51
|
Berger J, Legendre F, Zelosko KM, Harrison MC, Grandcolas P, Bornberg-Bauer E, Fouks B. Eusocial Transition in Blattodea: Transposable Elements and Shifts of Gene Expression. Genes (Basel) 2022; 13:1948. [PMID: 36360186 PMCID: PMC9689775 DOI: 10.3390/genes13111948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2023] Open
Abstract
(1) Unravelling the molecular basis underlying major evolutionary transitions can shed light on how complex phenotypes arise. The evolution of eusociality, a major evolutionary transition, has been demonstrated to be accompanied by enhanced gene regulation. Numerous pieces of evidence suggest the major impact of transposon insertion on gene regulation and its role in adaptive evolution. Transposons have been shown to be play a role in gene duplication involved in the eusocial transition in termites. However, evidence of the molecular basis underlying the eusocial transition in Blattodea remains scarce. Could transposons have facilitated the eusocial transition in termites through shifts of gene expression? (2) Using available cockroach and termite genomes and transcriptomes, we investigated if transposons insert more frequently in genes with differential expression in queens and workers and if those genes could be linked to specific functions essential for eusocial transition. (3) The insertion rate of transposons differs among differentially expressed genes and displays opposite trends between termites and cockroaches. The functions of termite transposon-rich queen- and worker-biased genes are related to reproduction and ageing and behaviour and gene expression, respectively. (4) Our study provides further evidence on the role of transposons in the evolution of eusociality, potentially through shifts in gene expression.
Collapse
Affiliation(s)
- Juliette Berger
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Frédéric Legendre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Kevin-Markus Zelosko
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, Hüfferstrasse 1, 48149 Münster, Germany
| | - Mark C. Harrison
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, Hüfferstrasse 1, 48149 Münster, Germany
| | - Philippe Grandcolas
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, Hüfferstrasse 1, 48149 Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Bertrand Fouks
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, Hüfferstrasse 1, 48149 Münster, Germany
| |
Collapse
|
52
|
Traniello JF, Linksvayer TA, Coto ZN. Social complexity and brain evolution: insights from ant neuroarchitecture and genomics. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100962. [PMID: 36028191 DOI: 10.1016/j.cois.2022.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Brain evolution is hypothesized to be driven by requirements to adaptively respond to environmental cues and social signals. Diverse models describe how sociality may have influenced eusocial insect-brain evolution, but specific impacts of social organization and other selective forces on brain architecture have been difficult to distinguish. Here, we evaluate predictions derived from and/or inferences made by models of social organization concerning the effects of individual and collective behavior on brain size, structure, and function using results of neuroanatomical and genomic studies. In contrast to the predictions of some models, we find that worker brains in socially complex species have great behavioral and cognitive capacity. We also find that colony size, the evolution of worker physical castes, and task specialization affect brain size and mosaicism, supporting the idea that sensory, processing and motor requirements for behavioral performance select for adaptive allometries of functionally specialized brain centers. We review available transcriptomic and comparative genomic studies seeking to elucidate the molecular pathways functionally associated with social life and the genetic changes that occurred during the evolution of social complexity. We discuss ways forward, using comparative neuroanatomy, transcriptomics, and comparative genomics, to distinguish among multiple alternative explanations for the relationship between the evolution of neural systems and social complexity.
Collapse
Affiliation(s)
- James Fa Traniello
- Department of Biology, Boston University, Boston, MA, USA; Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| | | | - Zachary N Coto
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
53
|
Yan JL, Dukas R. The social consequences of sexual conflict in bed bugs: social networks and sexual attraction. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
54
|
Differential Gene Expression Correlates with Behavioural Polymorphism during Collective Behaviour in Cockroaches. Animals (Basel) 2022; 12:ani12182354. [PMID: 36139214 PMCID: PMC9495117 DOI: 10.3390/ani12182354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary It is currently well accepted that animals differ from one another in their behaviour and tendency to perform actions, a property we refer to as animal personality. In group-living animals, variation in animal personality can be important to determine group survival, as it determines how individuals interact with each other and with their environment. However, we have little knowledge of the proximal mechanisms underlying personality, particularly in group-living organisms. Here, we investigate the relationship between gene expression and two behavioural types (bold and shy) in a gregarious species: the American cockroach. Our results show that bold individuals have upregulated genes with functions associated with sensory activity (phototaxis and odour detection) and aggressive/dominant behaviour, and suggest that social context can modulate gene expression related to bold/shy characteristics. This work could help identify genes important in the earliest stages of group living and social life, and provides a first step toward establishing cockroaches as a focal group for the study of the evolution of sociality. Abstract Consistent inter-individual variation in the propensity to perform different tasks (animal personality) can contribute significantly to the success of group-living organisms. The distribution of different personalities in a group influences collective actions and therefore how these organisms interact with their environment. However, we have little understanding of the proximate mechanisms underlying animal personality in animal groups, and research on this theme has often been biased towards organisms with advanced social systems. The goal of this study is to investigate the mechanistic basis for personality variation during collective behaviour in a species with rudimentary societies: the American cockroach. We thus use an approach which combines experimental classification of individuals into behavioural phenotypes (‘bold’ and ‘shy’ individuals) with comparative gene expression. Our analyses reveal differences in gene expression between behavioural phenotypes and suggest that social context may modulate gene expression related to bold/shy characteristics. We also discuss how cockroaches could be a valuable model for the study of genetic mechanisms underlying the early steps in the evolution of social behaviour and social complexity. This study provides a first step towards a better understanding of the molecular mechanisms associated with differences in boldness and behavioural plasticity in these organisms.
Collapse
|
55
|
Sless TJL, Searle JB, Danforth BN. Genome of the bee Holcopasites calliopsidis—a species showing the common apid trait of brood parasitism. G3 GENES|GENOMES|GENETICS 2022; 12:6619165. [PMID: 35762966 PMCID: PMC9339306 DOI: 10.1093/g3journal/jkac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022]
Abstract
Brood parasites represent a substantial but often poorly studied fraction of the wider diversity of bees. Brood parasitic bees complete their life cycles by infiltrating the nests of solitary host bees thereby enabling their offspring to exploit the food provisions intended for the host’s offspring. Here, we present the draft assembly of the bee Holcopasites calliopsidis, the first brood parasitic species to be the subject of detailed genomic analysis. Consistent with previous findings on the genomic signatures of parasitism more broadly, we find that H. calliopsidis has the smallest genome currently known among bees (179 Mb). This small genome does not appear to be the result of purging of repetitive DNA, with some indications of novel repetitive elements which may show signs of recent expansion. Nor does H. calliopsidis demonstrate any apparent net loss of genic content in comparison with nonparasitic species, though many individual gene families do show significant contractions. Although the basis of the small genome size of this species remains unclear, the identification of over 12,000 putative genes—with functional annotation for nearly 10,000 of these—is an important step in investigating the genomic basis of brood parasitism and provides a valuable dataset to be compared against new genomes that remain to be sequenced.
Collapse
Affiliation(s)
- Trevor J L Sless
- Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, NY 14853, USA
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, NY 14853, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University , Ithaca, NY 14853, USA
| |
Collapse
|
56
|
Abstract
The question of the heritability of behavior has been of long fascination to scientists and the broader public. It is now widely accepted that most behavioral variation has a genetic component, although the degree of genetic influence differs widely across behaviors. Starting with Mendel's remarkable discovery of "inheritance factors," it has become increasingly clear that specific genetic variants that influence behavior can be identified. This goal is not without its challenges: Unlike pea morphology, most natural behavioral variation has a complex genetic architecture. However, we can now apply powerful genome-wide approaches to connect variation in DNA to variation in behavior as well as analyses of behaviorally related variation in brain gene expression, which together have provided insights into both the genetic mechanisms underlying behavior and the dynamic relationship between genes and behavior, respectively, in a wide range of species and for a diversity of behaviors. Here, we focus on two systems to illustrate both of these approaches: the genetic basis of burrowing in deer mice and transcriptomic analyses of division of labor in honey bees. Finally, we discuss the troubled relationship between the field of behavioral genetics and eugenics, which reminds us that we must be cautious about how we discuss and contextualize the connections between genes and behavior, especially in humans.
Collapse
Affiliation(s)
- Hopi E. Hoekstra
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
- HHMI, Harvard University, Cambridge, MA 02138
| | - Gene E. Robinson
- Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
57
|
Hearn LR, Davies OK, Schwarz MP. Extreme reproductive skew at the dawn of sociality is consistent with inclusive fitness theory but problematic for routes to eusociality. Proc Biol Sci 2022; 289:20220652. [PMID: 35703047 PMCID: PMC9201697 DOI: 10.1098/rspb.2022.0652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To understand the earliest stages of social evolution, we need to identify species that are undergoing the initial steps into sociality. Amphylaeus morosus is the only unambiguously known social species in the bee family Colletidae and represents an independent origin of sociality within the Apoidea. This allows us to investigate the selective factors promoting the transition from solitary to social nesting. Using genome-wide SNP genotyping, we infer robust pedigree relationships to identify maternity of brood and intracolony relatedness for colonies at the end of the reproductive season. We show that A. morosus forms both matrifilial and full-sibling colonies, both involving complete or almost complete monopolization over reproduction. In social colonies, the reproductive primary was also the primary forager with the secondary female remaining in the nest, presumably as a guard. Social nesting provided significant protection against parasitism and increased brood survivorship in general. We show that secondary females gain large indirect fitness benefits from defensive outcomes, enough to satisfy the conditions of inclusive fitness theory, despite an over-production of males in social colonies. These results suggest an avenue to sociality that involves high relatedness and, very surprisingly, extreme reproductive skew in its earliest stages and raises important questions about the evolutionary steps in pathways to eusociality.
