51
|
Zhang M, Sun G, Ren L, Yuan H, Dong G, Zhang L, Liu F, Cao P, Ko AMS, Yang MA, Hu S, Wang GD, Fu Q. Ancient DNA Evidence from China Reveals the Expansion of Pacific Dogs. Mol Biol Evol 2021; 37:1462-1469. [PMID: 31913480 DOI: 10.1093/molbev/msz311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ancestral homeland of Australian dingoes and Pacific dogs is proposed to be in South China. However, the location and timing of their dispersal and relationship to dog domestication is unclear. Here, we sequenced 7,000- to 2,000-year-old complete mitochondrial DNA (mtDNA) genomes of 27 ancient canids (one gray wolf and 26 domestic dogs) from the Yellow River and Yangtze River basins (YYRB). These are the first complete ancient mtDNA of Chinese dogs from the cradle of early Chinese civilization. We found that most ancient dogs (18/26) belong to the haplogroup A1b lineage that is found in high frequency in present-day Australian dingoes and precolonial Pacific Island dogs but low frequency in present-day China. Particularly, a 7,000-year-old dog from the Tianluoshan site in Zhejiang province possesses a haplotype basal to the entire haplogroup A1b lineage. We propose that A1b lineage dogs were once widely distributed in the YYRB area. Following their dispersal to South China, and then into Southeast Asia, New Guinea and remote Oceania, they were largely replaced by dogs belonging to other lineages in the last 2,000 years in present-day China, especially North China.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoping Sun
- Zhejiang Provincial Institute of Relics and Archaeology, Hangzhou, China
| | - Lele Ren
- School of History and Culture, Lanzhou University, Lanzhou, China
| | - Haibing Yuan
- National Demonstration Center for Experimental Archaeology Education, Department of Archaeology, Sichuan University, Chengdu, China
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Melinda A Yang
- Department of Biology, University of Richmond, Richmond, VA
| | - Songmei Hu
- Shaanxi Academy of Archaeology, Xi'an, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
52
|
da Silva Coelho FA, Gill S, Tomlin CM, Heaton TH, Lindqvist C. An early dog from southeast Alaska supports a coastal route for the first dog migration into the Americas. Proc Biol Sci 2021; 288:20203103. [PMID: 33622130 PMCID: PMC7934960 DOI: 10.1098/rspb.2020.3103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The oldest confirmed remains of domestic dogs in North America are from mid-continent archaeological sites dated approximately 9900 calibrated years before present (cal BP). Although this date suggests that dogs may not have arrived alongside the first Native Americans, the timing and routes for the entrance of New World dogs remain uncertain. Here, we present a complete mitochondrial genome of a dog from southeast Alaska, dated to 10 150 ± 260 cal BP. We compared this high-coverage genome with data from modern dog breeds, historical Arctic dogs and American precontact dogs (PCDs) from before European arrival. Our analyses demonstrate that the ancient dog belongs to the PCD lineage, which diverged from Siberian dogs around 16 700 years ago. This timing roughly coincides with the minimum suggested date for the opening of the North Pacific coastal (NPC) route along the Cordilleran Ice Sheet and genetic evidence for the initial peopling of the Americas. This ancient southeast Alaskan dog occupies an early branching position within the PCD clade, indicating it represents a close relative of the earliest PCDs that were brought alongside people migrating from eastern Beringia southward along the NPC to the rest of the Americas. The stable isotope δ13C value of this early dog indicates a marine diet, different from the younger mid-continent PCDs' terrestrial diet. Although PCDs were largely replaced by modern European dog breeds, our results indicate that their population decline started approximately 2000 years BP, coinciding with the expansion of Inuit peoples, who are associated with traditional sled-dog culture. Our findings suggest that dogs formed part of the initial human habitation of the New World, and provide insights into their replacement by both Arctic and European lineages.
Collapse
Affiliation(s)
| | - Stephanie Gill
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Crystal M Tomlin
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Timothy H Heaton
- Department of Earth Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
53
|
Perri AR, Mitchell KJ, Mouton A, Álvarez-Carretero S, Hulme-Beaman A, Haile J, Jamieson A, Meachen J, Lin AT, Schubert BW, Ameen C, Antipina EE, Bover P, Brace S, Carmagnini A, Carøe C, Samaniego Castruita JA, Chatters JC, Dobney K, Dos Reis M, Evin A, Gaubert P, Gopalakrishnan S, Gower G, Heiniger H, Helgen KM, Kapp J, Kosintsev PA, Linderholm A, Ozga AT, Presslee S, Salis AT, Saremi NF, Shew C, Skerry K, Taranenko DE, Thompson M, Sablin MV, Kuzmin YV, Collins MJ, Sinding MHS, Gilbert MTP, Stone AC, Shapiro B, Van Valkenburgh B, Wayne RK, Larson G, Cooper A, Frantz LAF. Dire wolves were the last of an ancient New World canid lineage. Nature 2021; 591:87-91. [PMID: 33442059 DOI: 10.1038/s41586-020-03082-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/12/2020] [Indexed: 11/09/2022]
Abstract
Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently.
Collapse
Affiliation(s)
- Angela R Perri
- Department of Archaeology, Durham University, Durham, UK.
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Alice Mouton
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | | | - Ardern Hulme-Beaman
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK.,School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | - James Haile
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - Alexandra Jamieson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - Julie Meachen
- Department of Anatomy, Des Moines University, Des Moines, IA, USA
| | - Audrey T Lin
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK.,Department of Zoology, University of Oxford, Oxford, UK.,Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Blaine W Schubert
- Center of Excellence in Paleontology & Department of Geosciences, East Tennessee State University, Johnson City, TN, USA
| | - Carly Ameen
- Department of Archaeology, University of Exeter, Exeter, UK
| | | | - Pere Bover
- ARAID Foundation, Instituto Universitario de Investigación en Ciencias Ambientales (IUCA) - Aragosaurus Group, Universidad de Zaragoza, Zaragoza, Spain
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Alberto Carmagnini
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Christian Carøe
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK.,Department of Archaeology, University of Sydney, Sydney, New South Wales, Australia.,Department of Archaeology, University of Aberdeen, Aberdeen, UK.,Department of Archaeology, Simon Fraser University, Burnaby, Canada
| | - Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Allowen Evin
- Institut des Sciences de l'Evolution - Montpellier, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France
| | - Philippe Gaubert
- Laboratoire Evolution & Diversité Biologique, UPS/CNRS/IRD, Université Paul Sabatier, Toulouse, France
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Graham Gower
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Holly Heiniger
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Josh Kapp
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Pavel A Kosintsev
- Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| | - Anna Linderholm
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK.,Department of Anthropology, Texas A&M University, College Station, TX, USA
| | - Andrew T Ozga
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | | - Alexander T Salis
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Nedda F Saremi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Colin Shew
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Katherine Skerry
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Dmitry E Taranenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Mary Thompson
- Idaho Museum of Natural History, Idaho State University, Pocatello, ID, USA
| | - Mikhail V Sablin
- Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia
| | - Yaroslav V Kuzmin
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Tomsk State University, Tomsk, Russia
| | - Matthew J Collins
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Mikkel-Holger S Sinding
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,NTNU University Museum, Trondheim, Norway
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Institute of Human Origins, Arizona State University, Tempe, AZ, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Blaire Van Valkenburgh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - Alan Cooper
- South Australian Museum, Adelaide, South Australia, Australia
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK. .,Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
54
|
Ramos-Madrigal J, Sinding MHS, Carøe C, Mak SST, Niemann J, Samaniego Castruita JA, Fedorov S, Kandyba A, Germonpré M, Bocherens H, Feuerborn TR, Pitulko VV, Pavlova EY, Nikolskiy PA, Kasparov AK, Ivanova VV, Larson G, Frantz LAF, Willerslev E, Meldgaard M, Petersen B, Sicheritz-Ponten T, Bachmann L, Wiig Ø, Hansen AJ, Gilbert MTP, Gopalakrishnan S. Genomes of Pleistocene Siberian Wolves Uncover Multiple Extinct Wolf Lineages. Curr Biol 2021; 31:198-206.e8. [PMID: 33125870 PMCID: PMC7809626 DOI: 10.1016/j.cub.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/28/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022]
Abstract
Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.
