella, respectively. Motif analysis identified several conserved and variable motifs based on the orders (monocot and dicot) as well as photosynthetic pathways. For instance, CAM plants such as pineapple and cactus shared certain motifs of CHUP1-like_a irrespective of their distant phylogenetic relationship. The free ratio model showed that CHUP1 maintained purifying selection, whereas CHUP1-like_a and CHUP1-like_b have adaptive functions between SCC4 plants and quinoa. Similarly, rice and maize branches displayed functional diversification on CHUP1-like_b. Relative gene expression data showed that during the subcellular compartmentalization process of Bienertia, CHUP1 and actin-binding proteins (ABP) genes showed a similar pattern of expression. Altogether, the results of this study provide insight into the evolutionary and functional details of CHUP1 and its associated proteins in the development of the SCC4 system in comparison with other C3, C4, and CAM model plants.
Collapse
Affiliation(s)
- So Youn Won
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| | - Prabhakaran Soundararajan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| | - Vadivelmurugan Irulappan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| | - Jung Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| |
Collapse
|
59
|
Yan X, Luo R, Liu X, Hou Z, Pei W, Zhu W, Cui H. Characterization and the comprehensive expression analysis of tobacco valine-glutamine genes in response to trichomes development and stress tolerance. BOTANICAL STUDIES 2023; 64:18. [PMID: 37423918 DOI: 10.1186/s40529-023-00376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/19/2023] [Indexed: 07/11/2023]
Abstract
Valine-glutamine genes (VQ) acted as transcription regulators and played the important roles in plant growth and development, and stress tolerance through interacting with transcription factors and other co-regulators. In this study, sixty-one VQ genes containing the FxxxVQxxTG motif were identified and updated in the Nicotiana tobacum genome. Phylogenetic analysis indicated that NtVQ genes were divided into seven groups and genes of each group had highly conserved exon-intron structure. Expression patterns analysis firstly showed that NtVQ genes expressed individually in different tobacco tissues including mixed-trichome (mT), glandular-trichome (gT), and nonglandular-trichome (nT), and the expression levels were also distinguishing in response to methyl jasmonate (MeJA), salicylic acid (SA), gibberellic acid (GA), ethylene (ETH), high salinity and PEG stresses. Besides, only NtVQ17 of its gene family was verified to have acquired autoactivating activity. This work will not only lead a foundation on revealing the functions of NtVQ genes in tobacco trichomes but also provided references to VQ genes related stress tolerance research in more crops.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Rui Luo
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Xiangyang Liu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Zihang Hou
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Wenyi Pei
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Wenqi Zhu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Hong Cui
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China.
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Jinshui District, Zhengzhou, China.
| |
Collapse
|
60
|
Feng T, Pucker B, Kuang T, Song B, Yang Y, Lin N, Zhang H, Moore MJ, Brockington SF, Wang Q, Deng T, Wang H, Sun H. The genome of the glasshouse plant noble rhubarb (Rheum nobile) provides a window into alpine adaptation. Commun Biol 2023; 6:706. [PMID: 37429977 DOI: 10.1038/s42003-023-05044-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Glasshouse plants are species that trap warmth via specialized morphology and physiology, mimicking a human glasshouse. In the Himalayan alpine region, the highly specialized glasshouse morphology has independently evolved in distinct lineages to adapt to intensive UV radiation and low temperature. Here we demonstrate that the glasshouse structure - specialized cauline leaves - is highly effective in absorbing UV light but transmitting visible and infrared light, creating an optimal microclimate for the development of reproductive organs. We reveal that this glasshouse syndrome has evolved at least three times independently in the rhubarb genus Rheum. We report the genome sequence of the flagship glasshouse plant Rheum nobile and identify key genetic network modules in association with the morphological transition to specialized glasshouse leaves, including active secondary cell wall biogenesis, upregulated cuticular cutin biosynthesis, and suppression of photosynthesis and terpenoid biosynthesis. The distinct cell wall organization and cuticle development might be important for the specialized optical property of glasshouse leaves. We also find that the expansion of LTRs has likely played an important role in noble rhubarb adaptation to high elevation environments. Our study will enable additional comparative analyses to identify the genetic basis underlying the convergent occurrence of glasshouse syndrome.
Collapse
Affiliation(s)
- Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
- CeBiTec & Faculty of Biology, Bielefeld University, Universitaetsstrasse, Bielefeld, 33615, Germany
- Institute of Plant Biology & BRICS, TU Braunschweig, 38106, Braunschweig, Germany
| | - Tianhui Kuang
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Bo Song
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, St. Paul, MN, 55108, USA
| | - Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Michael J Moore
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Qingfeng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Tao Deng
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| | - Hang Sun
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
61
|
Iruegas R, Pfefferle K, Göttig S, Averhoff B, Ebersberger I. Feature architecture aware phylogenetic profiling indicates a functional diversification of type IVa pili in the nosocomial pathogen Acinetobacter baumannii. PLoS Genet 2023; 19:e1010646. [PMID: 37498819 PMCID: PMC10374093 DOI: 10.1371/journal.pgen.1010646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.
Collapse
Affiliation(s)
- Ruben Iruegas
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katharina Pfefferle
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
62
|
Frommer B, Müllner S, Holtgräwe D, Viehöver P, Huettel B, Töpfer R, Weisshaar B, Zyprian E. Phased grapevine genome sequence of an Rpv12 carrier for biotechnological exploration of resistance to Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2023; 14:1180982. [PMID: 37223784 PMCID: PMC10200900 DOI: 10.3389/fpls.2023.1180982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
The downy mildew disease caused by the oomycete Plasmopara viticola is a serious threat for grapevine and can cause enormous yield losses in viticulture. The quantitative trait locus Rpv12, mediating resistance against P. viticola, was originally found in Asian Vitis amurensis. This locus and its genes were analyzed here in detail. A haplotype-separated genome sequence of the diploid Rpv12-carrier Gf.99-03 was created and annotated. The defense response against P. viticola was investigated in an infection time-course RNA-seq experiment, revealing approximately 600 upregulated Vitis genes during host-pathogen interaction. The Rpv12 regions of the resistance and the sensitivity encoding Gf.99-03 haplotype were structurally and functionally compared with each other. Two different clusters of resistance-related genes were identified within the Rpv12 locus. One cluster carries a set of four differentially expressed genes with three ACCELERATED CELL DEATH 6-like genes. The other cluster carries a set of six resistance gene analogs related to qualitative pathogen resistance. The Rpv12 locus and its candidate genes for P. viticola resistance provide a precious genetic resource for P. viticola resistance breeding. Newly developed co-segregating simple sequence repeat markers in close proximity to the R-genes enable its improved applicability in marker-assisted grapevine breeding.
Collapse
Affiliation(s)
- Bianca Frommer
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Computational Biology, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Sophia Müllner
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institute, Siebeldingen, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Reinhard Töpfer
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institute, Siebeldingen, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Eva Zyprian
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institute, Siebeldingen, Germany
| |
Collapse
|
63
|
Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, Rudner DZ, Bernhardt TG. Identification of FacZ as a division site placement factor in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538170. [PMID: 37162900 PMCID: PMC10168275 DOI: 10.1101/2023.04.24.538170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Staphylococcus aureus is a gram-positive pathogen responsible for life-threatening infections that are difficult to treat due to antibiotic resistance. The identification of new vulnerabilities in essential processes like cell envelope biogenesis represents a promising avenue towards the development of anti-staphylococcal therapies that overcome resistance. To this end, we performed cell sorting-based enrichments for S. aureus mutants with defects in envelope integrity and cell division. We identified many known envelope biogenesis factors as well as a large collection of new factors with roles in this process. Mutants inactivated for one of the hits, the uncharacterized SAOUHSC_01855 protein, displayed aberrant membrane invaginations and multiple FtsZ cytokinetic ring structures. This factor is broadly distributed among Firmicutes, and its inactivation in B. subtilis similarly caused division and membrane defects. We therefore renamed the protein FacZ (Firmicute-associated coordinator of Z-rings). In S. aureus, inactivation of the conserved cell division protein GpsB suppressed the division and morphological defects of facZ mutants. Additionally, FacZ and GpsB were found to interact directly in a purified system. Thus, FacZ is a novel antagonist of GpsB function with a conserved role in controlling division site placement in S. aureus and other Firmicutes.
Collapse
Affiliation(s)
- Thomas M. Bartlett
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler A. Sisley
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Mychack
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard W. Baker
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Z. Rudner
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
64
|
Reimann TM, Müdsam C, Schachtler C, Ince S, Sticht H, Herrmann C, Stürzl M, Kost B. The large GTPase AtGBPL3 links nuclear envelope formation and morphogenesis to transcriptional repression. NATURE PLANTS 2023; 9:766-784. [PMID: 37095224 DOI: 10.1038/s41477-023-01400-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Guanylate binding proteins (GBPs) are prominent regulators of immunity not known to be required for nuclear envelope formation and morphogenesis. Here we identify the Arabidopsis GBP orthologue AtGBPL3 as a lamina component with essential functions in mitotic nuclear envelope reformation, nuclear morphogenesis and transcriptional repression during interphase. AtGBPL3 is preferentially expressed in mitotically active root tips, accumulates at the nuclear envelope and interacts with centromeric chromatin as well as with lamina components transcriptionally repressing pericentromeric chromatin. Reduced expression of AtGBPL3 or associated lamina components similarly altered nuclear morphology and caused overlapping transcriptional deregulation. Investigating the dynamics of AtGBPL3-GFP and other nuclear markers during mitosis (1) revealed that AtGBPL3 accumulation on the surface of daughter nuclei precedes nuclear envelope reformation and (2) uncovered defects in this process in roots of AtGBPL3 mutants, which cause programmed cell death and impair growth. AtGBPL3 functions established by these observations are unique among dynamin-family large GTPases.
