51
|
Xu P, Berto S, Kulkarni A, Jeong B, Joseph C, Cox KH, Greenberg ME, Kim TK, Konopka G, Takahashi JS. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron 2021; 109:3268-3282.e6. [PMID: 34416169 DOI: 10.1016/j.neuron.2021.07.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/12/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the master circadian pacemaker in mammals and is entrained by environmental light. However, the molecular basis of the response of the SCN to light is not fully understood. We used RNA/chromatin immunoprecipitation/single-nucleus sequencing with circadian behavioral assays to identify mouse SCN cell types and explore their responses to light. We identified three peptidergic cell types that responded to light in the SCN: arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), and cholecystokinin (CCK). In each cell type, light-responsive subgroups were enriched for expression of neuronal Per-Arnt-Sim (PAS) domain protein 4 (NPAS4) target genes. Further, mice lacking Npas4 had a longer circadian period under constant conditions, a damped phase response curve to light, and reduced light-induced gene expression in the SCN. Our data indicate that NPAS4 is necessary for normal transcriptional responses to light in the SCN and critical for photic phase-shifting of circadian behavior.
Collapse
Affiliation(s)
- Pin Xu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Berto
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Byeongha Jeong
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chryshanthi Joseph
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly H Cox
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tae-Kyung Kim
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
52
|
Gabriel E, Albanna W, Pasquini G, Ramani A, Josipovic N, Mariappan A, Schinzel F, Karch CM, Bao G, Gottardo M, Suren AA, Hescheler J, Nagel-Wolfrum K, Persico V, Rizzoli SO, Altmüller J, Riparbelli MG, Callaini G, Goureau O, Papantonis A, Busskamp V, Schneider T, Gopalakrishnan J. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell 2021; 28:1740-1757.e8. [PMID: 34407456 DOI: 10.1016/j.stem.2021.07.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/23/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. OVB-organoids also display synapsin-1, CTIP-positive myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photosensitive activity of OVB-organoids, and light sensitivities could be reset after transient photobleaching. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow interorgan interaction studies within a single organoid.
Collapse
Affiliation(s)
- Elke Gabriel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Walid Albanna
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany; Department of Neurosurgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anand Ramani
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, 37075 Göttingen, Germany; Center for molecular medicine, Cologne, Universität zu Köln, 50931 Köln, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Friedrich Schinzel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63116, USA
| | - Guobin Bao
- Institute of Neurophysiology and Cellular Biophysics, University Medicine Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Marco Gottardo
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Ata Alp Suren
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Veronica Persico
- Department of Life Sciences and Medical Biotechnology University of Siena, Siena 53100, Italy
| | - Silvio O Rizzoli
- Institute of Neurophysiology and Cellular Biophysics, University Medicine Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Universität zu Köln, Köln, Germany; Center for molecular medicine, Cologne, Universität zu Köln, 50931 Köln, Germany
| | | | - Giuliano Callaini
- Department of Life Sciences and Medical Biotechnology University of Siena, Siena 53100, Italy
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Argyris Papantonis
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.
| |
Collapse
|
53
|
Salay LD, Huberman AD. Divergent outputs of the ventral lateral geniculate nucleus mediate visually evoked defensive behaviors. Cell Rep 2021; 37:109792. [PMID: 34610302 PMCID: PMC10954303 DOI: 10.1016/j.celrep.2021.109792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022] Open
Abstract
Rapid alternations between exploration and defensive reactions require ongoing risk assessment. How visual cues and internal states flexibly modulate the selection of behaviors remains incompletely understood. Here, we show that the ventral lateral geniculate nucleus (vLGN)-a major retinorecipient structure-is a critical node in the network controlling defensive behaviors to visual threats. We find that vLGNGABA neuron activity scales with the intensity of environmental illumination and is modulated by behavioral state. Chemogenetic activation of vLGNGABA neurons reduces freezing, whereas inactivation dramatically extends the duration of freezing to visual threats. Perturbations of vLGN activity disrupt exploration in brightly illuminated environments. We describe both a vLGN→nucleus reuniens (Re) circuit and a vLGN→superior colliculus (SC) circuit, which exert opposite influences on defensive responses. These findings reveal roles for genetic- and projection-defined vLGN subpopulations in modulating the expression of behavioral threat responses according to internal state.