Collapse
Affiliation(s)
- Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Holger S Sinding
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Natural History Museum, University of Oslo, Oslo, Norway; The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Greenland Institute of Natural Resources, Nuuk, Greenland; Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Christian Carøe
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sarah S T Mak
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Niemann
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Sergey Fedorov
- Mammoth Museum of North-Eastern Federal University, Yakutsk, Russia
| | - Alexander Kandyba
- Department of Stone Age Archeology, Institute of Archaeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Mietje Germonpré
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Hervé Bocherens
- Department of Geosciences, Biogeology, University of Tübingen, Tübingen, Germany; Senckenberg Centre for Human Evolution and Palaeoenvironment, Tübingen, Germany
| | - Tatiana R Feuerborn
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena Y Pavlova
- Arctic and Antarctic Research Institute, St. Petersburg, Russia
| | | | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Varvara V Ivanova
- VNIIOkeangeologia Research Institute (The All-Russian Research Institute of Geology and Mineral Resources of the World Ocean), St. Petersburg, Russia
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK; Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Eske Willerslev
- Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Danish Institute for Advanced Study (D-IAS), University of Southern Denmark, Odense, Denmark; Department of Zoology, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, University of Cambridge, Cambridge, UK
| | - Morten Meldgaard
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Thomas Sicheritz-Ponten
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Lutz Bachmann
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Øystein Wiig
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Anders J Hansen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
55
|
Dog colour patterns explained by modular promoters of ancient canid origin. Nat Ecol Evol 2021; 5:1415-1423. [PMID: 34385618 PMCID: PMC8484016 DOI: 10.1038/s41559-021-01524-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Distinctive colour patterns in dogs are an integral component of canine diversity. Colour pattern differences are thought to have arisen from mutation and artificial selection during and after domestication from wolves but important gaps remain in understanding how these patterns evolved and are genetically controlled. In other mammals, variation at the ASIP gene controls both the temporal and spatial distribution of yellow and black pigments. Here, we identify independent regulatory modules for ventral and hair cycle ASIP expression, and we characterize their action and evolutionary origin. Structural variants define multiple alleles for each regulatory module and are combined in different ways to explain five distinctive dog colour patterns. Phylogenetic analysis reveals that the haplotype combination for one of these patterns is shared with Arctic white wolves and that its hair cycle-specific module probably originated from an extinct canid that diverged from grey wolves more than 2 million years ago. Natural selection for a lighter coat during the Pleistocene provided the genetic framework for widespread colour variation in dogs and wolves.
Collapse
|
56
|
Anza-Burgess K, Lepofsky D, Yang D. “A Part of the People”: Human-Dog Relationships Among the Northern Coast Salish of SW British Columbia. J ETHNOBIOL 2020. [DOI: 10.2993/0278-0771-40.4.434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kasia Anza-Burgess
- Department of Physical Therapy, University of British Columbia, Vancouver, BC. V6T 1Z3 Canada
| | - Dana Lepofsky
- Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
| | - Dongya Yang
- Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
57
|
Bergström A, Frantz L, Schmidt R, Ersmark E, Lebrasseur O, Girdland-Flink L, Lin AT, Storå J, Sjögren KG, Anthony D, Antipina E, Amiri S, Bar-Oz G, Bazaliiskii VI, Bulatović J, Brown D, Carmagnini A, Davy T, Fedorov S, Fiore I, Fulton D, Germonpré M, Haile J, Irving-Pease EK, Jamieson A, Janssens L, Kirillova I, Horwitz LK, Kuzmanovic-Cvetković J, Kuzmin Y, Losey RJ, Dizdar DL, Mashkour M, Novak M, Onar V, Orton D, Pasarić M, Radivojević M, Rajković D, Roberts B, Ryan H, Sablin M, Shidlovskiy F, Stojanović I, Tagliacozzo A, Trantalidou K, Ullén I, Villaluenga A, Wapnish P, Dobney K, Götherström A, Linderholm A, Dalén L, Pinhasi R, Larson G, Skoglund P. Origins and genetic legacy of prehistoric dogs. Science 2020; 370:557-564. [PMID: 33122379 PMCID: PMC7116352 DOI: 10.1126/science.aba9572] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Dogs were the first domestic animal, but little is known about their population history and to what extent it was linked to humans. We sequenced 27 ancient dog genomes and found that all dogs share a common ancestry distinct from present-day wolves, with limited gene flow from wolves since domestication but substantial dog-to-wolf gene flow. By 11,000 years ago, at least five major ancestry lineages had diversified, demonstrating a deep genetic history of dogs during the Paleolithic. Coanalysis with human genomes reveals aspects of dog population history that mirror humans, including Levant-related ancestry in Africa and early agricultural Europe. Other aspects differ, including the impacts of steppe pastoralist expansions in West and East Eurasia and a near-complete turnover of Neolithic European dog ancestry.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Ryan Schmidt
- School of Archaeology and Earth Institute, University College Dublin, Dublin, Ireland
- CIBIO-InBIO, University of Porto, Campus de Vairão, Portugal
| | - Erik Ersmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 18C, Stockholm, Sweden
| | - Ophelie Lebrasseur
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Linus Girdland-Flink
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
- Liverpool John Moores University, Liverpool, UK
| | - Audrey T Lin
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jan Storå
- Stockholm University, Stockholm, Sweden
| | | | - David Anthony
- Hartwick College, Oneonta, NY, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ekaterina Antipina
- Institute of Archaeology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Sarieh Amiri
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | | | | | | | | | - Alberto Carmagnini
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tom Davy
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Sergey Fedorov
- North-Eastern Federal University, Yakutsk, Russian Federation
| | - Ivana Fiore
- Bioarchaeology Service, Museo delle Civiltà, Rome, Italy
- Environmental and Evolutionary Biology Doctoral Program, Sapienza University of Rome, Rome, Italy
| | | | | | - James Haile
- University of Copenhagen, Copenhagen, Denmark
| | - Evan K Irving-Pease
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Lundbeck GeoGenetics Centre, The Globe Institute, Copenhagen, Denmark
| | - Alexandra Jamieson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | | | | | | | - Yaroslav Kuzmin
- Sobolev Institute of Geology and Mineralogy of the Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
- Tomsk State University, Tomsk, Russian Federation
| | | | | | - Marjan Mashkour
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris, France
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Vedat Onar
- Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | | | - Maja Pasarić
- Institute of Ethnology and Folklore Research, Zagreb, Croatia
| | | | | | | | - Hannah Ryan
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | | | | | | | - Katerina Trantalidou
- Hellenic Ministry of Culture & Sports, Athens, Greece
- University of Thessaly, Argonauton & Philellinon, Volos, Greece
| | - Inga Ullén
- National Historical Museums, Stockholm, Sweden
| | - Aritza Villaluenga
- Consolidated Research Group on Prehistory (IT-1223-19), University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain
| | - Paula Wapnish
- Pennsylvania State University, University Park, PA, USA
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
- Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
- School of Philosophical and Historical Inquiry, Faculty of Arts and Social Sciences, University of Sydney, Sydney, NSW, Australia
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 18C, Stockholm, Sweden
- Stockholm University, Stockholm, Sweden
| | | | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 18C, Stockholm, Sweden
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
58
|
Yao L, Witt K, Li H, Rice J, Salinas NR, Martin RD, Huerta-Sánchez E, Malhi RS. Population genetics of wild Macaca fascicularis with low-coverage shotgun sequencing of museum specimens. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:21-33. [PMID: 32643146 PMCID: PMC8329942 DOI: 10.1002/ajpa.24099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Long-tailed macaques (Macaca fascicularis) are widely distributed throughout the mainland and islands of Southeast Asia, making them a useful model for understanding the complex biogeographical history resulting from drastic changes in sea levels throughout the Pleistocene. Past studies based on mitochondrial genomes (mitogenomes) of long-tailed macaque museum specimens have traced their colonization patterns throughout the archipelago, but mitogenomes trace only the maternal history. Here, our objectives were to trace phylogeographic patterns of long-tailed macaques using low-coverage nuclear DNA (nDNA) data from museum specimens. METHODS We performed population genetic analyses and phylogenetic reconstruction on nuclear single nucleotide polymorphisms (SNPs) from shotgun sequencing of 75 long-tailed macaque museum specimens from localities throughout Southeast Asia. RESULTS We show that shotgun sequencing of museum specimens yields sufficient genome coverage (average ~1.7%) for reconstructing population relationships using SNP data. Contrary to expectations of divergent results between nuclear and mitochondrial genomes for a female philopatric species, phylogeographical patterns based on nuclear SNPs proved to be closely similar to those found using mitogenomes. In particular, population genetic analyses and phylogenetic reconstruction from the nDNA identify two major clades within M. fascicularis: Clade A includes all individuals from the mainland along with individuals from northern Sumatra, while Clade B consists of the remaining island-living individuals, including those from southern Sumatra. CONCLUSIONS Overall, we demonstrate that low-coverage sequencing of nDNA from museum specimens provides enough data for examining broad phylogeographic patterns, although greater genome coverage and sequencing depth would be needed to distinguish between very closely related populations, such as those throughout the Philippines.
