51
|
Luse DS. Promoter clearance by RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:63-8. [PMID: 22982364 DOI: 10.1016/j.bbagrm.2012.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/17/2012] [Accepted: 08/29/2012] [Indexed: 12/17/2022]
Abstract
Many changes must occur to the RNA polymerase II (pol II) transcription complex as it makes the transition from initiation into transcript elongation. During this intermediate phase of transcription, contact with initiation factors is lost and stable association with the nascent transcript is established. These changes collectively comprise promoter clearance. Once the transcript elongation complex has reached a point where its properties are indistinguishable from those of complexes with much longer transcripts, promoter clearance is complete. The clearance process for pol II consists of a number of steps and it extends for a surprisingly long distance downstream of transcription start. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
52
|
Abstract
We provide here a molecular movie that captures key aspects of RNA polymerase II initiation and elongation. To create the movie, we combined structural snapshots of the initiation-elongation transition and of elongation, including nucleotide addition, translocation, pausing, proofreading, backtracking, arrest, reactivation, and inhibition. The movie reveals open questions about the mechanism of transcription and provides a useful teaching tool.
Collapse
Affiliation(s)
- Alan C M Cheung
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
53
|
Yang C, Ponticelli AS. Evidence that RNA polymerase II and not TFIIB is responsible for the difference in transcription initiation patterns between Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 2012; 40:6495-507. [PMID: 22510268 PMCID: PMC3413132 DOI: 10.1093/nar/gks323] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The basal eukaryotic transcription machinery for protein coding genes is highly conserved from unicellular yeast to higher eukaryotes. Whereas TATA-containing promoters in human cells usually contain a single transcription start site (TSS) located ∼30 bp downstream of the TATA element, transcription in the yeast Schizosaccharomyces pombe and Saccharomyces cerevisiae typically initiates at multiple sites within a window ranging from 30 to 70 bp or 40 to 200 bp downstream of a TATA element, respectively. By exchanging highly purified factors between reconstituted S. pombe and S. cerevisiae transcription systems, we confirmed previous observations that the dual exchange of RNA polymerase II (RNAPII) and transcription factor IIB (TFIIB) confer the distinct initiation patterns between these yeast species. Surprisingly, however, further genetic and biochemical assays of TFIIB chimeras revealed that TFIIB and the proposed B-finger/reader domain do not play a role in determining the distinct initiation patterns between S. pombe and S. cerevisiae, but rather, these patterns are solely due to differences in RNAPII. These results are discussed within the context of a proposed model for the mechanistic coupling of the efficiency of early phosphodiester bond formation during productive TSS utilization and intrinsic elongation proficiency.
Collapse
Affiliation(s)
- Chen Yang
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214-3000, USA
| | | |
Collapse
|
54
|
Kaplan CD, Jin H, Zhang IL, Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet 2012; 8:e1002627. [PMID: 22511879 PMCID: PMC3325174 DOI: 10.1371/journal.pgen.1002627] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/15/2012] [Indexed: 12/27/2022] Open
Abstract
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process. Transcription by multisubunit RNA polymerases (msRNAPs) is essential for all kingdoms of life. A conserved region within msRNAPs called the trigger loop (TL) is critical for selection of nucleotide substrates and activity. We present analysis of the RNA Polymerase II (Pol II) TL from the model eukaryote Saccharomyces cerevisiae. Our experiments reveal how TL residues differentially contribute to viability and transcriptional activity. We find that in vivo growth phenotypes correlate with severity of transcriptional defects and that changing Pol II activity to either faster or slower than wild type causes specific transcription defects. We identify transcription start site selection as sensitive to Pol II catalytic activity, proposing that RNA synthesis (an event downstream of many steps in the initiation process) contributes to where productive transcription occurs. Pol II transcription activity was excluded from previous models for selection of productive Pol II start sites. Finally, drug sensitivity data have been widely interpreted to indicate that Pol II mutants defective in elongation properties are sensitized to reduction in GTP levels (a Pol II substrate). Our data suggest an alternate explanation, that sensitivity to decreased GTP levels may be explained in light of Pol II mutant transcriptional start site defects.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | |
Collapse
|
55
|
Chang GS, Noegel AA, Mavrich TN, Müller R, Tomsho L, Ward E, Felder M, Jiang C, Eichinger L, Glöckner G, Schuster SC, Pugh BF. Unusual combinatorial involvement of poly-A/T tracts in organizing genes and chromatin in Dictyostelium. Genome Res 2012; 22:1098-106. [PMID: 22434426 PMCID: PMC3371697 DOI: 10.1101/gr.131649.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dictyosteliumdiscoideum is an amoebozoa that exists in both a free-living unicellular and a multicellular form. It is situated in a deep branch in the evolutionary tree and is particularly noteworthy in having a very A/T-rich genome. Dictyostelium provides an ideal system to examine the extreme to which nucleotide bias may be employed in organizing promoters, genes, and nucleosomes across a genome. We find that Dictyostelium genes are demarcated precisely at their 5′ ends by poly-T tracts and precisely at their 3′ ends by poly-A tracts. These tracts are also associated with nucleosome-free regions and are embedded with precisely positioned TATA boxes. Homo- and heteropolymeric tracts of A and T demarcate nucleosome border regions. Together, these findings reveal the presence of a variety of functionally distinct polymeric A/T elements. Strikingly, Dictyostelium chromatin may be organized in di-nucleosome units but is otherwise organized as in animals. This includes a +1 nucleosome in a position that predicts the presence of a paused RNA polymerase II. Indeed, we find a strong phylogenetic relationship between the presence of the NELF pausing factor and positioning of the +1 nucleosome. Pausing and +1 nucleosome positioning may have coevolved in animals.
Collapse
Affiliation(s)
- Gue Su Chang
- Center for Eukaryotic Gene Regulation and Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Treutlein B, Muschielok A, Andrecka J, Jawhari A, Buchen C, Kostrewa D, Hög F, Cramer P, Michaelis J. Dynamic architecture of a minimal RNA polymerase II open promoter complex. Mol Cell 2012; 46:136-46. [PMID: 22424775 DOI: 10.1016/j.molcel.2012.02.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/04/2011] [Accepted: 02/10/2012] [Indexed: 01/22/2023]
Abstract
The open promoter complex (OC) is a central intermediate during transcription initiation that contains a DNA bubble. Here, we employ single-molecule Förster resonance energy transfer experiments and Nano-Positioning System analysis to determine the three-dimensional architecture of a minimal OC consisting of promoter DNA, including a TATA box and an 11-nucleotide mismatched region around the transcription start site, TATA box-binding protein (TBP), RNA polymerase (Pol) II, and general transcription factor (TF)IIB and TFIIF. In this minimal OC, TATA-DNA and TBP reside above the Pol II cleft between clamp and protrusion domains. Downstream DNA is dynamically loaded into and unloaded from the Pol II cleft at a timescale of seconds. The TFIIB core domain is displaced from the Pol II wall, where it is located in the closed promoter complex. These results reveal large overall structural changes during the initiation-elongation transition, which are apparently accommodated by the intrinsic flexibility of TFIIB.