Collapse
Affiliation(s)
- Theresa Maria Reimann
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina Müdsam
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina Schachtler
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Semra Ince
- Physical and Biophysical Chemistry, Department of Physical Chemistry 1, Ruhr-Universität Bochum (RUB), Bochum, Germany
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Herrmann
- Physical and Biophysical Chemistry, Department of Physical Chemistry 1, Ruhr-Universität Bochum (RUB), Bochum, Germany
| | - Michael Stürzl
- Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benedikt Kost
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
65
|
Paymal SB, Barale SS, Supanekar SV, Sonawane KD. Structure based virtual screening, molecular dynamic simulation to identify the oxadiazole derivatives as inhibitors of Enterococcus D-Ala-D-Ser ligase for combating vancomycin resistance. Comput Biol Med 2023; 159:106965. [PMID: 37119552 DOI: 10.1016/j.compbiomed.2023.106965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Vancomycin resistance in enterococci mainly arises due to alteration in terminal peptidoglycan dipeptide. A comprehensive structural analysis for substrate specificity of dipeptide modifying d-Alanine: d-Serine ligase (Ddls) is essential to screen its inhibitors for combating vancomycin resistance. In this study modeled 3D structure of EgDdls from E. gallinarum was used for structure based virtual screening (SBVS) of oxadiazole derivatives. Initially, fifteen oxadiazole derivatives were identified as inhibitors at the active site of EgDdls from PubChem database. Further, four EgDdls inhibitors were evaluated using pharmacokinetic profile and molecular docking. The results of molecular docking showed that oxadiazole inhibitors could bind preferentially at ATP binding pocket with the lowest binding energy. Further, molecular dynamics simulation results showed stable behavior of EgDdls in complex with screened inhibitors. The residues Phe172, Lys174, Glu217, Phe292, and Asn302 of EgDdls were mainly involved in interactions with screened inhibitors. Furthermore, MM-PBSA calculation showed electrostatic and van der Waals interactions mainly contribute to overall binding energy. The PCA analysis showed motion of central domain and omega loop of EgDdls. This is involved in the formation of native dipeptide and stabilized after binding of 2-(1-(Ethylsulfonyl) piperidin-4-yl)-5-(furan-2-yl)-1,3,4-oxadiazole, which could be reason for the inhibition of EgDdls. Hence, in this study we have screened inhibitors of EgDdls which could be useful to alleviate the vancomycin resistance problem in enterococci, involved in hospital-acquired infections, especially urinary tract infections (UTI).
Collapse
Affiliation(s)
- Sneha B Paymal
- Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India; Rayat Institute of Research and Development (RIRD), Satara, 415001, Maharashtra, India
| | - Sagar S Barale
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India
| | | | - Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India; Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India; Department of Chemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India.
| |
Collapse
|
66
|
Azatian SB, Canny MD, Latham MP. Three segment ligation of a 104 kDa multi-domain protein by SrtA and OaAEP1. JOURNAL OF BIOMOLECULAR NMR 2023; 77:25-37. [PMID: 36539644 PMCID: PMC10149453 DOI: 10.1007/s10858-022-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 05/03/2023]
Abstract
NMR spectroscopy is an excellent tool for studying protein structure and dynamics which provides a deeper understanding of biological function. As the size of the biomolecule of interest increases, it can become advantageous to dilute the number of observed signals in the NMR spectrum to decrease spectral overlap and increase resolution. One way to limit the number of resonances in the NMR data is by selectively labeling a smaller domain within the larger macromolecule, a process called segmental isotopic labeling. Many examples of segmental isotopic labeling have been described where two segments of a protein are ligated together by chemical or enzymatic means, but there are far fewer descriptions of a three or more segment ligation reaction. Herein, we describe an enzymatic segmental labeling scheme that combines the widely used Sortase A and more recently described OaAEP1 for a two site ligation strategy. In preparation to study proposed long-range allostery in the 104 kDa DNA damage repair protein Rad50, we ligated side-chain methyl group labeled Zn Hook domain between two long segments of otherwise unlabeled P.furiosus Rad50. Enzymatic activity data demonstrated that the scars resulting from the ligation reactions did not affect Rad50 function within the Mre11-Rad50 DNA double strand break repair complex. Finally, methyl-based NMR spectroscopy confirmed the formation of the full-length ligated protein. Our strategy highlights the strengths of OaAEP1 for segmental labeling, namely faster reaction times and a smaller recognition sequence, and provides a straightforward template for using these two enzymes in multisite segmental labeling reactions.
Collapse
Affiliation(s)
- Stephan B Azatian
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marella D Canny
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael P Latham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
67
|
Wu X, Zhang L, Wang X, Zhang R, Jin G, Hu Y, Yang H, Wu Z, Ma Y, Zhang C, Wang J. Evolutionary history of two evergreen Rhododendron species as revealed by chromosome-level genome assembly. FRONTIERS IN PLANT SCIENCE 2023; 14:1123707. [PMID: 37025132 PMCID: PMC10070854 DOI: 10.3389/fpls.2023.1123707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Background The genus Rhododendron (Ericaceae), a species-rich and widely distributed genus of woody plants, is distinguished for the beautiful and diverse flowers. Rhododendron delavayi Franch. and Rhododendron irroratum Franch., are highly attractive species widely distributed in south-west China and abundant new varieties have been selected from their genetic resources. Methods We constructed chromosome-scale genome assemblies for Rhododendron delavayi and Rhododendron irroratum. Phylogenetic and whole-genome duplication analyses were performed to elucidate the evolutionary history of Rhododendron. Further, different types of gene duplications were identified and their contributions to gene family expansion were investigated. Finally, comprehensive characterization and evolutionary analysis of R2R3-MYB and NBS-encoding genes were conducted to explore their evolutionary patterns. Results The phylogenetic analysis classified Rhododendron species into two sister clades, 'rhododendrons' and 'azaleas'. Whole-genome duplication (WGD) analysis unveiled only one WGD event that occurred in Rhododendron after the ancestral γ triplication. Gene duplication and gene family expansion analyses suggested that the younger tandem and proximal duplications contributed greatly to the expansion of gene families involved in secondary metabolite biosynthesis and stress response. The candidate R2R3-MYB genes likely regulating anthocyanin biosynthesis and stress tolerance in Rhododendron will facilitate the breeding for ornamental use. NBS-encoding genes had undergone significant expansion and experienced species-specific gain and loss events in Rhododendron plants. Conclusions The reference genomes presented here will provide important genetic resources for molecular breeding and genetic improvement of plants in this economically important Rhododendron genus.
Collapse
Affiliation(s)
- Xiaopei Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming, China
| | - Guihua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yanting Hu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhenzhen Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Zhejiang Institute of Advanced Technology, Haiyan Engineering & Technology Center, Jiaxing, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
| |
Collapse
|
68
|
Canty JT, Hensley A, Aslan M, Jack A, Yildiz A. TRAK adaptors regulate the recruitment and activation of dynein and kinesin in mitochondrial transport. Nat Commun 2023; 14:1376. [PMID: 36914620 PMCID: PMC10011603 DOI: 10.1038/s41467-023-36945-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondrial transport along microtubules is mediated by Miro1 and TRAK adaptors that recruit kinesin-1 and dynein-dynactin. To understand how these opposing motors are regulated during mitochondrial transport, we reconstitute the bidirectional transport of Miro1/TRAK along microtubules in vitro. We show that the coiled-coil domain of TRAK activates dynein-dynactin and enhances the motility of kinesin-1 activated by its cofactor MAP7. We find that TRAK adaptors that recruit both motors move towards kinesin-1's direction, whereas kinesin-1 is excluded from binding TRAK transported by dynein-dynactin, avoiding motor tug-of-war. We also test the predictions of the models that explain how mitochondrial transport stalls in regions with elevated Ca2+. Transport of Miro1/TRAK by kinesin-1 is not affected by Ca2+. Instead, we demonstrate that the microtubule docking protein syntaphilin induces resistive forces that stall kinesin-1 and dynein-driven motility. Our results suggest that mitochondrial transport stalls by Ca2+-mediated recruitment of syntaphilin to the mitochondrial membrane, not by disruption of the transport machinery.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Cancer Immunology, Genentech Inc., 1 DNA Way, 94080, South San Francisco, CA, USA.
| | - Andrew Hensley
- Physics Department, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Merve Aslan
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Amanda Jack
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Physics Department, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
69
|
Wang Y, Teng Z, Li H, Wang W, Xu F, Sun K, Chu J, Qian Y, Loake GJ, Chu C, Tang J. An activated form of NB-ARC protein RLS1 functions with cysteine-rich receptor-like protein RMC to trigger cell death in rice. PLANT COMMUNICATIONS 2023; 4:100459. [PMID: 36203361 PMCID: PMC10030324 DOI: 10.1016/j.xplc.2022.100459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 05/04/2023]
Abstract
A key event that follows pathogen recognition by a resistance (R) protein containing an NB-ARC (nucleotide-binding adaptor shared by Apaf-1, R proteins, and Ced-4) domain is hypersensitive response (HR)-type cell death accompanied by accumulation of reactive oxygen species and nitric oxide. However, the integral mechanisms that underlie this process remain relatively opaque. Here, we show that a gain-of-function mutation in the NB-ARC protein RLS1 (Rapid Leaf Senescence 1) triggers high-light-dependent HR-like cell death in rice. The RLS1-mediated defense response is largely independent of salicylic acid accumulation, NPR1 (Nonexpressor of Pathogenesis-Related Gene 1) activity, and RAR1 (Required for Mla12 Resistance 1) function. A screen for suppressors of RLS1 activation identified RMC (Root Meander Curling) as essential for the RLS1-activated defense response. RMC encodes a cysteine-rich receptor-like secreted protein (CRRSP) and functions as an RLS1-binding partner. Intriguingly, their co-expression resulted in a change in the pattern of subcellular localization and was sufficient to trigger cell death accompanied by a decrease in the activity of the antioxidant enzyme APX1. Collectively, our findings reveal an NB-ARC-CRRSP signaling module that modulates oxidative state, the cell death process, and associated immunity responses in rice.
