51
|
Crystal Structures of Csm2 and Csm3 in the Type III-A CRISPR–Cas Effector Complex. J Mol Biol 2019; 431:748-763. [DOI: 10.1016/j.jmb.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/22/2018] [Accepted: 01/05/2019] [Indexed: 12/26/2022]
|
52
|
You L, Ma J, Wang J, Artamonova D, Wang M, Liu L, Xiang H, Severinov K, Zhang X, Wang Y. Structure Studies of the CRISPR-Csm Complex Reveal Mechanism of Co-transcriptional Interference. Cell 2019; 176:239-253.e16. [PMID: 30503210 PMCID: PMC6935017 DOI: 10.1016/j.cell.2018.10.052] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
Csm, a type III-A CRISPR-Cas interference complex, is a CRISPR RNA (crRNA)-guided RNase that also possesses target RNA-dependent DNase and cyclic oligoadenylate (cOA) synthetase activities. However, the structural features allowing target RNA-binding-dependent activation of DNA cleavage and cOA generation remain unknown. Here, we report the structure of Csm in complex with crRNA together with structures of cognate or non-cognate target RNA bound Csm complexes. We show that depending on complementarity with the 5' tag of crRNA, the 3' anti-tag region of target RNA binds at two distinct sites of the Csm complex. Importantly, the interaction between the non-complementary anti-tag region of cognate target RNA and Csm1 induces a conformational change at the Csm1 subunit that allosterically activates DNA cleavage and cOA generation. Together, our structural studies provide crucial insights into the mechanistic processes required for crRNA-meditated sequence-specific RNA cleavage, RNA target-dependent non-specific DNA cleavage, and cOA generation.
Collapse
Affiliation(s)
- Lilan You
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jun Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jiuyu Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Daria Artamonova
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Min Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Liang Liu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Konstantin Severinov
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia; Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Xinzheng Zhang
- University of Chinese Academy of Sciences, 100049 Beijing, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China.
| |
Collapse
|
53
|
Carvalho Garcia A, Dos Santos VLP, Santos Cavalcanti TC, Collaço LM, Graf H. Bacterial Small RNAs in the Genus Herbaspirillum spp. Int J Mol Sci 2018; 20:ijms20010046. [PMID: 30583511 PMCID: PMC6337395 DOI: 10.3390/ijms20010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022] Open
Abstract
The genus Herbaspirillum includes several strains isolated from different grasses. The identification of non-coding RNAs (ncRNAs) in the genus Herbaspirillum is an important stage studying the interaction of these molecules and the way they modulate physiological responses of different mechanisms, through RNA⁻RNA interaction or RNA⁻protein interaction. This interaction with their target occurs through the perfect pairing of short sequences (cis-encoded ncRNAs) or by the partial pairing of short sequences (trans-encoded ncRNAs). However, the companion Hfq can stabilize interactions in the trans-acting class. In addition, there are Riboswitches, located at the 5' end of mRNA and less often at the 3' end, which respond to environmental signals, high temperatures, or small binder molecules. Recently, CRISPR (clustered regularly interspaced palindromic repeats), in prokaryotes, have been described that consist of serial repeats of base sequences (spacer DNA) resulting from a previous exposure to exogenous plasmids or bacteriophages. We identified 285 ncRNAs in Herbaspirillum seropedicae (H. seropedicae) SmR1, expressed in different experimental conditions of RNA-seq material, classified as cis-encoded ncRNAs or trans-encoded ncRNAs and detected RNA riboswitch domains and CRISPR sequences. The results provide a better understanding of the participation of this type of RNA in the regulation of the metabolism of bacteria of the genus Herbaspirillum spp.
Collapse
Affiliation(s)
- Amanda Carvalho Garcia
- Department of Internal Medicine, Federal University of Paraná, Curitiba 80.060-240, Brazil.
| | | | | | - Luiz Martins Collaço
- Department of Pathology, Federal University of Paraná, PR, Curitiba 80.060-240, Brazil.
| | - Hans Graf
- Department of Internal Medicine, Federal University of Paraná, Curitiba 80.060-240, Brazil.
| |
Collapse
|
54
|
Huo Y, Li T, Wang N, Dong Q, Wang X, Jiang T. Cryo-EM structure of Type III-A CRISPR effector complex. Cell Res 2018; 28:1195-1197. [PMID: 30459428 PMCID: PMC6274645 DOI: 10.1038/s41422-018-0115-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yangao Huo
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Engineering, Foshan University, Guangdong, China.
| | - Tao Li
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinghua Dong
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Tao Jiang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
55
|
Wang L, Mo CY, Wasserman MR, Rostøl JT, Marraffini LA, Liu S. Dynamics of Cas10 Govern Discrimination between Self and Non-self in Type III CRISPR-Cas Immunity. Mol Cell 2018; 73:278-290.e4. [PMID: 30503774 DOI: 10.1016/j.molcel.2018.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Adaptive immune systems must accurately distinguish between self and non-self in order to defend against invading pathogens while avoiding autoimmunity. Type III CRISPR-Cas systems employ guide RNA to recognize complementary RNA targets, which triggers the degradation of both the invader's transcripts and their template DNA. These systems can broadly eliminate foreign targets with multiple mutations but circumvent damage to the host genome. To explore the molecular basis for these features, we use single-molecule fluorescence microscopy to study the interaction between a type III-A ribonucleoprotein complex and various RNA substrates. We find that Cas10-the DNase effector of the complex-displays rapid conformational fluctuations on foreign RNA targets, but is locked in a static configuration on self RNA. Target mutations differentially modulate Cas10 dynamics and tune the CRISPR interference activity in vivo. These findings highlight the central role of the internal dynamics of CRISPR-Cas complexes in self versus non-self discrimination and target specificity.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Charlie Y Mo
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
56
|
Jia N, Mo CY, Wang C, Eng ET, Marraffini LA, Patel DJ. Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity. Mol Cell 2018; 73:264-277.e5. [PMID: 30503773 DOI: 10.1016/j.molcel.2018.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/10/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
Type ΙΙΙ CRISPR-Cas systems provide robust immunity against foreign RNA and DNA by sequence-specific RNase and target RNA-activated sequence-nonspecific DNase and RNase activities. We report on cryo-EM structures of Thermococcus onnurineus CsmcrRNA binary, CsmcrRNA-target RNA and CsmcrRNA-target RNAanti-tag ternary complexes in the 3.1 Å range. The topological features of the crRNA 5'-repeat tag explains the 5'-ruler mechanism for defining target cleavage sites, with accessibility of positions -2 to -5 within the 5'-repeat serving as sensors for avoidance of autoimmunity. The Csm3 thumb elements introduce periodic kinks in the crRNA-target RNA duplex, facilitating cleavage of the target RNA with 6-nt periodicity. Key Glu residues within a Csm1 loop segment of CsmcrRNA adopt a proposed autoinhibitory conformation suggestive of DNase activity regulation. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into CsmcrRNA complex assembly, mechanisms underlying RNA targeting and site-specific periodic cleavage, regulation of DNase cleavage activity, and autoimmunity suppression.