Collapse
Affiliation(s)
- Barbara Treutlein
- Department of Chemistry and Center for Integrated Protein Science München, Ludwig-Maximilians-Universität München, Butenandtstr.11, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 2012; 189:705-36. [PMID: 22084422 DOI: 10.1534/genetics.111.127019] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms.
Collapse
|
58
|
Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 2012; 483:295-301. [PMID: 22258509 PMCID: PMC3306527 DOI: 10.1038/nature10799] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/20/2011] [Indexed: 01/24/2023]
Abstract
The structural and positional organization of transcription pre-initiation complexes (PICs) across eukaryotic genomes is unknown. We employed ChIP-exo to precisely examine ~6,000 PICs in Saccharomyces. PICs, including RNA polymerase II and general factors TFIIA, -B, -D/TBP, -E, -F, -H, and -K were positioned within promoters and excluded from coding regions. Exonuclease patterns agreed with crystallographic models of the PIC, and were sufficiently precise to identify TATA-like elements at so-called TATA-less promoters. These PICs and their transcription start sites were positionally constrained at TFIID-engaged +1 nucleosomes. At TATA box-containing promoters, which are depleted of TFIID, a +1 nucleosome was positioned to be in competition with the PIC, which may afford greater latitude in start site selection. Our genomic localization of mRNA and noncoding RNA PICs reveal that two PICs, in inverted orientation, may occupy the flanking borders of nucleosome-free regions. Their unambiguous detection may help distinguish bona-fide genes from transcriptional noise.
Collapse
Affiliation(s)
- Ho Sung Rhee
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
59
|
Transcriptional activators and activation mechanisms. Protein Cell 2011; 2:879-88. [PMID: 22180087 DOI: 10.1007/s13238-011-1101-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/22/2011] [Indexed: 10/14/2022] Open
Abstract
Transcriptional activators are required to turn on the expression of genes in a eukaryotic cell. Activators bound to the enhancer can facilitate either the recruitment of RNA polymerase II to the promoter or its elongation. This article examines a few selected issues in understanding activator functions and activation mechanisms.
Collapse
|
60
|
Architecture of the yeast RNA polymerase II open complex and regulation of activity by TFIIF. Mol Cell Biol 2011; 32:12-25. [PMID: 22025674 DOI: 10.1128/mcb.06242-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB-p-bromoacetamidobenzyl-EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain.
Collapse
|
61
|
Kasahara K, Ohyama Y, Kokubo T. Hmo1 directs pre-initiation complex assembly to an appropriate site on its target gene promoters by masking a nucleosome-free region. Nucleic Acids Res 2011; 39:4136-50. [PMID: 21288884 PMCID: PMC3105432 DOI: 10.1093/nar/gkq1334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae Hmo1 binds to the promoters of ∼70% of ribosomal protein genes (RPGs) at high occupancy, but is observed at lower occupancy on the remaining RPG promoters. In Δhmo1 cells, the transcription start site (TSS) of the Hmo1-enriched RPS5 promoter shifted upstream, while the TSS of the Hmo1-limited RPL10 promoter did not shift. Analyses of chimeric RPS5/RPL10 promoters revealed a region between the RPS5 upstream activating sequence (UAS) and core promoter, termed the intervening region (IVR), responsible for strong Hmo1 binding and an upstream TSS shift in Δhmo1 cells. Chromatin immunoprecipitation analyses showed that the RPS5-IVR resides within a nucleosome-free region and that pre-initiation complex (PIC) assembly occurs at a site between the IVR and a nucleosome overlapping the TSS (+1 nucleosome). The PIC assembly site was shifted upstream in Δhmo1 cells on this promoter, indicating that Hmo1 normally masks the RPS5-IVR to prevent PIC assembly at inappropriate site(s). This novel mechanism ensures accurate transcriptional initiation by delineating the 5′- and 3′-boundaries of the PIC assembly zone.
Collapse
Affiliation(s)
- Koji Kasahara
- Division of Molecular and Cellular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan.
| | | | | |
Collapse
|
62
|
Lin Z, Wu WS, Liang H, Woo Y, Li WH. The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation. BMC Genomics 2010; 11:581. [PMID: 20958978 PMCID: PMC3091728 DOI: 10.1186/1471-2164-11-581] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 10/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How the transcription factor binding sites (TFBSs) are distributed in the promoter region have implications for gene regulation. Previous studies used the translation start codon as the reference point to infer the TFBS distribution. However, it is biologically more relevant to use the transcription start site (TSS) as the reference point. In this study, we reexamined the spatial distribution of TFBSs, investigated various promoter features that may affect the distribution, and studied the effect of TFBS distribution on transcriptional regulation. RESULTS We found a sharp peak for the distribution of TFBSs at ~115 bp upstream of the TSS, but no clear peak when the translation start codon was used as the reference point. Our analysis of sequence variation data among 63 yeast strains revealed very low deletion polymorphisms in the region between the distribution peak and the TSS, suggesting that the distances between TFBSs and the TSS have been selectively constrained in evolution. As in previous studies, we found that the nucleosome occupancy and the presence/absence of TATA-box in the promoter region affect the TFBS distribution pattern. In addition, we found that there exists a correlation between the 5'UTR length and the TFBS distribution pattern and we showed that the TFBS distribution pattern affects gene transcription level and plasticity. CONCLUSIONS The spatial distribution of TFBSs obtained using the TSS as the reference point shows a much sharper peak than does the distribution obtained using the translation start codon as the reference point. The TFBS distribution pattern is affected by nucleosome occupancy and presence of TATA-box and it affects the transcription level and transcription plasticity of the gene.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
63
|
Sugihara F, Kasahara K, Kokubo T. Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 2010; 39:59-75. [PMID: 20805245 PMCID: PMC3017598 DOI: 10.1093/nar/gkq741] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In eukaryotes, protein-coding genes are transcribed by RNA polymerase II (pol II) together with general transcription factors (GTFs). TFIID, the largest GTF composed of TATA element-binding protein (TBP) and 14 TBP-associated factors (TAFs), plays a critical role in transcription from TATA-less promoters. In metazoans, several core promoter elements other than the TATA element are thought to be recognition sites for TFIID. However, it is unclear whether functionally homologous elements also exist in TATA-less promoters in Saccharomyces cerevisiae. Here, we identify the cis-elements required to support normal levels of transcription and accurate initiation from sites within the TATA-less and TFIID-dependent RPS5 core promoter. Systematic mutational analyses show that multiple AT-rich sequences are required for these activities and appear to function as recognition sites for TFIID. A single copy of these sequences can support accurate initiation from the endogenous promoter, indicating that they carry highly redundant functions. These results show a novel architecture of yeast TATA-less promoters and support a model in which pol II scans DNA downstream from a recruited site, while searching for appropriate initiation site(s).