Collapse
Affiliation(s)
- Lucas R. Hearn
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Olivia K. Davies
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Michael P. Schwarz
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| |
Collapse
|
58
|
Mier P, Fontaine JF, Stoldt M, Libbrecht R, Martelli C, Foitzik S, Andrade-Navarro MA. Annotation and Analysis of 3902 Odorant Receptor Protein Sequences from 21 Insect Species Provide Insights into the Evolution of Odorant Receptor Gene Families in Solitary and Social Insects. Genes (Basel) 2022; 13:genes13050919. [PMID: 35627304 PMCID: PMC9141868 DOI: 10.3390/genes13050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
The gene family of insect olfactory receptors (ORs) has expanded greatly over the course of evolution. ORs enable insects to detect volatile chemicals and therefore play an important role in social interactions, enemy and prey recognition, and foraging. The sequences of several thousand ORs are known, but their specific function or their ligands have only been identified for very few of them. To advance the functional characterization of ORs, we have assembled, curated, and aligned the sequences of 3902 ORs from 21 insect species, which we provide as an annotated online resource. Using functionally characterized proteins from the fly Drosophila melanogaster, the mosquito Anopheles gambiae and the ant Harpegnathos saltator, we identified amino acid positions that best predict response to ligands. We examined the conservation of these predicted relevant residues in all OR subfamilies; the results showed that the subfamilies that expanded strongly in social insects had a high degree of conservation in their binding sites. This suggests that the ORs of social insect families are typically finely tuned and exhibit sensitivity to very similar odorants. Our novel approach provides a powerful tool to exploit functional information from a limited number of genes to study the functional evolution of large gene families.
Collapse
Affiliation(s)
- Pablo Mier
- Institute of Organismic and Molecular Evolution (iomE), Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (J.-F.F.); (M.S.); (R.L.); (S.F.); (M.A.A.-N.)
- Correspondence:
| | - Jean-Fred Fontaine
- Institute of Organismic and Molecular Evolution (iomE), Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (J.-F.F.); (M.S.); (R.L.); (S.F.); (M.A.A.-N.)
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution (iomE), Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (J.-F.F.); (M.S.); (R.L.); (S.F.); (M.A.A.-N.)
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution (iomE), Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (J.-F.F.); (M.S.); (R.L.); (S.F.); (M.A.A.-N.)
| | - Carlotta Martelli
- Institute of Developmental Biology and Neurobiology (iDN), Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany;
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution (iomE), Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (J.-F.F.); (M.S.); (R.L.); (S.F.); (M.A.A.-N.)
| | - Miguel A. Andrade-Navarro
- Institute of Organismic and Molecular Evolution (iomE), Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; (J.-F.F.); (M.S.); (R.L.); (S.F.); (M.A.A.-N.)
| |
Collapse
|
59
|
Fang F, Zhou H, Feng X, Chen X, Wang Z, Zhao S, Li X. Gene expression and chromatin conformation differs between worker bees performing different tasks. Genomics 2022; 114:110362. [PMID: 35398245 DOI: 10.1016/j.ygeno.2022.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/16/2022] [Accepted: 04/02/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Revealing the effect of transcriptomic regulation on behavioral differences is a fundamental goal in biology, but the relationship between gene regulatory networks and individual behavior differences remains largely unknown. Honey bees are considered as good models for studying the mechanisms underlying gene expression changes and behavioral differences since they exhibit strong and obvious differences in tasks between individuals. The cis-regulatory regions usually contain the binding sites of diverse transcription factor (TFs) influencing bee behavior. Thus, the identification of cis-regulatory elements in the brains across different behavioral states is important for understanding how genomic and transcriptomic variations affect different tasks in honeybees. METHODS In this study, we employed transcriptome and genome-wide chromatin accessibility assays to analyze brain tissues of honey bees in different behavioral states for examining the relationship between individual behavior differences and brain gene expression changes. We also used the obtained open chromatin regions to identify cis-motifs associating differentially expressed TFs and genes in order to reveal the transcriptional regulatory mechanism related to the different tasks. RESULTS We identified genetic regulatory modules regulating different tasks that contained key TFs (CTCF, Trl and schlank) associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of the corresponding TFs. The most prominent transcriptomic changes, which correlated with chromatin accessibility modifications within their proximal promoter regions, occurred in nervous system development, and were associated with behavior switch. CONCLUSIONS Our results revealed the regulatory landscape among three behavioral stages in honeybees and identified interactive molecular networks regulating different tasks. These results provide a comprehensive insight into behavioral differences of honeybees, which offers reference for future study.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, PR China
| | - Huanhuan Zhou
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Xiaojuan Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, PR China
| | - Xiasang Chen
- Department of Honeybee Protection and Biosafety, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
60
|
Maekawa K, Hayashi Y, Lo N. Termite sociogenomics: evolution and regulation of caste-specific expressed genes. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100880. [PMID: 35123120 DOI: 10.1016/j.cois.2022.100880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Termite genomes have been sequenced in at least five species from four different families. Genome-based transcriptome analyses have identified large numbers of protein-coding genes with caste-specific expression patterns. These genes include those involved in caste-specific morphologies and roles, for example high fecundity and longevity in reproductives. Some caste-specific expressed genes belong to multi-gene families, and their genetic architecture and expression profiles indicate they have evolved via tandem gene duplication. Candidate regulatory mechanisms of caste-specific expression include epigenetic regulation (e.g. histone modification and non-coding RNA) and diversification of transcription factors and cis-regulatory elements. We review current knowledge in the area of termite sociogenomics, focussing on the evolution and regulation of caste-specific expressed genes, and discuss future research directions.
Collapse
Affiliation(s)
- Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshinobu Hayashi
- Department of Biology, Keio University, Hiyoshi, Yokohama 223-8521, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, NSW, Australia
| |
Collapse
|
61
|
Costa CP, Okamoto N, Orr M, Yamanaka N, Woodard SH. Convergent Loss of Prothoracicotropic Hormone, A Canonical Regulator of Development, in Social Bee Evolution. Front Physiol 2022; 13:831928. [PMID: 35242055 PMCID: PMC8887954 DOI: 10.3389/fphys.2022.831928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The evolution of insect sociality has repeatedly involved changes in developmental events and their timing. Here, we propose the hypothesis that loss of a canonical regulator of moulting and metamorphosis, prothoracicotropic hormone (PTTH), and its receptor, Torso, is associated with the evolution of sociality in bees. Specifically, we posit that the increasing importance of social influences on early developmental timing in social bees has led to their decreased reliance on PTTH, which connects developmental timing with abiotic cues in solitary insects. At present, the evidence to support this hypothesis includes the absence of genes encoding PTTH and Torso from all fully-sequenced social bee genomes and its presence in all available genomes of solitary bees. Based on the bee phylogeny, the most parsimonious reconstruction of evolutionary events is that this hormone and its receptor have been lost multiple times, across independently social bee lineages. These gene losses shed light on possible molecular and cellular mechanisms that are associated with the evolution of social behavior in bees. We outline the available evidence for our hypothesis, and then contextualize it in light of what is known about developmental cues in social and solitary bees, and the multiple precedences of major developmental changes in social insects.
Collapse
Affiliation(s)
- Claudinéia P Costa
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Naoki Okamoto
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
62
|
Burrowing deeper to uncover the genetic architecture of behavioral evolution. Cell Rep 2022; 38:110378. [PMID: 35172144 DOI: 10.1016/j.celrep.2022.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Allele-specific expression analysis of hybrid mice provides new insights into the genetic substrates of behavioral evolution. As a complement to QTL mapping, this approach, described by Hu et al. in this issue of Cell Reports, holds promise for identifying causative regulatory loci that influence species-specific behavior.
Collapse
|
63
|
cis-Regulatory changes in locomotor genes are associated with the evolution of burrowing behavior. Cell Rep 2022; 38:110360. [PMID: 35172153 DOI: 10.1016/j.celrep.2022.110360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
How evolution modifies complex, innate behaviors is largely unknown. Divergence in many morphological traits, and some behaviors, is linked to cis-regulatory changes in gene expression. Given this, we compare brain gene expression of two interfertile sister species of Peromyscus mice that show large and heritable differences in burrowing behavior. Species-level differential expression and allele-specific expression in F1 hybrids indicate a preponderance of cis-regulatory divergence, including many genes whose cis-regulation is affected by burrowing behavior. Genes related to locomotor coordination show the strongest signals of lineage-specific selection on burrowing-induced cis-regulatory changes. Furthermore, genetic markers closest to these candidate genes associate with variation in burrow shape in a genetic cross, suggesting an enrichment for loci affecting burrowing behavior near these candidate locomotor genes. Our results provide insight into how cis-regulated gene expression can depend on behavioral context and how this dynamic regulatory divergence between species may contribute to behavioral evolution.