Collapse
Affiliation(s)
- Ning Jia
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Charlie Y Mo
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Chongyuan Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | | | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
57
|
Terns MP. CRISPR-Based Technologies: Impact of RNA-Targeting Systems. Mol Cell 2018; 72:404-412. [PMID: 30388409 PMCID: PMC6239212 DOI: 10.1016/j.molcel.2018.09.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022]
Abstract
DNA-targeting CRISPR-Cas systems, such as those employing the RNA-guided Cas9 or Cas12 endonucleases, have revolutionized our ability to predictably edit genomes and control gene expression. Here, I summarize information on RNA-targeting CRISPR-Cas systems and describe recent advances in converting them into powerful and programmable RNA-binding and cleavage tools with a wide range of novel and important biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
58
|
Molecular mechanisms of III-B CRISPR–Cas systems in archaea. Emerg Top Life Sci 2018; 2:483-491. [DOI: 10.1042/etls20180023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/26/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems provide the adaptive antiviral immunity against invasive genetic elements in archaea and bacteria. These immune systems are divided into at least six different types, among which Type III CRISPR–Cas systems show several distinct antiviral activities as demonstrated from the investigation of bacterial III-A and archaeal III-B systems in the past decade. First, although initial experiments suggested that III-A systems provided DNA interference activity, whereas III-B system was active only in RNA interference, these immune systems were subsequently found to mediate the transcription-dependent DNA interference and the dual DNA/RNA interference. Second, their ribonucleoprotein (RNP) complexes show target RNA (tgRNA) cleavage by a ruler mechanism and RNA-activated indiscriminate single-stranded DNA cleavage, the latter of which is subjected to spatiotemporal regulation such that the DNase activity occurs only at the right place in the right time. Third, RNPs of Type III systems catalyse the synthesis of cyclic oligoadenylates (cOAs) that function as second messengers to activate Csm6 and Csx1, both of which are potent Cas accessory RNases after activation. To date, Type III CRISPR systems are the only known antiviral immunity that utilizes multiple interference mechanisms for antiviral defence.
Collapse
|
59
|
Foster K, Kalter J, Woodside W, Terns RM, Terns MP. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. RNA Biol 2018; 16:449-460. [PMID: 29995577 DOI: 10.1080/15476286.2018.1493334] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotes with RNA-based adaptive immunity against viruses and plasmids. A unique feature of Type III CRISPR-Cas systems is that they selectively target transcriptionally-active invader DNA, and can cleave both the expressed RNA transcripts and source DNA. The Type III-A effector crRNP (CRISPR RNA-Cas protein complex), which contains Cas proteins Csm1-5, recognizes and degrades invader RNA and DNA in a crRNA-guided, manner. Interestingly, Type III-A systems also employ Csm6, an HEPN family ribonuclease that does not stably associate with the Type III-A effector crRNP, but nevertheless contributes to defense via mechanistic details that are still being determined. Here, we investigated the mechanism of action of Csm6 in Type III-A CRISPR-Cas systems from Lactococcus lactis, Staphylococcus epidermidis, and Streptococcus thermophilus expressed in Escherichia coli. We found that L. lactis and S. epidermidis Csm6 cleave RNA specifically after purines in vitro, similar to the activity reported for S. thermophilus Csm6. Moreover, L. lactis Csm6 functions as a divalent metal-independent, single strand-specific endoribonuclease that depends on the conserved HEPN domain. In vivo, we show that deletion of csm6 or expression of an RNase-defective form of Csm6 disrupts crRNA-dependent loss of plasmid DNA in all three systems expressed in E. coli. Mutations in the Csm1 palm domain, which are known to deactivate Csm6 ribonuclease activity, also prevent plasmid loss in the three systems. The results indicate that Csm6 ribonuclease activity rather than Csm1-mediated DNase activity effects anti-plasmid immunity by the three Type III-A systems investigated.
Collapse
Affiliation(s)
- Kawanda Foster
- a Department of Microbiology , University of Georgia , Athens , GA , USA
| | - Joshua Kalter
- b Department of Biochemistry and Molecular Biology , University of Georgia , Athens , GA , USA
| | - Walter Woodside
- a Department of Microbiology , University of Georgia , Athens , GA , USA
| | - Rebecca M Terns
- b Department of Biochemistry and Molecular Biology , University of Georgia , Athens , GA , USA
| | - Michael P Terns
- a Department of Microbiology , University of Georgia , Athens , GA , USA.,b Department of Biochemistry and Molecular Biology , University of Georgia , Athens , GA , USA.,c Department of Genetics , University of Georgia , Athens , GA , USA
| |
Collapse
|
60
|
Rouillon C, Athukoralage JS, Graham S, Grüschow S, White MF. Control of cyclic oligoadenylate synthesis in a type III CRISPR system. eLife 2018; 7:36734. [PMID: 29963983 PMCID: PMC6053304 DOI: 10.7554/elife.36734] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022] Open
Abstract
The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.
Collapse
Affiliation(s)
- Christophe Rouillon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Januka S Athukoralage
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Sabine Grüschow
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
61
|
Zhu Y, Klompe SE, Vlot M, van der Oost J, Staals RHJ. Shooting the messenger: RNA-targetting CRISPR-Cas systems. Biosci Rep 2018; 38:BSR20170788. [PMID: 29748239 PMCID: PMC6013697 DOI: 10.1042/bsr20170788] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-associated genes) immune systems, astonishing progress has been made on revealing their mechanistic foundations. Due to the immense potential as genome engineering tools, research has mainly focussed on a subset of Cas nucleases that target DNA. In addition, however, distinct types of RNA-targetting CRISPR-Cas systems have been identified. The focus of this review will be on the interference mechanisms of the RNA targetting type III and type VI CRISPR-Cas systems, their biological relevance and their potential for applications.
Collapse
Affiliation(s)
- Yifan Zhu
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Sanne E Klompe
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Marnix Vlot
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
62
|
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) constitute a multi-functional, constantly evolving immune system in bacteria and archaea cells. A heritable, molecular memory is generated of phage, plasmids, or other mobile genetic elements that attempt to attack the cell. This memory is used to recognize and interfere with subsequent invasions from the same genetic elements. This versatile prokaryotic tool has also been used to advance applications in biotechnology. Here we review a large body of CRISPR-Cas research to explore themes of evolution and selection, population dynamics, horizontal gene transfer, specific and cross-reactive interactions, cost and regulation, non-immunological CRISPR functions that boost host cell robustness, as well as applicable mechanisms for efficient and specific genetic engineering. We offer future directions that can be addressed by the physics community. Physical understanding of the CRISPR-Cas system will advance uses in biotechnology, such as developing cell lines and animal models, cell labeling and information storage, combatting antibiotic resistance, and human therapeutics.
Collapse
Affiliation(s)
- Melia E Bonomo
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America. Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America
| | | |
Collapse
|
63
|
Earl LA, Falconieri V, Subramaniam S. Microbiology catches the cryo-EM bug. Curr Opin Microbiol 2018; 43:199-207. [PMID: 29656089 DOI: 10.1016/j.mib.2018.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/27/2018] [Indexed: 11/18/2022]
Abstract
Over the past few years, the advances in technology and methods that have revolutionized cryo-EM are allowing for key insights in a variety of areas in biology, and microbiology is no exception. A wide range of important macromolecular assemblies in prokaryotic and eukaryotic cells, as well as intact viruses, have now become accessible to investigation by new methods in 3D electron microscopy. We focus here on selected examples that illustrate this breadth, and review the application of methods in single particle cryo-EM and cryo-electron tomography to progress in the structural biology of CRISPR systems, visualization of small molecule drugs in membrane proteins, in situ visualization of bacterial nanomachines, and the analysis of antigen-antibody interactions to drive vaccine design.