Collapse
Affiliation(s)
- Fuminori Sugihara
- Division of Molecular and Cellular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | |
Collapse
|
64
|
|
65
|
Kim TS, Liu CL, Yassour M, Holik J, Friedman N, Buratowski S, Rando OJ. RNA polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast. Genome Biol 2010; 11:R75. [PMID: 20637075 PMCID: PMC2926786 DOI: 10.1186/gb-2010-11-7-r75] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 11/25/2022] Open
Abstract
Background The use of genome-wide RNA abundance profiling by microarrays and deep sequencing has spurred a revolution in our understanding of transcriptional control. However, changes in mRNA abundance reflect the combined effect of changes in RNA production, processing, and degradation, and thus, mRNA levels provide an occluded view of transcriptional regulation. Results To partially disentangle these issues, we carry out genome-wide RNA polymerase II (PolII) localization profiling in budding yeast in two different stress response time courses. While mRNA changes largely reflect changes in transcription, there remains a great deal of variation in mRNA levels that is not accounted for by changes in PolII abundance. We find that genes exhibiting 'excess' mRNA produced per PolII are enriched for those with overlapping cryptic transcripts, indicating a pervasive role for nonproductive or regulatory transcription in control of gene expression. Finally, we characterize changes in PolII localization when PolII is genetically inactivated using the rpb1-1 temperature-sensitive mutation. We find that PolII is lost from chromatin after roughly an hour at the restrictive temperature, and that there is a great deal of variability in the rate of PolII loss at different loci. Conclusions Together, these results provide a global perspective on the relationship between PolII and mRNA production in budding yeast.
Collapse
Affiliation(s)
- Tae Soo Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Liu X, Bushnell DA, Wang D, Calero G, Kornberg RD. Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism. Science 2010; 327:206-9. [PMID: 19965383 PMCID: PMC2813267 DOI: 10.1126/science.1182015] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous x-ray crystal structures have given insight into the mechanism of transcription and the role of general transcription factors in the initiation of the process. A structure of an RNA polymerase II-general transcription factor TFIIB complex at 4.5 angstrom resolution revealed the amino-terminal region of TFIIB, including a loop termed the "B finger," reaching into the active center of the polymerase where it may interact with both DNA and RNA, but this structure showed little of the carboxyl-terminal region. A new crystal structure of the same complex at 3.8 angstrom resolution obtained under different solution conditions is complementary with the previous one, revealing the carboxyl-terminal region of TFIIB, located above the polymerase active center cleft, but showing none of the B finger. In the new structure, the linker between the amino- and carboxyl-terminal regions can also be seen, snaking down from above the cleft toward the active center. The two structures, taken together with others previously obtained, dispel long-standing mysteries of the transcription initiation process.
Collapse
Affiliation(s)
- Xin Liu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A. Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dong Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guillermo Calero
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roger D. Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
67
|
RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 2009; 462:323-30. [PMID: 19820686 DOI: 10.1038/nature08548] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
Abstract
To initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II-B complex at 4.3 A resolution, and complementary functional data. The results indicate the mechanism of transcription initiation, including the transition to RNA elongation. Promoter DNA is positioned over the Pol II active centre cleft with the 'B-core' domain that binds the wall at the end of the cleft. DNA is then opened with the help of the 'B-linker' that binds the Pol II rudder and clamp coiled-coil at the edge of the cleft. The DNA template strand slips into the cleft and is scanned for the transcription start site with the help of the 'B-reader' that approaches the active site. Synthesis of the RNA chain and rewinding of upstream DNA displace the B-reader and B-linker, respectively, to trigger B release and elongation complex formation.
Collapse
|
68
|
Abstract
Knowing the precise locations of nucleosomes in a genome is key to understanding how genes are regulated. Recent 'next generation' ChIP-chip and ChIP-Seq technologies have accelerated our understanding of the basic principles of chromatin organization. Here we discuss what high-resolution genome-wide maps of nucleosome positions have taught us about how nucleosome positioning demarcates promoter regions and transcriptional start sites, and how the composition and structure of promoter nucleosomes facilitate or inhibit transcription. A detailed picture is starting to emerge of how diverse factors, including underlying DNA sequences and chromatin remodelling complexes, influence nucleosome positioning.
Collapse
Affiliation(s)
- Cizhong Jiang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
69
|
Ito T, Miura F, Onda M. Unexpected complexity of the budding yeast transcriptome. IUBMB Life 2009; 60:775-81. [PMID: 18649367 DOI: 10.1002/iub.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The genome of the budding yeast Saccharomyces cerevisiae was sequenced over a decade ago and has been annotated to encode approximately 6,000 genes. However, recent high throughput studies using tiling array hybridization and cDNA sequencing have revealed an unexpectedly large number of previously undescribed transcripts. They largely lack protein-coding capacity and are transcribed from both strands of intragenic and intergenic regions in the genome. Accordingly, pervasive transcription leading to a plethora of noncoding RNAs, which was first revealed for mammalian genomes to attract intense attentions, is likely an intrinsic feature of eukaryotic genomes. Although it is not clear what fraction of these transcription events are functional, some were shown to induce transcriptional interference or histone modifications to regulate gene expression. The budding yeast may serve as an excellent model to study pervasive transcription and noncoding RNAs.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan.
| | | | | |
Collapse
|
70
|
Corden JL. Yeast Pol II start-site selection: the long and the short of it. EMBO Rep 2008; 9:1084-6. [PMID: 18846104 DOI: 10.1038/embor.2008.192] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 09/18/2008] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| |
Collapse
|
71
|
Thiebaut M, Colin J, Neil H, Jacquier A, Séraphin B, Lacroute F, Libri D. Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol Cell 2008; 31:671-82. [PMID: 18775327 DOI: 10.1016/j.molcel.2008.08.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 06/04/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
Hidden transcription in eukaryotes carries a large potential of regulatory functions that are only recently beginning to emerge. Cryptic unstable transcripts (CUTs) are generated by RNA polymerase II (Pol II) and rapidly degraded after transcription in wild-type yeast cells. Whether CUTs or the act of transcription without RNA production have a function is presently unclear. We describe here a nonconventional mechanism of transcriptional regulation that relies on the selection of alternative transcription start sites to generate CUTs or mRNAs. Transcription from TATA box proximal start sites generates unstable transcripts and downregulates expression of the URA2 gene under repressing conditions. Uracil deprivation activates selection of distal start sites, leading to the production of stable mRNAs. We describe the elements that govern degradation of the CUT and activation of mRNA production by downstream transcription initiation. Importantly, we show that a similar mechanism applies to other genes in the nucleotides biogenesis pathway.
Collapse
Affiliation(s)
- Marilyne Thiebaut
- LEA Laboratory of Nuclear RNA Metabolism, Centre de Génétique Moléculaire, CNRS, UPR2167, 1, av de la Terrasse, 91190, Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
72
|
Kuehner JN, Brow DA. Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol Cell 2008; 31:201-11. [PMID: 18657503 DOI: 10.1016/j.molcel.2008.05.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/24/2008] [Accepted: 05/29/2008] [Indexed: 10/21/2022]
Abstract
Guanine nucleotide negatively regulates yeast inosine monophosphate dehydrogenase (IMPDH) mRNA synthesis by an unknown mechanism. IMPDH catalyzes the first dedicated step of GTP biosynthesis, and feedback control of its expression maintains the proper balance of purine nucleotides. Here we show that RNA polymerase II (Pol II) responds to GTP concentration. When GTP is sufficient, Pol II initiates transcription of the IMPDH gene (IMD2) at TATA box-proximal "G" sites, producing attenuated transcripts. When GTP is deficient, Pol II initiates at an "A" further downstream, circumventing the regulatory terminator to produce IMPDH mRNA. A major determinant for GTP concentration-dependent initiation at the upstream sites is the presence of guanine at the first and second positions of the transcript. Mutations in the Rpb1 subunit of Pol II and in TFIIB disrupt IMD2 regulation by altering start site selection. Thus, Pol II initiation can be regulated by the concentration of initiating nucleotide.