Collapse
|
64
|
Blaxter M, Archibald JM, Childers AK, Coddington JA, Crandall KA, Di Palma F, Durbin R, Edwards SV, Graves JAM, Hackett KJ, Hall N, Jarvis ED, Johnson RN, Karlsson EK, Kress WJ, Kuraku S, Lawniczak MKN, Lindblad-Toh K, Lopez JV, Moran NA, Robinson GE, Ryder OA, Shapiro B, Soltis PS, Warnow T, Zhang G, Lewin HA. Why sequence all eukaryotes? Proc Natl Acad Sci U S A 2022; 119:e2115636118. [PMID: 35042801 PMCID: PMC8795522 DOI: 10.1073/pnas.2115636118] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.
Collapse
Affiliation(s)
- Mark Blaxter
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom;
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada
| | - Anna K Childers
- Bee Research Laboratory, Agricultural Research Service, US Department of Agriculture (USDA), Beltsville, MD 20705
| | - Jonathan A Coddington
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC 20052
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC 20013
| | - Federica Di Palma
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Richard Durbin
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Jennifer A M Graves
- School of Life Sciences, La Trobe University, Bundoora, VIC 751 23, Australia
- University of Canberra, Bruce, ACT 2617, Australia
| | - Kevin J Hackett
- Crop Production and Protection, Office of National Programs, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - Neil Hall
- Earlham Institute, Norwich, Norfolk NR4 7UZ, United Kingdom
| | - Erich D Jarvis
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Rebecca N Johnson
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - W John Kress
- Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012
| | - Shigehiro Kuraku
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | | | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden
| | - Jose V Lopez
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004
- Guy Harvey Oceanographic Center, Dania Beach, FL 33004
| | - Nancy A Moran
- Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Oliver A Ryder
- Conservation Genetics, Division of Biology, San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Department of Evolution, Behavior and Ecology, University of California, San Diego, La Jolla, CA 92039
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
| | - Tandy Warnow
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61301
| | - Guojie Zhang
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- China National Genebank, Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Harris A Lewin
- Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, CA 95616
- Department of Population Health and Reproduction, University of California, Davis, CA 95616
| |
Collapse
|
65
|
Jongepier E, Séguret A, Labutin A, Feldmeyer B, Gstöttl C, Foitzik S, Heinze J, Bornberg-Bauer E. Convergent Loss of Chemoreceptors across Independent Origins of Slave-Making in Ants. Mol Biol Evol 2022; 39:msab305. [PMID: 34668533 PMCID: PMC8760941 DOI: 10.1093/molbev/msab305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of an obligate parasitic lifestyle often leads to the reduction of morphological and physiological traits, which may be accompanied by loss of genes and functions. Slave-making ants are social parasites that exploit the work force of closely related ant species for social behaviors such as brood care and foraging. Recent divergence between these social parasites and their hosts enables comparative studies of gene family evolution. We sequenced the genomes of eight ant species, representing three independent origins of ant slavery. During the evolution of eusociality, chemoreceptor genes multiplied due to the importance of chemical communication in insect societies. We investigated the evolutionary fate of these chemoreceptors and found that slave-making ant genomes harbored only half as many gustatory receptors as their hosts', potentially mirroring the outsourcing of foraging tasks to host workers. In addition, parasites had fewer odorant receptors and their loss shows striking patterns of convergence across independent origins of parasitism, in particular in orthologs often implicated in sociality like the 9-exon odorant receptors. These convergent losses represent a rare case of convergent molecular evolution at the level of individual genes. Thus, evolution can operate in a way that is both repeatable and reversible when independent ant lineages lose important social traits during the transition to a parasitic lifestyle.
Collapse
Affiliation(s)
- Evelien Jongepier
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Alice Séguret
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - Anton Labutin
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - Barbara Feldmeyer
- Molecular Ecology Group, Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Claudia Gstöttl
- Institute for Zoology, University of Regensburg, Regensburg, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Jürgen Heinze
- Institute for Zoology, University of Regensburg, Regensburg, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| |
Collapse
|
66
|
Abstract
Many species have separate haploid and diploid phases. Theory predicts that each phase should experience the effects of evolutionary forces (like selection) differently. In the haploid phase, all fitness-affecting alleles are exposed to selection, whereas in the diploid phase, those same alleles can be masked by homologous alleles. This predicts that selection acting on genes expressed in haploids should be more effective than diploid-biased genes. Unfortunately, in arrhenotokous species, this prediction can be confounded with the effects of sex-specific expression, as haploids are usually reproductive males. Theory posits that, when accounting for ploidal- and sex-specific expression, selection should be equally efficient on haploid- and diploid-biased genes relative to constitutive genes. Here, we used a multiomic approach in honey bees to quantify the evolutionary rates of haploid-biased genes and test the relative effects of sexual- and haploid-expression on molecular evolution. We found that 16% of the honey bee’s protein-coding genome is highly expressed in haploid tissue. When accounting for ploidy and sex, haploid- and diploid-biased genes evolve at a lower rate than expected, indicating that they experience strong negative selection. However, the rate of molecular evolution of haploid-biased genes was higher than diploid-based genes. Genes associated with sperm storage are a clear exception to this trend with evidence of strong positive selection. Our results provide an important empirical test of theory outlining how selection acts on genes expressed in arrhenotokous species. We propose the haploid life history stage affects genome-wide patterns of diversity and divergence because of both sexual and haploid selection.
Collapse
Affiliation(s)
| | - Amy L. Dapper
- Department of Biological Sciences, Mississippi State University, 219 Harned Hall, 295 Lee Blvd, Mississippi State, Mississippi 39762, USA
| | | |
Collapse
|
67
|
Kowalczyk A, Chikina M, Clark N. Complementary evolution of coding and noncoding sequence underlies mammalian hairlessness. eLife 2022; 11:76911. [PMID: 36342464 PMCID: PMC9803358 DOI: 10.7554/elife.76911] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Body hair is a defining mammalian characteristic, but several mammals, such as whales, naked mole-rats, and humans, have notably less hair. To find the genetic basis of reduced hair quantity, we used our evolutionary-rates-based method, RERconverge, to identify coding and noncoding sequences that evolve at significantly different rates in so-called hairless mammals compared to hairy mammals. Using RERconverge, we performed a genome-wide scan over 62 mammal species using 19,149 genes and 343,598 conserved noncoding regions. In addition to detecting known and potential novel hair-related genes, we also discovered hundreds of putative hair-related regulatory elements. Computational investigation revealed that genes and their associated noncoding regions show different evolutionary patterns and influence different aspects of hair growth and development. Many genes under accelerated evolution are associated with the structure of the hair shaft itself, while evolutionary rate shifts in noncoding regions also included the dermal papilla and matrix regions of the hair follicle that contribute to hair growth and cycling. Genes that were top ranked for coding sequence acceleration included known hair and skin genes KRT2, KRT35, PKP1, and PTPRM that surprisingly showed no signals of evolutionary rate shifts in nearby noncoding regions. Conversely, accelerated noncoding regions are most strongly enriched near regulatory hair-related genes and microRNAs, such as mir205, ELF3, and FOXC1, that themselves do not show rate shifts in their protein-coding sequences. Such dichotomy highlights the interplay between the evolution of protein sequence and regulatory sequence to contribute to the emergence of a convergent phenotype.