Collapse
Affiliation(s)
- Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
64
|
Klompe SE, Sternberg SH. Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. CRISPR J 2018; 1:141-158. [PMID: 31021200 PMCID: PMC6636882 DOI: 10.1089/crispr.2018.0012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The famed physicist-turned-biologist, Max Delbrück, once remarked that, for physicists, "the field of bacterial viruses is a fine playground for serious children who ask ambitious questions." Early discoveries in that playground helped establish molecular genetics, and half a century later, biologists delving into the same field have ushered in the era of precision genome engineering. The focus has of course shifted-from bacterial viruses and their mechanisms of infection to the bacterial hosts and their mechanisms of immunity-but it is the very same evolutionary arms race that continues to awe and inspire researchers worldwide. In this review, we explore the remarkable diversity of CRISPR-Cas adaptive immune systems, describe the molecular components that mediate nucleic acid targeting, and outline the use of these RNA-guided machines for biotechnology applications. CRISPR-Cas research has yielded far more than just Cas9-based genome-editing tools, and the wide-reaching, innovative impacts of this fascinating biological playground are sure to be felt for years to come.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| |
Collapse
|
65
|
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018. [DOI: 10.1016/j.cell.2017.11.032] [Citation(s) in RCA: 640] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
66
|
Li Y, Zhang Y, Lin J, Pan S, Han W, Peng N, Liang YX, She Q. Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR-Cas system by binding to target RNA and crRNA. Nucleic Acids Res 2017; 45:11305-11314. [PMID: 28977458 PMCID: PMC5737701 DOI: 10.1093/nar/gkx791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
CRISPR–Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems provide adaptive immunity against invasive nucleic acids guided by CRISPR RNAs (crRNAs) in archaea and bacteria. Type III CRISPR–Cas effector complexes show RNA cleavage and RNA-activated DNA cleavage activity, representing the only known system of dual nucleic acid interference. Here, we investigated the function of Cmr1 by genetic assays of DNA and RNA interference activity in the mutants and biochemical characterization of their mutated Cmr complexes. Three cmr1α mutants were constructed including ΔβΔ1α, Δβ1α-M1 and Δβ1α-M2 among which the last two mutants carried a double and a quadruple mutation in the first α-helix region of Cmr1α. Whereas the double mutation of Cmr1α (W58A and F59A) greatly influenced target RNA capture, the quadruple mutation almost abolished crRNA binding to Cmr1α. We found that Cmr2α-6α formed a stable core complex that is active in both RNA and DNA cleavage and that Cmr1α strongly enhances the basal activity of the core complex upon incorporation into the ribonucleoprotein complex. Therefore, Cmr1 functions as an integral activation module in III-B systems, and the unique occurrence of Cmr1 in III-B systems may reflect the adaptive evolution of type III CRISPR–Cas systems in thermophiles.
Collapse
Affiliation(s)
- Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maal⊘es Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark
| | - Yan Zhang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jinzhong Lin
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maal?es Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark
| | - Saifu Pan
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Wenyuan Han
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maal?es Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yun Xiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maal⊘es Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
67
|
Han W, She Q. CRISPR History: Discovery, Characterization, and Prosperity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 152:1-21. [PMID: 29150001 DOI: 10.1016/bs.pmbts.2017.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR research is a very young research field since it was only 10years ago when the system was found to confer antiviral defense. Nevertheless, there has been an explosion of publications in CRISPR research in the past 5years. The research was started with the comparative genomics of microbial genomes early this century, which revealed the prevalence of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) in bacteria and archaea. Series of hypotheses were made based on bioinformatics analyses and tested experimentally within a few years after the CRISPR acronym was coined. These findings have not only led to the discovery of the unique antiviral system and the involved molecular mechanisms, but also to the development of CRISPR technology with various well-developed applications, such as genome editing in all three domains of life. Currently, widespread research efforts in multiple research disciplines have constantly yielded new insights into molecular mechanisms of CRISPR antiviral immunity, and new applications in scientific research and biomedical applications. Retrospectively, it is worth pointing out that close interdisciplinary interactions have fostered series of discoveries in the CRISPR research and worked as the driving force in the fast developing research field.
Collapse
Affiliation(s)
- Wenyuan Han
- Archaea Center, University of Copenhagen, Copenhagen Biocenter, Copenhagen, Denmark
| | - Qunxin She
- Archaea Center, University of Copenhagen, Copenhagen Biocenter, Copenhagen, Denmark.
| |
Collapse
|
68
|
Han W, Li Y, Deng L, Feng M, Peng W, Hallstrøm S, Zhang J, Peng N, Liang YX, White MF, She Q. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. Nucleic Acids Res 2017; 45:1983-1993. [PMID: 27986854 PMCID: PMC5389615 DOI: 10.1093/nar/gkw1274] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats) system protects archaea and bacteria by eliminating nucleic acid invaders in a crRNA-guided manner. The Sulfolobus islandicus type III-B Cmr–α system targets invading nucleic acid at both RNA and DNA levels and DNA targeting relies on the directional transcription of the protospacer in vivo. To gain further insight into the involved mechanism, we purified a native effector complex of III-B Cmr–α from S. islandicus and characterized it in vitro. Cmr–α cleaved RNAs complementary to crRNA present in the complex and its ssDNA destruction activity was activated by target RNA. The ssDNA cleavage required mismatches between the 5΄-tag of crRNA and the 3΄-flanking region of target RNA. An invader plasmid assay showed that mutation either in the histidine-aspartate acid (HD) domain (a quadruple mutation) or in the GGDD motif of the Cmr–2α protein resulted in attenuation of the DNA interference in vivo. However, double mutation of the HD motif only abolished the DNase activity in vitro. Furthermore, the activated Cmr–α binary complex functioned as a highly active DNase to destroy a large excess DNA substrate, which could provide a powerful means to rapidly degrade replicating viral DNA.
Collapse
Affiliation(s)
- Wenyuan Han
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ling Deng
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark
| | - Mingxia Feng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Wenfang Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark
| | - Søren Hallstrøm
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark
| | - Jing Zhang
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yun Xiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| | - Qunxin She
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark.,State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
69
|
Ishii K, Zhou M, Uchiyama S. Native mass spectrometry for understanding dynamic protein complex. Biochim Biophys Acta Gen Subj 2017; 1862:275-286. [PMID: 28965879 DOI: 10.1016/j.bbagen.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
70
|
Pyenson NC, Marraffini LA. Type III CRISPR-Cas systems: when DNA cleavage just isn't enough. Curr Opin Microbiol 2017; 37:150-154. [PMID: 28865392 DOI: 10.1016/j.mib.2017.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022]
Abstract
Type III CRISPR-Cas systems have a unique targeting mechanism that requires the transcription of the DNA target and results in the degradation of not only the genome of the invader but also its transcripts. Here we discuss the most recent studies describing dual DNA and RNA targeting by these systems, as well as the implications of this complex molecular mechanism for immunity in vivo.