Collapse
Affiliation(s)
- Jason N Kuehner
- Cellular and Molecular Biology Graduate Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | |
Collapse
|
73
|
Abstract
Chromatin structure is central for the regulation of gene expression, but its genome-wide organization is only beginning to be understood. Here, we examine the connection between patterns of nucleosome occupancy and the capacity to modulate gene expression upon changing conditions, i.e., transcriptional plasticity. By analyzing genome-wide data of nucleosome positioning in yeast, we find that the presence of nucleosomes close to the transcription start site is associated with high transcriptional plasticity, while nucleosomes at more distant upstream positions are negatively correlated with transcriptional plasticity. Based on this, we identify two typical promoter structures associated with low or high plasticity, respectively. The first class is characterized by a relatively large nucleosome-free region close to the start site coupled with well-positioned nucleosomes further upstream, whereas the second class displays a more evenly distributed and dynamic nucleosome positioning, with high occupancy close to the start site. The two classes are further distinguished by multiple promoter features, including histone turnover, binding site locations, H2A.Z occupancy, expression noise, and expression diversity. Analysis of nucleosome positioning in human promoters reproduces the main observations. Our results suggest two distinct strategies for gene regulation by chromatin, which are selectively employed by different genes.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
74
|
Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast. Mol Cell Biol 2008; 28:3883-93. [PMID: 18426909 DOI: 10.1128/mcb.00380-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IMD2 gene in Saccharomyces cerevisiae is regulated by intracellular guanine nucleotides. Regulation is exerted through the choice of alternative transcription start sites that results in synthesis of either an unstable short transcript terminating upstream of the start codon or a full-length productive IMD2 mRNA. Start site selection is dictated by the intracellular guanine nucleotide levels. Here we have mapped the polyadenylation sites of the upstream, unstable short transcripts that form a heterogeneous family of RNAs of approximately 200 nucleotides. The switch from the upstream to downstream start sites required the Rpb9 subunit of RNA polymerase II. The enzyme's ability to locate the downstream initiation site decreased exponentially as the start was moved downstream from the TATA box. This suggests that RNA polymerase II's pincer grip is important as it slides on DNA in search of a start site. Exosome degradation of the upstream transcripts was highly dependent upon the distance between the terminator and promoter. Similarly, termination was dependent upon the Sen1 helicase when close to the promoter. These findings extend the emerging concept that distinct modes of termination by RNA polymerase II exist and that the distance of the terminator from the promoter, as well as its sequence, is important for the pathway chosen.
Collapse
|
75
|
Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization. Mol Cell Biol 2008; 28:3757-66. [PMID: 18362165 DOI: 10.1128/mcb.02272-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that substitutions in the Tfg1 or Tfg2 subunits of Saccharomyces cerevisiae transcription factor IIF (TFIIF) can cause upstream shifts in start site utilization, resulting in initiation patterns that more closely resemble those of higher eukaryotes. In this study, we report the results from multiple biochemical assays analyzing the activities of wild-type yeast TFIIF and the TFIIF Tfg1 mutant containing the E346A substitution (Tfg1-E346A). We demonstrate that TFIIF stimulates formation of the first two phosphodiester bonds and dramatically stabilizes a short RNA-DNA hybrid in the RNA polymerase II (RNAPII) active center and, importantly, that the Tfg1-E346A substitution coordinately enhances early bond formation and the processivity of early elongation in vitro. These results are discussed within a proposed model for the role of yeast TFIIF in modulating conformational changes in the RNAPII active center during initiation and early elongation.
Collapse
|
76
|
Chen HT, Warfield L, Hahn S. The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat Struct Mol Biol 2007; 14:696-703. [PMID: 17632521 PMCID: PMC2483787 DOI: 10.1038/nsmb1272] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/14/2007] [Indexed: 11/09/2022]
Abstract
We incorporated the non-natural photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa) into the RNA polymerase II (Pol II) surface surrounding the central cleft formed by the Rpb1 and Rpb2 subunits. Photo-cross-linking of preinitiation complexes (PICs) with these Pol II derivatives and hydroxyl-radical cleavage assays revealed that the TFIIF dimerization domain interacts with the Rpb2 lobe and protrusion domains adjacent to Rpb9, while TFIIE cross-links to the Rpb1 clamp domain on the opposite side of the Pol II central cleft. Mutations in the Rpb2 lobe and protrusion domains alter both Pol II-TFIIF binding and the transcription start site, a phenotype associated with mutations in TFIIF, Rpb9 and TFIIB. Together with previous biochemical and structural studies, these findings illuminate the structural organization of the PIC and the network of protein-protein interactions involved in transcription start site selection.
Collapse
Affiliation(s)
- Hung-Ta Chen
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Mailstop A1-162, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
77
|
Tirosh I, Berman J, Barkai N. The pattern and evolution of yeast promoter bendability. Trends Genet 2007; 23:318-21. [PMID: 17418911 DOI: 10.1016/j.tig.2007.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 02/07/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
In Saccharomyces cerevisiae, transcription factor binding sites are found preferentially approximately 100-200 bp upstream of the start codon. Here, we show that this region is associated with rigid DNA in promoters lacking a TATA box, but not in TATA-containing promoters. The association of rigid DNA with transcription factor binding sites is conserved in TATA-less promoters from 11 yeast species, whereas the position of the rigid DNA varies substantially among species. Rigid DNA could influence nucleosome positioning and assist in the assembly of the transcriptional machinery at TATA-less promoters.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
78
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
79
|
|
80
|
Miller G, Hahn S. A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex. Nat Struct Mol Biol 2006; 13:603-10. [PMID: 16819517 PMCID: PMC2483788 DOI: 10.1038/nsmb1117] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 06/02/2006] [Indexed: 11/08/2022]
Abstract
To directly map the position of promoter DNA within the RNA polymerase II (Pol II) transcription preinitiation complex (PIC), FeBABE was tethered to specific sites within the HIS4 promoter and used to map exposed surfaces of Pol II and the general transcription factors in proximity to DNA. Our results distinguish between previously proposed models for PIC structure and demonstrate that downstream promoter DNA is positioned over the central cleft of Pol II, with DNA upstream of TATA extending toward the Pol II subunit Rpb3. Also mapped were segments of TFIIB, TFIIE, TFIIF and TFIIH in proximity to promoter DNA. DNA downstream of the transcription bubble maps to a path between the two helicase subdomains of the TFIIH subunit Rad25 (also called XPB). Together, our results show how the general factors and Pol II converge on promoter DNA within the PIC.