Collapse
Affiliation(s)
- Amanda Kowalczyk
- Carnegie Mellon-University of Pittsburgh PhD Program in Computational BiologyPittsburghUnited States,Department of Computational Biology, University of PittsburghPittsburghUnited States
| | - Maria Chikina
- Department of Computational Biology, University of PittsburghPittsburghUnited States
| | - Nathan Clark
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| |
Collapse
|
68
|
Nasrullah, Hussain A, Ahmed S, Rasool M, Shah AJ. DNA methylation across the tree of life, from micro to macro-organism. Bioengineered 2022; 13:1666-1685. [PMID: 34986742 PMCID: PMC8805842 DOI: 10.1080/21655979.2021.2014387] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is a process in which methyl (CH3) groups are added to the DNA molecule. The DNA segment does not change in the sequence, but DNA methylation could alter the action of DNA. Different enzymes like DNA methyltransferases (DNMTs) take part in methylation of cytosine/adenine nucleosides in DNA. In prokaryotes, DNA methylation is performed to prevent the attack of phage and also plays a role in the chromosome replication and repair. In fungi, DNA methylation is studied to see the transcriptional changes, as in insects, the DNA methylation is not that well-known, it plays a different role like other organisms. In mammals, the DNA methylation is related to different types of cancers and plays the most important role in the placental development and abnormal DNA methylation connected with diseases like cancer, autoimmune diseases, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Nasrullah
- Center for Advanced Studies in Vaccinology & Biotechnology (Casvab), University of Baluchistan, Quetta- Pakistan. E-mails:
| | - Abrar Hussain
- Department of Biotechnology, Faculty of Life Sciences, Buitems, Quetta-Pakistan. E-mails:
| | - Sagheer Ahmed
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan. E-mails:
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. E-mails:
| | - Abdul Jabbar Shah
- Department of Pharmaceutical Sciences, Comsats University, Abbottabad. E-mails:
| |
Collapse
|
69
|
Bataglia L, Simões ZLP, Nunes FMF. Active genic machinery for epigenetic RNA modifications in bees. INSECT MOLECULAR BIOLOGY 2021; 30:566-579. [PMID: 34291855 DOI: 10.1111/imb.12726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Epitranscriptomics is an emerging field of investigation dedicated to the study of post-transcriptional RNA modifications. RNA methylations regulate RNA metabolism and processing, including changes in response to environmental cues. Although RNA modifications are conserved from bacteria to eukaryotes, there is little evidence of an epitranscriptomic pathway in insects. Here we identified genes related to RNA m6 A (N6-methyladenine) and m5 C (5-methylcytosine) methylation machinery in seven bee genomes (Apis mellifera, Melipona quadrifasciata, Frieseomelitta varia, Eufriesea mexicana, Bombus terrestris, Megachile rotundata and Dufourea novaeangliae). In A. mellifera, we validated the expression of methyltransferase genes and found that the global levels of m6 A and m5 C measured in the fat body and brain of adult workers differ significantly. Also, m6 A levels were differed significantly mainly between the fourth larval instar of queens and workers. Moreover, we found a conserved m5 C site in the honeybee 28S rRNA. Taken together, we confirm the existence of epitranscriptomic machinery acting in bees and open avenues for future investigations on RNA epigenetics in a wide spectrum of hymenopteran species.
Collapse
Affiliation(s)
- L Bataglia
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Z L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - F M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
70
|
Darragh K, Nelson DR, Ramírez SR. The Birth-and-Death Evolution of Cytochrome P450 Genes in Bees. Genome Biol Evol 2021; 13:evab261. [PMID: 34850870 PMCID: PMC8670302 DOI: 10.1093/gbe/evab261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2021] [Indexed: 12/13/2022] Open
Abstract
The birth-and-death model of multigene family evolution describes how gene families evolve and diversify through duplication and deletion. The cytochrome P450s are one of the most diverse and well-studied multigene families, involved in both physiological and xenobiotic functions. Extensive studies of insect P450 genes have demonstrated their role in insecticide resistance. Bees are thought to experience toxin exposure through their diet of nectar and pollen, as well as the resin-collecting behavior exhibited by some species. Here, we describe the repertoire of P450 genes in the orchid bee Euglossa dilemma. Male orchid bees form perfume bouquets used in courtship displays by collecting volatile compounds, resulting in exposure to compounds known to be toxic. In addition, we conducted phylogenetic and selection analyses across ten bee species encompassing three bee families. We find that social behavior and resin collection are not correlated with the repertoire of P450 present in a bee species. However, our analyses revealed that P450 clades can be classified as stable and unstable, and that genes involved in xenobiotic metabolism are more likely to belong to unstable clades. Furthermore, we find that unstable clades are under more dynamic evolutionary pressures and exhibit signals of adaptive evolution. This work highlights the complexity of multigene family evolution, revealing that multiple factors contribute to the diversification, stability, and dynamics of this gene family. Furthermore, we provide a resource for future detailed studies investigating the function of different P450s in economically important bee species.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - David R Nelson
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee, USA
| | - Santiago R Ramírez
- Department of Evolution and Ecology, University of California, Davis, California, USA
| |
Collapse
|
71
|
Rose CJ, Hammerschmidt K. What Do We Mean by Multicellularity? The Evolutionary Transitions Framework Provides Answers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.730714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
72
|
Walsh AT, Triant DA, Le Tourneau JJ, Shamimuzzaman M, Elsik CG. Hymenoptera Genome Database: new genomes and annotation datasets for improved go enrichment and orthologue analyses. Nucleic Acids Res 2021; 50:D1032-D1039. [PMID: 34747465 PMCID: PMC8728238 DOI: 10.1093/nar/gkab1018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
We report an update of the Hymenoptera Genome Database (HGD; http://HymenopteraGenome.org), a genomic database of hymenopteran insect species. The number of species represented in HGD has nearly tripled, with fifty-eight hymenopteran species, including twenty bees, twenty-three ants, eleven wasps and four sawflies. With a reorganized website, HGD continues to provide the HymenopteraMine genomic data mining warehouse and JBrowse/Apollo genome browsers integrated with BLAST. We have computed Gene Ontology (GO) annotations for all species, greatly enhancing the GO annotation data gathered from UniProt with more than a ten-fold increase in the number of GO-annotated genes. We have also generated orthology datasets that encompass all HGD species and provide orthologue clusters for fourteen taxonomic groups. The new GO annotation and orthology data are available for searching in HymenopteraMine, and as bulk file downloads.
Collapse
Affiliation(s)
- Amy T Walsh
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Deborah A Triant
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Md Shamimuzzaman
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.,Division of Plant Science & Technology, University of Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
73
|
Schmid-Hempel P. Sociality and parasite transmission. Behav Ecol Sociobiol 2021; 75:156. [PMID: 34720348 PMCID: PMC8540878 DOI: 10.1007/s00265-021-03092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
Parasites and their social hosts form many different relationships. But what kind of selection regimes are important? A look at the parameters that determine fitness of the two parties suggests that social hosts differ from solitary ones primarily in the structure of transmission pathways. Because transmission is, both, the physical encounter of a new host and infecting it, several different elements determine parasite transmission success. These include spatial distance, genetic distance, or the temporal and ecological niche overlaps. Combing these elements into a ‘generalized transmission distance’ that determines parasite fitness aids in the identification of the critical steps. For example, short-distance transmission to genetically similar hosts within the social group is the most frequent process under sociality. Therefore, spatio-genetical distances are the main driver of parasite fitness. Vice versa, the generalized distance identifies the critical host defences. In this case, host defences should be primarily selected to defend against the within-group spread of an infection, especially among closely related group members.
Collapse
Affiliation(s)
- Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, ETH-Zentrum CHN, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| |
Collapse
|
74
|
Scott AM, Dworkin I, Dukas R. Evolution of sociability by artificial selection. Evolution 2021; 76:541-553. [PMID: 34605553 DOI: 10.1111/evo.14370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023]
Abstract
There has been extensive research on the ecology and evolution of social life in animals that live in groups. Less attention, however, has been devoted to apparently solitary species, even though recent research indicates that they also possess complex social behaviors. To address this knowledge gap, we artificially selected on sociability, defined as the tendency to engage in nonaggressive activities with others, in fruit flies. Our goal was to quantify the factors that determine the level of sociability and the traits correlated with this feature. After 25 generations of selection, the high-sociability lineages showed sociability scores about 50% higher than did the low-sociability lineages. Experiments using the evolved lineages indicated that there were no differences in mating success between flies from the low and high lineages. Both males and females from the low lineages, however, were more aggressive than males and females from the high lineages. Finally, the evolved lineages maintained their sociability scores after 10 generations of relaxed selection, suggesting no costs to maintaining low and high sociability, at least under our settings. Sociability is a complex trait, which we currently assess through genomic work on the evolved lineages.
Collapse
Affiliation(s)
- Andrew M Scott
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
75
|
Lin D, Lan L, Zheng T, Shi P, Xu J, Li J. Comparative Genomics Reveals Recent Adaptive Evolution in Himalayan Giant Honeybee Apis laboriosa. Genome Biol Evol 2021; 13:6380142. [PMID: 34599331 PMCID: PMC8536543 DOI: 10.1093/gbe/evab227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 01/07/2023] Open
Abstract
The Himalayan giant honeybee, Apis laboriosa, is the largest individual honeybee with major ecological and economic importance in high-latitude environments. However, our understanding of its environmental adaptations is circumscribed by the paucity of genomic data for this species. Here, we provide a draft genome of wild A. laboriosa, along with a comparison to its closely related species, Apis dorsata. The draft genome of A. laboriosa based on the de novo assembly is 226.1 Mbp in length with a scaffold N50 size of 3.34 Mbp, a GC content of 32.2%, a repeat content of 6.86%, and a gene family number of 8,404. Comparative genomics analysis revealed that the genes in A. laboriosa genome have undergone stronger positive selection (2.5 times more genes) and more recent duplication/loss events (6.1 times more events) than those in the A. dorsata genome. Our study implies the potential molecular mechanisms underlying the high-altitude adaptation of A. laboriosa and will catalyze future comparative studies to understand the environmental adaptation of modern honeybees.
Collapse
Affiliation(s)
- Dan Lin
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Lan Lan
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tingting Zheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Peng Shi
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jinshan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China.,School of Data Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
76
|
Legan AW, Jernigan CM, Miller SE, Fuchs MF, Sheehan MJ. Expansion and Accelerated Evolution of 9-Exon Odorant Receptors in Polistes Paper Wasps. Mol Biol Evol 2021; 38:3832-3846. [PMID: 34151983 PMCID: PMC8383895 DOI: 10.1093/molbev/msab023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.
