51
|
Das B, de Bekker C. Time-course RNASeq of Camponotus floridanus forager and nurse ant brains indicate links between plasticity in the biological clock and behavioral division of labor. BMC Genomics 2022; 23:57. [PMID: 35033027 PMCID: PMC8760764 DOI: 10.1186/s12864-021-08282-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background Circadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity in Camponotus floridanus carpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains. Results We found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genes Period and Shaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found that Vitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression. Conclusion This study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found in C. floridanus, thus, likely represent a more general phenomenon that warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08282-x.
Collapse
Affiliation(s)
- Biplabendu Das
- Department of Biology, College of Sciences, University of Central Florida, Orlando, FL, 32816, USA. .,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| | - Charissa de Bekker
- Department of Biology, College of Sciences, University of Central Florida, Orlando, FL, 32816, USA. .,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
52
|
Abbot P. Defense in Social Insects: Diversity, Division of Labor, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:407-436. [PMID: 34995089 DOI: 10.1146/annurev-ento-082521-072638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
All social insects defend their colony from predators, parasites, and pathogens. In Oster and Wilson's classic work, they posed one of the key paradoxes about defense in social insects: Given the universal necessity of defense, why then is there so much diversity in mechanisms? Ecological factors undoubtedly are important: Predation and usurpation have imposed strong selection on eusocial insects, and active defense by colonies is a ubiquitous feature of all social insects. The description of diverse insect groups with castes of sterile workers whose main duty is defense has broadened the purview of social evolution in insects, in particular with respect to caste and behavior. Defense is one of the central axes along which we can begin to organize and understand sociality in insects. With the establishment of social insect models such as the honey bee, new discoveries are emerging regarding the endocrine, neural, and gene regulatory mechanisms underlying defense in social insects. The mechanisms underlying morphological and behavioral defense traits may be shared across diverse groups, providing opportunities for identifying both conserved and novel mechanisms at work. Emerging themes highlight the context dependency of and interaction between factors that regulate defense in social insects.
Collapse
Affiliation(s)
- Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA;
| |
Collapse
|
53
|
Nhim S, Gimenez S, Nait-Saidi R, Severac D, Nam K, d'Alençon E, Nègre N. H3K9me2 genome-wide distribution in the holocentric insect Spodoptera frugiperda (Lepidoptera: Noctuidae). Genomics 2021; 114:384-397. [PMID: 34971718 DOI: 10.1016/j.ygeno.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Eukaryotic genomes are packaged by Histone proteins in a structure called chromatin. There are different chromatin types. Euchromatin is typically associated with decondensed, transcriptionally active regions and heterochromatin to more condensed regions of the chromosomes. Methylation of Lysine 9 of Histone H3 (H3K9me) is a conserved biochemical marker of heterochromatin. In many organisms, heterochromatin is usually localized at telomeric as well as pericentromeric regions but can also be found at interstitial chromosomal loci. This distribution may vary in different species depending on their general chromosomal organization. Holocentric species such as Spodoptera frugiperda (Lepidoptera: Noctuidae) possess dispersed centromeres instead of a monocentric one and thus no observable pericentromeric compartment. To identify the localization of heterochromatin in such species we performed ChIP-Seq experiments and analyzed the distribution of the heterochromatin marker H3K9me2 in the Sf9 cell line and whole 4th instar larvae (L4) in relation to RNA-Seq data. RESULTS In both samples we measured an enrichment of H3K9me2 at the (sub) telomeres, rDNA loci, and satellite DNA sequences, which could represent dispersed centromeric regions. We also observed that density of H3K9me2 is positively correlated with transposable elements and protein-coding genes. But contrary to most model organisms, H3K9me2 density is not correlated with transcriptional repression. CONCLUSION This is the first genome-wide ChIP-Seq analysis conducted in S. frugiperda for H3K9me2. Compared to model organisms, this mark is found in expected chromosomal compartments such as rDNA and telomeres. However, it is also localized at numerous dispersed regions, instead of the well described large pericentromeric domains, indicating that H3K9me2 might not represent a classical heterochromatin marker in Lepidoptera. (242 words).
Collapse
Affiliation(s)
- Sandra Nhim
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | | | - Dany Severac
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
54
|
Mollá-Albaladejo R, Sánchez-Alcañiz JA. Behavior Individuality: A Focus on Drosophila melanogaster. Front Physiol 2021; 12:719038. [PMID: 34916952 PMCID: PMC8670942 DOI: 10.3389/fphys.2021.719038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Among individuals, behavioral differences result from the well-known interplay of nature and nurture. Minute differences in the genetic code can lead to differential gene expression and function, dramatically affecting developmental processes and adult behavior. Environmental factors, epigenetic modifications, and gene expression and function are responsible for generating stochastic behaviors. In the last decade, the advent of high-throughput sequencing has facilitated studying the genetic basis of behavior and individuality. We can now study the genomes of multiple individuals and infer which genetic variations might be responsible for the observed behavior. In addition, the development of high-throughput behavioral paradigms, where multiple isogenic animals can be analyzed in various environmental conditions, has again facilitated the study of the influence of genetic and environmental variations in animal personality. Mainly, Drosophila melanogaster has been the focus of a great effort to understand how inter-individual behavioral differences emerge. The possibility of using large numbers of animals, isogenic populations, and the possibility of modifying neuronal function has made it an ideal model to search for the origins of individuality. In the present review, we will focus on the recent findings that try to shed light on the emergence of individuality with a particular interest in D. melanogaster.
Collapse
|
55
|
Choppin M, Feldmeyer B, Foitzik S. Histone acetylation regulates the expression of genes involved in worker reproduction in the ant Temnothorax rugatulus. BMC Genomics 2021; 22:871. [PMID: 34861814 PMCID: PMC8642982 DOI: 10.1186/s12864-021-08196-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background In insect societies, queens monopolize reproduction while workers perform tasks such as brood care or foraging. Queen loss leads to ovary development and lifespan extension in workers of many ant species. However, the underlying molecular mechanisms of this phenotypic plasticity remain unclear. Recent studies highlight the importance of epigenetics in regulating plastic traits in social insects. Thus, we investigated the role of histone acetylation in regulating worker reproduction in the ant Temnothorax rugatulus. We removed queens from their colonies to induce worker fecundity, and either fed workers with chemical inhibitors of histone acetylation (C646), deacetylation (TSA), or the solvent (DMSO) as control. We monitored worker number for six weeks after which we assessed ovary development and sequenced fat body mRNA. Results Workers survived better in queenless colonies. They also developed their ovaries after queen removal in control colonies as expected, but not in colonies treated with the chemical inhibitors. Both inhibitors affected gene expression, although the inhibition of histone acetylation using C646 altered the expression of more genes with immunity, fecundity, and longevity functionalities. Interestingly, these C646-treated workers shared many upregulated genes with infertile workers from queenright colonies. We also identified one gene with antioxidant properties commonly downregulated in infertile workers from queenright colonies and both C646 and TSA-treated workers from queenless colonies. Conclusion Our results suggest that histone acetylation is involved in the molecular regulation of worker reproduction, and thus point to an important role of histone modifications in modulating phenotypic plasticity of life history traits in social insects. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08196-8.
Collapse
Affiliation(s)
- Marina Choppin
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
56
|
Pasquier C, Robichon A. Temporal and sequential order of nonoverlapping gene networks unraveled in mated female Drosophila. Life Sci Alliance 2021; 5:5/2/e202101119. [PMID: 34844981 PMCID: PMC8645335 DOI: 10.26508/lsa.202101119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
Mating triggers successive waves of temporal transcriptomic changes within independent gene networks in female Drosophila, suggesting a recruitment of interconnected modules that vanish in late life. In this study, we reanalyzed available datasets of gene expression changes in female Drosophila head induced by mating. Mated females present metabolic phenotypic changes and display behavioral characteristics that are not observed in virgin females, such as repulsion to male sexual aggressiveness, fidelity to food spots selected for oviposition, and restriction to the colonization of new niches. We characterize gene networks that play a role in female brain plasticity after mating using AMINE, a novel algorithm to find dysregulated modules of interacting genes. The uncovered networks of altered genes revealed a strong specificity for each successive period of life span after mating in the female head, with little conservation between them. This finding highlights a temporal order of recruitment of waves of interconnected genes which are apparently transiently modified: the first wave disappears before the emergence of the second wave in a reversible manner and ends with few consolidated gene expression changes at day 20. This analysis might document an extended field of a programmatic control of female phenotypic traits by male seminal fluid.