Collapse
Affiliation(s)
- Gail Miller
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Seattle, Washington 98109, USA
| | | |
Collapse
|
81
|
Kuehner JN, Brow DA. Quantitative analysis of in vivo initiator selection by yeast RNA polymerase II supports a scanning model. J Biol Chem 2006; 281:14119-28. [PMID: 16571719 DOI: 10.1074/jbc.m601937200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of transcription by RNA polymerase II (RNAP II) on Saccharomyces cerevisiae messenger RNA (mRNA) genes typically occurs at multiple sites 40-120 bp downstream of the TATA box. The mechanism that accommodates this extended and variable promoter architecture is unknown, but one model suggests that RNAP II forms an open promoter complex near the TATA box and then scans the template DNA strand for start sites. Unlike most protein-coding genes, small nuclear RNA gene transcription starts predominantly at a single position. We identify a highly efficient initiator element as the primary start site determinant for the yeast U4 small nuclear RNA gene, SNR14. Consistent with the scanning model, transcription of an SNR14 allele with tandemly duplicated start sites initiates primarily from the upstream site, yet the downstream site is recognized with equivalent efficiency by the diminished population of RNAP II molecules that encounter it. A quantitative in vivo assay revealed that SNR14 initiator efficiency is nearly perfect (approximately 90%), which explains the precision of U4 RNA 5' end formation. Initiator efficiency was reduced by cis-acting mutations at -8, -7, -1, and +1 and trans-acting substitutions in the TFIIB B-finger. These results expand our understanding of RNAP II initiation preferences and provide new support for the scanning model.
Collapse
Affiliation(s)
- Jason N Kuehner
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
82
|
Pal M, Ponticelli AS, Luse DS. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol Cell 2005; 19:101-10. [PMID: 15989968 DOI: 10.1016/j.molcel.2005.05.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Revised: 04/20/2005] [Accepted: 05/19/2005] [Indexed: 11/27/2022]
Abstract
We have studied promoter clearance at a series of RNA polymerase II promoters with varying spacing of the TATA box and start site. We find that regardless of promoter spacing, the upstream edge of the transcription bubble forms 20 bp from TATA. The bubble expands downstream until 18 bases are unwound and the RNA is at least 7 nt long, at which point the upstream approximately 8 bases of the bubble abruptly reanneal (bubble collapse). If either bubble size or transcript length is insufficient, bubble collapse cannot occur. Bubble collapse coincides with the end of the requirement for the TFIIH helicase for efficient transcript elongation. We also provide evidence that bubble collapse suppresses pausing at +7 to +9 caused by the presence of the B finger segment of TFIIB within the complex. Our results indicate that bubble collapse defines the RNA polymerase II promoter clearance transition.
Collapse
Affiliation(s)
- Mahadeb Pal
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
83
|
Ruvalcaba-Salazar OK, del Carmen Ramírez-Estudillo M, Montiel-Condado D, Recillas-Targa F, Vargas M, Hernández-Rivas R. Recombinant and native Plasmodium falciparum TATA-binding-protein binds to a specific TATA box element in promoter regions. Mol Biochem Parasitol 2005; 140:183-96. [PMID: 15760658 DOI: 10.1016/j.molbiopara.2005.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/05/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
RNA polymerase II promoters in Plasmodium spp., like in most eukaryotes, have a bipartite structure. However, the identification of a functional TATA box located within the Plasmodium spp. core promoters has been difficult, mainly because of its high A+T content. Only few putative trans-acting elements have been identified in the malaria parasite genome such as a gene orthologous to the TATA box binding protein (PfTBP). In this study, we demonstrate that PfTBP is part of the DNA-protein complexes formed in the kahrp and gbp-130 gene promoter regions. Supershift and footprinting assays performed with a GST-PfTBP fusion protein showed that PfTBP associates with a consensus TATA box sequence located 81 base pairs upstream of the transcription start site in the kahrp promoter region and with a TATA box-like (TGTAA) sequence at position -186 of the gbp-130 gene promoter region. Chromatin immunoprecipitation assays confirmed that native PfTBP is able to associate in vivo with both TATA box elements. This is the first study that reports the identification of cis-acting sequences (TATAA and TGTAA) and their corresponding trans-acting (PfTBP) factor in P. falciparum.
Collapse
Affiliation(s)
- Omar K Ruvalcaba-Salazar
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Apartado Postal 14-740, 07360 México
| | | | | | | | | | | |
Collapse
|
84
|
Zhang Z, Dietrich FS. Mapping of transcription start sites in Saccharomyces cerevisiae using 5' SAGE. Nucleic Acids Res 2005; 33:2838-51. [PMID: 15905473 PMCID: PMC1131933 DOI: 10.1093/nar/gki583] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 12/02/2022] Open
Abstract
A minimally addressed area in Saccharomyces cerevisiae research is the mapping of transcription start sites (TSS). Mapping of TSS in S.cerevisiae has the potential to contribute to our understanding of gene regulation, transcription, mRNA stability and aspects of RNA biology. Here, we use 5' SAGE to map 5' TSS in S.cerevisiae. Tags identifying the first 15-17 bases of the transcripts are created, ligated to form ditags, amplified, concatemerized and ligated into a vector to create a library. Each clone sequenced from this library identifies 10-20 TSS. We have identified 13,746 unique, unambiguous sequence tags from 2231 S.cerevisiae genes. TSS identified in this study are consistent with published results, with primer extension results described here, and are consistent with expectations based on previous work on transcription initiation. We have aligned the sequence flanking 4637 TSS to identify the consensus sequence A(A(rich))5NPyA(A/T)NN(A(rich))6, which confirms and expands the previous reported PyA(A/T)Pu consensus pattern. The TSS data allowed the identification of a previously unrecognized gene, uncovered errors in previous annotation, and identified potential regulatory RNAs and upstream open reading frames in 5'-untranslated region.
Collapse
Affiliation(s)
- Zhihong Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurham, NC 27710, USA
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurham, NC 27710, USA
| |
Collapse
|
85
|
Chen HT, Hahn S. Mapping the Location of TFIIB within the RNA Polymerase II Transcription Preinitiation Complex. Cell 2004; 119:169-80. [PMID: 15479635 DOI: 10.1016/j.cell.2004.09.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 09/03/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Biochemical probes positioned on the surface of the general transcription factor TFIIB were used to probe the architecture of the RNA polymerase II (Pol II) transcription preinitiation complex (PIC). In PICs, the TFIIB linker and core domains are positioned over the central cleft and wall of Pol II. This positioning is not observed in the smaller Pol II-TFIIB complex. These results lead to a new model for the structure of the PIC, which agrees with most previously documented protein-DNA interactions within Pol II and archaea PICs. Specific interaction of the TFIIB core domain with Pol II positions and orients the promoter DNA over the Pol II central cleft, and TBP-DNA bending leads to bending of the promoter around the surface of Pol II. The TFIIF subunit Tfg1 was found in close proximity to the TFIIB B finger, linker, and core domains, suggesting that these two factors closely cooperate during initiation.