Collapse
Affiliation(s)
- Lu Yao
- American Museum of Natural History, New York, New York, USA
| | - Kelsey Witt
- Brown University, Providence, Rhode Island, USA
- University of California Merced, Merced, California, USA
| | - Hongjie Li
- University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan Rice
- University of California Merced, Merced, California, USA
| | - Nelson R Salinas
- American Museum of Natural History, New York, New York, USA
- Instituto de Hidrología, Metereología y Estudios Ambientales IDEAM, Bogotá, Colombia
| | - Robert D Martin
- The Field Museum of Natural History, Chicago, Illinois, USA
- University of Zürich, Zürich, Switzerland
| | | | - Ripan S Malhi
- University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
59
|
Wang MS, Thakur M, Peng MS, Jiang Y, Frantz LAF, Li M, Zhang JJ, Wang S, Peters J, Otecko NO, Suwannapoom C, Guo X, Zheng ZQ, Esmailizadeh A, Hirimuthugoda NY, Ashari H, Suladari S, Zein MSA, Kusza S, Sohrabi S, Kharrati-Koopaee H, Shen QK, Zeng L, Yang MM, Wu YJ, Yang XY, Lu XM, Jia XZ, Nie QH, Lamont SJ, Lasagna E, Ceccobelli S, Gunwardana HGTN, Senasige TM, Feng SH, Si JF, Zhang H, Jin JQ, Li ML, Liu YH, Chen HM, Ma C, Dai SS, Bhuiyan AKFH, Khan MS, Silva GLLP, Le TT, Mwai OA, Ibrahim MNM, Supple M, Shapiro B, Hanotte O, Zhang G, Larson G, Han JL, Wu DD, Zhang YP. 863 genomes reveal the origin and domestication of chicken. Cell Res 2020; 30:693-701. [PMID: 32581344 PMCID: PMC7395088 DOI: 10.1038/s41422-020-0349-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/20/2020] [Indexed: 01/10/2023] Open
Abstract
Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Ecology and Evolutionary Biology, Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Mukesh Thakur
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Laurent Alain François Frantz
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Joris Peters
- ArchaeoBioCenter and Department of Veterinary Sciences, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, LMU Munich, Munich, Germany
- SNSB, Bavarian State Collection of Anthropology and Palaeoanatomy, Munich, Germany
| | - Newton Otieno Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhu-Qing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Nalini Yasoda Hirimuthugoda
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - Hidayat Ashari
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Sri Suladari
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
| | - Moch Syamsul Arifin Zein
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
| | - Szilvia Kusza
- Institute of Animal Husbandry, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary
| | - Saeed Sohrabi
- Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamed Kharrati-Koopaee
- Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Jiang Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, Yunnan, China
| | - Xing-Yan Yang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, Yunnan, China
| | - Xue-Mei Lu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin-Zheng Jia
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Qing-Hua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Susan Joy Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, Perugia, Italy
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, Perugia, Italy
| | | | | | - Shao-Hong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Jing-Fang Si
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (CAS-SEABRI), Yezin, Myanmar
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong-Man Chen
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Cheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | | | | - Thi-Thuy Le
- National Institute of Animal Husbandry, Hanoi, Vietnam
| | - Okeyo Ally Mwai
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | - Megan Supple
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark
- China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
60
|
Hamede R, Owen R, Siddle H, Peck S, Jones M, Dujon AM, Giraudeau M, Roche B, Ujvari B, Thomas F. The ecology and evolution of wildlife cancers: Applications for management and conservation. Evol Appl 2020; 13:1719-1732. [PMID: 32821279 PMCID: PMC7428810 DOI: 10.1111/eva.12948] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ecological and evolutionary concepts have been widely adopted to understand host-pathogen dynamics, and more recently, integrated into wildlife disease management. Cancer is a ubiquitous disease that affects most metazoan species; however, the role of oncogenic phenomena in eco-evolutionary processes and its implications for wildlife management and conservation remains undeveloped. Despite the pervasive nature of cancer across taxa, our ability to detect its occurrence, progression and prevalence in wildlife populations is constrained due to logistic and diagnostic limitations, which suggests that most cancers in the wild are unreported and understudied. Nevertheless, an increasing number of virus-associated and directly transmissible cancers in terrestrial and aquatic environments have been detected. Furthermore, anthropogenic activities and sudden environmental changes are increasingly associated with cancer incidence in wildlife. This highlights the need to upscale surveillance efforts, collection of critical data and developing novel approaches for studying the emergence and evolution of cancers in the wild. Here, we discuss the relevance of malignant cells as important agents of selection and offer a holistic framework to understand the interplay of ecological, epidemiological and evolutionary dynamics of cancer in wildlife. We use a directly transmissible cancer (devil facial tumour disease) as a model system to reveal the potential evolutionary dynamics and broader ecological effects of cancer epidemics in wildlife. We provide further examples of tumour-host interactions and trade-offs that may lead to changes in life histories, and epidemiological and population dynamics. Within this framework, we explore immunological strategies at the individual level as well as transgenerational adaptations at the population level. Then, we highlight the need to integrate multiple disciplines to undertake comparative cancer research at the human-domestic-wildlife interface and their environments. Finally, we suggest strategies for screening cancer incidence in wildlife and discuss how to integrate ecological and evolutionary concepts in the management of current and future cancer epizootics.
Collapse
Affiliation(s)
- Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Rachel Owen
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Hannah Siddle
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Sarah Peck
- Wildlife Veterinarian, Veterinary Register of TasmaniaSouth HobartTas.Australia
| | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Mathieu Giraudeau
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| | - Benjamin Roche
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Frédéric Thomas
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| |
Collapse
|
61
|
Abstract
The domestic dog, as a highly successful domestication model, is well known as a favored human companion. Exploring its domestication history should provide great insight into our understanding of the prehistoric development of human culture and productivity. Furthermore, investigation on the mechanisms underpinning the morphological and behavioral traits associated with canid domestication syndrome is of significance not only for scientific study but also for human medical research. Current development of a multidisciplinary canine genome database, which includes enormous omics data, has substantially improved our understanding of the genetic makeup of dogs. Here, we reviewed recent advances associated with the original history and genetic basis underlying environmental adaptations and phenotypic diversities in domestic dogs, which should provide perspectives on improving the communicative relationship between dogs and humans.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China. E-mail:
| |
Collapse
|
62
|
Dujon AM, Gatenby RA, Bramwell G, MacDonald N, Dohrmann E, Raven N, Schultz A, Hamede R, Gérard AL, Giraudeau M, Thomas F, Ujvari B. Transmissible Cancers in an Evolutionary Perspective. iScience 2020; 23:101269. [PMID: 32592998 PMCID: PMC7327844 DOI: 10.1016/j.isci.2020.101269] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Inter-individual transmission of cancer cells represents an intriguing and unexplored host-pathogen system, with significant ecological and evolutionary ramifications. The pathogen consists of clonal malignant cell lines that spread horizontally as allografts and/or xenografts. Although only nine transmissible cancer lineages in eight host species from both terrestrial and marine environments have been investigated, they exhibit evolutionary dynamics that may provide novel insights into tumor-host interactions particularly in the formation of metastases. Here we present an overview of known transmissible cancers, discuss the necessary and sufficient conditions for cancer transmission, and provide a comprehensive review on the evolutionary dynamics between transmissible cancers and their hosts.