Collapse
|
57
|
Gospocic J, Glastad KM, Sheng L, Shields EJ, Berger SL, Bonasio R. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 2021; 184:5807-5823.e14. [PMID: 34739833 DOI: 10.1016/j.cell.2021.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes. Depletion of Kr-h1 in the brain caused de-repression of "socially inappropriate" genes: gamergate genes were upregulated in workers, whereas worker genes were upregulated in gamergates. At the phenotypic level, loss of Kr-h1 resulted in the emergence of worker-specific behaviors in gamergates and gamergate-specific traits in workers. We conclude that Kr-h1 is a transcription factor that maintains distinct brain states established in response to socially regulated hormones.
Collapse
Affiliation(s)
- Janko Gospocic
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl M Glastad
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shelley L Berger
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA 19104, USA.
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
58
|
Gibert JM, Peronnet F. The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization. INSECTS 2021; 12:884. [PMID: 34680653 PMCID: PMC8537509 DOI: 10.3390/insects12100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/06/2023]
Abstract
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Frédérique Peronnet
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| |
Collapse
|
59
|
Glastad KM, Ju L, Berger SL. Tramtrack acts during late pupal development to direct ant caste identity. PLoS Genet 2021; 17:e1009801. [PMID: 34550980 PMCID: PMC8489709 DOI: 10.1371/journal.pgen.1009801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/04/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
A key question in the rising field of neuroepigenetics is how behavioral plasticity is established and maintained in the developing CNS of multicellular organisms. Behavior is controlled through systemic changes in hormonal signaling, cell-specific regulation of gene expression, and changes in neuronal connections in the nervous system, however the link between these pathways is unclear. In the ant Camponotus floridanus, the epigenetic corepressor CoREST is a central player in experimentally-induced reprogramming of caste-specific behavior, from soldier (Major worker) to forager (Minor worker). Here, we show this pathway is engaged naturally on a large genomic scale during late pupal development targeting multiple genes differentially expressed between castes, and central to this mechanism is the protein tramtrack (ttk), a DNA binding partner of CoREST. Caste-specific differences in DNA binding of ttk co-binding with CoREST correlate with caste-biased gene expression both in the late pupal stage and immediately after eclosion. However, we find a unique set of exclusive Minor-bound genes that show ttk pre-binding in the late pupal stage preceding CoREST binding, followed by caste-specific gene repression on the first day of eclosion. In addition, we show that ttk binding correlates with neurogenic Notch signaling, and that specific ttk binding between castes is enriched for regulatory sites associated with hormonal function. Overall our findings elucidate a pathway of transcription factor binding leading to a repressive epigenetic axis that lies at the crux of development and hormonal signaling to define worker caste identity in C. floridanus.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| | - Linyang Ju
- Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Epigenetics Institute; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States of America.,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania United States of America
| |
Collapse
|
60
|
Sieriebriennikov B, Reinberg D, Desplan C. A molecular toolkit for superorganisms. Trends Genet 2021; 37:846-859. [PMID: 34116864 PMCID: PMC8355152 DOI: 10.1016/j.tig.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Social insects, such as ants, bees, wasps, and termites, draw biologists' attention due to their distinctive lifestyles. As experimental systems, they provide unique opportunities to study organismal differentiation, division of labor, longevity, and the evolution of development. Ants are particularly attractive because several ant species can be propagated in the laboratory. However, the same lifestyle that makes social insects interesting also hampers the use of molecular genetic techniques. Here, we summarize the efforts of the ant research community to surmount these hurdles and obtain novel mechanistic insight into the biology of social insects. We review current approaches and propose novel ones involving genomics, transcriptomics, chromatin and DNA methylation profiling, RNA interference (RNAi), and genome editing in ants and discuss future experimental strategies.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
61
|
Olivares-Castro G, Cáceres-Jensen L, Guerrero-Bosagna C, Villagra C. Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview. INSECTS 2021; 12:780. [PMID: 34564220 PMCID: PMC8468710 DOI: 10.3390/insects12090780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Currently, the human species has been recognized as the primary species responsible for Earth's biodiversity decline. Contamination by different chemical compounds, such as pesticides, is among the main causes of population decreases and species extinction. Insects are key for ecosystem maintenance; unfortunately, their populations are being drastically affected by human-derived disturbances. Pesticides, applied in agricultural and urban environments, are capable of polluting soil and water sources, reaching non-target organisms (native and introduced). Pesticides alter insect's development, physiology, and inheritance. Recently, a link between pesticide effects on insects and their epigenetic molecular mechanisms (EMMs) has been demonstrated. EMMs are capable of regulating gene expression without modifying genetic sequences, resulting in the expression of different stress responses as well as compensatory mechanisms. In this work, we review the main anthropogenic contaminants capable of affecting insect biology and of triggering EMMs. EMMs are involved in the development of several diseases in native insects affected by pesticides (e.g., anomalous teratogenic reactions). Additionally, EMMs also may allow for the survival of some species (mainly pests) under contamination-derived habitats; this may lead to biodiversity decline and further biotic homogenization. We illustrate these patterns by reviewing the effect of neonicotinoid insecticides, insect EMMs, and their ecological consequences.
Collapse
Affiliation(s)
- Gabriela Olivares-Castro
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| | - Lizethly Cáceres-Jensen
- Laboratorio de Físicoquímica Analítica, Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
| | - Carlos Guerrero-Bosagna
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden;
- Environmental Toxicology Program, Department of Integrative Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Cristian Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| |
Collapse
|
62
|
Zhu D, Ge J, Guo S, Hou L, Shi R, Zhou X, Nie X, Wang X. Independent variations in genome-wide expression, alternative splicing, and DNA methylation in brain tissues among castes of the buff-tailed bumblebee, Bombus terrestris. J Genet Genomics 2021; 48:681-694. [PMID: 34315685 DOI: 10.1016/j.jgg.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Caste differentiation in social hymenopterans is an intriguing example of phenotypic plasticity. However, the co-ordination among gene regulatory factors to mediate caste differentiation remains inconclusive. In this study, we determined the role of gene regulation and related epigenetic processes in pre-imaginal caste differentiation in the primitively eusocial bumblebee Bombus terrestris. By combining RNA-Seq data from Illumina and PacBio and accurately quantifying methylation at whole-genomic base pair resolution, we found that queens, workers, and drones mainly differentiate in gene expression but not in alternative splicing and DNA methylation. Gynes are the most distinct with the lowest global level of whole-genomic methylation and with the largest number of caste-specific transcripts and alternative splicing events. By contrast, workers exhibit few uniquely expressed or alternatively spliced genes. Moreover, several genes involved in hormone and neurotransmitter metabolism are related to caste differentiation, whereas several neuropeptides are linked with sex differentiation. Despite little genome-wide association among differential gene expression, splicing, and differential DNA methylation, the overlapped gene ontology (GO) terms point to nutrition-related activity. Therefore, variations in gene regulation correlate with the behavioral differences among castes and highlight the specialization of toolkit genes in bumblebee gynes at the beginning of the adult stage.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rangjun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Nie
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
63
|
Lucas C, Ben-Shahar Y. The foraging gene as a modulator of division of labour in social insects. J Neurogenet 2021; 35:168-178. [PMID: 34151702 DOI: 10.1080/01677063.2021.1940173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The social ants, bees, wasps, and termites include some of the most ecologically-successful groups of animal species. Their dominance in most terrestrial environments is attributed to their social lifestyle, which enable their colonies to exploit environmental resources with remarkable efficiency. One key attribute of social insect colonies is the division of labour that emerges among the sterile workers, which represent the majority of colony members. Studies of the mechanisms that drive division of labour systems across diverse social species have provided fundamental insights into the developmental, physiological, molecular, and genomic processes that regulate sociality, and the possible genetic routes that may have led to its evolution from a solitary ancestor. Here we specifically discuss the conserved role of the foraging gene, which encodes a cGMP-dependent protein kinase (PKG). Originally identified as a behaviourally polymorphic gene that drives alternative foraging strategies in the fruit fly Drosophila melanogaster, changes in foraging expression and kinase activity were later shown to play a key role in the division of labour in diverse social insect species as well. In particular, foraging appears to regulate worker transitions between behavioural tasks and specific behavioural traits associated with morphological castes. Although the specific neuroethological role of foraging in the insect brain remains mostly unknown, studies in genetically tractable insect species indicate that PKG signalling plays a conserved role in the neuronal plasticity of sensory, cognitive and motor functions, which underlie behaviours relevant to division of labour, including appetitive learning, aggression, stress response, phototaxis, and the response to pheromones.