Collapse
Affiliation(s)
- Hung-Ta Chen
- Fred Hutchinson Cancer Research Center and Howard Hughes Medical Institute, 1100 Fairview Avenue North, Seattle, WA 98109 USA
| | | |
Collapse
|
86
|
Choi WS, Lin YC, Gralla JD. The Schizosaccharomyces pombe open promoter bubble: mammalian-like arrangement and properties. J Mol Biol 2004; 340:981-9. [PMID: 15236961 DOI: 10.1016/j.jmb.2004.04.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 04/23/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is often used as a genetic system to model processes that apply to higher cells. Here S.pombe was used to study promoter DNA opening and transcription initiation by RNA polymerase II. The melted region within the adh promoter is about 20 bp in size and has the start site near its center. This arrangement is similar to that at the AdML promoter but different from that in Saccharomyces cerevisiae. Although expression of human TFIIB shifts the start site to the nearby human position, it does not change the location of the bubble. The start site shift is directed by the C terminus of human TFIIB, in contrast to expectations from S.cerevisiae. The creation of the bubble requires the ATPase motifs of XPB. Overall, the data show that promoter melting and initiation in fission yeast is much more similar to humans than to budding yeast.
Collapse
Affiliation(s)
- Wai S Choi
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, P.O. Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
87
|
Hahn S. Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 2004; 11:394-403. [PMID: 15114340 PMCID: PMC1189732 DOI: 10.1038/nsmb763] [Citation(s) in RCA: 363] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 03/22/2004] [Indexed: 11/09/2022]
Abstract
Advances in structure determination of the bacterial and eukaryotic transcription machinery have led to a marked increase in the understanding of the mechanism of transcription. Models for the specific assembly of the RNA polymerase II transcription machinery at a promoter, conformational changes that occur during initiation of transcription, and the mechanism of initiation are discussed in light of recent developments.
Collapse
Affiliation(s)
- Steven Hahn
- Fred Hutchinson Cancer Research Center and Howard Hughes Medical Institute, 1100 Fairview Ave N., A1-162, Seattle, Washington 98109, USA.
| |
Collapse
|
88
|
Bushnell DA, Westover KD, Davis RE, Kornberg RD. Structural Basis of Transcription: An RNA Polymerase II-TFIIB Cocrystal at 4.5 Angstroms. Science 2004; 303:983-8. [PMID: 14963322 DOI: 10.1126/science.1090838] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-terminal domain, whose interaction with both the polymerase and with a TATA box-binding protein (TBP)-promoter DNA complex orients the DNA for unwinding and transcription. TFIIB stabilizes an early initiation complex, containing an incomplete RNA-DNA hybrid region. It may interact with the template strand, which sets the location of the transcription start site, and may interfere with RNA exit, which leads to abortive initiation or promoter escape. The trajectory of promoter DNA determined by the C-terminal domain of TFIIB traverses sites of interaction with TFIIE, TFIIF, and TFIIH, serving to define their roles in the transcription initiation process.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Crystallization
- Crystallography, X-Ray
- DNA/chemistry
- DNA/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Hybridization
- Promoter Regions, Genetic
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA/chemistry
- RNA/metabolism
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- TATA Box
- TATA-Box Binding Protein/chemistry
- TATA-Box Binding Protein/metabolism
- Templates, Genetic
- Transcription Factor TFIIB/chemistry
- Transcription Factor TFIIB/metabolism
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
- Zinc/chemistry
Collapse
Affiliation(s)
- David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | | | |
Collapse
|
89
|
Li S, Smerdon MJ. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes. J Biol Chem 2004; 279:14418-26. [PMID: 14734564 PMCID: PMC1343541 DOI: 10.1074/jbc.m312004200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription-coupled repair (TCR) and global genomic repair (GGR) of UV-induced cyclobutane pyrimidine dimers were investigated in the yeast GAL1-10 genes. Both Rpb9- and Rad26-mediated TCR are confined to the transcribed strands, initiating at upstream sites approximately 100 nucleotides from the upstream activating sequence shared by the two genes. However, TCR initiation sites do not correlate with either transcription start sites or TATA boxes. Rad16-mediated GGR tightly correlates with nucleosome positioning when the genes are repressed and are slow in the nucleosome core and fast in linker DNA. Induction of transcription enhanced GGR in nucleosome core DNA, especially in the nucleosomes around and upstream of the transcription start sites. Furthermore, when the genes were induced, GGR was slower in the transcribed regions than in the upstream regions. Finally, simultaneous deletion of RAD16, RAD26, and RPB9 resulted in no detectable repair in all sites along the region analyzed. Our results suggest that (a). TCR may be initiated by a transcription activator, presumably through the loading of RNA polymerase II, rather than by transcription initiation or elongation per se; (b). TCR and nucleosome disruption-enhanced GGR are the major causes of rapid repair in regions around and upstream of transcription start sites; (c). transcription machinery may hinder access of NER factors to a DNA lesion in the absence of a transcription-repair coupling factor; and (d). other than GGR mediated by Rad16 and TCR mediated by Rad26 and Rpb9, no other nucleotide excision repair pathway exists in these RNA polymerase II-transcribed genes.
Collapse
Affiliation(s)
| | - Michael J. Smerdon
- ‡ To whom correspondence should be addressed. Tel.: 509-335-6853; Fax: 509-335-9688; E-mail:
| |
Collapse
|
90
|
Abstract
The events leading to transcription of eukaryotic protein-coding genes culminate in the positioning of RNA polymerase II at the correct initiation site. The core promoter, which can extend ~35 bp upstream and/or downstream of this site, plays a central role in regulating initiation. Specific DNA elements within the core promoter bind the factors that nucleate the assembly of a functional preinitiation complex and integrate stimulatory and repressive signals from factors bound at distal sites. Although core promoter structure was originally thought to be invariant, a remarkable degree of diversity has become apparent. This article reviews the structural and functional diversity of the RNA polymerase II core promoter.
Collapse
Affiliation(s)
- Stephen T Smale
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
91
|
Ziegler LM, Khaperskyy DA, Ammerman ML, Ponticelli AS. Yeast RNA polymerase II lacking the Rpb9 subunit is impaired for interaction with transcription factor IIF. J Biol Chem 2003; 278:48950-6. [PMID: 14522989 DOI: 10.1074/jbc.m309656200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that transcription factors IIB (TFIIB), IIF (TFIIF), and RNA polymerase II (RNAPII) play important roles in determining the position of mRNA 5'-ends in the yeast Saccharomyces cerevisiae. Yeast strains containing a deletion of the small, nonessential Rpb9 subunit of RNAPII exhibit an upstream shift in the positions of mRNA 5'-ends, whereas mutation of the large subunit of yeast TFIIF (Tfg1) can suppress downstream shifts that are conferred by mutations in TFIIB. In this study, we report an approach for the production of functional recombinant yeast holo-TFIIF (Tfg1-Tfg2 complex) and use of the recombinant protein in both reconstituted transcription assays and gel mobility shifts in order to investigate the biochemical alterations associated with the deltaRpb9 polymerase. The results demonstrated that upstream shifts in the positions of mRNA 5'-ends could be conferred by the deltaRpb9 RNAPII in transcription reactions reconstituted with highly purified yeast general transcription factors and, importantly, that these shifts are associated with an impaired interaction between the DeltaRpb9 polymerase and TFIIF. Potential mechanisms by which an altered interaction between the DeltaRpb9 RNAPII and TFIIF confers an upstream shift in the positions of mRNA 5'-ends are discussed.