Collapse
Affiliation(s)
- Nora C Pyenson
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
71
|
Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape. Cell Host Microbe 2017; 22:343-353.e3. [PMID: 28826839 DOI: 10.1016/j.chom.2017.07.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 12/26/2022]
Abstract
CRISPR loci are a cluster of repeats separated by short "spacer" sequences derived from prokaryotic viruses and plasmids that determine the targets of the host's CRISPR-Cas immune response against its invaders. For type I and II CRISPR-Cas systems, single-nucleotide mutations in the seed or protospacer adjacent motif (PAM) of the target sequence cause immune failure and allow viral escape. This is overcome by the acquisition of multiple spacers that target the same invader. Here we show that targeting by the Staphylococcus epidermidis type III-A CRISPR-Cas system does not require PAM or seed sequences, and thus prevents viral escape via single-nucleotide substitutions. Instead, viral escapers can only arise through complete target deletion. Our work shows that, as opposed to type I and II systems, the relaxed specificity of type III CRISPR-Cas targeting provides robust immune responses that can lead to viral extinction with a single spacer targeting an essential phage sequence.
Collapse
|
72
|
Jackson RN, van Erp PB, Sternberg SH, Wiedenheft B. Conformational regulation of CRISPR-associated nucleases. Curr Opin Microbiol 2017. [PMID: 28646675 DOI: 10.1016/j.mib.2017.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adaptive immune systems in bacteria and archaea rely on small CRISPR-derived RNAs (crRNAs) to guide specialized nucleases to foreign nucleic acids. The activation of these nucleases is controlled by a series of molecular checkpoints that ensure precise cleavage of nucleic acid targets, while minimizing toxic off-target cleavage events. In this review, we highlight recent advances in understanding regulatory mechanisms responsible for controlling the activation of these nucleases and identify emerging regulatory themes conserved across diverse CRISPR systems.
Collapse
Affiliation(s)
- Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States.
| | - Paul Bg van Erp
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.
| | | | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
73
|
Chowdhury S, Carter J, Rollins MF, Golden SM, Jackson RN, Hoffmann C, Nosaka L, Bondy-Denomy J, Maxwell KL, Davidson AR, Fischer ER, Lander GC, Wiedenheft B. Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex. Cell 2017; 169:47-57.e11. [PMID: 28340349 DOI: 10.1016/j.cell.2017.03.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/23/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Genetic conflict between viruses and their hosts drives evolution and genetic innovation. Prokaryotes evolved CRISPR-mediated adaptive immune systems for protection from viral infection, and viruses have evolved diverse anti-CRISPR (Acr) proteins that subvert these immune systems. The adaptive immune system in Pseudomonas aeruginosa (type I-F) relies on a 350 kDa CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease for target degradation. Here, we report the cryo-electron microscopy (cryo-EM) structure of the Csy complex bound to two different Acr proteins, AcrF1 and AcrF2, at an average resolution of 3.4 Å. The structure explains the molecular mechanism for immune system suppression, and structure-guided mutations show that the Acr proteins bind to residues essential for crRNA-mediated detection of DNA. Collectively, these data provide a snapshot of an ongoing molecular arms race between viral suppressors and the immune system they target.
Collapse
Affiliation(s)
- Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joshua Carter
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - MaryClare F Rollins
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Sarah M Golden
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Ryan N Jackson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Connor Hoffmann
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Lyn'Al Nosaka
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
74
|
Peng R, Xu Y, Zhu T, Li N, Qi J, Chai Y, Wu M, Zhang X, Shi Y, Wang P, Wang J, Gao N, Gao GF. Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures. Cell Res 2017; 27:853-864. [PMID: 28574055 DOI: 10.1038/cr.2017.79] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages encode anti-CRISPR suppressors to counteract the CRISPR/Cas immunity of their bacterial hosts, thus facilitating their survival and replication. Previous studies have shown that two phage-encoded anti-CRISPR proteins, AcrF1 and AcrF2, suppress the type I-F CRISPR/Cas system of Pseudomonas aeruginosa by preventing target DNA recognition by the Csy surveillance complex, but the precise underlying mechanism was unknown. Here we present the structure of AcrF1/2 bound to the Csy complex determined by cryo-EM single-particle reconstruction. By structural analysis, we found that AcrF1 inhibits target DNA recognition of the Csy complex by interfering with base pairing between the DNA target strand and crRNA spacer. In addition, multiple copies of AcrF1 bind to the Csy complex with different modes when working individually or cooperating with AcrF2, which might exclude target DNA binding through different mechanisms. Together with previous reports, we provide a comprehensive working scenario for the two anti-CRISPR suppressors, AcrF1 and AcrF2, which silence CRISPR/Cas immunity by targeting the Csy surveillance complex.
Collapse
Affiliation(s)
- Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ying Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tengfei Zhu
- University of Chinese Academy of Sciences, Beijing 101408, China.,Research Network of Immunity and Health (RNIH), Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China.,Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyi Wang
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China.,Research Network of Immunity and Health (RNIH), Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| |
Collapse
|
75
|
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 2017. [PMID: 28111461 DOI: 10.1038/nrmicro.2016.184.diversity] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Class 2 CRISPR-Cas systems are characterized by effector modules that consist of a single multidomain protein, such as Cas9 or Cpf1. We designed a computational pipeline for the discovery of novel class 2 variants and used it to identify six new CRISPR-Cas subtypes. The diverse properties of these new systems provide potential for the development of versatile tools for genome editing and regulation. In this Analysis article, we present a comprehensive census of class 2 types and class 2 subtypes in complete and draft bacterial and archaeal genomes, outline evolutionary scenarios for the independent origin of different class 2 CRISPR-Cas systems from mobile genetic elements, and propose an amended classification and nomenclature of CRISPR-Cas.
Collapse
Affiliation(s)
- Sergey Shmakov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Skolkovo 143025, Russia
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Aaron Smargon
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - David Scott
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
| | - David Cox
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
| | - Neena Pyzocha
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Winston Yan
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
| | - Omar O Abudayyeh
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Health Sciences and Technology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Jonathan S Gootenberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
- McGovern Institute for Brain Research at Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Kira S Makarova
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Skolkovo 143025, Russia
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Feng Zhang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Health Sciences and Technology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
- McGovern Institute for Brain Research at Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology Cambridge (MIT), Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
76
|
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 2017; 15:169-182. [PMID: 28111461 DOI: 10.1038/nrmicro.2016.184] [Citation(s) in RCA: 703] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Class 2 CRISPR-Cas systems are characterized by effector modules that consist of a single multidomain protein, such as Cas9 or Cpf1. We designed a computational pipeline for the discovery of novel class 2 variants and used it to identify six new CRISPR-Cas subtypes. The diverse properties of these new systems provide potential for the development of versatile tools for genome editing and regulation. In this Analysis article, we present a comprehensive census of class 2 types and class 2 subtypes in complete and draft bacterial and archaeal genomes, outline evolutionary scenarios for the independent origin of different class 2 CRISPR-Cas systems from mobile genetic elements, and propose an amended classification and nomenclature of CRISPR-Cas.