Collapse
Affiliation(s)
- Antoine M Dujon
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Georgina Bramwell
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Nick MacDonald
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Erin Dohrmann
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Nynke Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Aaron Schultz
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Anne-Lise Gérard
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Mathieu Giraudeau
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
63
|
Sinding MHS, Gopalakrishnan S, Ramos-Madrigal J, de Manuel M, Pitulko VV, Kuderna L, Feuerborn TR, Frantz LAF, Vieira FG, Niemann J, Samaniego Castruita JA, Carøe C, Andersen-Ranberg EU, Jordan PD, Pavlova EY, Nikolskiy PA, Kasparov AK, Ivanova VV, Willerslev E, Skoglund P, Fredholm M, Wennerberg SE, Heide-Jørgensen MP, Dietz R, Sonne C, Meldgaard M, Dalén L, Larson G, Petersen B, Sicheritz-Pontén T, Bachmann L, Wiig Ø, Marques-Bonet T, Hansen AJ, Gilbert MTP. Arctic-adapted dogs emerged at the Pleistocene-Holocene transition. Science 2020; 368:1495-1499. [PMID: 32587022 PMCID: PMC7116267 DOI: 10.1126/science.aaz8599] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
Although sled dogs are one of the most specialized groups of dogs, their origin and evolution has received much less attention than many other dog groups. We applied a genomic approach to investigate their spatiotemporal emergence by sequencing the genomes of 10 modern Greenland sled dogs, an ~9500-year-old Siberian dog associated with archaeological evidence for sled technology, and an ~33,000-year-old Siberian wolf. We found noteworthy genetic similarity between the ancient dog and modern sled dogs. We detected gene flow from Pleistocene Siberian wolves, but not modern American wolves, to present-day sled dogs. The results indicate that the major ancestry of modern sled dogs traces back to Siberia, where sled dog-specific haplotypes of genes that potentially relate to Arctic adaptation were established by 9500 years ago.
Collapse
Affiliation(s)
- Mikkel-Holger S Sinding
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
- Natural History Museum, University of Oslo, Oslo, Norway
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
- Greenland Institute of Natural Resources, Nuuk, Greenland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | | | - Marc de Manuel
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Lukas Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
| | - Tatiana R Feuerborn
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Laurent A F Frantz
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Filipe G Vieira
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Niemann
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- BioArch, Department of Archaeology, University of York, York, UK
| | | | - Christian Carøe
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Emilie U Andersen-Ranberg
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
- Department of Clinical Veterinary Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter D Jordan
- Arctic Centre and Groningen Institute of Archaeology, University of Groningen, Netherlands
| | - Elena Y Pavlova
- Arctic and Antarctic Research Institute, St. Petersburg, Russia
| | | | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Varvara V Ivanova
- VNIIOkeangeologia Research Institute (The All-Russian Research Institute of Geology and Mineral Resources of the World Ocean), St. Petersburg, Russia
| | - Eske Willerslev
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Danish Institute for Advanced Study (D-IAS), University of Southern Denmark, Odense, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, University of Cambridge, Cambridge, UK
| | - Pontus Skoglund
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Francis Crick Institute, London, UK
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sanne Eline Wennerberg
- Ministry of Fisheries, Hunting and Agriculture, Government of Greenland, Nuuk, Greenland
| | | | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Christian Sonne
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| | - Morten Meldgaard
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Bent Petersen
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Thomas Sicheritz-Pontén
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Lutz Bachmann
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Øystein Wiig
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain.
- Catalan Institution of Research and Advanced Studies, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anders J Hansen
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
| | - M Thomas P Gilbert
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
64
|
Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer. Nat Commun 2020; 11:3059. [PMID: 32546718 PMCID: PMC7297733 DOI: 10.1038/s41467-020-16765-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/26/2020] [Indexed: 01/27/2023] Open
Abstract
Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for 'selfish' traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby 'selfish' positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells.
Collapse
|
65
|
Ahmad HI, Ahmad MJ, Jabbir F, Ahmar S, Ahmad N, Elokil AA, Chen J. The Domestication Makeup: Evolution, Survival, and Challenges. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
66
|
Fish FE, Sheehan MJ, Adams DS, Tennett KA, Gough WT. A 60:40 split: Differential mass support in dogs. Anat Rec (Hoboken) 2020; 304:78-89. [PMID: 32363786 DOI: 10.1002/ar.24407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/23/2019] [Accepted: 01/27/2020] [Indexed: 11/11/2022]
Abstract
Dogs have been bred for different sizes and functions, which can affect their locomotor biomechanics. As quadrupeds, dogs must distribute their mass between fore and hind legs when standing. The mass distribution in dogs was studied to determine if the proportion of supported mass on each limb couplet is dependent on body size. A total of 552 dogs from 123 breeds ranging in size from Chihuahua to Mastiff were examined. Each dog was weighed on a digital scale while standing, alternating foreleg, and hind leg support. The overall "grand" mean proportion of mass on the forelegs to the total mass was 60.4% (range: 47.6-74.4%). The data set indicated no significant change in the ratio with total mass but there was a significant difference by sex. When separated into American Kennel Club categories, no group was notably different from the grand mean or from each other, but when sex was also considered, there was a significant difference that was not specifically discerned by post hoc analysis. The mean for female Hounds was notably below the grand mean. For clades based on genetics, the mean for European origin mastiffs was notably greater than the grand mean and significantly different from UK origin herders and coursers. The mass of the head, chest, and musculature for propulsion could explain the mass support differential. Mass distribution and terrestrial locomotion in dogs shows substantial variation among breeds.
Collapse
Affiliation(s)
- Frank E Fish
- Department of Biology, West Chester University, West Chester, Pennsylvania, USA
| | - Maura J Sheehan
- Department of Health, West Chester University, West Chester, Pennsylvania, USA
| | - Danielle S Adams
- Department of Biology, West Chester University, West Chester, Pennsylvania, USA.,Department of Biology, Clemson University, Clemson, South Carolina, USA
| | - Kelsey A Tennett
- Department of Biology, West Chester University, West Chester, Pennsylvania, USA
| | - William T Gough
- Department of Biology, West Chester University, West Chester, Pennsylvania, USA.,Hopkins Marine Station of Stanford University, Pacific Grove, California, USA
| |
Collapse
|
67
|
Abstract
The domestication of animals led to a major shift in human subsistence patterns, from a hunter-gatherer to a sedentary agricultural lifestyle, which ultimately resulted in the development of complex societies. Over the past 15,000 years, the phenotype and genotype of multiple animal species, such as dogs, pigs, sheep, goats, cattle and horses, have been substantially altered during their adaptation to the human niche. Recent methodological innovations, such as improved ancient DNA extraction methods and next-generation sequencing, have enabled the sequencing of whole ancient genomes. These genomes have helped reconstruct the process by which animals entered into domestic relationships with humans and were subjected to novel selection pressures. Here, we discuss and update key concepts in animal domestication in light of recent contributions from ancient genomics.
Collapse
|
68
|
Waters MR. Late Pleistocene exploration and settlement of the Americas by modern humans. SCIENCE (NEW YORK, N.Y.) 2020; 365:365/6449/eaat5447. [PMID: 31296740 DOI: 10.1126/science.aat5447] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
North and South America were the last continents to be explored and settled by modern humans at the end of the Pleistocene. Genetic data, derived from contemporary populations and ancient individuals, show that the first Americans originated from Asia and after several population splits moved south of the continental ice sheets that covered Canada sometime between ~17.5 and ~14.6 thousand years (ka) ago. Archaeological evidence shows that geographically dispersed populations lived successfully, using biface, blade, and osseous technologies, in multiple places in North and South America between ~15.5 and ~14 ka ago. Regional archaeological complexes emerged by at least ~13 ka ago in North America and ~12.9 ka ago in South America. Current genetic and archaeological data do not support an earlier (pre-17.5 ka ago) occupation of the Americas.
Collapse
Affiliation(s)
- Michael R Waters
- Center for the Study of the First Americans, Department of Anthropology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
69
|
Sykes N, Beirne P, Horowitz A, Jones I, Kalof L, Karlsson E, King T, Litwak H, McDonald RA, Murphy LJ, Pemberton N, Promislow D, Rowan A, Stahl PW, Tehrani J, Tourigny E, Wynne CDL, Strauss E, Larson G. Humanity's Best Friend: A Dog-Centric Approach to Addressing Global Challenges. Animals (Basel) 2020; 10:E502. [PMID: 32192138 PMCID: PMC7142965 DOI: 10.3390/ani10030502] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/25/2022] Open
Abstract
No other animal has a closer mutualistic relationship with humans than the dog (Canis familiaris). Domesticated from the Eurasian grey wolf (Canis lupus), dogs have evolved alongside humans over millennia in a relationship that has transformed dogs and the environments in which humans and dogs have co-inhabited. The story of the dog is the story of recent humanity, in all its biological and cultural complexity. By exploring human-dog-environment interactions throughout time and space, it is possible not only to understand vital elements of global history, but also to critically assess our present-day relationship with the natural world, and to begin to mitigate future global challenges. In this paper, co-authored by researchers from across the natural and social sciences, arts and humanities, we argue that a dog-centric approach provides a new model for future academic enquiry and engagement with both the public and the global environmental agenda.