Collapse
Affiliation(s)
- Yiqin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenfeng Teng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- Institute of Genetics and Developmental Biology and National Center for Plant Gene Research (Beijing), Chinese Academy of Sciences, Beijing 100101, China
| | - Yangwen Qian
- Biogle Genome Editing Center, Changzhou 213125, China
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
70
|
Quesnelle DC, Huang C, Boudreau JR, Lam A, Paw J, Bendena WG, Chin-Sang ID. C. elegans vab-6 encodes a KIF3A kinesin and functions cell non-autonomously to regulate epidermal morphogenesis. Dev Biol 2023; 497:33-41. [PMID: 36893881 DOI: 10.1016/j.ydbio.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
Cells undergo strict regulation to develop their shape in a process called morphogenesis. Caenorhabditis elegans with mutations in the variable abnormal (vab) class of genes have been shown to display epidermal and neuronal morphological defects. While several vab genes have been well-characterized, the function of the vab-6 gene remains unknown. Here, we show that vab-6 is synonymous with a subunit of the kinesin-II heterotrimeric motor complex called klp-20/Kif3a, a motor well-understood to be involved in developing sensory cilia in the nervous system. We show that certain klp-20 alleles cause animals to develop a bumpy body phenotype that is variable but most severe in mutants containing single amino-acid substitutions in the catalytic head-domain sites of the protein. Surprisingly, animals carrying a klp-20 null allele do not show the bumpy epidermal phenotype suggesting genetic redundancy and only when mutant versions of the KLP-20 protein are present, the epidermal phenotype is observed. The bumpy epidermal phenotype was not observed in other kinesin-2 mutants, suggesting that KLP-20 is functioning independently from its role in intraflagellar transport (IFT) during ciliogenesis. Interestingly, despite having such a prominent epidermal phenotype, KLP-20 is not expressed in the epidermis, strongly suggesting a cell non-autonomous role in which it regulates epidermal morphogenesis.
Collapse
Affiliation(s)
| | - Cindy Huang
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Annie Lam
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Jadine Paw
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
71
|
Dong Y, Duan S, Xia Q, Liang Z, Dong X, Margaryan K, Musayev M, Goryslavets S, Zdunić G, Bert PF, Lacombe T, Maul E, Nick P, Bitskinashvili K, Bisztray GD, Drori E, De Lorenzis G, Cunha J, Popescu CF, Arroyo-Garcia R, Arnold C, Ergül A, Zhu Y, Ma C, Wang S, Liu S, Tang L, Wang C, Li D, Pan Y, Li J, Yang L, Li X, Xiang G, Yang Z, Chen B, Dai Z, Wang Y, Arakelyan A, Kuliyev V, Spotar G, Girollet N, Delrot S, Ollat N, This P, Marchal C, Sarah G, Laucou V, Bacilieri R, Röckel F, Guan P, Jung A, Riemann M, Ujmajuridze L, Zakalashvili T, Maghradze D, Höhn M, Jahnke G, Kiss E, Deák T, Rahimi O, Hübner S, Grassi F, Mercati F, Sunseri F, Eiras-Dias J, Dumitru AM, Carrasco D, Rodriguez-Izquierdo A, Muñoz G, Uysal T, Özer C, Kazan K, Xu M, Wang Y, Zhu S, Lu J, Zhao M, Wang L, Jiu S, Zhang Y, Sun L, Yang H, Weiss E, Wang S, Zhu Y, Li S, Sheng J, Chen W. Dual domestications and origin of traits in grapevine evolution. Science 2023; 379:892-901. [PMID: 36862793 DOI: 10.1126/science.add8655] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and subsequently diversified along human migration trails into muscat and unique western wine grape ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the role of the grapevines in the early inception of agriculture across Eurasia.
Collapse
Affiliation(s)
- Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Qiuju Xia
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiao Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Kristine Margaryan
- Institute of Molecular Biology, NAS RA, 0014 Yerevan, Armenia.,Yerevan State University, 0014 Yerevan, Armenia
| | - Mirza Musayev
- Genetic Resources Institute, Azerbaijan National Academy of Sciences, AZ1106 Baku, Azerbaijan
| | | | - Goran Zdunić
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Pierre-François Bert
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Thierry Lacombe
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Erika Maul
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | - György Dénes Bisztray
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Elyashiv Drori
- Department of Chemical Engineering, Ariel University, 40700 Ariel, Israel.,Eastern Regional R&D Center, 40700 Ariel, Israel
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, University of Milano, 20133 Milano, Italy
| | - Jorge Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, I.P./INIAV-Dois Portos, 2565-191 Torres Vedras, Portugal.,Green-it Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Carmen Florentina Popescu
- National Research and Development Institute for Biotechnology in Horticulture, Stefanesti, 117715 Arges, Romania
| | - Rosa Arroyo-Garcia
- Center for Plant Biotechnology and Genomics, UPM-INIA/CSIC, Pozuelo de Alarcon, 28223 Madrid, Spain
| | | | - Ali Ergül
- Biotechnology Institute, Ankara University, 06135 Ankara, Turkey
| | - Yifan Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Shufen Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Liu Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Chunping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Dawei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Yunbing Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Jingxian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Xuzhen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Guisheng Xiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Zijiang Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Baozheng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Arsen Arakelyan
- Institute of Molecular Biology, NAS RA, 0014 Yerevan, Armenia.,Armenian Bioinformatics Institute, 0014 Yerevan, Armenia.,Biomedicine and Pharmacy, RAU, 0051 Yerevan, Armenia
| | - Varis Kuliyev
- Institute of Bioresources, Nakhchivan Branch of the Azerbaijan National Academy of Sciences, AZ7000 Nakhchivan, Azerbaijan
| | - Gennady Spotar
- National Institute of Viticulture and Winemaking Magarach, Yalta 298600, Crimea
| | - Nabil Girollet
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Nathalie Ollat
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, 33882 Villenave d'Ornon, France
| | - Patrice This
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Cécile Marchal
- Vassal-Montpellier Grapevine Biological Resources Center, INRAE, 34340 Marseillan-Plage, France
| | - Gautier Sarah
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Valérie Laucou
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Roberto Bacilieri
- AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France
| | - Franco Röckel
- Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Pingyin Guan
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andreas Jung
- Historische Rebsorten-Sammlung, Rebschule (K39), 67599 Gundheim, Germany
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Levan Ujmajuridze
- LEPL Scientific Research Center of Agriculture, 0159 Tbilisi, Georgia
| | | | - David Maghradze
- LEPL Scientific Research Center of Agriculture, 0159 Tbilisi, Georgia
| | - Maria Höhn
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Gizella Jahnke
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Erzsébet Kiss
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Tamás Deák
- Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Oshrit Rahimi
- Department of Chemical Engineering, Ariel University, 40700 Ariel, Israel
| | - Sariel Hübner
- Galilee Research Institute (Migal), Tel-Hai Academic College, 12210 Upper Galilee, Israel
| | - Fabrizio Grassi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.,NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Francesco Mercati
- Institute of Biosciences and Bioresources, National Research Council, 90129 Palermo, Italy
| | - Francesco Sunseri
- Department AGRARIA, University Mediterranea of Reggio Calabria, Reggio 89122 Calabria, Italy
| | - José Eiras-Dias
- Instituto Nacional de Investigação Agrária e Veterinária, I.P./INIAV-Dois Portos, 2565-191 Torres Vedras, Portugal.,Green-it Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Anamaria Mirabela Dumitru
- National Research and Development Institute for Biotechnology in Horticulture, Stefanesti, 117715 Arges, Romania
| | - David Carrasco
- Center for Plant Biotechnology and Genomics, UPM-INIA/CSIC, Pozuelo de Alarcon, 28223 Madrid, Spain
| | | | | | - Tamer Uysal
- Viticulture Research Institute, Ministry of Agriculture and Forestry, 59200 Tekirdağ, Turkey
| | - Cengiz Özer
- Viticulture Research Institute, Ministry of Agriculture and Forestry, 59200 Tekirdağ, Turkey
| | - Kemal Kazan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Meilong Xu
- Institute of Horticulture, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Yunyue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jiang Lu
- Center for Viticulture and Oenology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Maoxiang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institutes, CAAS, Zhengzhou 450009, China
| | - Lei Sun
- Zhengzhou Fruit Research Institutes, CAAS, Zhengzhou 450009, China
| | | | - Ehud Weiss
- The Martin (Szusz) Department of Land of Israel Studies and Archaeology, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Oenology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming 650201, China
| |
Collapse
|
72
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
73
|
Gergely ZR, Ansari S, Jones MH, Zhou B, Cash C, McIntosh R, Betterton MD. The kinesin-5 protein Cut7 moves bidirectionally on fission yeast spindles with activity that increases in anaphase. J Cell Sci 2023; 136:jcs260474. [PMID: 36655493 PMCID: PMC10112985 DOI: 10.1242/jcs.260474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Kinesin-5 motors are essential to separate mitotic spindle poles and assemble a bipolar spindle in many organisms. These motors crosslink and slide apart antiparallel microtubules via microtubule plus-end-directed motility. However, kinesin-5 localization is enhanced away from antiparallel overlaps. Increasing evidence suggests this localization occurs due to bidirectional motility or trafficking. The purified fission-yeast kinesin-5 protein Cut7 moves bidirectionally, but bidirectionality has not been shown in cells, and the function of the minus-end-directed movement is unknown. Here, we characterized the motility of Cut7 on bipolar and monopolar spindles and observed movement toward both plus- and minus-ends of microtubules. Notably, the activity of the motor increased at anaphase B onset. Perturbations to microtubule dynamics only modestly changed Cut7 movement, whereas Cut7 mutation reduced movement. These results suggest that the directed motility of Cut7 contributes to the movement of the motor. Comparison of the Cut7 mutant and human Eg5 (also known as KIF11) localization suggest a new hypothesis for the function of minus-end-directed motility and spindle-pole localization of kinesin-5s.