Collapse
Affiliation(s)
- Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
64
|
Chak STC, Harris SE, Hultgren KM, Jeffery NW, Rubenstein DR. Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements. Proc Natl Acad Sci U S A 2021; 118:e2025051118. [PMID: 34099551 PMCID: PMC8214670 DOI: 10.1073/pnas.2025051118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite progress uncovering the genomic underpinnings of sociality, much less is known about how social living affects the genome. In different insect lineages, for example, eusocial species show both positive and negative associations between genome size and structure, highlighting the dynamic nature of the genome. Here, we explore the relationship between sociality and genome architecture in Synalpheus snapping shrimps that exhibit multiple origins of eusociality and extreme interspecific variation in genome size. Our goal is to determine whether eusociality leads to an accumulation of repetitive elements and an increase in genome size, presumably due to reduced effective population sizes resulting from a reproductive division of labor, or whether an initial accumulation of repetitive elements leads to larger genomes and independently promotes the evolution of eusociality through adaptive evolution. Using phylogenetically informed analyses, we find that eusocial species have larger genomes with more transposable elements (TEs) and microsatellite repeats than noneusocial species. Interestingly, different TE subclasses contribute to the accumulation in different species. Phylogenetic path analysis testing alternative causal relationships between sociality and genome architecture is most consistent with the hypothesis that TEs modulate the relationship between sociality and genome architecture. Although eusociality appears to influence TE accumulation, ancestral state reconstruction suggests moderate TE abundances in ancestral species could have fueled the initial transitions to eusociality. Ultimately, we highlight a complex and dynamic relationship between genome and social evolution, demonstrating that sociality can influence the evolution of the genome, likely through changes in demography related to patterns of reproductive skew.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027;
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568
| | - Stephen E Harris
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
- Department of Biology, State University of New York Purchase College, Purchase, NY 10577
| | | | - Nicholas W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS B2Y 4A2, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dustin R Rubenstein
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
| |
Collapse
|
65
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
66
|
Reznikova Z. Ants’ Personality and Its Dependence on Foraging Styles: Research Perspectives. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.661066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The paper is devoted to analyzing consistent individual differences in behavior, also known as “personalities,” in the context of a vital ant task—the detection and transportation of food. I am trying to elucidate the extent to which collective cognition is individual-based and whether a single individual’s actions can suffice to direct the entire colony or colony units. The review analyzes personalities in various insects with different life cycles and provides new insights into the role of individuals in directing group actions in ants. Although it is widely accepted that, in eusocial insects, colony personality emerges from the workers’ personalities, there are only a few examples of investigations of personality at the individual level. The central question of the review is how the distribution of behavioral types and cognitive responsibilities within ant colonies depends on a species’ foraging style. In the context of how workers’ behavioral traits display during foraging, a crucial question is what makes an ant a scout that discovers a new food source and mobilizes its nestmates. In mass recruiting, tandem-running, and even in group-recruiting species displaying leadership, the division of labor between scouts and recruits appears to be ephemeral. There is only little, if any, evidence of ants’ careers and behavioral consistency as leaders. Personal traits characterize groups of individuals at the colony level but not performers of functional roles during foraging. The leader-scouting seems to be the only known system that is based on a consistent personal difference between scouting and foraging individuals.
Collapse
|
67
|
Ghosh P, Cronin AL. Collective decision‐making, caste roles and sequential transport during colony emigration in the small carpenter ant,
Camponotus yamaokai. Ethology 2021. [DOI: 10.1111/eth.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Purbayan Ghosh
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata India
| | - Adam L. Cronin
- Department of Biology Tokyo Metropolitan University Tokyo Japan
| |
Collapse
|
68
|
Westwick RR, Rittschof CC. Insects Provide Unique Systems to Investigate How Early-Life Experience Alters the Brain and Behavior. Front Behav Neurosci 2021; 15:660464. [PMID: 33967715 PMCID: PMC8097038 DOI: 10.3389/fnbeh.2021.660464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Early-life experiences have strong and long-lasting consequences for behavior in a surprising diversity of animals. Determining which environmental inputs cause behavioral change, how this information becomes neurobiologically encoded, and the functional consequences of these changes remain fundamental puzzles relevant to diverse fields from evolutionary biology to the health sciences. Here we explore how insects provide unique opportunities for comparative study of developmental behavioral plasticity. Insects have sophisticated behavior and cognitive abilities, and they are frequently studied in their natural environments, which provides an ecological and adaptive perspective that is often more limited in lab-based vertebrate models. A range of cues, from relatively simple cues like temperature to complex social information, influence insect behavior. This variety provides experimentally tractable opportunities to study diverse neural plasticity mechanisms. Insects also have a wide range of neurodevelopmental trajectories while sharing many developmental plasticity mechanisms with vertebrates. In addition, some insects retain only subsets of their juvenile neuronal population in adulthood, narrowing the targets for detailed study of cellular plasticity mechanisms. Insects and vertebrates share many of the same knowledge gaps pertaining to developmental behavioral plasticity. Combined with the extensive study of insect behavior under natural conditions and their experimental tractability, insect systems may be uniquely qualified to address some of the biggest unanswered questions in this field.
Collapse
Affiliation(s)
- Rebecca R Westwick
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Clare C Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
69
|
Duncan EJ, Leask MP, Dearden PK. Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera). Mol Biol Evol 2021; 37:1964-1978. [PMID: 32134461 PMCID: PMC7306700 DOI: 10.1093/molbev/msaa057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Megan P Leask
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
70
|
Abstract
Social behavior is one of the most fascinating and complex behaviors in humans and animals. A fundamental process of social behavior is communication among individuals. It relies on the capability of the nervous system to sense, process, and interpret various signals (e.g., pheromones) and respond with appropriate decisions and actions. Eusocial insects, including ants, some bees, some wasps, and termites, display intriguing cooperative social behavior. Recent advances in genetic and genomic studies have revealed key genes that are involved in pheromone synthesis, chemosensory perception, and physiological and behavioral responses to varied pheromones. In this review, we highlight the genes and pathways that regulate queen pheromone-mediated social communication, discuss the evolutionary changes in genetic systems, and outline prospects of functional studies in sociobiology.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
71
|
Ferguson ST, Bakis I, Zwiebel LJ. Advances in the Study of Olfaction in Eusocial Ants. INSECTS 2021; 12:252. [PMID: 33802783 PMCID: PMC8002415 DOI: 10.3390/insects12030252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022]
Abstract
Over the past decade, spurred in part by the sequencing of the first ant genomes, there have been major advances in the field of olfactory myrmecology. With the discovery of a significant expansion of the odorant receptor gene family, considerable efforts have been directed toward understanding the olfactory basis of complex social behaviors in ant colonies. Here, we review recent pivotal studies that have begun to reveal insights into the development of the olfactory system as well as how olfactory stimuli are peripherally and centrally encoded. Despite significant biological and technical impediments, substantial progress has been achieved in the application of gene editing and other molecular techniques that notably distinguish the complex olfactory system of ants from other well-studied insect model systems, such as the fruit fly. In doing so, we hope to draw attention not only to these studies but also to critical knowledge gaps that will serve as a compass for future research endeavors.