Collapse
Affiliation(s)
- Naomi Sykes
- Department of Archaeology, University of Exeter, Exeter, Devon EX4 4QE, UK;
| | - Piers Beirne
- Department of Criminology, University of Southern Maine, Portland, ME 04104, USA;
| | - Alexandra Horowitz
- Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027, USA;
| | - Ione Jones
- Department of Math and Sciences, Exeter College, Exeter EX4 4HF, UK;
| | - Linda Kalof
- Department of Sociology, Michigan State University, East Lansing, MI 48824, USA;
| | - Elinor Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tammie King
- WALTHAM Petcare Science Institute, Waltham on the Wolds LE14 4RT, UK;
| | - Howard Litwak
- Annenberg PetSpace Foundation, 12005 Bluff Creek Dr, Playa Vista, CA 90094, USA;
| | - Robbie A. McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK;
| | - Luke John Murphy
- Department of Archaeology, University of Iceland, 102 Reykjavík, Iceland;
| | - Neil Pemberton
- Centre for the History of Science, Technology and Medicine (CHSTM), University of Manchester, Oxford Rd, Manchester M13 9PL, UK;
| | - Daniel Promislow
- Department of Biology and Department of Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Andrew Rowan
- Wellbeing International, 9812 Falls Road #114-288, Potomac, MD 20854-3963, USA;
| | - Peter W. Stahl
- Department of Anthropology, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Jamshid Tehrani
- Department of Anthropology, Durham University, Durham DH1 1LE, UK;
| | - Eric Tourigny
- School of History, Classics and Archaeology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK;
| | - Clive D. L. Wynne
- Department of Psychology, Arizona State University, Box 871104, Tempe, AZ 85281, USA;
| | - Eric Strauss
- LMU Center for Urban Resilience, Loyola Marymount University, LMU Drive Los Angeles, CA 90045-2659, USA;
| | - Greger Larson
- Palaeogenomics & Bio-Archaeology Research Network, School of Archaeology, 1 South Parks Road, Oxford OX1 3TG, UK
| |
Collapse
|
70
|
Lucroy MD, Suckow MA. Predictive modeling for cancer drug discovery using canine models. Expert Opin Drug Discov 2020; 15:731-738. [PMID: 32176534 DOI: 10.1080/17460441.2020.1739644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Rodent models of cancer lack many features associated with the disease in humans. Because dogs closely share an environment with humans, as well as comparable pathophysiology of cancer, they represent a powerful model with which to study novel approaches to cancer treatment. AREAS COVERED The authors summarize the weaknesses of rodent models of cancer and the ongoing need for better animal models with which to study potential therapeutic approaches. The homology of cancer in dogs and humans is described, along with examples specific to several common cancer types. EXPERT OPINION Laboratory mice and rats will continue to play a central role in cancer research; however, because of a variety of limitations, pet dogs with spontaneous cancer offer unique opportunities for research and should be included in the preclinical development of therapeutic compounds. Environmental homology between dogs and humans, along with biological and molecular similarities present circumstances that strengthen the translational rigor of studies conducted using canine patients. Progress will depend on a sufficient number of dogs to be diagnosed with cancer and available for use in studies; and essential to this will be the availability of enhanced resources for diagnosis of cancer in canine patients and reliable coordination between research scientists, veterinarians, and physicians.
Collapse
Affiliation(s)
- Michael D Lucroy
- Vice President, Oncology, Torigen Pharmaceuticals, Inc , Farmington, CT, USA
| | - Mark A Suckow
- Department of Biomedical Engineering, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
71
|
McHugo GP, Dover MJ, MacHugh DE. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol 2019; 17:98. [PMID: 31791340 PMCID: PMC6889691 DOI: 10.1186/s12915-019-0724-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Animal domestication has fascinated biologists since Charles Darwin first drew the parallel between evolution via natural selection and human-mediated breeding of livestock and companion animals. In this review we show how studies of ancient DNA from domestic animals and their wild progenitors and congeners have shed new light on the genetic origins of domesticates, and on the process of domestication itself. High-resolution paleogenomic data sets now provide unprecedented opportunities to explore the development of animal agriculture across the world. In addition, functional population genomics studies of domestic and wild animals can deliver comparative information useful for understanding recent human evolution.
Collapse
Affiliation(s)
- Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Michael J Dover
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
72
|
Ameen C, Feuerborn TR, Brown SK, Linderholm A, Hulme-Beaman A, Lebrasseur O, Sinding MHS, Lounsberry ZT, Lin AT, Appelt M, Bachmann L, Betts M, Britton K, Darwent J, Dietz R, Fredholm M, Gopalakrishnan S, Goriunova OI, Grønnow B, Haile J, Hallsson JH, Harrison R, Heide-Jørgensen MP, Knecht R, Losey RJ, Masson-MacLean E, McGovern TH, McManus-Fry E, Meldgaard M, Midtdal Å, Moss ML, Nikitin IG, Nomokonova T, Pálsdóttir AH, Perri A, Popov AN, Rankin L, Reuther JD, Sablin M, Schmidt AL, Shirar S, Smiarowski K, Sonne C, Stiner MC, Vasyukov M, West CF, Ween GB, Wennerberg SE, Wiig Ø, Woollett J, Dalén L, Hansen AJ, P Gilbert MT, Sacks BN, Frantz L, Larson G, Dobney K, Darwent CM, Evin A. Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic. Proc Biol Sci 2019; 286:20191929. [PMID: 31771471 PMCID: PMC6939252 DOI: 10.1098/rspb.2019.1929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Domestic dogs have been central to life in the North American Arctic for millennia. The ancestors of the Inuit were the first to introduce the widespread usage of dog sledge transportation technology to the Americas, but whether the Inuit adopted local Palaeo-Inuit dogs or introduced a new dog population to the region remains unknown. To test these hypotheses, we generated mitochondrial DNA and geometric morphometric data of skull and dental elements from a total of 922 North American Arctic dogs and wolves spanning over 4500 years. Our analyses revealed that dogs from Inuit sites dating from 2000 BP possess morphological and genetic signatures that distinguish them from earlier Palaeo-Inuit dogs, and identified a novel mitochondrial clade in eastern Siberia and Alaska. The genetic legacy of these Inuit dogs survives today in modern Arctic sledge dogs despite phenotypic differences between archaeological and modern Arctic dogs. Together, our data reveal that Inuit dogs derive from a secondary pre-contact migration of dogs distinct from Palaeo-Inuit dogs, and probably aided the Inuit expansion across the North American Arctic beginning around 1000 BP.