Collapse
Affiliation(s)
- Lindsey D Salay
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA 94305, USA; BioX, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
54
|
The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun 2021; 12:5115. [PMID: 34433830 PMCID: PMC8387462 DOI: 10.1038/s41467-021-25378-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
Light regulates daily sleep rhythms by a neural circuit that connects intrinsically photosensitive retinal ganglion cells (ipRGCs) to the circadian pacemaker, the suprachiasmatic nucleus. Light, however, also acutely affects sleep in a circadian-independent manner. The neural circuits involving the acute effect of light on sleep remain unknown. Here we uncovered a neural circuit that drives this acute light response, independent of the suprachiasmatic nucleus, but still through ipRGCs. We show that ipRGCs substantially innervate the preoptic area (POA) to mediate the acute light effect on sleep in mice. Consistently, activation of either the POA projecting ipRGCs or the light-responsive POA neurons increased non-rapid eye movement (NREM) sleep without influencing REM sleep. In addition, inhibition of the light-responsive POA neurons blocked the acute light effects on NREM sleep. The predominant light-responsive POA neurons that receive ipRGC input belong to the corticotropin-releasing hormone subpopulation. Remarkably, the light-responsive POA neurons are inhibitory and project to well-known wakefulness-promoting brain regions, such as the tuberomammillary nucleus and the lateral hypothalamus. Therefore, activation of the ipRGC-POA circuit inhibits arousal brain regions to drive light-induced NREM sleep. Our findings reveal a functional retina-brain circuit that is both necessary and sufficient for the acute effect of light on sleep. The preoptic area (POA) is critical for sleep regulation but its role in acute, non-circadian, light effects on sleep are unclear. The authors show that intrinsically photosensitive retinal ganglion cells provide substantial input into the POA and through these modulate the amount of non-rapid eye movement (NREM) sleep.
Collapse
|
55
|
Moldavan M, Cravetchi O, Allen CN. Diurnal properties of tonic and synaptic GABA A receptor-mediated currents in suprachiasmatic nucleus neurons. J Neurophysiol 2021; 126:637-652. [PMID: 34259044 DOI: 10.1152/jn.00556.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic and extrasynaptic GABAA receptor (GABAAR)-mediated neurotransmission is a critical component of the suprachiasmatic nucleus (SCN) neuronal network. However, the properties of the GABAA tonic current (Itonic) and its origin remain unexplored. Spontaneous GABAA postsynaptic currents (sGPSCs) and Itonic were recorded from SCN neurons with the whole cell voltage-clamp technique at different times of the day. GABAAR antagonists (bicuculline, gabazine, and picrotoxin) inhibited sGPSC and induced an outward shift of the holding current, which defined the Itonic amplitude. The sGPSC frequency, synaptic charge transfer, and Itonic amplitude all demonstrated significant diurnal rhythms, with peaks in the middle of the day [zeitgeber time (ZT)7-8] and nadirs at night (ZT19-20). The Itonic amplitude increased proportionally with the sGPSC frequency and synaptic charge transfer during the day and required action potential-mediated GABA release, which was confirmed by TTX application. The activation of presynaptic GABAB receptors by baclofen did not significantly alter the Itonic of neurons with low-frequency sGPSC. The equilibrium potential (Eq) for Itonic was similar to the Eq for chloride and GABAA receptor-activated currents. Itonic showed outward rectification at membrane potentials over the range of -70 to -10 mV and then was linear at voltages greater than -10 mV. GABAAR containing α4-, α5-, and δ-subunits were expressed in SCN, and their contribution to Itonic was confirmed by application of the GABAAR agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) and the GABAAR inverse agonist 11,12,13,13a-tetrahydro-7-methoxy-9-oxo-9H-imidazo[1,5-a]pyrrolo[2,1-c][1,4]benzodiazepine-1-carboxylic acid ethyl ester (L655,708). Thus, the Itonic was mediated by extrasynaptic GABAARs activated predominantly by GABA diffusing out of GABAergic synapses.NEW & NOTEWORTHY A tonic current (Itonic) mediated by GABAA receptors (GABAARs) containing α4-, α5- and δ-subunits was observed in the suprachiasmatic nucleus. The Itonic amplitude strongly depended on the action potential-mediated synaptic release of GABA. The equilibrium potential for Itonic corresponds to that for GABAA currents. The frequency of GABAA postsynaptic currents and Itonic amplitude increased during the day, with peak in the middle of the day, and then gradually declined with a nadir at night, thus showing a diurnal rhythm.