Collapse
Affiliation(s)
- Andrew W Legan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Sara E Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Matthieu F Fuchs
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
77
|
Brito DV, da Silva CGN, Rêgo LCN, Carvalho-Zilse GA. Expression of methyl farnesoate epoxidase (mfe) and juvenile hormone esterase (jhe) genes and their relation to social organization in the stingless bee Melipona interrupta (Hymenoptera: Apidae). Genet Mol Biol 2021; 44:e20200367. [PMID: 34387298 PMCID: PMC8361248 DOI: 10.1590/1678-4685-gmb-2020-0367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/14/2021] [Indexed: 11/22/2022] Open
Abstract
Social organization in highly eusocial bees relies upon two important processes: caste differentiation in female larvae, and age polyethism in adult workers. Juvenile Hormone (JH) is a key regulator of both processes. Here we investigated the expression of two genes involved in JH metabolism - mfe (biosynthesis) and jhe (degradation) - in the context of social organization in the stingless bee Melipona interrupta. We found evidence that the expression of mfe and jhe genes is related to changes in JH levels during late larval development, where caste determination occurs. Also, both mfe and jhe were upregulated when workers engage in intranidal tasks, but only jhe expression was downregulated at the transition from nursing to foraging activities. This relation is different than expected, considering recent reports of lower JH levels in foragers than nurses in the closely related species Melipona scutellaris. Our findings suggest that highly eusocial bees have different mechanisms to regulate JH and, thus, to maintain their level of social organization.
Collapse
Affiliation(s)
- Diana Vieira Brito
- Instituto Nacional de Pesquisas da Amazônia, Grupo de Pesquisas em Abelhas, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Manaus, AM, Brazil
| | | | - Livia Cristina Neves Rêgo
- Instituto Nacional de Pesquisas da Amazônia, Grupo de Pesquisas em Abelhas, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Manaus, AM, Brazil
| | - Gislene Almeida Carvalho-Zilse
- Instituto Nacional de Pesquisas da Amazônia, Grupo de Pesquisas em Abelhas, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Manaus, AM, Brazil
| |
Collapse
|
78
|
Oeyen JP, Baa-Puyoulet P, Benoit JB, Beukeboom LW, Bornberg-Bauer E, Buttstedt A, Calevro F, Cash EI, Chao H, Charles H, Chen MJM, Childers C, Cridge AG, Dearden P, Dinh H, Doddapaneni HV, Dolan A, Donath A, Dowling D, Dugan S, Duncan E, Elpidina EN, Friedrich M, Geuverink E, Gibson JD, Grath S, Grimmelikhuijzen CJP, Große-Wilde E, Gudobba C, Han Y, Hansson BS, Hauser F, Hughes DST, Ioannidis P, Jacquin-Joly E, Jennings EC, Jones JW, Klasberg S, Lee SL, Lesný P, Lovegrove M, Martin S, Martynov AG, Mayer C, Montagné N, Moris VC, Munoz-Torres M, Murali SC, Muzny DM, Oppert B, Parisot N, Pauli T, Peters RS, Petersen M, Pick C, Persyn E, Podsiadlowski L, Poelchau MF, Provataris P, Qu J, Reijnders MJMF, von Reumont BM, Rosendale AJ, Simao FA, Skelly J, Sotiropoulos AG, Stahl AL, Sumitani M, Szuter EM, Tidswell O, Tsitlakidis E, Vedder L, Waterhouse RM, Werren JH, Wilbrandt J, Worley KC, Yamamoto DS, van de Zande L, Zdobnov EM, Ziesmann T, Gibbs RA, Richards S, Hatakeyama M, Misof B, Niehuis O. Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biol Evol 2021; 12:1099-1188. [PMID: 32442304 PMCID: PMC7455281 DOI: 10.1093/gbe/evaa106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.
Collapse
Affiliation(s)
- Jan Philip Oeyen
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Lead Contact
| | | | | | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | | | - Anja Buttstedt
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Germany
| | - Federica Calevro
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Elizabeth I Cash
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University.,Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Hubert Charles
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Mei-Ju May Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | | | - Andrew G Cridge
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Alexander Donath
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Daniel Dowling
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Elizabeth Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Biology, Georgia Southern University, Statesboro.,Department of Entomology, Purdue University, West Lafayette
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CULS), Praha 6-Suchdol, Czech Republic
| | - Cameron Gudobba
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Frank Hauser
- Department of Biology, University of Copenhagen, Denmark
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Emmanuelle Jacquin-Joly
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Versailles, France
| | | | - Jeffery W Jones
- Department of Biological Sciences, Oakland University, Rochester
| | - Steffen Klasberg
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Peter Lesný
- Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Germany
| | - Mackenzie Lovegrove
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Sebastian Martin
- Institute of Evolutionary Biology and Ecology, Zoology and Evolutionary Biology, University of Bonn, Germany
| | | | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Nicolas Montagné
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Paris, France
| | - Victoria C Moris
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| | - Monica Munoz-Torres
- Berkeley Bioinformatics Open-source Projects (BBOP), Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Shwetha Canchi Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas
| | - Nicolas Parisot
- INSA-Lyon, INRAE, BF2I, UMR0203, Université de Lyon, Villeurbanne, France
| | - Thomas Pauli
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| | - Ralph S Peters
- Arthropoda Department, Center for Taxonomy and Evolutionary Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Malte Petersen
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Emma Persyn
- INRAE, CNRS, IRD, UPEC, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, Paris, France
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | | | - Panagiotis Provataris
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Björn Marcus von Reumont
- Institute for Insect Biotechnology, University of Gießen, Germany.,Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | | | - Felipe A Simao
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - John Skelly
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | - Aaron L Stahl
- Department of Biological Sciences, University of Cincinnati.,Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Megumi Sumitani
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Owashi, Tsukuba, Japan
| | - Elise M Szuter
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University
| | - Olivia Tidswell
- Biochemistry Department, University of Otago, Dunedin, New Zealand.,Zoology Department, University of Cambridge, United Kingdom
| | | | - Lucia Vedder
- Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Jeanne Wilbrandt
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.,Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Yakushiji, Shimotsuke, Japan
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Tanja Ziesmann
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Masatsugu Hatakeyama
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Germany
| |
Collapse
|
79
|
|
80
|
Fouks B, Brand P, Nguyen HN, Herman J, Camara F, Ence D, Hagen DE, Hoff KJ, Nachweide S, Romoth L, Walden KKO, Guigo R, Stanke M, Narzisi G, Yandell M, Robertson HM, Koeniger N, Chantawannakul P, Schatz MC, Worley KC, Robinson GE, Elsik CG, Rueppell O. The genomic basis of evolutionary differentiation among honey bees. Genome Res 2021; 31:1203-1215. [PMID: 33947700 PMCID: PMC8256857 DOI: 10.1101/gr.272310.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
In contrast to the western honey bee, Apis mellifera, other honey bee species have been largely neglected despite their importance and diversity. The genetic basis of the evolutionary diversification of honey bees remains largely unknown. Here, we provide a genome-wide comparison of three honey bee species, each representing one of the three subgenera of honey bees, namely the dwarf (Apis florea), giant (A. dorsata), and cavity-nesting (A. mellifera) honey bees with bumblebees as an outgroup. Our analyses resolve the phylogeny of honey bees with the dwarf honey bees diverging first. We find that evolution of increased eusocial complexity in Apis proceeds via increases in the complexity of gene regulation, which is in agreement with previous studies. However, this process seems to be related to pathways other than transcriptional control. Positive selection patterns across Apis reveal a trade-off between maintaining genome stability and generating genetic diversity, with a rapidly evolving piRNA pathway leading to genomes depleted of transposable elements, and a rapidly evolving DNA repair pathway associated with high recombination rates in all Apis species. Diversification within Apis is accompanied by positive selection in several genes whose putative functions present candidate mechanisms for lineage-specific adaptations, such as migration, immunity, and nesting behavior.
Collapse
Affiliation(s)
- Bertrand Fouks
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, Davis, California 95161, USA
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, New York 10065, USA
| | - Hung N Nguyen
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jacob Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
| | - Francisco Camara
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Daniel Ence
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Darren E Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | - Stefanie Nachweide
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
| | - Lars Romoth
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Mario Stanke
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | | | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nikolaus Koeniger
- Department of Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, 97074 Würzburg, Germany
| | - Panuwan Chantawannakul
- Environmental Science Research Center (ESRC) and Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Michael C Schatz
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gene E Robinson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christine G Elsik
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
81
|
Lucas C, Ben-Shahar Y. The foraging gene as a modulator of division of labour in social insects. J Neurogenet 2021; 35:168-178. [PMID: 34151702 DOI: 10.1080/01677063.2021.1940173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The social ants, bees, wasps, and termites include some of the most ecologically-successful groups of animal species. Their dominance in most terrestrial environments is attributed to their social lifestyle, which enable their colonies to exploit environmental resources with remarkable efficiency. One key attribute of social insect colonies is the division of labour that emerges among the sterile workers, which represent the majority of colony members. Studies of the mechanisms that drive division of labour systems across diverse social species have provided fundamental insights into the developmental, physiological, molecular, and genomic processes that regulate sociality, and the possible genetic routes that may have led to its evolution from a solitary ancestor. Here we specifically discuss the conserved role of the foraging gene, which encodes a cGMP-dependent protein kinase (PKG). Originally identified as a behaviourally polymorphic gene that drives alternative foraging strategies in the fruit fly Drosophila melanogaster, changes in foraging expression and kinase activity were later shown to play a key role in the division of labour in diverse social insect species as well. In particular, foraging appears to regulate worker transitions between behavioural tasks and specific behavioural traits associated with morphological castes. Although the specific neuroethological role of foraging in the insect brain remains mostly unknown, studies in genetically tractable insect species indicate that PKG signalling plays a conserved role in the neuronal plasticity of sensory, cognitive and motor functions, which underlie behaviours relevant to division of labour, including appetitive learning, aggression, stress response, phototaxis, and the response to pheromones.