Collapse
Affiliation(s)
| | | | - Laurence J. Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; (S.T.F.); (I.B.)
| |
Collapse
|
72
|
Ant behavioral maturation is mediated by a stochastic transition between two fundamental states. Curr Biol 2021; 31:2253-2260.e3. [PMID: 33730550 DOI: 10.1016/j.cub.2020.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 05/11/2020] [Indexed: 02/01/2023]
Abstract
The remarkable ecological success of social insects is often attributed to their advanced division of labor, which is closely associated with temporal polyethism in which workers transition between different tasks as they age. Young nurses are typically found deep within the nest where they tend to the queen and the brood, whereas older foragers are found near the entrance and outside the nest.1-3 However, the individual-level maturation dynamics remain poorly understood because following individuals over relevant timescales is difficult; hence, previous experimental studies used same-age cohort designs.4-15 To address this, we used an automated tracking system to follow >500 individuals over >100 days and constructed networks of physical contacts to provide a continuous measure of worker social maturity. These analyses revealed that most workers occupied one of two steady states, namely a low-maturity nurse state and a high-maturity forager state, with the remaining workers rapidly transitioning between these states. There was considerable variation in the age at transition, and, surprisingly, the transition probability was age independent. This suggests that the transition is largely stochastic rather than a hard-wired age-dependent physiological change. Despite the variation in timing, the transition dynamics were highly stereotyped. Transitioning workers moved from the nurse to the forager state according to an S-shaped trajectory, and only began foraging after completing the transition. Stochastic switching, which occurs in many other biological systems, may provide ant colonies with robustness to extrinsic perturbations by allowing the colony to decouple its division of labor from its demography.
Collapse
|
73
|
Opachaloemphan C, Mancini G, Konstantinides N, Parikh A, Mlejnek J, Yan H, Reinberg D, Desplan C. Early behavioral and molecular events leading to caste switching in the ant Harpegnathos. Genes Dev 2021; 35:410-424. [PMID: 33602869 PMCID: PMC7919410 DOI: 10.1101/gad.343699.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Ant societies show a division of labor in which a queen is in charge of reproduction while nonreproductive workers maintain the colony. In Harpegnathos saltator, workers retain reproductive ability, inhibited by the queen pheromones. Following the queen loss, the colony undergoes social unrest with an antennal dueling tournament. Most workers quickly abandon the tournament while a few workers continue the dueling for months and become gamergates (pseudoqueens). However, the temporal dynamics of the social behavior and molecular mechanisms underlining the caste transition and social dominance remain unclear. By tracking behaviors, we show that the gamergate fate is accurately determined 3 d after initiation of the tournament. To identify genetic factors responsible for this commitment, we compared transcriptomes of different tissues between dueling and nondueling workers. We found that juvenile hormone is globally repressed, whereas ecdysone biosynthesis in the ovary is increased in gamergates. We show that molecular changes in the brain serve as earliest caste predictors compared with other tissues. Thus, behavioral and molecular data indicate that despite the prolonged social upheaval, the gamergate fate is rapidly established, suggesting a robust re-establishment of social structure.
Collapse
Affiliation(s)
- Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Giacomo Mancini
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Apurva Parikh
- Department of Biology, New York University, New York, New York 10003, USA
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, New York 10003, USA
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
74
|
Taylor BA, Cini A, Wyatt CDR, Reuter M, Sumner S. The molecular basis of socially mediated phenotypic plasticity in a eusocial paper wasp. Nat Commun 2021; 12:775. [PMID: 33536437 PMCID: PMC7859208 DOI: 10.1038/s41467-021-21095-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
Phenotypic plasticity, the ability to produce multiple phenotypes from a single genotype, represents an excellent model with which to examine the relationship between gene expression and phenotypes. Analyses of the molecular foundations of phenotypic plasticity are challenging, however, especially in the case of complex social phenotypes. Here we apply a machine learning approach to tackle this challenge by analyzing individual-level gene expression profiles of Polistes dominula paper wasps following the loss of a queen. We find that caste-associated gene expression profiles respond strongly to queen loss, and that this change is partly explained by attributes such as age but occurs even in individuals that appear phenotypically unaffected. These results demonstrate that large changes in gene expression may occur in the absence of outwardly detectable phenotypic changes, resulting here in a socially mediated de-differentiation of individuals at the transcriptomic level but not at the levels of ovarian development or behavior.
Collapse
Affiliation(s)
- Benjamin A Taylor
- Centre for Biodiversity & Environment Research, University College London, London, UK.
- Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Alessandro Cini
- Centre for Biodiversity & Environment Research, University College London, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Christopher D R Wyatt
- Centre for Biodiversity & Environment Research, University College London, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Max Reuter
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Seirian Sumner
- Centre for Biodiversity & Environment Research, University College London, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| |
Collapse
|
75
|
Palli SR. Epigenetic regulation of post-embryonic development. CURRENT OPINION IN INSECT SCIENCE 2021; 43:63-69. [PMID: 33068783 PMCID: PMC8044252 DOI: 10.1016/j.cois.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 05/02/2023]
Abstract
Modifications to DNA and core histones influence chromatin organization and expression of the genome. DNA methylation plays a significant role in the regulation of multiple biological processes that regulate behavior and caste differentiation in social insects. Histone modifications play significant roles in the regulation of development and reproduction in other insects. Genes coding for acetyltransferases, deacetylases, methyltransferases, and demethylases that modify core histones have been identified in genomes of multiple insects. Studies on the function and mechanisms of action of some of these enzymes uncovered their contribution to post-embryonic development. The results from studies on epigenetic modifiers could help in the identification of inhibitors of epigenetic modifiers that could be developed to control pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, S225 Ag. Science N, Lexington, KY 40546, United States.
| |
Collapse
|
76
|
Hearn J, Plenderleith F, Little TJ. DNA methylation differs extensively between strains of the same geographical origin and changes with age in Daphnia magna. Epigenetics Chromatin 2021; 14:4. [PMID: 33407738 PMCID: PMC7789248 DOI: 10.1186/s13072-020-00379-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patterns of methylation influence lifespan, but methylation and lifespan may also depend on diet, or differ between genotypes. Prior to this study, interactions between diet and genotype have not been explored together to determine their influence on methylation. The invertebrate Daphnia magna is an excellent choice for testing the epigenetic response to the environment: parthenogenetic offspring are identical to their siblings (making for powerful genetic comparisons), they are relatively short lived and have well-characterised inter-strain life-history trait differences. We performed a survival analysis in response to caloric restriction and then undertook a 47-replicate experiment testing the DNA methylation response to ageing and caloric restriction of two strains of D. magna. RESULTS Methylated cytosines (CpGs) were most prevalent in exons two to five of gene bodies. One strain exhibited a significantly increased lifespan in response to caloric restriction, but there was no effect of food-level CpG methylation status. Inter-strain differences dominated the methylation experiment with over 15,000 differently methylated CpGs. One gene, Me31b, was hypermethylated extensively in one strain and is a key regulator of embryonic expression. Sixty-one CpGs were differentially methylated between young and old individuals, including multiple CpGs within the histone H3 gene, which were hypermethylated in old individuals. Across all age-related CpGs, we identified a set that are highly correlated with chronological age. CONCLUSIONS Methylated cytosines are concentrated in early exons of gene sequences indicative of a directed, non-random, process despite the low overall DNA methylation percentage in this species. We identify no effect of caloric restriction on DNA methylation, contrary to our previous results, and established impacts of caloric restriction on phenotype and gene expression. We propose our approach here is more robust in invertebrates given genome-wide CpG distributions. For both strain and ageing, a single gene emerges as differentially methylated that for each factor could have widespread phenotypic effects. Our data showed the potential for an epigenetic clock at a subset of age positions, which is exciting but requires confirmation.