Collapse
Affiliation(s)
- Sergey Shmakov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Skolkovo 143025, Russia.,National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Aaron Smargon
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - David Scott
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
| | - David Cox
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
| | - Neena Pyzocha
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Winston Yan
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
| | - Omar O Abudayyeh
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Health Sciences and Technology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Jonathan S Gootenberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA.,McGovern Institute for Brain Research at Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Kira S Makarova
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Skolkovo 143025, Russia.,Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Feng Zhang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Health Sciences and Technology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA.,McGovern Institute for Brain Research at Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology Cambridge (MIT), Massachusetts 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
77
|
Liu TY, Iavarone AT, Doudna JA. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System. PLoS One 2017; 12:e0170552. [PMID: 28114398 PMCID: PMC5256923 DOI: 10.1371/journal.pone.0170552] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/07/2017] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5′ tag) of the crRNA and the 3′ flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.
Collapse
Affiliation(s)
- Tina Y. Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Anthony T. Iavarone
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Innovative Genomics Initiative, University of California, Berkeley, California, United States of America
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
78
|
Dong Y, Cai X, Wu Y, Liu Y, Deng L, Chen H. Insights from Genetic Model Systems of Retinal Degeneration: Role of Epsins in Retinal Angiogenesis and VEGFR2 Signaling. JOURNAL OF NATURE AND SCIENCE 2017; 3:e281. [PMID: 28191500 PMCID: PMC5303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The retina is a light sensitive tissue that contains specialized photoreceptor cells called rods and cones which process visual signals. These signals are relayed to the brain through interneurons and the fibers of the optic nerve. The retina is susceptible to a variety of degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP) and other inherited retinal degenerations. In order to reveal the mechanism underlying these diseases and to find methods for the prevention/treatment of retinal degeneration, animal models have been generated to mimic human eye diseases. In this paper, several well-characterized and commonly used animal models are reviewed. Of particular interest are the contributions of these models to our understanding of the mechanisms of retinal degeneration and thereby providing novel treatment options including gene therapy, stem cell therapy, nanomedicine, and CRISPR/Cas9 genome editing. Role of newly-identified adaptor protein epsins from our laboratory is discussed in retinal angiogenesis and VEGFR2 signaling.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Cai
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Wu
- Department of Internal Medicine, Charles R. Drew University of Medicine & Sciences, University of California School of Medicine, Los Angeles, CA 90059, USA
| | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University of Medicine & Sciences, University of California School of Medicine, Los Angeles, CA 90059, USA
| | - Lin Deng
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
79
|
Hasani HJ, Barakat KH. Protein-Protein Docking. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Protein-protein docking algorithms are powerful computational tools, capable of analyzing the protein-protein interactions at the atomic-level. In this chapter, we will review the theoretical concepts behind different protein-protein docking algorithms, highlighting their strengths as well as their limitations and pointing to important case studies for each method. The methods we intend to cover in this chapter include various search strategies and scoring techniques. This includes exhaustive global search, fast Fourier transform search, spherical Fourier transform-based search, direct search in Cartesian space, local shape feature matching, geometric hashing, genetic algorithm, randomized search, and Monte Carlo search. We will also discuss the different ways that have been used to incorporate protein flexibility within the docking procedure and some other future directions in this field, suggesting possible ways to improve the different methods.
Collapse
|
80
|
Kohn T, Heuer A, Jogler M, Vollmers J, Boedeker C, Bunk B, Rast P, Borchert D, Glöckner I, Freese HM, Klenk HP, Overmann J, Kaster AK, Rohde M, Wiegand S, Jogler C. Fuerstia marisgermanicae gen. nov., sp. nov., an Unusual Member of the Phylum Planctomycetes from the German Wadden Sea. Front Microbiol 2016; 7:2079. [PMID: 28066393 PMCID: PMC5177795 DOI: 10.3389/fmicb.2016.02079] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/08/2016] [Indexed: 11/23/2022] Open
Abstract
Members of the phylum Planctomycetes are ubiquitous bacteria that dwell in aquatic and terrestrial habitats. While planctomycetal species are important players in the global carbon and nitrogen cycle, this phylum is still undersampled and only few genome sequences are available. Here we describe strain NH11T, a novel planctomycete obtained from a crustacean shell (Wadden Sea, Germany). The phylogenetically closest related cultivated species is Gimesia maris, sharing only 87% 16S rRNA sequence identity. Previous isolation attempts have mostly yielded members of the genus Rhodopirellula from water of the German North Sea. On the other hand, only one axenic culture of the genus Pirellula was obtained from a crustacean thus far. However, the 16S rRNA gene sequence of strain NH11T shares only 80% sequence identity with the closest relative of both genera, Rhodopirellula and Pirellula. Thus, strain NH11T is unique in terms of origin and phylogeny. While the pear to ovoid shaped cells of strain NH11T are typical planctomycetal, light-, and electron microscopic observations point toward an unusual variation of cell division through budding: during the division process daughter- and mother cells are connected by an unseen thin tubular-like structure. Furthermore, the periplasmic space of strain NH11T was unusually enlarged and differed from previously known planctomycetes. The complete genome of strain NH11T, with almost 9 Mb in size, is among the largest planctomycetal genomes sequenced thus far, but harbors only 6645 protein-coding genes. The acquisition of genomic components by horizontal gene transfer is indicated by the presence of numerous putative genomic islands. Strikingly, 45 “giant genes” were found within the genome of NH11T. Subsequent analysis of all available planctomycetal genomes revealed that Planctomycetes as such are especially rich in “giant genes”. Furthermore, Multilocus Sequence Analysis (MLSA) tree reconstruction support the phylogenetic distance of strain NH11T from other cultivated Planctomycetes of the same phylogenetic cluster. Thus, based on our findings, we propose to classify strain NH11T as Fuerstia marisgermanicae gen. nov., sp. nov., with the type strain NH11T, within the phylum Planctomycetes.
Collapse
Affiliation(s)
- Timo Kohn
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Anja Heuer
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Mareike Jogler
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - John Vollmers
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Christian Boedeker
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Patrick Rast
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Daniela Borchert
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Ines Glöckner
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Heike M Freese
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | | | - Jörg Overmann
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Anne-Kristin Kaster
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz Centre for Infectious Disease Braunschweig, Germany
| | - Sandra Wiegand
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| | - Christian Jogler
- Leibniz Institut Deutsche Sammlung Von Mikroorganismen und Zellkulturen Braunschweig, Germany
| |
Collapse
|
81
|
Smekalova EM, Kotelevtsev YV, Leboeuf D, Shcherbinina EY, Fefilova AS, Zatsepin TS, Koteliansky V. lncRNA in the liver: Prospects for fundamental research and therapy by RNA interference. Biochimie 2016; 131:159-172. [DOI: 10.1016/j.biochi.2016.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
|
82
|
Nishimasu H, Nureki O. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr Opin Struct Biol 2016; 43:68-78. [PMID: 27912110 DOI: 10.1016/j.sbi.2016.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022]
Abstract
In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases.