Collapse
Affiliation(s)
- Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
82
|
Chak STC, Harris SE, Hultgren KM, Jeffery NW, Rubenstein DR. Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements. Proc Natl Acad Sci U S A 2021; 118:e2025051118. [PMID: 34099551 PMCID: PMC8214670 DOI: 10.1073/pnas.2025051118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite progress uncovering the genomic underpinnings of sociality, much less is known about how social living affects the genome. In different insect lineages, for example, eusocial species show both positive and negative associations between genome size and structure, highlighting the dynamic nature of the genome. Here, we explore the relationship between sociality and genome architecture in Synalpheus snapping shrimps that exhibit multiple origins of eusociality and extreme interspecific variation in genome size. Our goal is to determine whether eusociality leads to an accumulation of repetitive elements and an increase in genome size, presumably due to reduced effective population sizes resulting from a reproductive division of labor, or whether an initial accumulation of repetitive elements leads to larger genomes and independently promotes the evolution of eusociality through adaptive evolution. Using phylogenetically informed analyses, we find that eusocial species have larger genomes with more transposable elements (TEs) and microsatellite repeats than noneusocial species. Interestingly, different TE subclasses contribute to the accumulation in different species. Phylogenetic path analysis testing alternative causal relationships between sociality and genome architecture is most consistent with the hypothesis that TEs modulate the relationship between sociality and genome architecture. Although eusociality appears to influence TE accumulation, ancestral state reconstruction suggests moderate TE abundances in ancestral species could have fueled the initial transitions to eusociality. Ultimately, we highlight a complex and dynamic relationship between genome and social evolution, demonstrating that sociality can influence the evolution of the genome, likely through changes in demography related to patterns of reproductive skew.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027;
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568
| | - Stephen E Harris
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
- Department of Biology, State University of New York Purchase College, Purchase, NY 10577
| | | | - Nicholas W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS B2Y 4A2, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dustin R Rubenstein
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
| |
Collapse
|
83
|
Oldroyd BP, Yagound B. The role of epigenetics, particularly DNA methylation, in the evolution of caste in insect societies. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200115. [PMID: 33866805 PMCID: PMC8059649 DOI: 10.1098/rstb.2020.0115] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Eusocial insects can be defined as those that live in colonies and have distinct queens and workers. For most species, queens and workers arise from a common genome, and so caste-specific developmental trajectories must arise from epigenetic processes. In this review, we examine the epigenetic mechanisms that may be involved in the regulation of caste dimorphism. Early work on honeybees suggested that DNA methylation plays a causal role in the divergent development of queen and worker castes. This view has now been challenged by studies that did not find consistent associations between methylation and caste in honeybees and other species. Evidence for the involvement of methylation in modulating behaviour of adult workers is also inconsistent. Thus, the functional significance of DNA methylation in social insects remains equivocal. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P. Oldroyd
- BEE Laboratory, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| | - Boris Yagound
- BEE Laboratory, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
84
|
Kelemen EP, Rehan SM. Conservation insights from wild bee genetic studies: Geographic differences, susceptibility to inbreeding, and signs of local adaptation. Evol Appl 2021; 14:1485-1496. [PMID: 34178099 PMCID: PMC8210791 DOI: 10.1111/eva.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
Conserving bees are critical both ecologically and economically. Genetic tools are valuable for monitoring these vital pollinators since tracking these small, fast-flying insects by traditional means is difficult. By surveying the current state of the literature, this review discusses how recent advances in landscape genetic and genomic research are elucidating how wild bees respond to anthropogenic threats. Current literature suggests that there may be geographic differences in the vulnerability of bee species to landscape changes. Populations of temperate bee species are becoming more isolated and more genetically depauperate as their landscape becomes more fragmented, but tropical bee species appear unaffected. These differences may be an artifact of historical differences in land-use, or it suggests that different management plans are needed for temperate and tropical bee species. Encouragingly, genetic studies on invasive bee species indicate that low levels of genetic diversity may not lead to rapid extinction in bees as once predicted. Additionally, next-generation sequencing has given researchers the power to identify potential genes under selection, which are likely critical to species' survival in their rapidly changing environment. While genetic studies provide insights into wild bee biology, more studies focusing on a greater phylogenetic and life-history breadth of species are needed. Therefore, caution should be taken when making broad conservation decisions based on the currently few species examined.
Collapse
|
85
|
Dumas G, Fairhurst MT. Reciprocity and alignment: quantifying coupling in dynamic interactions. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210138. [PMID: 34040790 PMCID: PMC8113897 DOI: 10.1098/rsos.210138] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent accounts of social cognition focus on how we do things together, suggesting that becoming aligned relies on a reciprocal exchange of information. The next step is to develop richer computational methods that quantify the degree of coupling and describe the nature of the information exchange. We put forward a definition of coupling, comparing it to related terminology and detail, available computational methods and the level of organization to which they pertain, presenting them as a hierarchy from weakest to richest forms of coupling. The rationale is that a temporally coherent link between two dynamical systems at the lowest level of organization sustains mutual adaptation and alignment at the highest level. Postulating that when we do things together, we do so dynamically over time and we argue that to determine and measure instances of true reciprocity in social exchanges is key. Along with this computationally rich definition of coupling, we present challenges for the field to be tackled by a diverse community working towards a dynamic account of social cognition.
Collapse
Affiliation(s)
- Guillaume Dumas
- CHU Sainte-Justine Research Center, Department of Psychiatry, University of Montreal, Quebec, Canada
- Mila – Quebec Artificial Intelligence Institute, University of Montreal, Quebec, Canada
| | - Merle T. Fairhurst
- Institute of Psychology, Faculty of Human Sciences, Bundeswehr University, Munich, Germany
- Faculty of Philosophy and Munich Center for Neuroscience, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
86
|
Séguret A, Stolle E, Fleites-Ayil FA, Quezada-Euán JJG, Hartfelder K, Meusemann K, Harrison MC, Soro A, Paxton RJ. Transcriptomic Signatures of Ageing Vary in Solitary and Social Forms of an Orchid Bee. Genome Biol Evol 2021; 13:6259147. [PMID: 33914875 PMCID: PMC8214409 DOI: 10.1093/gbe/evab075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Eusocial insect queens are remarkable in their ability to maximize both fecundity and longevity, thus escaping the typical trade-off between these two traits. Several mechanisms have been proposed to underlie the remolding of the trade-off, such as reshaping of the juvenile hormone (JH) pathway, or caste-specific susceptibility to oxidative stress. However, it remains a challenge to disentangle the molecular mechanisms underlying the remolding of the trade-off in eusocial insects from caste-specific physiological attributes that have subsequently arisen. The socially polymorphic orchid bee Euglossa viridissima represents an excellent model to address the role of sociality per se in longevity as it allows direct comparisons of solitary and social individuals within a common genetic background. We investigated gene expression and JH levels in young and old bees from both solitary and social nests. We found 902 genes to be differentially expressed with age in solitary females, including genes involved in oxidative stress, versus only 100 genes in social dominant females, and 13 genes in subordinate females. A weighted gene coexpression network analysis further highlights pathways related to ageing in this species, including the target of rapamycin pathway. Eleven genes involved in translation, apoptosis, and DNA repair show concurrent age-related expression changes in solitary but not in social females, representing potential differences based on social status. JH titers did not vary with age or social status. Our results represent an important step in understanding the proximate mechanisms underlying the remodeling of the fecundity/longevity trade-off that accompanies the evolutionary transition from solitary life to eusociality.