Collapse
Affiliation(s)
- Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fiona Plenderleith
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tom J. Little
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
77
|
Jones BM, Rao VD, Gernat T, Jagla T, Cash-Ahmed AC, Rubin BER, Comi TJ, Bhogale S, Husain SS, Blatti C, Middendorf M, Sinha S, Chandrasekaran S, Robinson GE. Individual differences in honey bee behavior enabled by plasticity in brain gene regulatory networks. eLife 2020; 9:e62850. [PMID: 33350385 PMCID: PMC7755388 DOI: 10.7554/elife.62850] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the regulatory architecture of phenotypic variation is a fundamental goal in biology, but connections between gene regulatory network (GRN) activity and individual differences in behavior are poorly understood. We characterized the molecular basis of behavioral plasticity in queenless honey bee (Apis mellifera) colonies, where individuals engage in both reproductive and non-reproductive behaviors. Using high-throughput behavioral tracking, we discovered these colonies contain a continuum of phenotypes, with some individuals specialized for either egg-laying or foraging and 'generalists' that perform both. Brain gene expression and chromatin accessibility profiles were correlated with behavioral variation, with generalists intermediate in behavior and molecular profiles. Models of brain GRNs constructed for individuals revealed that transcription factor (TF) activity was highly predictive of behavior, and behavior-associated regulatory regions had more TF motifs. These results provide new insights into the important role played by brain GRN plasticity in the regulation of behavior, with implications for social evolution.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Vikyath D Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Department of Physics, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Tim Gernat
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Tobias Jagla
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Benjamin ER Rubin
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Troy J Comi
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Shounak Bhogale
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Syed S Husain
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Charles Blatti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Martin Middendorf
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Center for Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Gene E Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Neuroscience Program, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Department of Entomology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| |
Collapse
|
78
|
Cardoso-Junior CAM, Ronai I, Hartfelder K, Oldroyd BP. Queen pheromone modulates the expression of epigenetic modifier genes in the brain of honeybee workers. Biol Lett 2020; 16:20200440. [PMID: 33290662 DOI: 10.1098/rsbl.2020.0440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pheromones are used by many insects to mediate social interactions. In the highly eusocial honeybee (Apis mellifera), queen mandibular pheromone (QMP) is involved in the regulation of the reproductive and other behaviour of workers. The molecular mechanisms by which QMP acts are largely unknown. Here, we investigate how genes responsible for epigenetic modifications to DNA, RNA and histones respond to the presence of QMP in the environment. We show that several of these genes are upregulated in the honeybee brain when workers are exposed to artificial QMP. We propose that pheromonal communication systems, such as those used by social insects, evolved to respond to environmental signals by making use of existing epigenomic machineries.
Collapse
Affiliation(s)
- Carlos Antônio Mendes Cardoso-Junior
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Behaviour, Ecology and Evolution (BEE) laboratory, University of Sydney, Macleay Building A12, Sydney NSW 2006, Australia
| | - Isobel Ronai
- Behaviour, Ecology and Evolution (BEE) laboratory, University of Sydney, Macleay Building A12, Sydney NSW 2006, Australia
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Benjamin P Oldroyd
- Behaviour, Ecology and Evolution (BEE) laboratory, University of Sydney, Macleay Building A12, Sydney NSW 2006, Australia
| |
Collapse
|
79
|
Identification, expression, and artificial selection of silkworm epigenetic modification enzymes. BMC Genomics 2020; 21:740. [PMID: 33096977 PMCID: PMC7585183 DOI: 10.1186/s12864-020-07155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the genetic basis of phenotype variations during domestication and breeding is of great interest. Epigenetics and epigenetic modification enzymes (EMEs) may play a role in phenotypic variations; however, no comprehensive study has been performed to date. Domesticated silkworm (Bombyx mori) may be utilized as a model in determining how EMEs influence domestication traits. Results We identified 44 EMEs in the genome of silkworm (Bombyx mori) using homology searching. Phylogenetic analysis showed that genes in a subfamily among different animals were well clustered, and the expression pattern of EMEs is constant among Bombyx mori, Drosophila melanogaster, and Mus musculus. These are most highly expressed in brain, early embryo, and internal genitalia. By gene-related selective sweeping, we identified five BmEMEs under artificial selection during the domestication and breeding of silkworm. Among these selected genes, BmSuv4–20 and BmDNMT2 harbor selective mutations in their upstream regions that alter transcription factor-binding sites. Furthermore, these two genes are expressed higher in the testis and ovary of domesticated silkworm compared to wild silkworms, and correlations between their expression pattern and meiosis of the sperm and ova were observed. Conclusions The domestication of silkworm has induced artificial selection on epigenetic modification markers that may have led to phenotypic changes during domestication. We present a novel perspective to understand the genetic basis underlying animal domestication and breeding. Supplementary information Supplementary information accompanies this paper at 10.1186/s12864-020-07155-z.
Collapse
|
80
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
81
|
Guo S, Wang X, Kang L. Special Significance of Non- Drosophila Insects in Aging. Front Cell Dev Biol 2020; 8:576571. [PMID: 33072758 PMCID: PMC7536347 DOI: 10.3389/fcell.2020.576571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Aging is the leading risk factor of human chronic diseases. Understanding of aging process and mechanisms facilitates drug development and the prevention of aging-related diseases. Although many aging studies focus on fruit fly as a canonical insect system, minimal attention is paid to the potentially significant roles of other insects in aging research. As the most diverse group of animals, insects provide many aging types and important complementary systems for aging studies. Insect polyphenism represents a striking example of the natural variation in longevity and aging rate. The extreme intraspecific variations in the lifespan of social insects offer an opportunity to study how aging is differentially regulated by social factors. Insect flight, as an extremely high-intensity physical activity, is suitable for the investigation of the complex relationship between metabolic rate, oxidative stress, and aging. Moreover, as a "non-aging" state, insect diapause not only slows aging process during diapause phase but also affects adult longevity during/after diapause. In the past two decades, considerable progress has been made in understanding the molecular basis of aging regulation in insects. Herein, the recent research progress in non-Drosophila insect aging was reviewed, and its potential utilization in aging in the future was discussed.
Collapse
Affiliation(s)
- Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
82
|
Aristizabal MJ, Anreiter I, Halldorsdottir T, Odgers CL, McDade TW, Goldenberg A, Mostafavi S, Kobor MS, Binder EB, Sokolowski MB, O'Donnell KJ. Biological embedding of experience: A primer on epigenetics. Proc Natl Acad Sci U S A 2020; 117:23261-23269. [PMID: 31624126 PMCID: PMC7519272 DOI: 10.1073/pnas.1820838116] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biological embedding occurs when life experience alters biological processes to affect later life health and well-being. Although extensive correlative data exist supporting the notion that epigenetic mechanisms such as DNA methylation underlie biological embedding, causal data are lacking. We describe specific epigenetic mechanisms and their potential roles in the biological embedding of experience. We also consider the nuanced relationships between the genome, the epigenome, and gene expression. Our ability to connect biological embedding to the epigenetic landscape in its complexity is challenging and complicated by the influence of multiple factors. These include cell type, age, the timing of experience, sex, and DNA sequence. Recent advances in molecular profiling and epigenome editing, combined with the use of comparative animal and human longitudinal studies, should enable this field to transition from correlative to causal analyses.
Collapse
Affiliation(s)
- Maria J Aristizabal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V52 4H4, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Ina Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Thorhildur Halldorsdottir
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Candice L Odgers
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Psychological Science, University of California, Irvine, CA 92697
- Sanford School of Public Policy, Duke University, Durham, NC 27708
| | - Thomas W McDade
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Anthropology, Northwestern University, Evanston, IL 60208
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
| | - Anna Goldenberg
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Computer Science, Hospital for Sick Children, Vector Institute, University of Toronto, Toronto, ON, M5G OA4, Canada
| | - Sara Mostafavi
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Statistics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V52 4H4, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Elisabeth B Binder
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada;
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Kieran J O'Donnell
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada;
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| |
Collapse
|
83
|
Matsuda N, Numata H, Udaka H. Transcriptomic changes in the pea aphid, Acyrthosiphon pisum: Effects of the seasonal timer and photoperiod. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100740. [PMID: 32906053 DOI: 10.1016/j.cbd.2020.100740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Many insect species use photoperiod as a cue for induction of seasonal responses, including seasonal polyphenism. Although most aphid species viviparously produce parthenogenetic and sexual morphs under long and short days, respectively, a seasonal timer suppresses the sexual morph production over several successive generations during a few months following hatching of a sexually produced diapause egg. To reveal the relative influences of photoperiod and the seasonal timer on the reproductive polyphenism at the gene expression level, we performed RNA sequencing-based transcriptome analyses in the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae). Under short days, aphids with an expired seasonal timer showed a higher expression level in hundreds of genes than those with an operative seasonal timer. In contrast, aphids with an operative seasonal timer did not show upregulation in most of these genes. Functional annotations based on gene ontology showed that histone modifications and small non-coding RNA pathways were enriched in aphids with an expired seasonal timer under short-day conditions, suggesting that these epigenetic regulations on gene expression might be involved in a mechanism of maternal switching from the parthenogenetic to sexual morph production.