Collapse
Affiliation(s)
- Lynn M Ziegler
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | | | |
Collapse
|
92
|
Bertinato J, Tomlinson JJ, Schild-Poulter C, Haché RJG. Evidence implicating Ku antigen as a structural factor in RNA polymerase II-mediated transcription. Gene 2003; 302:53-64. [PMID: 12527196 DOI: 10.1016/s0378111902010892] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ku antigen is an abundant nuclear protein with multiple functions that depend mainly on Ku's prolific and highly verstatile interactions with DNA. We have shown previously that the direct binding of Ku in vitro to negative regulatory element 1 (NRE1), a transcriptional regulatory element in the long terminal repeat of mouse mammary tumour virus, correlates with the regulation of viral transcription by Ku. In this study, we have sought to explore the interaction of Ku with NRE1 in vivo in yeast one-hybrid experiments. Unexpectedly, we observed that human Ku70 carrying a transcriptional activation domain from the yeast Gal4 protein induced transcription of yeast reporter genes pleiotrophically, independent of NRE1, promoter, reporter gene and chromosomal location. Ku80 with the same activation domain had no effect on transcription when expressed alone, but reconstituted activation when co-expressed with native human Ku70. The requirements for transcriptional activation by Ku-Gal4 activation domain proteins correlated with previous descriptions of the requirements for DNA sequence-independent DNA binding by Ku, but were distinct from determinants for DNA-end binding by a truncated Ku heterodimer determined recently by crystallography. These results suggest a preferential targeting of Ku to transcriptionally active chromatin that indicate a possible function for Ku within the RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- Jesse Bertinato
- Graduate Program in Biochemistry, University of Ottawa, The Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, Ont. K1Y 4E9, Canada
| | | | | | | |
Collapse
|
93
|
Fairley JA, Evans R, Hawkes NA, Roberts SGE. Core promoter-dependent TFIIB conformation and a role for TFIIB conformation in transcription start site selection. Mol Cell Biol 2002; 22:6697-705. [PMID: 12215527 PMCID: PMC134048 DOI: 10.1128/mcb.22.19.6697-6705.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Accepted: 06/21/2002] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIB plays a central role in the selection of the transcription initiation site. The mechanisms involved are not clear, however. In this study, we analyze core promoter features that are responsible for the susceptibility to mutations in TFIIB and cause a shift in the transcription start site. We show that TFIIB can modulate both the 5' and 3' parameters of transcription start site selection in a manner dependent upon the sequence of the initiator. Mutations in TFIIB that cause aberrant transcription start site selection concentrate in a region that plays a pivotal role in modulating TFIIB conformation. Using epitope-specific antibody probes, we show that a TFIIB mutant that causes aberrant transcription start site selection assembles at the promoter in a conformation different from that for wild-type TFIIB. In addition, we uncover a core promoter-dependent effect on TFIIB conformation and provide evidence for novel sequence-specific TFIIB promoter contacts.
Collapse
|
94
|
Zhang DY, Carson DJ, Ma J. The role of TFIIB-RNA polymerase II interaction in start site selection in yeast cells. Nucleic Acids Res 2002; 30:3078-85. [PMID: 12136090 PMCID: PMC135743 DOI: 10.1093/nar/gkf422] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 05/20/2002] [Accepted: 05/20/2002] [Indexed: 11/14/2022] Open
Abstract
Previous studies have established a critical role of both TFIIB and RNA polymerase II (RNAPII) in start site selection in the yeast Saccharomyces cerevisiae. However, it remains unclear how the TFIIB-RNAPII interaction impacts on this process since such an interaction can potentially influence both preinitiation complex (PIC) stability and conformation. In this study, we further investigate the role of TFIIB in start site selection by characterizing our newly generated TFIIB mutants, two of which exhibit a novel upstream shift of start sites in vivo. We took advantage of an artificial recruitment system in which an RNAPII holoenzyme component is covalently linked to a DNA-binding domain for more direct and stable recruitment. We show that TFIIB mutations can exert their effects on start site selection in such an artificial recruitment system even though it has a relaxed requirement for TFIIB. We further show that these TFIIB mutants have normal affinity for RNAPII and do not alter the promoter melting/scanning step. Finally, we show that overexpressing the genetically isolated TFIIB mutant E62K, which has a reduced affinity for RNAPII, can correct its start site selection defect. We discuss a model in which the TFIIB-RNAPII interaction controls the start site selection process by influencing the conformation of PIC prior to or during PIC assembly, as opposed to PIC stability.
Collapse
Affiliation(s)
- Dong-Yi Zhang
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
95
|
Faitar SL, Brodie SA, Ponticelli AS. Promoter-specific shifts in transcription initiation conferred by yeast TFIIB mutations are determined by the sequence in the immediate vicinity of the start sites. Mol Cell Biol 2001; 21:4427-40. [PMID: 11416123 PMCID: PMC87103 DOI: 10.1128/mcb.21.14.4427-4440.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor IIB (TFIIB) is required for transcription of class II genes by RNA polymerase II. Previous studies demonstrated that mutations in the Saccharomyces cerevisiae SUA7 gene, which encodes TFIIB, can alter transcription initiation patterns in vivo. To further delineate the functional domain and residues of TFIIB involved in transcription start site utilization, a genetic selection was used to isolate S. cerevisiae TFIIB mutants exhibiting downstream shifts in transcription initiation in vivo. Both dominant and recessive mutations conferring downstream shifts were identified at multiple positions within a highly conserved homology block in the N-terminal region of the protein. The TFIIB mutations conferred downstream shifts in transcription initiation at the ADH1 and CYC1 promoters, whereas no significant shifts were observed at the HIS3 promoter. Analysis of a series of ADH1-HIS3 hybrid promoters and variant ADH1 and HIS3 promoters containing insertions, deletions, or site-directed base substitutions revealed that the feature that renders a promoter sensitive to TFIIB mutations is the sequence in the immediate vicinity of the normal start sites. We discuss these results in light of possible models for the mechanism of start site utilization by S. cerevisiae RNA polymerase II and the role played by TFIIB.