Collapse
Affiliation(s)
- Hiroshi Nishimasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; JST, PRESTO, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
83
|
Type III CRISPR-Cas Immunity: Major Differences Brushed Aside. Trends Microbiol 2016; 25:49-61. [PMID: 27773522 DOI: 10.1016/j.tim.2016.09.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 12/26/2022]
Abstract
For a long time the mechanism of immunity provided by the Type III CRISPR-Cas systems appeared to be inconsistent: the Type III-A Csm complex of Staphylococcus epidermidis was first reported to target DNA while Type III-B Cmr complexes were shown to target RNA. This long-standing conundrum has now been resolved by finding that the Type III CRISPR-Cas systems are both RNases and target RNA-activated DNA nucleases. The immunity is achieved by coupling binding and cleavage of RNA transcripts to the degradation of invading DNA. The base-pairing potential between the target RNA and the CRISPR RNA (crRNA) 5'-handle seems to play an important role in discriminating self and non-self nucleic acids; however, the detailed mechanism remains to be uncovered.
Collapse
|
84
|
Zebec Z, Zink IA, Kerou M, Schleper C. Efficient CRISPR-Mediated Post-Transcriptional Gene Silencing in a Hyperthermophilic Archaeon Using Multiplexed crRNA Expression. G3 (BETHESDA, MD.) 2016; 6:3161-3168. [PMID: 27507792 PMCID: PMC5068938 DOI: 10.1534/g3.116.032482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-mediated RNA degradation is catalyzed by a type III system in the hyperthermophilic archaeon Sulfolobus solfataricus Earlier work demonstrated that the system can be engineered to target specifically mRNA of an endogenous host reporter gene, namely the β-galactosidase in S. solfataricus Here, we investigated the effect of single and multiple spacers targeting the mRNA of a second reporter gene, α-amylase, at the same, and at different, locations respectively, using a minimal CRISPR (miniCR) locus supplied on a viral shuttle vector. The use of increasing numbers of spacers reduced mRNA levels at progressively higher levels, with three crRNAs (CRISPR RNAs) leading to ∼ 70-80% reduction, and five spacers resulting in an α-amylase gene knockdown of > 90% measured on both mRNA and protein activity levels. Our results indicate that this technology can be used to increase or modulate gene knockdown for efficient post-transcriptional gene silencing in hyperthermophilic archaea, and potentially also in other organisms.
Collapse
Affiliation(s)
- Ziga Zebec
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, 1090, Austria
| | - Isabelle Anna Zink
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, 1090, Austria
| | - Melina Kerou
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, 1090, Austria
| | - Christa Schleper
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, 1090, Austria
| |
Collapse
|
85
|
Liko I, Allison TM, Hopper JT, Robinson CV. Mass spectrometry guided structural biology. Curr Opin Struct Biol 2016; 40:136-144. [PMID: 27721169 DOI: 10.1016/j.sbi.2016.09.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/08/2016] [Accepted: 09/14/2016] [Indexed: 10/20/2022]
Abstract
With the convergence of breakthroughs in structural biology, specifically breaking the resolution barriers in cryo-electron microscopy and with continuing developments in crystallography, novel interfaces with other biophysical methods are emerging. Here we consider how mass spectrometry can inform these techniques by providing unambiguous definition of subunit stoichiometry. Moreover recent developments that increase mass spectral resolution enable molecular details to be ascribed to unassigned density within high-resolution maps of membrane and soluble protein complexes. Importantly we also show how developments in mass spectrometry can define optimal solution conditions to guide downstream structure determination, particularly of challenging biomolecules that refuse to crystallise.
Collapse
Affiliation(s)
- Idlir Liko
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Timothy M Allison
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Jonathan Ts Hopper
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom.
| |
Collapse
|
86
|
Unravelling biological macromolecules with cryo-electron microscopy. Nature 2016; 537:339-46. [PMID: 27629640 DOI: 10.1038/nature19948] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022]
Abstract
Knowledge of the three-dimensional structures of proteins and other biological macromolecules often aids understanding of how they perform complicated tasks in the cell. Because many such tasks involve the cleavage or formation of chemical bonds, structural characterization at the atomic level is most useful. Developments in the electron microscopy of frozen hydrated samples (cryo-electron microscopy) are providing unprecedented opportunities for the structural characterization of biological macromolecules. This is resulting in a wave of information about processes in the cell that were impossible to characterize with existing techniques in structural biology.
Collapse
|
87
|
Lee SA, Ponjavic A, Siv C, Lee SF, Biteen JS. Nanoscopic Cellular Imaging: Confinement Broadens Understanding. ACS NANO 2016; 10:8143-8153. [PMID: 27602688 DOI: 10.1021/acsnano.6b02863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, single-molecule fluorescence imaging has been reconciling a fundamental mismatch between optical microscopy and subcellular biophysics. However, the next step in nanoscale imaging in living cells can be accessed only by optical excitation confinement geometries. Here, we review three methods of confinement that can enable nanoscale imaging in living cells: excitation confinement by laser illumination with beam shaping; physical confinement by micron-scale geometries in bacterial cells; and nanoscale confinement by nanophotonics.
Collapse
Affiliation(s)
- Stephen A Lee
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Aleks Ponjavic
- Department of Chemistry, Cambridge University , Cambridge CB2 1EW, United Kingdom
| | - Chanrith Siv
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Steven F Lee
- Department of Chemistry, Cambridge University , Cambridge CB2 1EW, United Kingdom
| | - Julie S Biteen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
88
|
van Houte S, Buckling A, Westra ER. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiol Mol Biol Rev 2016; 80:745-63. [PMID: 27412881 PMCID: PMC4981670 DOI: 10.1128/mmbr.00011-16] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria have a range of distinct immune strategies that provide protection against bacteriophage (phage) infections. While much has been learned about the mechanism of action of these defense strategies, it is less clear why such diversity in defense strategies has evolved. In this review, we discuss the short- and long-term costs and benefits of the different resistance strategies and, hence, the ecological conditions that are likely to favor the different strategies alone and in combination. Finally, we discuss some of the broader consequences, beyond resistance to phage and other genetic elements, resulting from the operation of different immune strategies.
Collapse
Affiliation(s)
- Stineke van Houte
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Angus Buckling
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Edze R Westra
- ESI and CEC, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
89
|
Hochstrasser ML, Taylor DW, Kornfeld JE, Nogales E, Doudna JA. DNA Targeting by a Minimal CRISPR RNA-Guided Cascade. Mol Cell 2016; 63:840-51. [PMID: 27588603 PMCID: PMC5111854 DOI: 10.1016/j.molcel.2016.07.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/11/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022]
Abstract
Bacteria employ surveillance complexes guided by CRISPR (clustered, regularly interspaced, short palindromic repeats) RNAs (crRNAs) to target foreign nucleic acids for destruction. Although most type I and type III CRISPR systems require four or more distinct proteins to form multi-subunit surveillance complexes, the type I-C systems use just three proteins to achieve crRNA maturation and double-stranded DNA target recognition. We show that each protein plays multiple functional and structural roles: Cas5c cleaves pre-crRNAs and recruits Cas7 to position the RNA guide for DNA binding and unwinding by Cas8c. Cryoelectron microscopy reconstructions of free and DNA-bound forms of the Cascade/I-C surveillance complex reveal conformational changes that enable R-loop formation with distinct positioning of each DNA strand. This streamlined type I-C system explains how CRISPR pathways can evolve compact structures that retain full functionality as RNA-guided DNA capture platforms.