Collapse
Affiliation(s)
- Zachary R. Gergely
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Michele H. Jones
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Cai Cash
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado Boulder, Boulder, CO 80305, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80305, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
74
|
Amin A, Wu R, Khan MA, Cheung MH, Liang Y, Liu C, Zhu G, Yu ZL, Liang C. An essential Noc3p dimerization cycle mediates ORC double-hexamer formation in replication licensing. Life Sci Alliance 2023; 6:e202201594. [PMID: 36599624 PMCID: PMC9813392 DOI: 10.26508/lsa.202201594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Replication licensing, a prerequisite of DNA replication, helps to ensure once-per-cell-cycle genome duplication. Some DNA replication-initiation proteins are sequentially loaded onto replication origins to form pre-replicative complexes (pre-RCs). ORC and Noc3p bind replication origins throughout the cell cycle, providing a platform for pre-RC assembly. We previously reported that cell cycle-dependent ORC dimerization is essential for the chromatin loading of the symmetric MCM double-hexamers. Here, we used Saccharomyces cerevisiae separation-of-function NOC3 mutants to confirm the separable roles of Noc3p in DNA replication and ribosome biogenesis. We also show that an essential and cell cycle-dependent Noc3p dimerization cycle regulates the ORC dimerization cycle. Noc3p dimerizes at the M-to-G1 transition and de-dimerizes in S-phase. The Noc3p dimerization cycle coupled with the ORC dimerization cycle enables replication licensing, protects nascent sister replication origins after replication initiation, and prevents re-replication. This study has revealed a new mechanism of replication licensing and elucidated the molecular mechanism of Noc3p as a mediator of ORC dimerization in pre-RC formation.
Collapse
Affiliation(s)
- Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanting Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
| |
Collapse
|
75
|
Back PS, Moon AS, Pasquarelli RR, Bell HN, Torres JA, Chen AL, Sha J, Vashisht AA, Wohlschlegel JA, Bradley PJ. IMC29 Plays an Important Role in Toxoplasma Endodyogeny and Reveals New Components of the Daughter-Enriched IMC Proteome. mBio 2023; 14:e0304222. [PMID: 36622147 PMCID: PMC9973257 DOI: 10.1128/mbio.03042-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
The Toxoplasma inner membrane complex (IMC) is a unique organelle that plays critical roles in parasite motility, invasion, egress, and replication. The IMC is delineated into the apical, body, and basal regions, defined by proteins that localize to these distinct subcompartments. The IMC can be further segregated by proteins that localize specifically to the maternal IMC, the daughter bud IMC, or both. While the function of the maternal IMC has been better characterized, the precise roles of most daughter IMC components remain poorly understood. Here, we demonstrate that the daughter protein IMC29 plays an important role in parasite replication. We show that Δimc29 parasites exhibit severe replication defects, resulting in substantial growth defects and loss of virulence. Deletion analyses revealed that IMC29 localization is largely dependent on the N-terminal half of the protein containing four predicted coiled-coil domains while IMC29 function requires a short C-terminal helical region. Using proximity labeling, we identify eight novel IMC proteins enriched in daughter buds, significantly expanding the daughter IMC proteome. We additionally report four novel proteins with unique localizations to the interface between two parasites or to the outer face of the IMC, exposing new subregions of the organelle. Together, this work establishes IMC29 as an important early daughter bud component of replication and uncovers an array of new IMC proteins that provides important insights into this organelle. IMPORTANCE The inner membrane complex (IMC) is a conserved structure across the Apicomplexa phylum, which includes obligate intracellular parasites that cause toxoplasmosis, malaria, and cryptosporidiosis. The IMC is critical for the parasite to maintain its intracellular lifestyle, particularly in providing a scaffold for daughter bud formation during parasite replication. While many IMC proteins in the later stages of division have been identified, components of the early stages of division remain unknown. Here, we focus on the early daughter protein IMC29, demonstrating that it is crucial for faithful parasite replication and identifying specific regions of the protein that are important for its localization and function. We additionally use proximity labeling to reveal a suite of daughter-enriched IMC proteins, which represent promising candidates to further explore this IMC subcompartment.
Collapse
Affiliation(s)
- Peter S. Back
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Andy S. Moon
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | | | - Hannah N. Bell
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Juan A. Torres
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Allan L. Chen
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peter J. Bradley
- Department of Molecular Microbiology and Immunology, University of California, Los Angeles, California, USA
| |
Collapse
|
76
|
Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar G, Bileschi M, Bork P, Bridge A, Colwell L, Gough J, Haft D, Letunić I, Marchler-Bauer A, Mi H, Natale D, Orengo C, Pandurangan A, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu C, Bateman A. InterPro in 2022. Nucleic Acids Res 2023; 51:D418-D427. [PMID: 36350672 PMCID: PMC9825450 DOI: 10.1093/nar/gkac993] [Citation(s) in RCA: 1303] [Impact Index Per Article: 651.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
The InterPro database (https://www.ebi.ac.uk/interpro/) provides an integrative classification of protein sequences into families, and identifies functionally important domains and conserved sites. Here, we report recent developments with InterPro (version 90.0) and its associated software, including updates to data content and to the website. These developments extend and enrich the information provided by InterPro, and provide a more user friendly access to the data. Additionally, we have worked on adding Pfam website features to the InterPro website, as the Pfam website will be retired in late 2022. We also show that InterPro's sequence coverage has kept pace with the growth of UniProtKB. Moreover, we report the development of a card game as a method of engaging the non-scientific community. Finally, we discuss the benefits and challenges brought by the use of artificial intelligence for protein structure prediction.
Collapse
Affiliation(s)
- Typhaine Paysan-Lafosse
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Matthias Blum
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Sara Chuguransky
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Tiago Grego
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Beatriz Lázaro Pinto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Gustavo A Salazar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | | | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, 03722 Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Alan Bridge
- Swiss-Prot Group, Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Lucy Colwell
- Google Research, Brain team, Cambridge, MA, USA
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Julian Gough
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Trumpington, Cambridge CB2 0QH, UK
| | - Daniel H Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Ivica Letunić
- Biobyte Solutions GmbH, Bothestr 142, 69126 Heidelberg, Germany
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Huaiyu Mi
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Darren A Natale
- Protein Information Resource, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Christine A Orengo
- Department of Structural and Molecular Biology, University College London, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Arun P Pandurangan
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Trumpington, Cambridge CB2 0QH, UK
- Department of Biochemistry, Sanger Building, University of Cambridge, Cambridge, UK
| | - Catherine Rivoire
- Swiss-Prot Group, Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Christian J A Sigrist
- Swiss-Prot Group, Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Ian Sillitoe
- Department of Structural and Molecular Biology, University College London, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Narmada Thanki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy
| | - Cathy H Wu
- Protein Information Resource, Georgetown University Medical Center, Washington, DC 20007, USA
- Center for Bioinformatics and Computational Biology and Protein Information Resource, University of Delaware, Newark, DE 19711, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| |
Collapse
|
77
|
Zaharija B, Bradshaw NJ. Mapping the Domain Structure and Aggregation Propensity of Proteins Using a Gateway Plasmid Vector System. Methods Mol Biol 2023; 2551:649-677. [PMID: 36310230 DOI: 10.1007/978-1-0716-2597-2_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Some proteins represent members of conserved families, meaning that their domain structure can be easily predicted by comparison to homologous proteins whose structures have been solved experimentally. Many other proteins, however, do not share significant detectable homology with other proteins, often as results of high amounts of coiled-coil structure and/or intrinsically unstructured regions. These proteins include many whose aggregation is linked to human disease.Here we present a refined and reliable workflow for identifying the domains of such proteins, through cloning of multiple alternative fragments, and testing whether they form soluble, folded structures when expressed as recombinant peptides in E. coli, through the use of size exclusion chromatography. By using Gateway recombination for cloning, these fragments can then be rapidly transferred to alternate vectors for testing in mammalian cells. We then specifically illustrate its use for proteins that form pathological aggregates in disease, mapping not just their basic domain structures but also the specific subdomains responsible for aggregation.