Collapse
Affiliation(s)
- S L Faitar
- Department of Biochemistry and the Center for Advanced Molecular Biology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214-3000, USA
| | | | | |
Collapse
|
96
|
Costanzo G, Camier S, Carlucci P, Burderi L, Negri R. RNA polymerase III transcription complexes on chromosomal 5S rRNA genes in vivo: TFIIIB occupancy and promoter opening. Mol Cell Biol 2001; 21:3166-78. [PMID: 11287621 PMCID: PMC86947 DOI: 10.1128/mcb.21.9.3166-3178.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quantitative analysis of multiple-hit potassium permanganate (KMnO(4)) footprinting has been carried out in vivo on Saccharomyces cerevisiae 5S rRNA genes. The results fix the number of open complexes at steady state in exponentially growing cells at between 8 and 17% of the 150 to 200 chromosomal copies. UV and dimethyl sulfate footprinting set the transcription factor TFIIIB occupancy at 23 to 47%. The comparison between the two values suggests that RNA polymerase III binding or promoter opening is the rate-limiting step in 5S rRNA transcription in vivo. Inhibition of RNA elongation in vivo by cordycepin confirms this result. An experimental system that is capable of providing information on the mechanistic steps involved in regulatory events in S. cerevisiae cells has been established.
Collapse
Affiliation(s)
- G Costanzo
- Istituto Pasteur-Fondazione Cenci Bolognetti, c/o Dipartimento di Genetica e Biologia Molecolare, Università di Roma, La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
97
|
Abstract
Saccharomyces cerevisiae CYC1 gene expression has been studied in great detail with regard to the response to oxygen availability and carbon source. In the absence of oxygen and the presence of glucose, the CYC1 gene is completely repressed. Chromatin structure is thought to play an important role in CYC1 gene regulation, as nucleosome depletion results in 94-fold derepression. In addition, the CYC1 core promoter has been used extensively in hybrid constructs to study activation by heterologous transcription factors. Therefore, we set out to map the chromatin structure of the CYC1 promoter and determine its role in CYC1 gene regulation. We report here that the repressed CYC1 promoter contains no positioned nucleosomes over the core promoter. However, we did find TFIID and RNA polymerase II bound in a complex on the repressed promoter. These results indicate that recruitment of TFIID and RNA polymerase II are not rate-limiting steps in CYC1 activation.
Collapse
Affiliation(s)
- C Martens
- Department of Biochemistry and Molecular Biology, MRB Building, Room 231, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | |
Collapse
|
98
|
Sakurai H, Fukasawa T. Functional connections between mediator components and general transcription factors of Saccharomyces cerevisiae. J Biol Chem 2000; 275:37251-6. [PMID: 10973956 DOI: 10.1074/jbc.m004364200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Gal11 protein is an important component of the Mediator complex in RNA polymerase II-directed transcription. Gal11 and the general transcription factor (TF) IIE are involved in regulation of the protein kinase activity of TFIIH that phosphorylates the carboxyl-terminal domain of RNA polymerase II. We have previously shown that Gal11 binds the small and large subunits of TFIIE at two Gal11 domains, A and B, respectively, which are important for normal function of Gal11 in vivo. Here we demonstrate that Gal11 binds directly to TFIIH through domain A in vitro. A null mutation in GAL11 caused lethality of cells when combined with temperature-sensitive mutations in the genes encoding TFIIE or the carboxyl-terminal domain kinase, indicating the presence of genetic interactions between Gal11 and these proteins. Mutational depletion of Gal11 or TFIIE caused inefficient opening of the transcription initiation region, but had no significant effect on TATA-binding protein occupancy of the TATA sequence in vivo. These results suggest that the functions of Gal11 and TFIIE are necessary after recruitment of TATA-binding protein to the TATA box presumably at the step of stable preinitiation complex formation and/or promoter melting. We illustrate genetic interactions between Gal11 and other Mediator components such as Med2 and Pgd1/Hrs1/Med3.
Collapse
Affiliation(s)
- H Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | | |
Collapse
|
99
|
Bash R, Lohr D. Yeast chromatin structure and regulation of GAL gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:197-259. [PMID: 11008489 DOI: 10.1016/s0079-6603(00)65006-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Yeast genomic DNA is covered by nucleosome cores spaced by short, discrete length linkers. The short linkers, reinforced by novel histone properties, create a number of unique and dynamic nucleosome structural features in vivo: permanent unpeeling of DNA from the ends of the core, an inability to bind even full 147 bp core DNA lengths, and facility to undergo a conformational transition that resembles the changes found in active chromatin. These features probably explain how yeast can maintain most of its genome in a transcribable state and avoid large-scale packaging away of inactive genes. The GAL genes provide a closely regulated system in which to study gene-specific chromatin structure. GAL structural genes are inactive without galactose but are highly transcribed in its presence; the expression patterns of the regulatory genes can account for many of the features of GAL structural gene control. In the inactive state, GAL genes demonstrate a characteristic promoter chromosomal organization; the major upstream activation sequence (UASG) elements lie in open, hypersensitive regions, whereas the TATA and transcription start sites are in nucleosomes. This organization helps implement gene regulation in this state and may benefit the organism. Induction of GAL expression triggers Gal4p-dependent upstream nucleosome disruption. Disruption is transient and can readily be reversed by a Gal80p-dependent nucleosome deposition process. Both are sensitive to the metabolic state of the cell. Induction triggers different kinds of nucleosome changes on the coding sequences, perhaps reflecting the differing roles of nucleosomes on coding versus promoter regions. GAL gene activation is a complex process involving multiple Gal4p activities, numerous positive and negative cofactors, and the histone tails. DNA bending and chromosomal architecture of the promoter regions may also play a role in GAL regulation. Regulator-mediated competition between nucleosomes and the TATA binding protein complex for the TATA region is probably a central aspect of GAL regulation and a focal point for the numerous factors and processes that contribute to it.
Collapse
Affiliation(s)
- R Bash
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287, USA
| | | |
Collapse
|
100
|
Leblanc BP, Benham CJ, Clark DJ. An initiation element in the yeast CUP1 promoter is recognized by RNA polymerase II in the absence of TATA box-binding protein if the DNA is negatively supercoiled. Proc Natl Acad Sci U S A 2000; 97:10745-50. [PMID: 10984524 PMCID: PMC27094 DOI: 10.1073/pnas.200365097] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purified RNA polymerase II initiated transcription from the yeast CUP1 promoter fused to a C-less cassette if the DNA was negatively supercoiled. Relaxed plasmid was not transcribed. Transcription did not require addition of any other transcription factors. TATA box-binding protein (TBP) was not detectable in the polymerase preparation and the TATA box was not required. Deletion analysis of the CUP1 promoter revealed that a 25-bp element containing the initiation region was sufficient for recognition by polymerase. Two transcription start sites were mapped, one of which is identical to one of the two major start sites observed in vivo. Our observations can be accounted for by using a theoretical analysis of the probability of DNA melting within the plasmid as a function of superhelix density: the CUP1 initiation element is intrinsically unstable to superhelical stress, permitting entry of the polymerase, which then scans the DNA to locate the start site. In support of this analysis, the CUP1 promoter was sensitive to mung bean nuclease. These observations and a previous theoretical analysis of yeast genes support the idea that promoters are stress points within the DNA superhelix. The role of transcription factors might be to mark the promoter and to regulate specific melting of promoter DNA.
Collapse
Affiliation(s)
- B P Leblanc
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 6, Room B1-12, Bethesda, MD 20892-2715, USA
| | | | | |
Collapse
|