Collapse
MESH Headings
- Amino Acid Motifs
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- CRISPR-Cas Systems
- Cloning, Molecular
- Cryoelectron Microscopy
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- Desulfovibrio vulgaris/genetics
- Desulfovibrio vulgaris/metabolism
- Endonucleases/chemistry
- Endonucleases/genetics
- Endonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Editing
- Gene Expression
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Operon
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Guide, CRISPR-Cas Systems/chemistry
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Megan L Hochstrasser
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David W Taylor
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Jack E Kornfeld
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
90
|
Profile of Eva Nogales. Proc Natl Acad Sci U S A 2016; 113:9395-7. [PMID: 27528684 DOI: 10.1073/pnas.1612507113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
91
|
Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 2016; 353:aad5147. [PMID: 27493190 DOI: 10.1126/science.aad5147] [Citation(s) in RCA: 431] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adaptive immunity had been long thought of as an exclusive feature of animals. However, the discovery of the CRISPR-Cas defense system, present in almost half of prokaryotic genomes, proves otherwise. Because of the everlasting parasite-host arms race, CRISPR-Cas has rapidly evolved through horizontal transfer of complete loci or individual modules, resulting in extreme structural and functional diversity. CRISPR-Cas systems are divided into two distinct classes that each consist of three types and multiple subtypes. We discuss recent advances in CRISPR-Cas research that reveal elaborate molecular mechanisms and provide for a plausible scenario of CRISPR-Cas evolution. We also briefly describe the latest developments of a wide range of CRISPR-based applications.
Collapse
Affiliation(s)
- Prarthana Mohanraju
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, Netherlands
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Bernd Zetsche
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, Netherlands.
| |
Collapse
|
92
|
Wright AV, Nuñez JK, Doudna JA. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 2016; 164:29-44. [PMID: 26771484 DOI: 10.1016/j.cell.2015.12.035] [Citation(s) in RCA: 717] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/26/2022]
Abstract
Bacteria and archaea possess a range of defense mechanisms to combat plasmids and viral infections. Unique among these are the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems, which provide adaptive immunity against foreign nucleic acids. CRISPR systems function by acquiring genetic records of invaders to facilitate robust interference upon reinfection. In this Review, we discuss recent advances in understanding the diverse mechanisms by which Cas proteins respond to foreign nucleic acids and how these systems have been harnessed for precision genome manipulation in a wide array of organisms.
Collapse
Affiliation(s)
- Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James K Nuñez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute HHMI, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Initiative, University of California, Berkeley, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
93
|
Zhang J, Graham S, Tello A, Liu H, White MF. Multiple nucleic acid cleavage modes in divergent type III CRISPR systems. Nucleic Acids Res 2016; 44:1789-99. [PMID: 26801642 PMCID: PMC4770243 DOI: 10.1093/nar/gkw020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/14/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is an RNA-guided adaptive immune system that protects bacteria and archaea from invading nucleic acids. Type III systems (Cmr, Csm) have been shown to cleave RNA targets in vitro and some are capable of transcription-dependent DNA targeting. The crenarchaeon Sulfolobus solfataricus has two divergent subtypes of the type III system (Sso-IIID and a Cmr7-containing variant of Sso-IIIB). Here, we report that both the Sso-IIID and Sso-IIIB complexes cleave cognate RNA targets with a ruler mechanism and 6 or 12 nt spacing that relates to the organization of the Cas7 backbone. This backbone-mediated cleavage activity thus appears universal for the type III systems. The Sso-IIIB complex is also known to possess a distinct 'UA' cleavage mode. The predominant activity observed in vitro depends on the relative molar concentration of protein and target RNA. The Sso-IIID complex can cleave plasmid DNA targets in vitro, generating linear DNA products with an activity that is dependent on both the cyclase and HD nuclease domains of the Cas10 subunit, suggesting a role for both nuclease active sites in the degradation of double-stranded DNA targets.
Collapse
Affiliation(s)
- Jing Zhang
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| | - Shirley Graham
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| | - Agnes Tello
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| | - Huanting Liu
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
94
|
Estrella MA, Kuo FT, Bailey S. RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex. Genes Dev 2016; 30:460-70. [PMID: 26848046 PMCID: PMC4762430 DOI: 10.1101/gad.273722.115] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat) system is an RNA-guided immune system that protects prokaryotes from invading genetic elements. This system represents an inheritable and adaptable immune system that is mediated by multisubunit effector complexes. In the Type III-B system, the Cmr effector complex has been found to cleave ssRNA in vitro. However, in vivo, it has been implicated in transcription-dependent DNA targeting. We show here that the Cmr complex from Thermotoga maritima can cleave an ssRNA target that is complementary to the CRISPR RNA. We also show that binding of a complementary ssRNA target activates an ssDNA-specific nuclease activity in the histidine-aspartate (HD) domain of the Cmr2 subunit of the complex. These data suggest a mechanism for transcription-coupled DNA targeting by the Cmr complex and provide a unifying mechanism for all Type III systems.
Collapse
Affiliation(s)
- Michael A Estrella
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Fang-Ting Kuo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
95
|
Elmore JR, Sheppard NF, Ramia N, Deighan T, Li H, Terns RM, Terns MP. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system. Genes Dev 2016; 30:447-59. [PMID: 26848045 PMCID: PMC4762429 DOI: 10.1101/gad.272153.115] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022]
Abstract
Here, Elmore et al. investigate how the Type III-B Cmr complex, which cleaves invader RNAs recognized by the CRISPR RNA (crRNA), functions. The findings demonstrate that the Cmr complex is a novel DNA nuclease activated by invader RNAs containing a crRNA target sequence and a protospacer-adjacent motif (rPAM). CRISPR–Cas systems eliminate nucleic acid invaders in bacteria and archaea. The effector complex of the Type III-B Cmr system cleaves invader RNAs recognized by the CRISPR RNA (crRNA ) of the complex. Here we show that invader RNAs also activate the Cmr complex to cleave DNA. As has been observed for other Type III systems, Cmr eliminates plasmid invaders in Pyrococcus furiosus by a mechanism that depends on transcription of the crRNA target sequence within the plasmid. Notably, we found that the target RNA per se induces DNA cleavage by the Cmr complex in vitro. DNA cleavage activity does not depend on cleavage of the target RNA but notably does require the presence of a short sequence adjacent to the target sequence within the activating target RNA (rPAM [RNA protospacer-adjacent motif]). The activated complex does not require a target sequence (or a PAM) in the DNA substrate. Plasmid elimination by the P. furiosus Cmr system also does not require the Csx1 (CRISPR-associated Rossman fold [CARF] superfamily) protein. Plasmid silencing depends on the HD nuclease and Palm domains of the Cmr2 (Cas10 superfamily) protein. The results establish the Cmr complex as a novel DNA nuclease activated by invader RNAs containing a crRNA target sequence and a rPAM.