Collapse
Affiliation(s)
- Beti Zaharija
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|
78
|
Rajkovic A, Kanchugal S, Abdurakhmanov E, Howard R, Wärmländer S, Erwin J, Barrera Saldaña HA, Gräslund A, Danielson H, Flores SC. Amino acid substitutions in human growth hormone affect secondary structure and receptor binding. PLoS One 2023; 18:e0282741. [PMID: 36952491 PMCID: PMC10035860 DOI: 10.1371/journal.pone.0282741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023] Open
Abstract
The interaction between human Growth Hormone (hGH) and hGH Receptor (hGHR) has basic relevance to cancer and growth disorders, and hGH is the scaffold for Pegvisomant, an anti-acromegaly therapeutic. For the latter reason, hGH has been extensively engineered by early workers to improve binding and other properties. We are particularly interested in E174 which belongs to the hGH zinc-binding triad; the substitution E174A is known to significantly increase binding, but to now no explanation has been offered. We generated this and several computationally-selected single-residue substitutions at the hGHR-binding site of hGH. We find that, while many successfully slow down dissociation of the hGH-hGHR complex once bound, they also slow down the association of hGH to hGHR. The E174A substitution induces a change in the Circular Dichroism spectrum that suggests the appearance of coiled-coiling. Here we show that E174A increases affinity of hGH against hGHR because the off-rate is slowed down more than the on-rate. For E174Y (and certain mutations at other sites) the slowdown in on-rate was greater than that of the off-rate, leading to decreased affinity. The results point to a link between structure, zinc binding, and hGHR-binding affinity in hGH.
Collapse
Affiliation(s)
- Andrei Rajkovic
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandesh Kanchugal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Rebecca Howard
- Department of Biochemistry and Biophysics, Stockholm University, Frescati, Sweden
| | - Sebastian Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Frescati, Sweden
| | - Joseph Erwin
- Department of Biochemistry and Biophysics, Stockholm University, Frescati, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Frescati, Sweden
| | | | - Samuel Coulbourn Flores
- Department of Biochemistry and Biophysics, Stockholm University, Frescati, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
79
|
Ishimura R, El-Gowily AH, Noshiro D, Komatsu-Hirota S, Ono Y, Shindo M, Hatta T, Abe M, Uemura T, Lee-Okada HC, Mohamed TM, Yokomizo T, Ueno T, Sakimura K, Natsume T, Sorimachi H, Inada T, Waguri S, Noda NN, Komatsu M. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat Commun 2022; 13:7857. [PMID: 36543799 PMCID: PMC9772183 DOI: 10.1038/s41467-022-35501-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here we identify a UFM1 substrate, NADH-cytochrome b5 reductase 3 (CYB5R3), that localizes on the ER membrane. Ufmylation of CYB5R3 depends on the E3 components UFL1 and UFBP1 on the ER, and converts CYB5R3 into its inactive form. Ufmylated CYB5R3 is recognized by UFBP1 through the UFM1-interacting motif, which plays an important role in the further uyfmylation of CYB5R3. Ufmylated CYB5R3 is degraded in lysosomes, which depends on the autophagy-related protein Atg7- and the autophagy-adaptor protein CDK5RAP3. Mutations of CYB5R3 and genes involved in the UFM1 system cause hereditary developmental disorders, and ufmylation-defective Cyb5r3 knock-in mice exhibit microcephaly. Our results indicate that CYB5R3 ufmylation induces ER-phagy, which is indispensable for brain development.
Collapse
Affiliation(s)
- Ryosuke Ishimura
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Afnan H El-Gowily
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Daisuke Noshiro
- Division of Biological Molecular Mechanisms, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Satoko Komatsu-Hirota
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasuko Ono
- Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mayumi Shindo
- Advanced Technical Support Department, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tomohisa Hatta
- National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center (JBIRC), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata, 951-8585, Japan
| | - Takefumi Uemura
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukshima, 960-1295, Japan
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata, 951-8585, Japan
| | - Tohru Natsume
- National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center (JBIRC), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukshima, 960-1295, Japan
| | - Nobuo N Noda
- Division of Biological Molecular Mechanisms, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
80
|
Sicilia C, Corral-Lugo A, Smialowski P, McConnell MJ, Martín-Galiano AJ. Unsupervised Machine Learning Organization of the Functional Dark Proteome of Gram-Negative "Superbugs": Six Protein Clusters Amenable for Distinct Scientific Applications. ACS OMEGA 2022; 7:46131-46145. [PMID: 36570227 PMCID: PMC9774411 DOI: 10.1021/acsomega.2c04076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
Uncharacterized proteins have been underutilized as targets for the development of novel therapeutics for difficult-to-treat bacterial infections. To facilitate the exploration of these proteins, 2819 predicted, uncharacterized proteins (19.1% of the total) from reference strains of multidrug Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa species were organized using an unsupervised k-means machine learning algorithm. Classification using normalized values for protein length, pI, hydrophobicity, degree of conservation, structural disorder, and %AT of the coding gene rendered six natural clusters. Cluster proteins showed different trends regarding operon membership, expression, presence of unknown function domains, and interactomic relevance. Clusters 2, 4, and 5 were enriched with highly disordered proteins, nonworkable membrane proteins, and likely spurious proteins, respectively. Clusters 1, 3, and 6 showed closer distances to known antigens, antibiotic targets, and virulence factors. Up to 21.8% of proteins in these clusters were structurally covered by modeling, which allowed assessment of druggability and discontinuous B-cell epitopes. Five proteins (4 in Cluster 1) were potential druggable targets for antibiotherapy. Eighteen proteins (11 in Cluster 6) were strong B-cell and T-cell immunogen candidates for vaccine development. Conclusively, we provide a feature-based schema to fractionate the functional dark proteome of critical pathogens for fundamental and biomedical purposes.
Collapse
Affiliation(s)
- Carlos Sicilia
- Intrahospital
Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Andrés Corral-Lugo
- Intrahospital
Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Pawel Smialowski
- Core
Facility Bioinformatics, Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilians Universität München, Munich 80539, Germany
- Institute
of Stem Cell Research, Helmholtz Center Munich, Planegg-Martinsried 82152, Germany
| | - Michael J. McConnell
- Intrahospital
Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital
Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
81
|
Fischer ES. Kinetochore‐catalyzed MCC
formation: A structural perspective. IUBMB Life 2022; 75:289-310. [PMID: 36518060 DOI: 10.1002/iub.2697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that functions to ensure accurate chromosome segregation during mitosis. Macromolecular complexes known as kinetochores, act as the interface of sister chromatid attachment to spindle microtubules. In response to unattached kinetochores, the SAC activates its effector, the mitotic checkpoint complex (MCC), which delays mitotic exit until all sister chromatid pairs have achieved successful attachment to the bipolar mitotic spindle. Formation of the MCC (composed of Mad2, BubR1, Bub3 and Cdc20) is regulated by an Mps1 kinase-dependent phosphorylation signaling cascade which assembles and repositions components of the MCC onto a catalytic scaffold. This scaffold functions to catalyze the conversion of the HORMA-domain protein Mad2 from an "inactive" open-state (O-Mad2) into an "active" closed-Mad2 (C-Mad2), and simultaneous Cdc20 binding. Here, our current understanding of the molecular mechanisms underlying the kinetic barrier to C-Mad2:Cdc20 formation will be reviewed. Recent progress in elucidating the precise molecular choreography orchestrated by the catalytic scaffold to rapidly assemble the MCC will be examined, and unresolved questions will be highlighted. Ultimately, understanding how the SAC rapidly activates the checkpoint not only provides insights into how cells maintain genomic integrity during mitosis, but also provides a paradigm for how cells can utilize molecular switches, including other HORMA domain-containing proteins, to make rapid changes to a cell's physiological state.
Collapse
Affiliation(s)
- Elyse S. Fischer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Cambridge UK
| |
Collapse
|
82
|
Bumunang EW, McAllister TA, Polo RO, Ateba CN, Stanford K, Schlechte J, Walker M, MacLean K, Niu YD. Genomic Profiling of Non-O157 Shiga Toxigenic Escherichia coli-Infecting Bacteriophages from South Africa. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:221-230. [PMID: 36793886 PMCID: PMC9917312 DOI: 10.1089/phage.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background Non-O157 Shiga toxigenic Escherichia coli (STEC) are one of the most important food and waterborne pathogens worldwide. Although bacteriophages (phages) have been used for the biocontrol of these pathogens, a comprehensive understanding of the genetic characteristics and lifestyle of potentially effective candidate phages is lacking. Materials and Methods In this study, 10 non-O157-infecting phages previously isolated from feedlot cattle and dairy farms in the North-West province of South Africa were sequenced, and their genomes were analyzed. Results Comparative genomics and proteomics revealed that the phages were closely related to other E. coli-infecting Tunaviruses, Seuratviruses, Carltongylesviruses, Tequatroviruses, and Mosigviruses from the National Center for Biotechnology Information GenBank database. Phages lacked integrases associated with a lysogenic cycle and genes associated with antibiotic resistance and Shiga toxins. Conclusions Comparative genomic analysis identified a diversity of unique non-O157-infecting phages, which could be used to mitigate the abundance of various non-O157 STEC serogroups without safety concerns.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Rodrigo Ortega Polo
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Collins N. Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Jared Schlechte
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Matthew Walker
- Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Canada
| | - Kellie MacLean
- Cumming School of Medicine, Faculty of Science, University of Calgary, Calgary, Canada
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
83
|
Structural Insights into the Dimeric Form of Bacillus subtilis RNase Y Using NMR and AlphaFold. Biomolecules 2022; 12:biom12121798. [PMID: 36551226 PMCID: PMC9775385 DOI: 10.3390/biom12121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
RNase Y is a crucial component of genetic translation, acting as the key enzyme initiating mRNA decay in many Gram-positive bacteria. The N-terminal domain of Bacillus subtilis RNase Y (Nter-BsRNaseY) is thought to interact with various protein partners within a degradosome complex. Bioinformatics and biophysical analysis have previously shown that Nter-BsRNaseY, which is in equilibrium between a monomeric and a dimeric form, displays an elongated fold with a high content of α-helices. Using multidimensional heteronuclear NMR and AlphaFold models, here, we show that the Nter-BsRNaseY dimer is constituted of a long N-terminal parallel coiled-coil structure, linked by a turn to a C-terminal region composed of helices that display either a straight or bent conformation. The structural organization of the N-terminal domain is maintained within the AlphaFold model of the full-length RNase Y, with the turn allowing flexibility between the N- and C-terminal domains. The catalytic domain is globular, with two helices linking the KH and HD modules, followed by the C-terminal region. This latter region, with no function assigned up to now, is most likely involved in the dimerization of B. subtilis RNase Y together with the N-terminal coiled-coil structure.