Collapse
Affiliation(s)
- Naoki Matsuda
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hideharu Numata
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroko Udaka
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
84
|
Merlin C, Iiams SE, Lugena AB. Monarch Butterfly Migration Moving into the Genetic Era. Trends Genet 2020; 36:689-701. [DOI: 10.1016/j.tig.2020.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
|
85
|
Abstract
Insects represent 85% of the animals. They have adapted to many environments and play a major role in ecosystems. Many insect species exhibit phenotypic plasticity. We here report on the mechanisms involved in phenotypic plasticity of different insects (aphids, migratory locust, map butterfly, honeybee) and also on the nutritional size plasticity in Drosophila and the plasticity of the wing eye-spots of the butterfly Bicyclus anynana. We also describe in more detail our work concerning the thermal plasticity of pigmentation in Drosophila. We have shown that the expression of the tan, yellow and Ddc genes, encoding enzymes of the melanin synthesis pathway, is modulated by temperature and that it is a consequence, at least in part, of the temperature-sensitive expression of the bab locus genes that repress them.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement (IBPS-LBD), 75005 Paris, France
| |
Collapse
|
86
|
Abstract
Phenotypic plasticity describes the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. It has major implications in agronomy, animal husbandry and medicine and is also thought to facilitate evolution. Phenotypic plasticity is widely observed in the wild. It is only relatively recently that the mechanisms involved in phenotypic plasticity have been analysed. Thanks to laboratory experiments we understand better how environmental conditions are involved in phenotypic variations. This article introduces major concepts from the phenotypic plasticity field, presents briefly mechanisms involved in phenotypic plasticity and discusses the links between phenotypic plasticity and evolution.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement (IBPS-LBD), 75005 Paris, France
| |
Collapse
|
87
|
Picard M, Sandi C. The social nature of mitochondria: Implications for human health. Neurosci Biobehav Rev 2020; 120:595-610. [PMID: 32651001 DOI: 10.1016/j.neubiorev.2020.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Sociality has profound evolutionary roots and is observed from unicellular organisms to multicellular animals. In line with the view that social principles apply across levels of biological complexity, a growing body of data highlights the remarkable social nature of mitochondria - life-sustaining endosymbiotic organelles with their own genome that populate the cell cytoplasm. Here, we draw from organizing principles of behavior in social organisms to reveal that similar to individuals among social networks, mitochondria communicate with each other and with the cell nucleus, exhibit group formation and interdependence, synchronize their behaviors, and functionally specialize to accomplish specific functions within the organism. Mitochondria are social organelles. The extension of social principles across levels of biological complexity is a theoretical shift that emphasizes the role of communication and interdependence in cell biology, physiology, and neuroscience. With the help of emerging computational methods capable of capturing complex dynamic behavioral patterns, the implementation of social concepts in mitochondrial biology may facilitate cross-talk across disciplines towards increasingly holistic and accurate models of human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
| |
Collapse
|
88
|
Wang M, Liu Y, Wen T, Liu W, Gao Q, Zhao J, Xiong Z, Wang Z, Jiang W, Yu Y, Wu L, Yuan Y, Wei X, Xu J, Cheng M, Zhang P, Li P, Hou Y, Yang H, Zhang G, Li Q, Liu C, Liu L. Chromatin accessibility and transcriptome landscapes of Monomorium pharaonis brain. Sci Data 2020; 7:217. [PMID: 32641764 PMCID: PMC7343836 DOI: 10.1038/s41597-020-0556-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of social organization (eusociality) is a major event in insect evolution. Although previous studies have investigated the mechanisms underlying caste differentiation and social behavior of eusocial insects including ants and honeybees, the molecular circuits governing sociality in these insects remain obscure. In this study, we profiled the transcriptome and chromatin accessibility of brain tissues in three Monomorium pharaonis ant castes: queens (including mature and un-mated queens), males and workers. We provide a comprehensive dataset including 16 RNA-sequencing and 16 assay for transposase accessible chromatin (ATAC)-sequencing profiles. We also demonstrate strong reproducibility of the datasets and have identified specific genes and open chromatin regions in the genome that may be associated with the social function of these castes. Our data will be a valuable resource for further studies of insect behaviour, particularly the role of brain in the control of eusociality.
Collapse
Affiliation(s)
- Mingyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yang Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Tinggang Wen
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Weiwei Liu
- State Key Laboratory of Genetic Resource and Evolution, Kunming Institution of Zoology, Chinese Academy of Science, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Science, Kunming, 650223, China
| | - Qionghua Gao
- State Key Laboratory of Genetic Resource and Evolution, Kunming Institution of Zoology, Chinese Academy of Science, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Science, Kunming, 650223, China
| | - Jie Zhao
- State Key Laboratory of Genetic Resource and Evolution, Kunming Institution of Zoology, Chinese Academy of Science, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Science, Kunming, 650223, China
| | - Zijun Xiong
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Zhifeng Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Wei Jiang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yeya Yu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
- BGI College, Zhengzhou University, Zhengzhou, 450000, China
| | - Liang Wu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yue Yuan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaoyu Wei
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jiangshan Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Mengnan Cheng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Pei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Panyi Li
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Huanming Yang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Guojie Zhang
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
- State Key Laboratory of Genetic Resource and Evolution, Kunming Institution of Zoology, Chinese Academy of Science, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Science, Kunming, 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Qiye Li
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National Gene Bank, BGI-Shenzhen, Shenzhen, 518120, China.
- Shenzhen Bay Laboratory, Shenzhen, 518083, China.
| |
Collapse
|
89
|
Mathuru AS, Libersat F, Vyas A, Teseo S. Why behavioral neuroscience still needs diversity?: A curious case of a persistent need. Neurosci Biobehav Rev 2020; 116:130-141. [PMID: 32565172 DOI: 10.1016/j.neubiorev.2020.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/29/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
Abstract
In the past few decades, a substantial portion of neuroscience research has moved from studies conducted across a spectrum of animals to reliance on a few species. While this undoubtedly promotes consistency, in-depth analysis, and a better claim to unraveling molecular mechanisms, investing heavily in a subset of species also restricts the type of questions that can be asked, and impacts the generalizability of findings. A conspicuous body of literature has long advocated the need to expand the diversity of animal systems used in neuroscience research. Part of this need is utilitarian with respect to translation, but the remaining is the knowledge that historically, a diverse set of species were instrumental in obtaining transformative understanding. We argue that diversifying matters also because the current approach limits the scope of what can be discovered. Technological advancements are already bridging several practical gaps separating these two worlds. What remains is a wholehearted embrace by the community that has benefitted from past history. We suggest the time for it is now.
Collapse
Affiliation(s)
- Ajay S Mathuru
- Yale-NUS College, 12 College Avenue West, Singapore; Institute of Molecular and Cell Biology, A⁎STAR, 61 Biopolis Drive, Singapore; Dept. of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Frédéric Libersat
- Dept. of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Ben Gurion University, Beer Sheva 8410501 Israel
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Serafino Teseo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
90
|
Gaddelapati SC, Dhandapani RK, Palli SR. CREB-binding protein regulates metamorphosis and compound eye development in the yellow fever mosquito, Aedes aegypti. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194576. [PMID: 32389826 DOI: 10.1016/j.bbagrm.2020.194576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023]
Abstract
Juvenile hormones (JH) and ecdysone coordinately regulate metamorphosis in Aedes aegypti. We studied the function of an epigenetic regulator and multifunctional transactivator, CREB binding protein (CBP) in A. aegypti. RNAi-mediated knockdown of CBP in Ae. aegypti larvae resulted in suppression of JH primary response gene, Krüppel-homolog 1 (Kr-h1), and induction of primary ecdysone response gene, E93, resulting in multiple effects including early metamorphosis, larval-pupal intermediate formation, mortality and inhibition of compound eye development. RNA sequencing identified hundreds of genes, including JH and ecdysone response genes regulated by CBP. In the presence of JH, CBP upregulates Kr-h1 by acetylating core histones at the Kr-h1 promoter and facilitating the recruitment of JH receptor and other proteins. CBP suppresses metamorphosis regulators, EcR-A, USP-A, BR-C, and E93 through the upregulation of Kr-h1 and E75A. CBP regulates the expression of core eye specification genes including those involved in TGF-β and EGFR signaling. These studies demonstrate that CBP is an essential player in JH and 20E action and regulates metamorphosis and compound eye development in Ae. aegypti.