Collapse
Affiliation(s)
- Alice Séguret
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Institute for Evolution and Biodiversity, Westfälische-Wilhelms University, Münster, Germany
| | - Eckart Stolle
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Leibniz Institute of Animal Biodiversity, Zoological Research Museum Alexander Koenig, Center of Molecular Biodiversity Research, Bonn, Germany
| | | | - José Javier G Quezada-Euán
- Department of Apiculture, Campus of Biological Sciences and Animal Husbandry, Autonomous University of Yucatán, Mérida, Mexico
| | - Klaus Hartfelder
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Karen Meusemann
- Evolutionary Biology and Ecology, Albert-Ludwigs-University Freiburg, Freiburg (i. Brsg.), Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, Westfälische-Wilhelms University, Münster, Germany
| | - Antonella Soro
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Robert J Paxton
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
87
|
Westwick RR, Rittschof CC. Insects Provide Unique Systems to Investigate How Early-Life Experience Alters the Brain and Behavior. Front Behav Neurosci 2021; 15:660464. [PMID: 33967715 PMCID: PMC8097038 DOI: 10.3389/fnbeh.2021.660464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Early-life experiences have strong and long-lasting consequences for behavior in a surprising diversity of animals. Determining which environmental inputs cause behavioral change, how this information becomes neurobiologically encoded, and the functional consequences of these changes remain fundamental puzzles relevant to diverse fields from evolutionary biology to the health sciences. Here we explore how insects provide unique opportunities for comparative study of developmental behavioral plasticity. Insects have sophisticated behavior and cognitive abilities, and they are frequently studied in their natural environments, which provides an ecological and adaptive perspective that is often more limited in lab-based vertebrate models. A range of cues, from relatively simple cues like temperature to complex social information, influence insect behavior. This variety provides experimentally tractable opportunities to study diverse neural plasticity mechanisms. Insects also have a wide range of neurodevelopmental trajectories while sharing many developmental plasticity mechanisms with vertebrates. In addition, some insects retain only subsets of their juvenile neuronal population in adulthood, narrowing the targets for detailed study of cellular plasticity mechanisms. Insects and vertebrates share many of the same knowledge gaps pertaining to developmental behavioral plasticity. Combined with the extensive study of insect behavior under natural conditions and their experimental tractability, insect systems may be uniquely qualified to address some of the biggest unanswered questions in this field.
Collapse
Affiliation(s)
- Rebecca R Westwick
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Clare C Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
88
|
Chak STC, Baeza JA, Barden P. Eusociality Shapes Convergent Patterns of Molecular Evolution across Mitochondrial Genomes of Snapping Shrimps. Mol Biol Evol 2021; 38:1372-1383. [PMID: 33211078 PMCID: PMC8480187 DOI: 10.1093/molbev/msaa297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eusociality is a highly conspicuous and ecologically impactful behavioral syndrome that has evolved independently across multiple animal lineages. So far, comparative genomic analyses of advanced sociality have been mostly limited to insects. Here, we study the only clade of animals known to exhibit eusociality in the marine realm-lineages of socially diverse snapping shrimps in the genus Synalpheus. To investigate the molecular impact of sociality, we assembled the mitochondrial genomes of eight Synalpheus species that represent three independent origins of eusociality and analyzed patterns of molecular evolution in protein-coding genes. Synonymous substitution rates are lower and potential signals of relaxed purifying selection are higher in eusocial relative to noneusocial taxa. Our results suggest that mitochondrial genome evolution was shaped by eusociality-linked traits-extended generation times and reduced effective population sizes that are hallmarks of advanced animal societies. This is the first direct evidence of eusociality impacting genome evolution in marine taxa. Our results also strongly support the idea that eusociality can shape genome evolution through profound changes in life history and demography.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ
- Department of Biological Sciences, SUNY College at Old Westbury, Old Westbury, NY
| | - Juan Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Phillip Barden
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| |
Collapse
|
89
|
Yang H, Lyu B, Yin HQ, Li SQ. Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders. Zool Res 2021; 42:195-206. [PMID: 33709634 PMCID: PMC7995277 DOI: 10.24272/j.issn.2095-8137.2020.281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although widely thought to be aggressive, solitary, and potentially cannibalistic, some spider species have evolved group-living behaviors. The distinct transition provides the framework to uncover group-living evolution. Here, we conducted a comparative transcriptomic study and examined patterns of molecular evolution in two independently evolved group-living spiders and twelve solitary species. We report that positively selected genes among group-living spider lineages are significantly enriched in nutrient metabolism and autophagy pathways. We also show that nutrient-related genes of group-living spiders convergently experience amino acid substitutions and accelerated relative evolutionary rates. These results indicate adaptive convergence of nutrient metabolism that may ensure energy supply in group-living spiders. The decelerated evolutionary rate of autophagy-related genes in group-living lineages is consistent with an increased constraint on energy homeostasis as would be required in a group-living environment. Together, the results show that energy metabolic pathways play an important role in the transition to group-living in spiders.
Collapse
Affiliation(s)
- Han Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Lyu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Hai-Qiang Yin
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China. E-mail:
| | - Shu-Qiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. E-mail:
| |
Collapse
|
90
|
Duncan EJ, Leask MP, Dearden PK. Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera). Mol Biol Evol 2021; 37:1964-1978. [PMID: 32134461 PMCID: PMC7306700 DOI: 10.1093/molbev/msaa057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Megan P Leask
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
91
|
Chen Z, Traniello IM, Rana S, Cash-Ahmed AC, Sankey AL, Yang C, Robinson GE. Neurodevelopmental and transcriptomic effects of CRISPR/Cas9-induced somatic orco mutation in honey bees. J Neurogenet 2021; 35:320-332. [PMID: 33666542 DOI: 10.1080/01677063.2021.1887173] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In insects, odorant receptors facilitate olfactory communication and require the functionality of the highly conserved co-receptor gene orco. Genome editing studies in a few species of ants and moths have revealed that orco can also have a neurodevelopmental function, in addition to its canonical role in adult olfaction, discovered first in Drosophila melanogaster. To extend this analysis, we determined whether orco mutations also affect the development of the adult brain of the honey bee Apis mellifera, an important model system for social behavior and chemical communication. We used CRISPR/Cas9 to knock out orco and examined anatomical and molecular consequences. To increase efficiency, we coupled embryo microinjection with a laboratory egg collection and in vitro rearing system. This new workflow advances genomic engineering technologies in honey bees by overcoming restrictions associated with field studies. We used Sanger sequencing to quickly select individuals with complete orco knockout for neuroanatomical analyses and later validated and described the mutations with amplicon sequencing. Mutant bees had significantly fewer glomeruli, smaller total volume of all the glomeruli, and higher mean individual glomerulus volume in the antennal lobe compared to wild-type controls. RNA-Sequencing revealed that orco knockout also caused differential expression of hundreds of genes in the antenna, including genes related to neural development and genes encoding odorant receptors. The expression of other types of chemoreceptor genes was generally unaffected, reflecting specificity of CRISPR activity in this study. These results suggest that neurodevelopmental effects of orco are related to specific insect life histories.
Collapse
Affiliation(s)
- Zhenqing Chen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Seema Rana
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alison L Sankey
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Biochemistry Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
92
|
Dumas G, Malesys S, Bourgeron T. Systematic detection of brain protein-coding genes under positive selection during primate evolution and their roles in cognition. Genome Res 2021; 31:484-496. [PMID: 33441416 PMCID: PMC7919455 DOI: 10.1101/gr.262113.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
The human brain differs from that of other primates, but the genetic basis of these differences remains unclear. We investigated the evolutionary pressures acting on almost all human protein-coding genes (N = 11,667; 1:1 orthologs in primates) based on their divergence from those of early hominins, such as Neanderthals, and non-human primates. We confirm that genes encoding brain-related proteins are among the most strongly conserved protein-coding genes in the human genome. Combining our evolutionary pressure metrics for the protein-coding genome with recent data sets, we found that this conservation applied to genes functionally associated with the synapse and expressed in brain structures such as the prefrontal cortex and the cerebellum. Conversely, several genes presenting signatures commonly associated with positive selection appear as causing brain diseases or conditions, such as micro/macrocephaly, Joubert syndrome, dyslexia, and autism. Among those, a number of DNA damage response genes associated with microcephaly in humans such as BRCA1, NHEJ1, TOP3A, and RNF168 show strong signs of positive selection and might have played a role in human brain size expansion during primate evolution. We also showed that cerebellum granule neurons express a set of genes also presenting signatures of positive selection and that may have contributed to the emergence of fine motor skills and social cognition in humans. This resource is available online and can be used to estimate evolutionary constraints acting on a set of genes and to explore their relative contributions to human traits.
Collapse
Affiliation(s)
- Guillaume Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
- Department of Psychiatry, Université de Montreal, CHU Sainte-Justine Hospital, Montreal H3T 1C5, Quebec, Canada
| | - Simon Malesys
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
| |
Collapse
|
93
|
Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. Commun Biol 2021; 4:253. [PMID: 33637860 PMCID: PMC7977082 DOI: 10.1038/s42003-021-01770-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
While it is well known that the genome can affect social behavior, recent models posit that social lifestyles can, in turn, influence genome evolution. Here, we perform the most phylogenetically comprehensive comparative analysis of 16 bee genomes to date: incorporating two published and four new carpenter bee genomes (Apidae: Xylocopinae) for a first-ever genomic comparison with a monophyletic clade containing solitary through advanced eusocial taxa. We find that eusocial lineages have undergone more gene family expansions, feature more signatures of positive selection, and have higher counts of taxonomically restricted genes than solitary and weakly social lineages. Transcriptomic data reveal that caste-affiliated genes are deeply-conserved; gene regulatory and functional elements are more closely tied to social phenotype than phylogenetic lineage; and regulatory complexity increases steadily with social complexity. Overall, our study provides robust empirical evidence that social evolution can act as a major and surprisingly consistent driver of macroevolutionary genomic change.