Collapse
Affiliation(s)
- Carly Ameen
- Department of Archaeology, University of Exeter, Exeter, Devon, UK.,Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, Merseyside, UK
| | - Tatiana R Feuerborn
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.,Centre for GeoGenetics, University of Copenhagen, Copenhagen, Denmark.,The Qimmeq Project, University of Greenland, Nuussuaq, Greenland.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Sarah K Brown
- Department of Anthropology, University of California Davis, Davis, CA, USA.,Mammalian Ecology and Conservation Unit of the Veterinary Genetics Laboratory, University of California Davis, Davis, CA, USA.,Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - Anna Linderholm
- Department of Anthropology, Texas A&M University, College Station, TX, USA.,The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Ardern Hulme-Beaman
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, Merseyside, UK.,The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.,School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | - Ophélie Lebrasseur
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, Merseyside, UK.,The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.,GCRF One Health Regional Network for the Horn of Africa (HORN) Project, Institute of Infection and Global Health, Liverpool, UK
| | - Mikkel-Holger S Sinding
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,The Qimmeq Project, University of Greenland, Nuussuaq, Greenland.,Natural History Museum, University of Oslo, Oslo, Norway.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Zachary T Lounsberry
- Mammalian Ecology and Conservation Unit of the Veterinary Genetics Laboratory, University of California Davis, Davis, CA, USA
| | - Audrey T Lin
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | | | - Lutz Bachmann
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Matthew Betts
- Canadian Museum of History, Gatineau, Quebec, Canada.,Department of Anthropology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Kate Britton
- Department of Archaeology, University of Aberdeen, Aberdeen, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Sachsen, Germany
| | - John Darwent
- Department of Anthropology, University of California Davis, Davis, CA, USA
| | - Rune Dietz
- Arctic Research Centre, Aarhus Universitet, Aarhus, Denmark.,Department of Bioscience Roskilde, Aarhus Universitet, Roskilde, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, University of Oslo, Oslo, Norway
| | - Shyam Gopalakrishnan
- Centre for GeoGenetics, University of Copenhagen, Copenhagen, Denmark.,Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Olga I Goriunova
- Laboratory of Archaeology and Paleoecology of the Institute of Archaeology and Ethnography (Siberian Branch of Russian Academy of Science), Irkutsk, Russian Federation
| | | | - James Haile
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Jón Hallsteinn Hallsson
- Faculty of Agricultural and Environmental Sciences, The Agricultural University of Iceland, Reykjavik, Iceland
| | - Ramona Harrison
- Department of Archaeology, History, Cultural Studies, and Religion, University of Bergen, Bergen, Hordaland, Norway
| | | | - Rick Knecht
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
| | - Robert J Losey
- Department of Anthropology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Thomas H McGovern
- Department of Anthropology, Hunter College CUNY, New York, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | | | - Morten Meldgaard
- Centre for GeoGenetics, University of Copenhagen, Copenhagen, Denmark.,The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
| | | | - Madonna L Moss
- Department of Anthropology, University of Oregon, Eugene, OR, USA
| | - Iurii G Nikitin
- Museum of Archaeology and Ethnography at the Institute of History, Archaeology and Ethnography of the Peoples of the Far East (Far Eastern Branch of Russian Academy of Science), Vladivostok, Russian Federation
| | - Tatiana Nomokonova
- Department of Archaeology and Anthropology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Albína Hulda Pálsdóttir
- Centre for Ecological and Evolutionary Synthesis (CEES) Department of Biosciences, University of Oslo, Oslo, Norway.,Faculty of Agricultural and Environmental Sciences, The Agricultural University of Iceland, Reykjavik, Iceland
| | - Angela Perri
- Department of Archaeology, Durham University, Durham, UK
| | - Aleksandr N Popov
- Museum of Archaeology and Ethnography at the Institute of History, Archaeology and Ethnography of the Peoples of the Far East (Far Eastern Branch of Russian Academy of Science), Vladivostok, Russian Federation
| | - Lisa Rankin
- Department of Archaeology, Memorial University of Newfoundland, St John's, Canada
| | - Joshua D Reuther
- Department of Anthropology, University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Mikhail Sablin
- Zoological Institute of Russian Academy of Sciences, St Petersburg, Russian Federation
| | | | - Scott Shirar
- Department of Anthropology, University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Konrad Smiarowski
- The Graduate Center, City University of New York, New York, NY, USA.,Section for Cultural Heritage Management, Department of Cultural History, University Museum of Bergen, Bergen, Norway
| | - Christian Sonne
- Arctic Research Centre, Aarhus Universitet, Aarhus, Denmark.,Department of Bioscience, Aarhus Universitet, Aarhus, Denmark.,School of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Mary C Stiner
- School of Anthropology, University of Arizona, Tucson, AZ, USA
| | - Mitya Vasyukov
- Department of Biological Diversity and Sustainable Use of Biological Resources, Russian Academy of Sciences, Moskow, Russian Federation
| | - Catherine F West
- Department of Anthropology and Archaeology Program, Boston University, Boston, MA, USA
| | | | | | - Øystein Wiig
- Natural History Museum, University of Oslo, Oslo, Norway
| | - James Woollett
- Département des Sciences Historiques, Université Laval, Quebec, Canada
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Anders J Hansen
- Centre for GeoGenetics, University of Copenhagen, Copenhagen, Denmark.,The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Benjamin N Sacks
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, USA.,Mammalian Ecology and Conservation Unit of the Veterinary Genetics Laboratory, University of California Davis, Davis, CA, USA
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.,School of Archaeology, University of Oxford, Oxford, UK
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, Merseyside, UK.,Department of Archaeology, University of Aberdeen, Aberdeen, UK.,Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Allowen Evin
- Institut des Sciences de l'Evolution-Montpellier, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, Occitanie, France
| |
Collapse
|
73
|
Quintero-Gil C, Rendon-Marin S, Martinez-Gutierrez M, Ruiz-Saenz J. Origin of Canine Distemper Virus: Consolidating Evidence to Understand Potential Zoonoses. Front Microbiol 2019; 10:1982. [PMID: 31555226 PMCID: PMC6722215 DOI: 10.3389/fmicb.2019.01982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Carolina Quintero-Gil
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.,Asociación Colombiana de Virología, Bogotá, Colombia
| |
Collapse
|
74
|
Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe. Proc Natl Acad Sci U S A 2019; 116:17231-17238. [PMID: 31405970 PMCID: PMC6717267 DOI: 10.1073/pnas.1901169116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Archaeological evidence indicates that domestic pigs arrived in Europe, alongside farmers from the Near East ∼8,500 y ago, yet mitochondrial genomes of modern European pigs are derived from European wild boars. To address this conundrum, we obtained mitochondrial and nuclear data from modern and ancient Near Eastern and European pigs. Our analyses indicate that, aside from a coat color gene, most Near Eastern ancestry in the genomes of European domestic pigs disappeared over 3,000 y as a result of interbreeding with local wild boars. This implies that pigs were not domesticated independently in Europe, yet the first 2,500 y of human-mediated selection applied by Near Eastern Neolithic farmers played little role in the development of modern European pigs. Archaeological evidence indicates that pig domestication had begun by ∼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ∼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local European wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process.
Collapse
|
75
|
Baez-Ortega A, Gori K, Strakova A, Allen JL, Allum KM, Bansse-Issa L, Bhutia TN, Bisson JL, Briceño C, Castillo Domracheva A, Corrigan AM, Cran HR, Crawford JT, Davis E, de Castro KF, B de Nardi A, de Vos AP, Delgadillo Keenan L, Donelan EM, Espinoza Huerta AR, Faramade IA, Fazil M, Fotopoulou E, Fruean SN, Gallardo-Arrieta F, Glebova O, Gouletsou PG, Häfelin Manrique RF, Henriques JJGP, Horta RS, Ignatenko N, Kane Y, King C, Koenig D, Krupa A, Kruzeniski SJ, Kwon YM, Lanza-Perea M, Lazyan M, Lopez Quintana AM, Losfelt T, Marino G, Martínez Castañeda S, Martínez-López MF, Meyer M, Migneco EJ, Nakanwagi B, Neal KB, Neunzig W, Ní Leathlobhair M, Nixon SJ, Ortega-Pacheco A, Pedraza-Ordoñez F, Peleteiro MC, Polak K, Pye RJ, Reece JF, Rojas Gutierrez J, Sadia H, Schmeling SK, Shamanova O, Sherlock AG, Stammnitz M, Steenland-Smit AE, Svitich A, Tapia Martínez LJ, Thoya Ngoka I, Torres CG, Tudor EM, van der Wel MG, Viţălaru BA, Vural SA, Walkinton O, Wang J, Wehrle-Martinez AS, Widdowson SAE, Stratton MR, Alexandrov LB, Martincorena I, Murchison EP. Somatic evolution and global expansion of an ancient transmissible cancer lineage. Science 2019; 365:eaau9923. [PMID: 31371581 PMCID: PMC7116271 DOI: 10.1126/science.aau9923] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
Abstract
The canine transmissible venereal tumor (CTVT) is a cancer lineage that arose several millennia ago and survives by "metastasizing" between hosts through cell transfer. The somatic mutations in this cancer record its phylogeography and evolutionary history. We constructed a time-resolved phylogeny from 546 CTVT exomes and describe the lineage's worldwide expansion. Examining variation in mutational exposure, we identify a highly context-specific mutational process that operated early in the cancer's evolution but subsequently vanished, correlate ultraviolet-light mutagenesis with tumor latitude, and describe tumors with heritable hyperactivity of an endogenous mutational process. CTVT displays little evidence of ongoing positive selection, and negative selection is detectable only in essential genes. We illustrate how long-lived clonal organisms capture changing mutagenic environments, and reveal that neutral genetic drift is the dominant feature of long-term cancer evolution.