Collapse
|
84
|
Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, Beacham RT, Norrell L, Morrison DE, Wang J, Mann J, Tennant W, Anderson EN, Franks J, Calderon M, Connolly KA, Cheema MU, Weaver CJ, Nkashama LJ, Weckerly CC, Querry KE, Pandey UB, Donnelly CJ, Sun D, Rodan AR, Subramanya AR. WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 2022; 185:4488-4506.e20. [PMID: 36318922 PMCID: PMC9699283 DOI: 10.1016/j.cell.2022.09.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
Abstract
When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Shawn E Griffiths
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rebecca T Beacham
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Logan Norrell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA
| | - Daryl E Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Wang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jacob Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - William Tennant
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Eric N Anderson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jonathan Franks
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael Calderon
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kelly A Connolly
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Muhammad Umar Cheema
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Claire J Weaver
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lubika J Nkashama
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Claire C Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Katherine E Querry
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Aylin R Rodan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA; Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA; Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84132, USA; Medical Service, VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
| | - Arohan R Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
85
|
Pollenz RS, Bland J, Pope WH. Bioinformatic characterization of endolysins and holin-like membrane proteins in the lysis cassette of phages that infect Gordonia rubripertincta. PLoS One 2022; 17:e0276603. [PMID: 36395171 PMCID: PMC9671378 DOI: 10.1371/journal.pone.0276603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
Holins are bacteriophage-encoded transmembrane proteins that function to control the timing of bacterial lysis event, assist with the destabilization of the membrane proton motive force and in some models, generate large "pores" in the cell membrane to allow the exit of the phage-encoded endolysin so they can access the peptidoglycan components of the cell wall. The lysis mechanism has been rigorously evaluated through biochemical and genetic studies in very few phages, and the results indicate that phages utilize endolysins, holins and accessory proteins to the outer membrane to achieve cell lysis through several distinct operational models. This observation suggests the possibility that phages may evolve novel variations of how the lysis proteins functionally interact in an effort to improve fitness or evade host defenses. To begin to address this hypothesis, the current study utilized a comprehensive bioinformatic approach to systematically identify the proteins encoded by the genes within the lysis cassettes in 16 genetically diverse phages that infect the Gram-positive Gordonia rubripertincta NRLL B-16540 strain. The results show that there is a high level of diversity of the various lysis genes and 16 different genome organizations of the putative lysis cassette, many which have never been described. Thirty-four different genes encoding holin-like proteins were identified as well as a potential holin-major capsid fusion protein. The holin-like proteins contained between 1-4 transmembrane helices, were not shared to a high degree amongst the different phages and are present in the lysis cassette in a wide range of combinations of up to 4 genes in which none are duplicated. Detailed evaluation of the transmembrane domains and predicted membrane topologies of the holin-like proteins show that many have novel structures that have not been previously characterized. These results provide compelling support that there are novel operational lysis models yet to be discovered.
Collapse
Affiliation(s)
- Richard S. Pollenz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Jackson Bland
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Welkin H. Pope
- Science Department, Chatham University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
86
|
Inka2, a novel Pak4 inhibitor, regulates actin dynamics in neuronal development. PLoS Genet 2022; 18:e1010438. [PMID: 36301793 PMCID: PMC9612522 DOI: 10.1371/journal.pgen.1010438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
The actin filament is a fundamental part of the cytoskeleton defining cell morphology and regulating various physiological processes, including filopodia formation and dendritic spinogenesis of neurons. Serine/threonine-protein kinase Pak4, an essential effector, links Rho GTPases to control actin polymerization. Previously, we identified the Inka2 gene, a novel mammalian protein exhibiting sequence similarity to Inka1, which serves as a possible inhibitor for Pak4. Although Inka2 is dominantly expressed in the nervous system and involved in focal-adhesion dynamics, its molecular role remains unclear. Here, we found that Inka2-iBox directly binds to Pak4 catalytic domain to suppress actin polymerization. Inka2 promoted actin depolymerization and inhibited the formation of cellular protrusion caused by Pak4 activation. We further generated the conditional knockout mice of the Inka2 gene. The beta-galactosidase reporter indicated the preferential Inka2 expression in the dorsal forebrain neurons. Cortical pyramidal neurons of Inka2-/- mice exhibited decreased density and aberrant morphology of dendritic spines with marked activation/phosphorylation of downstream molecules of Pak4 signal cascade, including LIMK and Cofilin. These results uncovered the unexpected function of endogenous Pak4 inhibitor in neurons. Unlike Inka1, Inka2 is a critical mediator for actin reorganization required for dendritic spine development. Actin filaments are an essential part of the cytoskeleton defining cell morphology and regulating various cellular processes, such as cell migration and synapse formation in the brain. Actin polymerization is controlled by the kinase activity of the Pak4 signaling cascade, including LIMK and Cofilin. Previously, we identified the Inka2 gene, which is strongly expressed in the mammalian central nervous system and a similar sequence as Inka1. Inka1 was reported to serve as a Pak4 inhibitor in cancer cell lines; however, the physiological function of Inka2 is unclear. In this study, we found that (i) Inka2 overexpression inhibits the formation of cell-protrusion caused by Pak4 activation; (ii) Inka2 directly binds to the catalytic domain of Pak4 to inhibit intracellular actin polymerization; (iii) Inka2 is specifically expressed in neurons in the forebrain region, including the cerebral cortex and hippocampus that are known to be essential for brain plasticity, such as learning and memory; and (iv) cortical neurons of Inka2-deficient mice showed decreased synapse formation and abnormal spine morphology, probably due to the marked phosphorylation of LIMK and Cofilin. These results indicate that Inka2 is an endogenous Pak4 inhibitor in neurons required for normal synapse formation through the modulation of actin reorganization.
Collapse
|
87
|
Laursen L, Inturi R, Østergaard S, Jemth P. Determinants of affinity, specificity, and phase separation in a supramodule from Post-synaptic density protein 95. iScience 2022; 25:105069. [PMID: 36157580 PMCID: PMC9490041 DOI: 10.1016/j.isci.2022.105069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
The post-synaptic density (PSD) is a phase-separated membraneless compartment of proteins including PSD-95 that undergoes morphological alteration in response to synaptic activity. Here, we investigated the interactome of a three-domain supramodule, PDZ3-SH3-GK (PSG) from PSD-95 using bioinformatics to identify potential binding partners, and biophysical methods to characterize the interaction with peptides from these proteins. PSG and the single PDZ3 domain bound similar peptides, but with different specificity. Furthermore, we found that the protein ADGRB1 formed liquid droplets with the PSG supramodule, extending the model for PSD formation. Moreover, certain mutations, introduced outside of the binding pocket in PDZ3, increased the affinity and specificity of the interaction and the size of liquid droplets. Other mutations within the ligand binding pocket lead to a new binding motif specificity. Our results show how the context in terms of supertertiary structure modulates affinity, specificity, and phase separation, and how these properties can evolve by point mutation. Identification of potential binding partners for PSD-95 in the post-synaptic density ADGRB1 and PSD-95 undergo liquid-liquid phase separation (LLPS) Single domain PDZ3 cannot induce LLPS and binds weakly to ADGRB1 and SynGap Supertertiary structure alters the affinity, specificity, and phase separation
Collapse
Affiliation(s)
- Louise Laursen
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden
| | - Søren Østergaard
- Global Research Technology, Novo Nordisk A/S, Novo Nordisk Research Park, 2760 Maalov, Denmark
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden
| |
Collapse
|
88
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
89
|
Gopinathan Nair A, Rabas N, Lejon S, Homiski C, Osborne MJ, Cyr N, Sverzhinsky A, Melendy T, Pascal JM, Laue ED, Borden KLB, Omichinski JG, Verreault A. Unorthodox PCNA Binding by Chromatin Assembly Factor 1. Int J Mol Sci 2022; 23:11099. [PMID: 36232396 PMCID: PMC9570017 DOI: 10.3390/ijms231911099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
The eukaryotic DNA replication fork is a hub of enzymes that continuously act to synthesize DNA, propagate DNA methylation and other epigenetic marks, perform quality control, repair nascent DNA, and package this DNA into chromatin. Many of the enzymes involved in these spatiotemporally correlated processes perform their functions by binding to proliferating cell nuclear antigen (PCNA). A long-standing question has been how the plethora of PCNA-binding enzymes exert their activities without interfering with each other. As a first step towards deciphering this complex regulation, we studied how Chromatin Assembly Factor 1 (CAF-1) binds to PCNA. We demonstrate that CAF-1 binds to PCNA in a heretofore uncharacterized manner that depends upon a cation-pi (π) interaction. An arginine residue, conserved among CAF-1 homologs but absent from other PCNA-binding proteins, inserts into the hydrophobic pocket normally occupied by proteins that contain canonical PCNA interaction peptides (PIPs). Mutation of this arginine disrupts the ability of CAF-1 to bind PCNA and to assemble chromatin. The PIP of the CAF-1 p150 subunit resides at the extreme C-terminus of an apparent long α-helix (119 amino acids) that has been reported to bind DNA. The length of that helix and the presence of a PIP at the C-terminus are evolutionarily conserved among numerous species, ranging from yeast to humans. This arrangement of a very long DNA-binding coiled-coil that terminates in PIPs may serve to coordinate DNA and PCNA binding by CAF-1.