Collapse
|
94
|
Araujo NDS, Arias MC. Gene expression and epigenetics reveal species-specific mechanisms acting upon common molecular pathways in the evolution of task division in bees. Sci Rep 2021; 11:3654. [PMID: 33574391 PMCID: PMC7878513 DOI: 10.1038/s41598-020-75432-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/05/2020] [Indexed: 01/30/2023] Open
Abstract
A striking feature of advanced insect societies is the existence of workers that forgo reproduction. Two broad types of workers exist in eusocial bees: nurses who care for their young siblings and the queen, and foragers who guard the nest and forage for food. Comparisons between these two worker subcastes have been performed in honeybees, but data from other bees are scarce. To understand whether similar molecular mechanisms are involved in nurse-forager differences across distinct species, we compared gene expression and DNA methylation profiles between nurses and foragers of the buff-tailed bumblebee Bombus terrestris and the stingless bee Tetragonisca angustula. These datasets were then compared to previous findings from honeybees. Our analyses revealed that although the expression pattern of genes is often species-specific, many of the biological processes and molecular pathways involved are common. Moreover, the correlation between gene expression and DNA methylation was dependent on the nucleotide context, and non-CG methylation appeared to be a relevant factor in the behavioral changes of the workers. In summary, task specialization in worker bees is characterized by a plastic and mosaic molecular pattern, with species-specific mechanisms acting upon broad common pathways across species.
Collapse
Affiliation(s)
- Natalia de Souza Araujo
- Department of Genetics and Evolutionary Biology, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, SP, 05508-090, Brazil.
- Department of Evolutionary Biology and Ecology, Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50, 1050, Brussels, Belgium.
| | - Maria Cristina Arias
- Department of Genetics and Evolutionary Biology, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
95
|
Abstract
Although nectar is consumed, primarily as a supplemental food, by a broad range of insects spanning at least five orders, it is processed and stored by only a small number of species, most of which are bees and wasps in the superfamily Apoidea. Within this group, Apis mellifera has evolved remarkable adaptations facilitating nectar processing and storage; in doing so, this species utilizes the end product, honey, for diverse functions with few if any equivalents in other phytophagous insects. Honey and its phytochemical constituents, some of which likely derive from propolis, have functional significance in protecting honey bees against microbial pathogens, toxins, and cold stress, as well as in regulating development and adult longevity. The distinctive properties of A. mellifera honey appear to have arisen in multiple ways, including genome modification; partnerships with microbial symbionts; and evolution of specialized behaviors, including foraging for substances other than nectar. That honey making by A. mellifera involves incorporation of exogenous material other than nectar, as well as endogenous products such as antimicrobial peptides and royal jelly, suggests that regarding honey as little more than a source of carbohydrates for bees is a concept in need of revision.
Collapse
Affiliation(s)
- May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| | - Bernarda Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| |
Collapse
|
96
|
Gilbert C, Peccoud J, Cordaux R. Transposable Elements and the Evolution of Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:355-372. [PMID: 32931312 DOI: 10.1146/annurev-ento-070720-074650] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France;
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| |
Collapse
|
97
|
Kappeler PM. Parental Care. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
98
|
Bossert S, Murray EA, Pauly A, Chernyshov K, Brady SG, Danforth BN. Gene Tree Estimation Error with Ultraconserved Elements: An Empirical Study on Pseudapis Bees. Syst Biol 2020; 70:803-821. [PMID: 33367855 DOI: 10.1093/sysbio/syaa097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 11/12/2022] Open
Abstract
Summarizing individual gene trees to species phylogenies using two-step coalescent methods is now a standard strategy in the field of phylogenomics. However, practical implementations of summary methods suffer from gene tree estimation error, which is caused by various biological and analytical factors. Greatly understudied is the choice of gene tree inference method and downstream effects on species tree estimation for empirical data sets. To better understand the impact of this method choice on gene and species tree accuracy, we compare gene trees estimated through four widely used programs under different model-selection criteria: PhyloBayes, MrBayes, IQ-Tree, and RAxML. We study their performance in the phylogenomic framework of $>$800 ultraconserved elements from the bee subfamily Nomiinae (Halictidae). Our taxon sampling focuses on the genus Pseudapis, a distinct lineage with diverse morphological features, but contentious morphology-based taxonomic classifications and no molecular phylogenetic guidance. We approximate topological accuracy of gene trees by assessing their ability to recover two uncontroversial, monophyletic groups, and compare branch lengths of individual trees using the stemminess metric (the relative length of internal branches). We further examine different strategies of removing uninformative loci and the collapsing of weakly supported nodes into polytomies. We then summarize gene trees with ASTRAL and compare resulting species phylogenies, including comparisons to concatenation-based estimates. Gene trees obtained with the reversible jump model search in MrBayes were most concordant on average and all Bayesian methods yielded gene trees with better stemminess values. The only gene tree estimation approach whose ASTRAL summary trees consistently produced the most likely correct topology, however, was IQ-Tree with automated model designation (ModelFinder program). We discuss these findings and provide practical advice on gene tree estimation for summary methods. Lastly, we establish the first phylogeny-informed classification for Pseudapis s. l. and map the distribution of distinct morphological features of the group. [ASTRAL; Bees; concordance; gene tree estimation error; IQ-Tree; MrBayes, Nomiinae; PhyloBayes; RAxML; phylogenomics; stemminess].
Collapse
Affiliation(s)
- Silas Bossert
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA.,Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.,Department of Entomology, Washington State University, Pullman, Washington 99164, USA
| | - Elizabeth A Murray
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.,Department of Entomology, Washington State University, Pullman, Washington 99164, USA
| | - Alain Pauly
- O.D. Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Brussels, Belgium
| | - Kyrylo Chernyshov
- College of Arts and Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA
| |
Collapse
|
99
|
Jones BM, Rao VD, Gernat T, Jagla T, Cash-Ahmed AC, Rubin BER, Comi TJ, Bhogale S, Husain SS, Blatti C, Middendorf M, Sinha S, Chandrasekaran S, Robinson GE. Individual differences in honey bee behavior enabled by plasticity in brain gene regulatory networks. eLife 2020; 9:e62850. [PMID: 33350385 PMCID: PMC7755388 DOI: 10.7554/elife.62850] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the regulatory architecture of phenotypic variation is a fundamental goal in biology, but connections between gene regulatory network (GRN) activity and individual differences in behavior are poorly understood. We characterized the molecular basis of behavioral plasticity in queenless honey bee (Apis mellifera) colonies, where individuals engage in both reproductive and non-reproductive behaviors. Using high-throughput behavioral tracking, we discovered these colonies contain a continuum of phenotypes, with some individuals specialized for either egg-laying or foraging and 'generalists' that perform both. Brain gene expression and chromatin accessibility profiles were correlated with behavioral variation, with generalists intermediate in behavior and molecular profiles. Models of brain GRNs constructed for individuals revealed that transcription factor (TF) activity was highly predictive of behavior, and behavior-associated regulatory regions had more TF motifs. These results provide new insights into the important role played by brain GRN plasticity in the regulation of behavior, with implications for social evolution.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Vikyath D Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Department of Physics, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Tim Gernat
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Tobias Jagla
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Benjamin ER Rubin
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Troy J Comi
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Shounak Bhogale
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Syed S Husain
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Charles Blatti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Martin Middendorf
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Center for Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Gene E Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Neuroscience Program, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Department of Entomology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| |
Collapse
|
100
|
Harrison MC, Chernyshova AM, Thompson GJ. No obvious transcriptome-wide signature of indirect selection in termites. J Evol Biol 2020; 34:403-415. [PMID: 33290587 DOI: 10.1111/jeb.13749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022]
Abstract
The evolution of sterile helper castes in social insects implies selection on genes that underlie variation in this nonreproductive phenotype. These focal genes confer no direct fitness and are presumed to evolve through indirect fitness effects on the helper's reproducing relatives. This separation of a gene's phenotypic effect on one caste and its fitness effect on another suggests that genes for this and other forms of reproductive altruism are buffered from selection and will thus evolve closer to the neutral rate than genes directly selected for selfish reproduction. We test this hypothesis by comparing the strength of selection at loci associated in their expression with reproductive versus sterile castes in termites. Specifically, we gather caste-biased gene expression data from four termite transcriptomes and measure the global dN/dS ratio across gene sets and phylogenetic lineages. We find that the majority of examined orthologous gene groups show patterns of nucleotide substitution that are consistent with strong purifying selection and display little evidence for distinct signatures of direct versus indirect selection in reproductive and sterile castes. For one particular species (Reticulitermes flavipes), the strength of purifying selection is relaxed in a reproductive nymph-biased gene set, which opposes the nearly neutral idea. In other species, the synonymous rate (dS) alone was often found to be the highest in the sterile worker caste, suggesting a more subtle signature of indirect selection or an altogether different relationship between caste-biased expression and rates of molecular evolution.
Collapse
Affiliation(s)
- Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | | |
Collapse
|