Collapse
Affiliation(s)
- Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Janice L Allen
- Animal Management in Rural and Remote Indigenous Communities (AMRRIC), Darwin, Australia
| | | | | | - Thinlay N Bhutia
- Sikkim Anti-Rabies and Animal Health Programme, Department of Animal Husbandry, Livestock, Fisheries and Veterinary Services, Government of Sikkim, India
| | - Jocelyn L Bisson
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Cristóbal Briceño
- ConserLab, Animal Preventive Medicine Department, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, Chile
| | | | | | - Hugh R Cran
- The Nakuru District Veterinary Scheme Ltd, Nakuru, Kenya
| | | | - Eric Davis
- International Animal Welfare Training Institute, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Karina F de Castro
- Centro Universitário de Rio Preto (UNIRP), São José do Rio Preto, São Paulo, Brazil
| | - Andrigo B de Nardi
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | - Edward M Donelan
- Animal Management in Rural and Remote Indigenous Communities (AMRRIC), Darwin, Australia
| | | | | | | | - Eleni Fotopoulou
- Intermunicipal Stray Animals Care Centre (DIKEPAZ), Perama, Greece
| | | | | | | | - Pagona G Gouletsou
- Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Rodrigo F Häfelin Manrique
- Veterinary Clinic El Roble, Animal Healthcare Network, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago de Chile, Chile
| | | | | | | | - Yaghouba Kane
- École Inter-états des Sciences et Médecine Vétérinaires de Dakar, Dakar, Senegal
| | | | | | - Ada Krupa
- Department of Small Animal Medicine, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Young-Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - Thibault Losfelt
- Clinique Veterinaire de Grand Fond, Saint Gilles les Bains, Reunion, France
| | - Gabriele Marino
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Simón Martínez Castañeda
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Mayra F Martínez-López
- School of Veterinary Medicine, Universidad de las Américas, Quito, Ecuador
- Cancer Development and Innate Immune Evasion Lab, Champalimaud Center for the Unknown, Lisbon, Portugal
| | | | | | | | | | | | - Máire Ní Leathlobhair
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - Maria C Peleteiro
- Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | | | - Ruth J Pye
- Vets Beyond Borders, The Rocks, Australia
| | | | | | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | | | | | | | - Maximilian Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Alla Svitich
- State Hospital of Veterinary Medicine, Dniprodzerzhynsk, Ukraine
| | | | | | - Cristian G Torres
- Laboratory of Biomedicine and Regenerative Medicine, Department of Clinical Sciences, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, Chile
| | - Elizabeth M Tudor
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | | | - Bogdan A Viţălaru
- Clinical Sciences Department, Faculty of Veterinary Medicine Bucharest, Bucharest, Romania
| | - Sevil A Vural
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | | | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
76
|
Wang GD, Larson G, Kidd JM, vonHoldt BM, Ostrander EA, Zhang YP. Dog10K: the International Consortium of Canine Genome Sequencing. Natl Sci Rev 2019; 6:611-613. [PMID: 31598382 PMCID: PMC6776106 DOI: 10.1093/nsr/nwz068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, UK
| | - Jeffrey M Kidd
- Department of Human Genetics and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | | | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, USA
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
| |
Collapse
|
77
|
Hu XJ, Yang J, Xie XL, Lv FH, Cao YH, Li WR, Liu MJ, Wang YT, Li JQ, Liu YG, Ren YL, Shen ZQ, Wang F, Hehua EE, Han JL, Li MH. The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai-Tibetan Plateau. Mol Biol Evol 2019; 36:283-303. [PMID: 30445533 PMCID: PMC6367989 DOI: 10.1093/molbev/msy208] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tibetan sheep are the most common and widespread domesticated animals on the Qinghai-Tibetan Plateau (QTP) and have played an essential role in the permanent human occupation of this high-altitude region. However, the precise timing, route, and process of sheep pastoralism in the QTP region remain poorly established, and little is known about the underlying genomic changes that occurred during the process. Here, we investigate the genomic variation in Tibetan sheep using whole-genome sequences, single nucleotide polymorphism arrays, mitochondrial DNA, and Y-chromosomal variants in 986 samples throughout their distribution range. We detect strong signatures of selection in genes involved in the hypoxia and ultraviolet signaling pathways (e.g., HIF-1 pathway and HBB and MITF genes) and in genes associated with morphological traits such as horn size and shape (e.g., RXFP2). We identify clear signals of argali (Ovis ammon) introgression into sympatric Tibetan sheep, covering 5.23-5.79% of their genomes. The introgressed genomic regions are enriched in genes related to oxygen transportation system, sensory perception, and morphological phenotypes, in particular the genes HBB and RXFP2 with strong signs of adaptive introgression. The spatial distribution of genomic diversity and demographic reconstruction of the history of Tibetan sheep show a stepwise pattern of colonization with their initial spread onto the QTP from its northeastern part ∼3,100 years ago, followed by further southwest expansion to the central QTP ∼1,300 years ago. Together with archeological evidence, the date and route reveal the history of human expansions on the QTP by the Tang-Bo Ancient Road during the late Holocene. Our findings contribute to a depth understanding of early pastoralism and the local adaptation of Tibetan sheep as well as the late-Holocene human occupation of the QTP.
Collapse
Affiliation(s)
- Xiao-Ju Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ji Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yin-Hong Cao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Wen-Rong Li
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ming-Jun Liu
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yan-Lin Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - EEr Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| |
Collapse
|
78
|
Wang X, Zhou BW, Yang MA, Yin TT, Chen FL, Ommeh SC, Esmailizadeh A, Turner MM, Poyarkov AD, Savolainen P, Wang GD, Fu Q, Zhang YP. Canine transmissible venereal tumor genome reveals ancient introgression from coyotes to pre-contact dogs in North America. Cell Res 2019; 29:592-595. [PMID: 31160719 DOI: 10.1038/s41422-019-0183-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 05/15/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Bo-Wen Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Melinda A Yang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, Chinese Academy of Sciences, 100044, Beijing, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Fang-Liang Chen
- Kunming Police Dog Base of the Ministry of Public Security, Kunming, 650204, Yunnan, China
| | - Sheila C Ommeh
- Animal Biotechnology Group, Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Melissa M Turner
- Department of Forestry and Environmental Resources, Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andrei D Poyarkov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Leninskiy Prospect, 33, Moscow, Russia, 119071
| | - Peter Savolainen
- Department of Gene Technology, KTH-Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, 17165, Solna, Sweden
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, Chinese Academy of Sciences, 100044, Beijing, China. .,Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 100044, Beijing, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
79
|
Liu L, Bosse M, Megens HJ, Frantz LAF, Lee YL, Irving-Pease EK, Narayan G, Groenen MAM, Madsen O. Genomic analysis on pygmy hog reveals extensive interbreeding during wild boar expansion. Nat Commun 2019; 10:1992. [PMID: 31040280 PMCID: PMC6491599 DOI: 10.1038/s41467-019-10017-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Wild boar (Sus scrofa) drastically colonized mainland Eurasia and North Africa, most likely from East Asia during the Plio-Pleistocene (2–1Mya). In recent studies, based on genome-wide information, it was hypothesized that wild boar did not replace the species it encountered, but instead exchanged genetic materials with them through admixture. The highly endangered pygmy hog (Porcula salvania) is the only suid species in mainland Eurasia known to have outlived this expansion, and therefore provides a unique opportunity to test this hybridization hypothesis. Analyses of pygmy hog genomes indicate that despite large phylogenetic divergence (~2 My), wild boar and pygmy hog did indeed interbreed as the former expanded across Eurasia. In addition, we also assess the taxonomic placement of the donor of another introgression, pertaining to a now-extinct species with a deep phylogenetic placement in the Suidae tree. Altogether, our analyses indicate that the rapid spread of wild boar was facilitated by inter-specific/inter-generic admixtures. The pygmy hog (Porcula salvania), now highly endangered and restricted in a small region at the southern foothills of the Himalaya, is the only suid species in mainland Eurasia that outlived the expansion of wild boar (Sus scrofa). Here, the authors analyze genomes of pygmy hog and related suid species, and identify signals of introgression among these species.
Collapse
Affiliation(s)
- Langqing Liu
- Animal Breeding and Genomics, Wageningen University & Research, 6708PB, Wageningen, the Netherlands.
| | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, London, United Kingdom.,Palaeogenomics and Bioarcheology Research Network, Research Laboratory for Archeology and History of Art, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Young-Lim Lee
- Animal Breeding and Genomics, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Evan K Irving-Pease
- Palaeogenomics and Bioarcheology Research Network, Research Laboratory for Archeology and History of Art, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Goutam Narayan
- Durrell Wildlife Conservation Trust, Les Augrès Manor, Jersey, JE3 5BP, Channel Islands, United Kingdom.,Pygmy Hog Conservation Programme, EcoSystems-India, Indira Nagar, Basistha, Guwahati, Assam, 781029, India
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, 6708PB, Wageningen, the Netherlands.