Collapse
Affiliation(s)
- Amogh Gopinathan Nair
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
- Molecular Biology Program, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Nick Rabas
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sara Lejon
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Caleb Homiski
- Departments of Biochemistry and Microbiology & Immunology, University at Buffalo Jacobs School of Medicine & Biomedical Sciences, 955 Main Street, Buffalo, NY 14210, USA
| | - Michael J. Osborne
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Thomas Melendy
- Departments of Biochemistry and Microbiology & Immunology, University at Buffalo Jacobs School of Medicine & Biomedical Sciences, 955 Main Street, Buffalo, NY 14210, USA
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katherine L. B. Borden
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - James G. Omichinski
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
90
|
Tanaka A, Nakano T, Watanabe K, Masuda K, Honda G, Kamata S, Yasui R, Kozuka-Hata H, Watanabe C, Chinen T, Kitagawa D, Sawai S, Oyama M, Yanagisawa M, Kunieda T. Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel. PLoS Biol 2022; 20:e3001780. [PMID: 36067153 PMCID: PMC9592077 DOI: 10.1371/journal.pbio.3001780] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Tardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective proteins. Cytoplasmic-abundant heat-soluble (CAHS) proteins are uniquely invented in the lineage of eutardigrades, a major class of the phylum Tardigrada and are essential for their anhydrobiotic survival. However, the precise mechanisms of their action in this protective role are not fully understood. In the present study, we first postulated the presence of tolerance proteins that form protective condensates via phase separation in a stress-dependent manner and searched for tardigrade proteins that reversibly form condensates upon dehydration-like stress. Through a comprehensive search using a desolvating agent, trifluoroethanol (TFE), we identified 336 proteins, collectively dubbed "TFE-Dependent ReversiblY condensing Proteins (T-DRYPs)." Unexpectedly, we rediscovered CAHS proteins as highly enriched in T-DRYPs, 3 of which were major components of T-DRYPs. We revealed that these CAHS proteins reversibly polymerize into many cytoskeleton-like filaments depending on hyperosmotic stress in cultured cells and undergo reversible gel-transition in vitro. Furthermore, CAHS proteins increased cell stiffness in a hyperosmotic stress-dependent manner and counteract the cell shrinkage caused by osmotic pressure, and even improved the survival against hyperosmotic stress. The conserved putative helical C-terminal region is necessary and sufficient for filament formation by CAHS proteins, and mutations disrupting the secondary structure of this region impaired both the filament formation and the gel transition. On the basis of these results, we propose that CAHS proteins are novel cytoskeleton-like proteins that form filamentous networks and undergo gel-transition in a stress-dependent manner to provide on-demand physical stabilization of cell integrity against deformative forces during dehydration and could contribute to the exceptional physical stability in a dehydrated state.
Collapse
Affiliation(s)
- Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomomi Nakano
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kento Watanabe
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazutoshi Masuda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shuichi Kamata
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Reitaro Yasui
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The
University of Tokyo, Minato-ku, Tokyo, Japan
| | - Chiho Watanabe
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Sawai
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The
University of Tokyo, Minato-ku, Tokyo, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
91
|
Murph M, Singh S, Schvarzstein M. A combined in silico and in vivo approach to the structure-function annotation of SPD-2 provides mechanistic insight into its functional diversity. Cell Cycle 2022; 21:1958-1979. [PMID: 35678569 PMCID: PMC9415446 DOI: 10.1080/15384101.2022.2078458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022] Open
Abstract
Centrosomes are organelles that function as hubs of microtubule nucleation and organization, with key roles in organelle positioning, asymmetric cell division, ciliogenesis, and signaling. Aberrant centrosome number, structure or function is linked to neurodegenerative diseases, developmental abnormalities, ciliopathies, and tumor development. A major regulator of centrosome biogenesis and function in C. elegans is the conserved Spindle-defective protein 2 (SPD-2), a homolog of the human CEP-192 protein. CeSPD-2 is required for centrosome maturation, centriole duplication, spindle assembly and possibly cell polarity establishment. Despite its importance, the specific molecular mechanism of CeSPD-2 regulation and function is poorly understood. Here, we combined computational analysis with cell biology approaches to uncover possible structure-function relationships of CeSPD-2 that may shed mechanistic light on its function. Domain prediction analysis corroborated and refined previously identified coiled-coils and ASH (Aspm-SPD-2 Hydin) domains and identified new domains: a GEF domain, an Ig-like domain, and a PDZ-like domain. In addition to these predicted structural features, CeSPD-2 is also predicted to be intrinsically disordered. Surface electrostatic maps identified a large basic region unique to the ASH domain of CeSPD-2. This basic region overlaps with most of the residues predicted to be involved in protein-protein interactions. In vivo, ASH::GFP localized to centrosomes and centrosome-associated microtubules. Our analysis groups ASH domains, PapD, Usher chaperone domains, and Major Sperm Protein (MSP) domains into a single superfold within the larger Immunoglobulin superfamily. This study lays the groundwork for designing rational hypothesis-based experiments to uncover the mechanisms of CeSPD-2 function in vivo.Abbreviations: AIR, Aurora kinase; ASH, Aspm-SPD-2 Hydin; ASP, Abnormal Spindle Protein; ASPM, Abnormal Spindle-like Microcephaly-associated Protein; CC, coiled-coil; CDK, Cyclin-dependent Kinase; Ce, Caenorhabditis elegans; CEP, Centrosomal Protein; CPAP, centrosomal P4.1-associated protein; D, Drosophila; GAP, GTPase activating protein; GEF, GTPase guanine nucleotide exchange factor; Hs, Homo sapiens/Human; Ig, Immunoglobulin; MAP, Microtubule associated Protein; MSP, Major Sperm Protein; MDP, Major Sperm Domain-Containing Protein; OCRL-1, Golgi endocytic trafficking protein Inositol polyphosphate 5-phosphatase; PAR, abnormal embryonic PARtitioning of the cytosol; PCM, Pericentriolar material; PCMD, pericentriolar matrix deficient; PDZ, PSD95/Dlg-1/zo-1; PLK, Polo like kinase; RMSD, Root Mean Square Deviation; SAS, Spindle assembly abnormal proteins; SPD, Spindle-defective protein; TRAPP, TRAnsport Protein Particle; Xe, Xenopus; ZYG, zygote defective protein.
Collapse
Affiliation(s)
- Mikaela Murph
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
| | - Shaneen Singh
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| | - Mara Schvarzstein
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| |
Collapse
|
92
|
Identification and characterization of coiled-coil motifs across Autographa californica multiple nucleopolyhedrovirus genome. Heliyon 2022; 8:e10588. [PMID: 36132175 PMCID: PMC9483598 DOI: 10.1016/j.heliyon.2022.e10588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/15/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Coiled coils (CCs) are protein structural motifs universally found in proteins and mediate a plethora of biological interactions, and thus their reliable annotation is crucial for studies of protein structure and function. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a large double-stranded DNA (dsDNA) virus and encodes 154 proteins. In this study, genome-wide scans of previously uncharacterized CC motifs throughout AcMNPV was conducted using CC prediction software. In total, 24 CC motifs in 19 CC proteins with high confidence were identified. The characteristic of viral CC motifs were analyzed. The CC proteins could be divided into 12 viral structural proteins and 7 non-structural proteins, including viral membrane fusion proteins, enzymes, and transcription factors. Moreover, CC motifs are conserved in the baculoviral orthologs of 14 of the 19 proteins. It is noted that five CC proteins, including Ac51, Ac66, Exon0, Ac13, and GP16, were previously identified to function in the nuclear egress of nucleocapsids, and Ac66 contains multiple CC motifs, the longest of which comprises 252 amino acids, suggesting a role of CC motifs in this process. Taken together, the CC motifs identified in this study are valuable resource for studying protein function and protein interaction networks during virus replication.
Collapse
|
93
|
Premachandran K, Srinivasan TS. In silico modelling and interactive profiling of BPH resistance NBS-LRR proteins with salivary specific proteins of rice planthoppers. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
94
|
Momin AA, Mendes T, Barthe P, Faure C, Hong S, Yu P, Kadaré G, Jaremko M, Girault JA, Jaremko Ł, Arold ST. PYK2 senses calcium through a disordered dimerization and calmodulin-binding element. Commun Biol 2022; 5:800. [PMID: 35945264 PMCID: PMC9363500 DOI: 10.1038/s42003-022-03760-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Multidomain kinases use many ways to integrate and process diverse stimuli. Here, we investigated the mechanism by which the protein tyrosine kinase 2-beta (PYK2) functions as a sensor and effector of cellular calcium influx. We show that the linker between the PYK2 kinase and FAT domains (KFL) encompasses an unusual calmodulin (CaM) binding element. PYK2 KFL is disordered and engages CaM through an ensemble of transient binding events. Calcium increases the association by promoting structural changes in CaM that expose auxiliary interaction opportunities. KFL also forms fuzzy dimers, and dimerization is enhanced by CaM binding. As a monomer, however, KFL associates with the PYK2 FERM-kinase fragment. Thus, we identify a mechanism whereby calcium influx can promote PYK2 self-association, and hence kinase-activating trans-autophosphorylation. Collectively, our findings describe a flexible protein module that expands the paradigms for CaM binding and self-association, and their use for controlling kinase activity. Protein tyrosine kinase 2-beta is shown to function as a sensor and effector of cellular calcium influx through self-association.