Collapse
Affiliation(s)
| | | | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
91
|
Kirfel P, Vilcinskas A, Skaljac M. Lysine Acetyltransferase p300/CBP Plays an Important Role in Reproduction, Embryogenesis and Longevity of the Pea Aphid Acyrthosiphon pisum. INSECTS 2020; 11:E265. [PMID: 32357443 PMCID: PMC7290403 DOI: 10.3390/insects11050265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
CREB-binding protein (p300/CBP) is a universal transcriptional co-regulator with lysine acetyltransferase activity. Drosophila melanogaster p300/CBP is a well-known regulator of embryogenesis, and recent studies in beetles and cockroaches have revealed the importance of this protein during post-embryonic development and endocrine signaling. In pest insects, p300/CBP may therefore offer a useful target for control methods based on RNA interference (RNAi). We investigated the role of p300/CBP in the pea aphid (Acyrthosiphon pisum), a notorious pest insect used as a laboratory model for the analysis of complex life-history traits. The RNAi-based attenuation of A. pisum p300/CBP significantly reduced the aphid lifespan and number of offspring, as well as shortening the reproductive phase, suggesting the manipulation of this gene contributes to accelerated senescence. Furthermore, injection of p300/CBP dsRNA also reduced the number of viable offspring and increased the number of premature nymphs, which developed in abnormally structured ovaries. Our data confirm the evolutionarily conserved function of p300/CBP during insect embryogenesis and show that the protein has a critical effect on longevity, reproduction and development in A. pisum. The potent effect of p300/CBP silencing indicates that this regulatory protein is an ideal target for RNAi-based aphid control.
Collapse
Affiliation(s)
- Phillipp Kirfel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
| |
Collapse
|
92
|
Mitaka Y, Tasaki E, Nozaki T, Fuchikawa T, Kobayashi K, Matsuura K. Transcriptomic analysis of epigenetic modification genes in the termite Reticulitermes speratus. INSECT SCIENCE 2020; 27:202-211. [PMID: 30203565 DOI: 10.1111/1744-7917.12640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Eusocial insects display a caste system in which different castes are morphologically and physiologically specialized for different tasks. Recent studies have revealed that epigenetic modifications, including DNA methylation and histone modification, mediate caste determination and differentiation, longevity, and polyethism in eusocial insects. Although there has been a growing interest in the relationship between epigenetic mechanisms and phenotypic plasticity in termites, there is little information about differential expression levels among castes and expression sites for these genes in termites. Here we show royal-tissue-specific expression of epigenetic modification genes in the termite Reticulitermes speratus. Using RNA-seq, we identified 74 genes, including three DNA methyltransferases, seven sirtuins, 48 Trithorax group proteins, and 16 Polycomb group proteins. Among these genes, 15 showed king-specific expression, and 52 showed age-dependent differential expression in kings and queens. Quantitative real-time PCR revealed that DNA methyltransferase 3 is expressed specifically in the king's testis and fat body, whereas some histone modification genes are remarkably expressed in the king's testis and queen's ovary. These findings imply that epigenetic modification plays important roles in the gamete production process in termite kings and queens.
Collapse
Affiliation(s)
- Yuki Mitaka
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
- Applied Entomology Laboratory, Center for Bioresource Field Science, Kyoto Institute of Technology, Ukyo-ku, Kyoto, Japan
| | - Eisuke Tasaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomonari Nozaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Taro Fuchikawa
- Laboratory of Animal Physiology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Kazuya Kobayashi
- Hokkaido Forest Research Station, Field Science Education and Research Center, Kyoto University, Kawakami-gun, Hokkaido, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
93
|
Lyu H, Xu G, Chen P, Song Q, Feng Q, Yi Y, Zheng S. 20-Hydroxyecdysone receptor-activated Bombyx mori CCAAT/enhancer-binding protein gamma regulates the expression of BmCBP and subsequent histone H3 lysine 27 acetylation in Bo. mori. INSECT MOLECULAR BIOLOGY 2020; 29:256-270. [PMID: 31840914 DOI: 10.1111/imb.12630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) response element binding protein (CREB)-binding protein (CBP or CREBBP) plays important roles in regulating gene transcription and animal development. However, the process by which CBP is up-regulated to impact insect development is unknown. In this study, the regulatory mechanism of Bombyx mori CBP (BmCBP) expression induced by 20-hydroxyecdysone (20E) was investigated. In the Bo. mori cell line, DZNU-Bm-12, 20E enhanced BmCBP transcription and histone H3K27 acetylation. BmCBP RNA interference (RNAi) resulted in decreased histone H3K27 acetylation. Additionally, the luciferase activity analysis revealed that the transcription factor, Bo. mori CCAAT/enhancer-binding protein gamma (BmC/EBPg), activated BmCBP transcription, which was suppressed by BmC/EBPg RNAi and promoted by BmC/EBPg overexpression. Electrophoretic mobility shift assay and chromatin immunoprecipitation results demonstrated that BmC/EBPg could bind to the C/EBP cis-regulatory elements in two positions of the BmCBP promoter. Moreover, BmC/EBPg transcription was enhanced by the 20E receptor (BmEcR), which bound to the BmC/EBPg promoter. BmEcR RNAi significantly inhibited the transcriptional levels of BmC/EBPg and BmCBP in the presence of 20E. Furthermore, the BmEcR-BmC/EBPg pathway regulated the acetylation levels of histone H3K27. Altogether, these results indicate that BmEcR enhances the expression of BmC/EBPg, which binds to the BmCBP promoter, activates BmCBP expression and leads to histone H3K27 acetylation.
Collapse
Affiliation(s)
- H Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - G Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - P Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Q Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Q Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Y Yi
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - S Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
94
|
Pokorny T, Sieber LM, Hofferberth JE, Bernadou A, Ruther J. Age-dependent release of and response to alarm pheromone in a ponerine ant. J Exp Biol 2020; 223:jeb218040. [PMID: 32098887 DOI: 10.1242/jeb.218040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022]
Abstract
Social insect societies are characterized by division of labour and communication within the colony. The most frequent mode of communication is by chemical signals. In general, pheromones elicit specific responses in the receiver, although reactions may vary depending on the receiving individual's physiological or motivational state. For example, it has been shown that pheromones can elicit different responses in morphological worker castes. However, comparably little is known about such effects in worker castes of monomorphic species. Here, we comprehensively studied a monomorphic species showing age polyethism, the thelytokous ant Platythyrea punctata Our analyses revealed that the species' alarm pheromone consists of (S)-(-)-citronellal and (S)-(-)-actinidine, and is produced in the mandibular glands. Ants responded with increased movement activity and increasing ant density towards the pheromone source in whole-colony bioassays, confirming the alarming effect of these compounds. We found age classes to differ in their absolute pheromone content, in the propensity to release alarm pheromone upon disturbance and in their reaction towards the pheromone. Absolute amounts of pheromone content may differ simply because the biosynthesis of the pheromone begins only after adult eclosion. Nonetheless, our results indicate that this clonal species exhibits age-related polyethism in the emission of as well as in the response to its alarm pheromone.