| |
Collapse
|
80
|
Panchin AY, Aleoshin VV, Panchin YV. From tumors to species: a SCANDAL hypothesis. Biol Direct 2019; 14:3. [PMID: 30674330 PMCID: PMC6343361 DOI: 10.1186/s13062-019-0233-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/13/2019] [Indexed: 11/27/2022] Open
Abstract
ᅟ Some tumor cells can evolve into transmissible parasites. Notable examples include the Tasmanian devil facial tumor disease, the canine transmissible venereal tumor and transmissible cancers of mollusks. We present a hypothesis that such transmissible tumors existed in the past and that some modern animal taxa are descendants of these tumors. We expect potential candidates for SCANDALs (speciated by cancer development animals) to be simplified relatives of more complex metazoans and have genomic alterations typical for cancer progression (such as deletions of universal apoptosis genes). We considered several taxa of simplified animals for our hypothesis: dicyemida, orthonectida, myxosporea and trichoplax. Based on genomic analysis we conclude that Myxosporea appear to be the most suitable candidates for a tumor ancestry. They are simplified parasitic cnidarians that universally lack major genes implicated in cancer progression including all genes with Caspase and BCL2 domains as well as any p53 and apoptotic protease activating factor – 1 (Apaf-1) homologs, suggesting the disruption of main apoptotic pathways in their early evolutionary history. Further comparative genomics and single-cell transcriptomic studies may be helpful to test our hypothesis of speciation via a cancerous stage. Reviewers This article was reviewed by Eugene Koonin, Mikhail Gelfand and Gregory M Woods. Electronic supplementary material The online version of this article (10.1186/s13062-019-0233-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Y Panchin
- Institute for Information Transmission Problems, Bolshoy Karetniy Pereulok 19/1, Moscow, Russian Federation, 127051.
| | - V V Aleoshin
- Institute for Information Transmission Problems, Bolshoy Karetniy Pereulok 19/1, Moscow, Russian Federation, 127051.,A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Y V Panchin
- Institute for Information Transmission Problems, Bolshoy Karetniy Pereulok 19/1, Moscow, Russian Federation, 127051.,A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
81
|
Tang B, Zhou Q, Dong L, Li W, Zhang X, Lan L, Zhai S, Xiao J, Zhang Z, Bao Y, Zhang YP, Wang GD, Zhao W. iDog: an integrated resource for domestic dogs and wild canids. Nucleic Acids Res 2019; 47:D793-D800. [PMID: 30371881 PMCID: PMC6323916 DOI: 10.1093/nar/gky1041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
The domestic dog (Canis lupus familiaris) is indisputably one of man's best friends. It is also a fundamental model for many heritable human diseases. Here, we present iDog (http://bigd.big.ac.cn/idog), the first integrated resource dedicated to domestic dogs and wild canids. It incorporates a variety of omics data, including genome sequences assemblies for dhole and wolf, genomic variations extracted from hundreds of dog/wolf whole genomes, phenotype/disease traits curated from dog research communities and public resources, gene expression profiles derived from published RNA-Seq data, gene ontology for functional annotation, homolog gene information for multiple organisms and disease-related literature. Additionally, iDog integrates sequence alignment tools for data analyses and a genome browser for data visualization. iDog will not only benefit the global dog research community, but also provide access to a user-friendly consolidation of dog information to a large number of dog enthusiasts.
Collapse
Affiliation(s)
- Bixia Tang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhou
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Dong
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wulue Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiangquan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Lan
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Zhai
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingfa Xiao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhang Zhang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiming Bao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Ping Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Guo-Dong Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenming Zhao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
82
|
Mowat FM. Naturally Occurring Inherited Forms of Retinal Degeneration in Vertebrate Animal Species: A Comparative and Evolutionary Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:239-243. [PMID: 31884618 DOI: 10.1007/978-3-030-27378-1_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The ability to noninvasively monitor retinal abnormalities using imaging and cognitive and electrophysiological assessment has made it possible to carefully characterize genetic influences on retinal health. Because genetic retinal traits in animal species are not commonly detrimental to survival beyond birth, it is possible to document the natural history of retinal disease. Human quality of life is greatly impacted by retinal disease, and blindness carries a significant financial burden to society. Because of these compelling reasons, there is an ongoing medical need to study the effect of genetic mutations on retinal health and to develop therapies to address them. Transgenic animal models have aided in these missions, but there are opportunities for novel gene discovery and a development of greater understanding of retinal physiology using animal models that develop naturally occurring heritable retinal disorders. In this chapter, the advantages and disadvantages of transgenic and spontaneous vertebrate animal models of human inherited retinal disease are debated, in particular those of carnivore species, and the potential resource of spontaneous heritable retinal disorders in inbred nondomestic carnivore species is discussed.
Collapse
Affiliation(s)
- Freya M Mowat
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.
| |
Collapse
|
83
|
Ní Leathlobhair M, Perri AR, Irving-Pease EK, Witt KE, Linderholm A, Haile J, Lebrasseur O, Ameen C, Blick J, Boyko AR, Brace S, Cortes YN, Crockford SJ, Devault A, Dimopoulos EA, Eldridge M, Enk J, Gopalakrishnan S, Gori K, Grimes V, Guiry E, Hansen AJ, Hulme-Beaman A, Johnson J, Kitchen A, Kasparov AK, Kwon YM, Nikolskiy PA, Lope CP, Manin A, Martin T, Meyer M, Myers KN, Omura M, Rouillard JM, Pavlova EY, Sciulli P, Sinding MHS, Strakova A, Ivanova VV, Widga C, Willerslev E, Pitulko VV, Barnes I, Gilbert MTP, Dobney KM, Malhi RS, Murchison EP, Larson G, Frantz LAF. The evolutionary history of dogs in the Americas. Science 2018; 361:81-85. [PMID: 29976825 PMCID: PMC7116273 DOI: 10.1126/science.aao4776] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/26/2017] [Accepted: 05/10/2018] [Indexed: 01/01/2023]
Abstract
Dogs were present in the Americas before the arrival of European colonists, but the origin and fate of these precontact dogs are largely unknown. We sequenced 71 mitochondrial and 7 nuclear genomes from ancient North American and Siberian dogs from time frames spanning ~9000 years. Our analysis indicates that American dogs were not derived from North American wolves. Instead, American dogs form a monophyletic lineage that likely originated in Siberia and dispersed into the Americas alongside people. After the arrival of Europeans, native American dogs almost completely disappeared, leaving a minimal genetic legacy in modern dog populations. The closest detectable extant lineage to precontact American dogs is the canine transmissible venereal tumor, a contagious cancer clone derived from an individual dog that lived up to 8000 years ago.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Angela R Perri
- Department of Archaeology, Durham University, Durham, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Evan K Irving-Pease
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kelsey E Witt
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Anna Linderholm
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Anthropology, Texas A&M University, College Station, TX, USA
| | - James Haile
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ophelie Lebrasseur
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Carly Ameen
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Jeffrey Blick
- Department of Government and Sociology, Georgia College and State University, Milledgeville, GA, USA
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | | | | | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | - Jacob Enk
- Arbor Biosciences, Ann Arbor, MI, USA
| | - Shyam Gopalakrishnan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Vaughan Grimes
- Department of Archaeology, Memorial University, Queen's College, St. John's, Canada
| | - Eric Guiry
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
| | - Ardern Hulme-Beaman
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - John Johnson
- Department of Anthropology, Santa Barbara Museum of Natural History, Santa Barbara, CA, USA
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA, USA
| | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Young-Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Pavel A Nikolskiy
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
- Geological Institute, Russian Academy of Sciences, Moscow, Russia
| | | | - Aurélie Manin
- Department of Archaeology, BioArCh, University of York, York, UK
- UMR 7209, Archéozoologie, Archéobotanique, Muséum National d'Histoire Naturelle, Paris, France
| | - Terrance Martin
- Research and Collections Center, Illinois State Museum, Springfield, IL, USA
| | - Michael Meyer
- Touray & Meyer Veterinary Clinic, Serrekunda, Gambia
| | - Kelsey Noack Myers
- Glenn A. Black Laboratory of Anthropology, Indiana University Bloomington, Bloomington, IN, USA
| | - Mark Omura
- Department of Mammalogy, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jean-Marie Rouillard
- Arbor Biosciences, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Elena Y Pavlova
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
- Arctic & Antarctic Research Institute, St. Petersburg, Russia
| | - Paul Sciulli
- Department of Anthropology, Ohio State University, Columbus, OH, USA
| | - Mikkel-Holger S Sinding
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Christopher Widga
- Center of Excellence in Paleontology, East Tennessee State University, Gray, TN, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Keith M Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
| | - Ripan S Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
| | - Laurent A F Frantz
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
84
|
Abstract
The dogs that arrived in the Americas with human settlers ∼10,000 years ago left almost no genetic traces
Collapse
Affiliation(s)
- Linda Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Stanford University, Stanford, CA 94305, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. .,University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
85
|
Contagious cancer could have wiped out America's first dogs. Nature 2018. [DOI: 10.1038/d41586-018-05645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
86
|
|