Collapse
Affiliation(s)
- Afaque A Momin
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tiago Mendes
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Philippe Barthe
- Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France
| | - Camille Faure
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - SeungBeom Hong
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Piao Yu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gress Kadaré
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Mariusz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Łukasz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France.
| |
Collapse
|
95
|
Byrne PO, McLellan JS. Principles and practical applications of structure-based vaccine design. Curr Opin Immunol 2022; 77:102209. [PMID: 35598506 PMCID: PMC9611442 DOI: 10.1016/j.coi.2022.102209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
Viral proteins fold into a variety of
structures as they perform their functions. Structure-based vaccine
design aims to exploit knowledge of an antigen’s architecture to
stabilize it in a vulnerable conformation. We summarize the general
principles of structure-based vaccine design, with a focus on the major
types of sequence modifications: proline, disulfide, cavity-filling,
electrostatic and hydrogen-bond substitution, as well as domain deletion.
We then review recent applications of these principles to vaccine-design
efforts across five viral families: Coronaviridae,
Orthomyxoviridae, Paramyxoviridae, Pneumoviridae, and
Filoviridae. Outstanding challenges include
continued application of proven design principles to pathogens of
interest, as well as development of new strategies for those pathogens
that resist traditional techniques.
Collapse
|
96
|
Massonnet M, Vondras AM, Cochetel N, Riaz S, Pap D, Minio A, Figueroa-Balderas R, Walker MA, Cantu D. Haplotype-resolved powdery mildew resistance loci reveal the impact of heterozygous structural variation on NLR genes in Muscadinia rotundifolia. G3 GENES|GENOMES|GENETICS 2022; 12:6607591. [PMID: 35695769 PMCID: PMC9339307 DOI: 10.1093/g3journal/jkac148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022]
Abstract
Muscadinia rotundifolia cv. Trayshed is a valuable source of resistance to grape powdery mildew. It carries 2 powdery mildew resistance-associated genetic loci, Run1.2 on chromosome 12 and Run2.2 on chromosome 18. The purpose of this study was to identify candidate resistance genes associated with each haplotype of the 2 loci. Both haplotypes of each resistance-associated locus were identified, phased, and reconstructed. Haplotype phasing allowed the identification of several structural variation events between haplotypes of both loci. Combined with a manual refinement of the gene models, we found that the heterozygous structural variants affected the gene content, with some resulting in duplicated or hemizygous nucleotide-binding leucine-rich repeat genes. Heterozygous structural variations were also found to impact the domain composition of some nucleotide-binding leucine-rich repeat proteins. By comparing the nucleotide-binding leucine-rich repeat proteins at Run1.2 and Run2.2 loci, we discovered that the 2 loci include different numbers and classes of nucleotide-binding leucine-rich repeat genes. To identify powdery mildew resistance-associated genes, we performed a gene expression profiling of the nucleotide-binding leucine-rich repeat genes at Run1.2b and Run2.2 loci with or without powdery mildew present. Several nucleotide-binding leucine-rich repeat genes were constitutively expressed, suggesting a role in powdery mildew resistance. These first complete, haplotype-resolved resistance-associated loci and the candidate nucleotide-binding leucine-rich repeat genes identified by this study are new resources that can aid the development of powdery mildew-resistant grape cultivars.
Collapse
Affiliation(s)
- Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Amanda M Vondras
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Noé Cochetel
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Summaira Riaz
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Dániel Pap
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Michael Andrew Walker
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| |
Collapse
|
97
|
Tao L, Byrnes J, Varshney V, Li Y. Machine learning strategies for the structure-property relationship of copolymers. iScience 2022; 25:104585. [PMID: 35789847 PMCID: PMC9249671 DOI: 10.1016/j.isci.2022.104585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
Establishing the structure-property relationship is extremely valuable for the molecular design of copolymers. However, machine learning (ML) models can incorporate both chemical composition and sequence distribution of monomers, and have the generalization ability to process various copolymer types (e.g., alternating, random, block, and gradient copolymers) with a unified approach are missing. To address this challenge, we formulate four different ML models for investigation, including a feedforward neural network (FFNN) model, a convolutional neural network (CNN) model, a recurrent neural network (RNN) model, and a combined FFNN/RNN (Fusion) model. We use various copolymer types to systematically validate the performance and generalizability of different models. We find that the RNN architecture that processes the monomer sequence information both forward and backward is a more suitable ML model for copolymers with better generalizability. As a supplement to polymer informatics, our proposed approach provides an efficient way for the evaluation of copolymers.
Collapse
Affiliation(s)
- Lei Tao
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | | - Vikas Varshney
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
98
|
Speculation on How RIC-3 and Other Chaperones Facilitate α7 Nicotinic Receptor Folding and Assembly. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144527. [PMID: 35889400 PMCID: PMC9318448 DOI: 10.3390/molecules27144527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
The process of how multimeric transmembrane proteins fold and assemble in the endoplasmic reticulum is not well understood. The alpha7 nicotinic receptor (α7 nAChR) is a good model for multimeric protein assembly since it has at least two independent and specialized chaperones: Resistance to Inhibitors of Cholinesterase 3 (RIC-3) and Nicotinic Acetylcholine Receptor Regulator (NACHO). Recent cryo-EM and NMR data revealed structural features of α7 nAChRs. A ser-ala-pro (SAP) motif precedes a structurally important but unique "latch" helix in α7 nAChRs. A sampling of α7 sequences suggests the SAP motif is conserved from C. elegans to humans, but the latch sequence is only conserved in vertebrates. How RIC-3 and NACHO facilitate receptor subunits folding into their final pentameric configuration is not known. The artificial intelligence program AlphaFold2 recently predicted structures for NACHO and RIC-3. NACHO is highly conserved in sequence and structure across species, but RIC-3 is not. This review ponders how different intrinsically disordered RIC-3 isoforms from C. elegans to humans interact with α7 nAChR subunits despite having little sequence homology across RIC-3 species. Two models from the literature about how RIC-3 assists α7 nAChR assembly are evaluated considering recent structural information about the receptor and its chaperones.
Collapse
|
99
|
Groth A, Ahlmann S, Werner A, Pöggeler S. The vacuolar morphology protein VAC14 plays an important role in sexual development in the filamentous ascomycete Sordaria macrospora. Curr Genet 2022; 68:407-427. [PMID: 35776170 PMCID: PMC9279277 DOI: 10.1007/s00294-022-01244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
The multiprotein Fab1p/PIKfyve-complex regulating the abundance of the phospholipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is highly conserved among eukaryotes. In yeast/mammals, it is composed of the phosphatidylinositol 3-phosphate 5-kinase Fab1p/PIKfyve, the PtdIns(3,5)P2 phosphatase Fig4p/Sac3 and the scaffolding subunit Vac14p/ArPIKfyve. The complex is located to vacuolar membranes in yeast and to endosomal membranes in mammals, where it controls the synthesis and turnover of PtdIns(3,5)P2. In this study, we analyzed the role and function of the Fab1p/PIKfyve-complex scaffold protein SmVAC14 in the filamentous ascomycete Sordaria macrospora (Sm). We generated the Smvac14 deletion strain ∆vac14 and performed phenotypic analysis of the mutant. Furthermore, we conducted fluorescence microscopic localization studies of fluorescently labeled SmVAC14 with vacuolar and late endosomal marker proteins. Our results revealed that SmVAC14 is important for maintaining vacuolar size and appearance as well as proper sexual development in S. macrospora. In addition, SmVAC14 plays an important role in starvation stress response. Accordingly, our results propose that the turnover of PtdIns(3,5)P2 is of great significance for developmental processes in filamentous fungi.
Collapse
Affiliation(s)
- Anika Groth
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Svenja Ahlmann
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Antonia Werner
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| |
Collapse
|
100
|
Talà A, Guerra F, Calcagnile M, Romano R, Resta SC, Paiano A, Chiariello M, Pizzolante G, Bucci C, Alifano P. HrpA anchors meningococci to the dynein motor and affects the balance between apoptosis and pyroptosis. J Biomed Sci 2022; 29:45. [PMID: 35765029 PMCID: PMC9241232 DOI: 10.1186/s12929-022-00829-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA. METHODS A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1). In silico modeling was used to analyze HrpA structure. Western blot analysis was used to investigate apoptotic and pyroptotic markers. RESULTS The HrpA carboxy-terminal region acts as a manganese-dependent cell lysin, while the results of a yeast two-hybrid screening demonstrated that the HrpA middle region has the ability to bind the dynein light-chain, Tctex-type 1 (DYNLT1). This interaction was confirmed by in vitro pull-down assay and immunofluorescence microscopy experiments showing co-localization of N. meningitidis with DYNLT1 in infected epithelial cells. In silico modeling revealed that the HrpA-M interface interacting with the DYNLT1 has similarity with capsid proteins of neurotropic viruses that interact with the DYNLT1. Indeed, we found that HrpA plays a key role in infection of and meningococcal trafficking within neuronal cells, and is implicated in the modulation of the balance between apoptosis and pyroptosis. CONCLUSIONS Our findings revealed that N. meningitidis is able to effectively infect and survive in neuronal cells, and that this ability is dependent on HrpA, which establishes a direct protein-protein interaction with DYNLTI in these cells, suggesting that the HrpA interaction with dynein could be fundamental for N. meningitidis spreading inside the neurons. Moreover, we found that the balance between apoptotic and pyroptotic pathways is heavily affected by HrpA.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Mario Chiariello
- Core Research Laboratory-Siena, Institute for Cancer Research and Prevention (ISPRO), 53100, Siena, Italy.,Institute of Clinical Physiology (IFC), National Research Council (CNR), 53100, Siena, Italy
| | - Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| |
Collapse
|