Collapse
Affiliation(s)
- Joshua R Elmore
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Nolan F Sheppard
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Nancy Ramia
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32313, USA
| | - Trace Deighan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Hong Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32313, USA
| | - Rebecca M Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA; Department of Genetics, Florida State University, Tallahassee, Florida 32313, USA; Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
96
|
Sheppard NF, Glover CVC, Terns RM, Terns MP. The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease. RNA (NEW YORK, N.Y.) 2016; 22:216-24. [PMID: 26647461 PMCID: PMC4712672 DOI: 10.1261/rna.039842.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/27/2015] [Indexed: 05/15/2023]
Abstract
Prokaryotes are frequently exposed to potentially harmful invasive nucleic acids from phages, plasmids, and transposons. One method of defense is the CRISPR-Cas adaptive immune system. Diverse CRISPR-Cas systems form distinct ribonucleoprotein effector complexes that target and cleave invasive nucleic acids to provide immunity. The Type III-B Cmr effector complex has been found to target the RNA and DNA of the invader in the various bacterial and archaeal organisms where it has been characterized. Interestingly, the gene encoding the Csx1 protein is frequently located in close proximity to the Cmr1-6 genes in many genomes, implicating a role for Csx1 in Cmr function. However, evidence suggests that Csx1 is not a stably associated component of the Cmr effector complex, but is necessary for DNA silencing by the Cmr system in Sulfolobus islandicus. To investigate the function of the Csx1 protein, we characterized the activity of recombinant Pyrococcus furiosus Csx1 against various nucleic acid substrates. We show that Csx1 is a metal-independent, endoribonuclease that acts selectively on single-stranded RNA and cleaves specifically after adenosines. The RNA cleavage activity of Csx1 is dependent upon a conserved HEPN motif located within the C-terminal domain of the protein. This motif is also key for activity in other known ribonucleases. Collectively, the findings indicate that invader silencing by Type III-B CRISPR-Cas systems relies both on RNA and DNA nuclease activities from the Cmr effector complex as well as on the affiliated, trans-acting Csx1 endoribonuclease.
Collapse
Affiliation(s)
- Nolan F Sheppard
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Claiborne V C Glover
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Rebecca M Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA Department of Genetics, University of Georgia, Athens, Georgia 30602, USA Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
97
|
Gallo G, Augusto G, Rangel G, Zelanis A, Mori MA, Campos CB, Würtele M. Structural basis for dimer formation of the CRISPR-associated protein Csm2 of Thermotoga maritima. FEBS J 2016; 283:694-703. [PMID: 26663887 DOI: 10.1111/febs.13621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED The clusters of regularly interspaced short palindromic repeats (CRISPR) and the Cas (CRISPR-associated) proteins form an adaptive immune system in bacteria and archaea that evolved as an RNA-guided interference mechanism to target and degrade foreign genetic elements. In the so-called type IIIA CRISPR-Cas systems, Cas proteins from the Csm family form a complex of RNPs that are involved in surveillance and targeting tasks. In the present study, we report the crystal structure of Thermotoga maritima Csm2. This protein is considered to assemble into the helically shaped Csm RNP complex in a site opposite to the CRISPR RNA binding backbone. Csm2 was solved via cadmium single wavelength anomalous diffraction phasing at 2.4 Å resolution. The structure reveals that Csm2 is composed of a large 42 amino-acid long α-helix flanked by three shorter α-helices. The structure also shows that the protein is capable of forming dimers mainly via an extensive contact surface conferred by its long α-helix. This interaction is further stabilized by the N-terminal helix, which is inserted into the C-terminal helical portion of the adjacent subunit. The dimerization of Csm2 was additionally confirmed by size exclusion chromatography of the pure recombinant protein followed by MS analysis of the eluted fractions. Because of its role in the assembly and functioning of the Csm CRISPR RNP complex, the crystal structure of Csm2 is of great importance for clarifying the mechanism of action of the subtype IIIA CRISPR-Cas system, as well as the similarities and diversities between the different CRISPR-Cas system. DATABASE The structure of Thermotoga maritima Csm2 has been deposited in the Protein Data Bank under accession code 5AN6.
Collapse
Affiliation(s)
- Gloria Gallo
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Gilles Augusto
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Giulliana Rangel
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - André Zelanis
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil.,Applied Toxinology Laboratory - LETA and Center of Toxins, Immune-response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Cláudia B Campos
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Martin Würtele
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| |
Collapse
|
98
|
Li Y, Mendiratta S, Ehrhardt K, Kashyap N, White MA, Bleris L. Exploiting the CRISPR/Cas9 PAM Constraint for Single-Nucleotide Resolution Interventions. PLoS One 2016; 11:e0144970. [PMID: 26788852 PMCID: PMC4720446 DOI: 10.1371/journal.pone.0144970] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/27/2015] [Indexed: 01/03/2023] Open
Abstract
CRISPR/Cas9 is an enabling RNA-guided technology for genome targeting and engineering. An acute DNA binding constraint of the Cas9 protein is the Protospacer Adjacent Motif (PAM). Here we demonstrate that the PAM requirement can be exploited to specifically target single-nucleotide heterozygous mutations while exerting no aberrant effects on the wild-type alleles. Specifically, we target the heterozygous G13A activating mutation of KRAS in colorectal cancer cells and we show reversal of drug resistance to a MEK small-molecule inhibitor. Our study introduces a new paradigm in genome editing and therapeutic targeting via the use of gRNA to guide Cas9 to a desired protospacer adjacent motif.
Collapse
Affiliation(s)
- Yi Li
- Bioengineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States of America
- Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States of America
| | - Saurabh Mendiratta
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States of America
| | - Kristina Ehrhardt
- Bioengineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States of America
- Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States of America
| | - Neha Kashyap
- Bioengineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States of America
- Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States of America
| | - Michael A. White
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States of America
| | - Leonidas Bleris
- Bioengineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States of America
- Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States of America
- Electrical Engineering Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States of America
| |
Collapse
|
99
|
Zhang K. Gctf: Real-time CTF determination and correction. J Struct Biol 2015; 193:1-12. [PMID: 26592709 PMCID: PMC4711343 DOI: 10.1016/j.jsb.2015.11.003] [Citation(s) in RCA: 2764] [Impact Index Per Article: 276.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 11/26/2022]
Abstract
Accurate estimation of the contrast transfer function (CTF) is critical for a near-atomic resolution cryo electron microscopy (cryoEM) reconstruction. Here, a GPU-accelerated computer program, Gctf, for accurate and robust, real-time CTF determination is presented. The main target of Gctf is to maximize the cross-correlation of a simulated CTF with the logarithmic amplitude spectra (LAS) of observed micrographs after background subtraction. Novel approaches in Gctf improve both speed and accuracy. In addition to GPU acceleration (e.g. 10–50×), a fast ‘1-dimensional search plus 2-dimensional refinement (1S2R)’ procedure further speeds up Gctf. Based on the global CTF determination, the local defocus for each particle and for single frames of movies is accurately refined, which improves CTF parameters of all particles for subsequent image processing. Novel diagnosis method using equiphase averaging (EPA) and self-consistency verification procedures have also been implemented in the program for practical use, especially for aims of near-atomic reconstruction. Gctf is an independent program and the outputs can be easily imported into other cryoEM software such as Relion (Scheres, 2012) and Frealign (Grigorieff, 2007). The results from several representative datasets are shown and discussed in this paper.
Collapse
Affiliation(s)
- Kai Zhang
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
100
|
Abstract
Bacterial adaptive immunity hinges on CRISPR-Cas systems that provide DNA-encoded, RNA-mediated targeting of exogenous nucleic acids. A plethora of CRISPR molecular machines occur broadly in prokaryotic genomes, with a diversity of Cas nucleases that can be repurposed for various applications.
Collapse
Affiliation(s)
- Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|