Collapse
Affiliation(s)
- Tamara Pokorny
- Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| | - Lisa-Marie Sieber
- Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| | | | - Abel Bernadou
- Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
95
|
Friedman DA, York RA, Hilliard AT, Gordon DM. Gene expression variation in the brains of harvester ant foragers is associated with collective behavior. Commun Biol 2020; 3:100. [PMID: 32139795 PMCID: PMC7057964 DOI: 10.1038/s42003-020-0813-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023] Open
Abstract
Natural selection on collective behavior acts on variation among colonies in behavior that is associated with reproductive success. In the red harvester ant (Pogonomyrmex barbatus), variation among colonies in the collective regulation of foraging in response to humidity is associated with colony reproductive success. We used RNA-seq to examine gene expression in the brains of foragers in a natural setting. We find that colonies differ in the expression of neurophysiologically-relevant genes in forager brains, and a fraction of these gene expression differences are associated with two colony traits: sensitivity of foraging activity to humidity, and forager brain dopamine to serotonin ratio. Loci that were correlated with colony behavioral differences were enriched in neurotransmitter receptor signaling & metabolic functions, tended to be more central to coexpression networks, and are evolving under higher protein-coding sequence constraint. Natural selection may shape colony foraging behavior through variation in gene expression.
Collapse
Affiliation(s)
| | | | | | - Deborah M Gordon
- Stanford University, Department of Biology, Stanford, CA, 94305, USA.
| |
Collapse
|
96
|
Kaur R, Stoldt M, Jongepier E, Feldmeyer B, Menzel F, Bornberg-Bauer E, Foitzik S. Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180192. [PMID: 30967075 DOI: 10.1098/rstb.2018.0192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The geographical mosaic theory of coevolution predicts that species interactions vary between locales. Depending on who leads the coevolutionary arms race, the effectivity of parasite attack or host defence strategies will explain parasite prevalence. Here, we compare behaviour and brain transcriptomes of Temnothorax longispinosus ant workers when defending their nest against an invading social parasite, the slavemaking ant Temnothorax americanus. A full-factorial design allowed us to test whether behaviour and gene expression are linked to parasite pressure on host populations or to the ecological success of parasite populations. Albeit host defences had been shown before to covary with local parasite pressure, we found parasite success to be much more important. Our chemical and behavioural analyses revealed that parasites from high prevalence sites carry lower concentrations of recognition cues and are less often attacked by hosts. This link was further supported by gene expression analysis. Our study reveals that host-parasite interactions are strongly influenced by social parasite strategies, so that variation in parasite prevalence is determined by parasite traits rather than the efficacy of host defence. Gene functions associated with parasite success indicated strong neuronal responses in hosts, including long-term changes in gene regulation, indicating an enduring impact of parasites on host behaviour. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Rajbir Kaur
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - Marah Stoldt
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - Evelien Jongepier
- 2 Molecular Evolution and Bioinformatics Group, Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität , Münster , Germany
| | - Barbara Feldmeyer
- 3 Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung , Senckenberganlage 25, 60325 Frankfurt am Main , Germany
| | - Florian Menzel
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - Erich Bornberg-Bauer
- 2 Molecular Evolution and Bioinformatics Group, Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität , Münster , Germany
| | - Susanne Foitzik
- 1 Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
97
|
Libbrecht R, Nadrau D, Foitzik S. A Role of Histone Acetylation in the Regulation of Circadian Rhythm in Ants. iScience 2020; 23:100846. [PMID: 32004990 PMCID: PMC6995257 DOI: 10.1016/j.isci.2020.100846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/03/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
In many organisms, circadian rhythms and associated oscillations in gene expression are controlled by post-translational modifications of histone proteins. Although epigenetic mechanisms influence key aspects of insect societies, their implication in regulating circadian rhythms has not been studied in social insects. Here we ask whether histone acetylation plays a role in adjusting circadian activity in the ant Temnothorax longispinosus. We characterized activity patterns in 20 colonies to reveal that these ants exhibit a diurnal rhythm in colony-level activity and can rapidly respond to changes in the light regime. Then we fed T. longispinosus colonies with C646, a chemical inhibitor of histone acetyltransferases, to show that treated colonies lost their circadian rhythmicity and failed to adjust their activity to the light regime. These findings suggest a role for histone acetylation in controlling rhythmicity in ants and implicate epigenetic processes in the regulation of circadian rhythms in a social context.
Collapse
Affiliation(s)
- Romain Libbrecht
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany.
| | - Dennis Nadrau
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| |
Collapse
|
98
|
Identification of the Trail Pheromone of the Carpenter Ant Camponotus modoc. J Chem Ecol 2019; 45:901-913. [PMID: 31773376 DOI: 10.1007/s10886-019-01114-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
Trail pheromones deposited by ants lead nestmates to food sources. Based on previous evidence that the trail pheromone of the carpenter ant Camponotus modoc originates from the hindgut, our objective in this study was to identify the key component(s) of the pheromone. We collected C. modoc colonies from conifer forests and maintained them in an outdoor enclosure near our laboratory for chemical analyses and behavioral experiments. In gas chromatographic-electroantennographic detection and gas chromatography-mass spectrometric analyses of worker ant hindgut extracts, we identified five candidate components: 2,4-dimethylhexanoic acid, 2,4-dimethyl-5-hexanolide, pentadecane, dodecanoic acid and 3,4-dihydro-8-hydroxy-3,5,7-trimethylisocoumarin. In a series of trail-following experiments, ants followed trails of synthetic 2,4-dimethyl-5-hexanolide, a blend of the five compounds, and hindgut extract over similar distances, indicating that the hexanolide accounted for the entire behavioral activity of the hindgut extract. The hexanolide not only mediated orientation of C. modoc foragers on trails, it also attracted them over distance, indicating a dual function. Further analyses and bioassays with racemic and stereoselectively synthesized hexanolides revealed that the ants produce, and respond to, the (2S,4R,5S)-stereoisomer. The same stereoisomer is a trail pheromone component in several Camponotus congeners, indicating significant overlap in their respective trail pheromone communication systems.
Collapse
|
99
|
Glastad KM, Graham RJ, Ju L, Roessler J, Brady CM, Berger SL. Epigenetic Regulator CoREST Controls Social Behavior in Ants. Mol Cell 2019; 77:338-351.e6. [PMID: 31732456 DOI: 10.1016/j.molcel.2019.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022]
Abstract
Ants acquire distinct morphological and behavioral phenotypes arising from a common genome, underscoring the importance of epigenetic regulation. In Camponotus floridanus, "Major" workers defend the colony, but can be epigenetically reprogrammed to forage for food analogously to "Minor" workers. Here, we utilize reprogramming to investigate natural behavioral specification. Reprogramming of Majors upregulates Minor-biased genes and downregulates Major-biased genes, engaging molecular pathways fundamental to foraging behavior. We discover the neuronal corepressor for element-1-silencing transcription factor (CoREST) is upregulated upon reprogramming and required for the epigenetic switch to foraging. Genome-wide profiling during reprogramming reveals CoREST represses expression of enzymes that degrade juvenile hormone (JH), a hormone elevated upon reprogramming. High CoREST, low JH-degrader expression, and high JH levels are mirrored in natural Minors, revealing parallel mechanisms of natural and reprogrammed foraging. These results unveil chromatin regulation via CoREST as central to programming of ant social behavior, with potential far-reaching implications for behavioral epigenetics.
Collapse
Affiliation(s)
- Karl M Glastad
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riley J Graham
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Linyang Ju
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julian Roessler
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cristina M Brady
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
100
|
High-Quality Genome Assemblies Reveal Long Non-coding RNAs Expressed in Ant Brains. Cell Rep 2019; 23:3078-3090. [PMID: 29874592 PMCID: PMC6023404 DOI: 10.1016/j.celrep.2018.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/04/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022] Open
Abstract
Ants are an emerging model system for neuroepigenetics, as embryos with virtually identical genomes develop into different adult castes that display diverse physiology, morphology, and behavior. Although a number of ant genomes have been sequenced to date, their draft quality is an obstacle to sophisticated analyses of epigenetic gene regulation. We reassembled de novo high-quality genomes for two ant species, Camponotus floridanus and Harpegnathos saltator. Using long reads enabled us to span large repetitive regions and improve genome contiguity, leading to comprehensive and accurate protein-coding annotations that facilitated the identification of a Gp-9-like gene as differentially expressed in Harpegnathos castes. The new assemblies also enabled us to annotate long non-coding RNAs in ants, revealing caste-, brain-, and developmental-stage-specific long non-coding RNAs (lncRNAs) in Harpegnathos. These upgraded genomes, along with the new gene annotations, will aid future efforts to identify epigenetic mechanisms of phenotypic and behavioral plasticity in ants.
Collapse
|