Collapse
Affiliation(s)
- Michael Moldavan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - Olga Cravetchi
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
56
|
Afraid of the dark: Light acutely suppresses activity in the human amygdala. PLoS One 2021; 16:e0252350. [PMID: 34133439 PMCID: PMC8208532 DOI: 10.1371/journal.pone.0252350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 12/04/2022] Open
Abstract
Light improves mood. The amygdala plays a critical role in regulating emotion, including fear-related responses. In rodents the amygdala receives direct light input from the retina, and light may play a role in fear-related learning. A direct effect of light on the amygdala represents a plausible mechanism of action for light’s mood-elevating effects in humans. However, the effect of light on activity in the amygdala in humans is not well understood. We examined the effect of passive dim-to-moderate white light exposure on activation of the amygdala in healthy young adults using the BOLD fMRI response (3T Siemens scanner; n = 23). Participants were exposed to alternating 30s blocks of light (10 lux or 100 lux) and dark (<1 lux), with each light intensity being presented separately. Light, compared with dark, suppressed activity in the amygdala. Moderate light exposure resulted in greater suppression of amygdala activity than dim light. Furthermore, functional connectivity between the amygdala and ventro-medial prefrontal cortex was enhanced during light relative to dark. These effects may contribute to light’s mood-elevating effects, via a reduction in negative, fear-related affect and enhanced processing of negative emotion.
Collapse
|
57
|
Lyu J, Mu X. Genetic control of retinal ganglion cell genesis. Cell Mol Life Sci 2021; 78:4417-4433. [PMID: 33782712 DOI: 10.1007/s00018-021-03814-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/27/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Retinal ganglion cells (RGCs) are the only projection neurons in the neural retina. They receive and integrate visual signals from upstream retinal neurons in the visual circuitry and transmit them to the brain. The function of RGCs is performed by the approximately 40 RGC types projecting to various central brain targets. RGCs are the first cell type to form during retinogenesis. The specification and differentiation of the RGC lineage is a stepwise process; a hierarchical gene regulatory network controlling the RGC lineage has been identified and continues to be elaborated. Recent studies with single-cell transcriptomics have led to unprecedented new insights into their types and developmental trajectory. In this review, we summarize our current understanding of the functions and relationships of the many regulators of the specification and differentiation of the RGC lineage. We emphasize the roles of these key transcription factors and pathways in different developmental steps, including the transition from retinal progenitor cells (RPCs) to RGCs, RGC differentiation, generation of diverse RGC types, and central projection of the RGC axons. We discuss critical issues that remain to be addressed for a comprehensive understanding of these different aspects of RGC genesis and emerging technologies, including single-cell techniques, novel genetic tools and resources, and high-throughput genome editing and screening assays, which can be leveraged in future studies.
Collapse
Affiliation(s)
- Jianyi Lyu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, State University of New York At Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
58
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
59
|
Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov 2021; 20:287-307. [PMID: 33589815 DOI: 10.1038/s41573-020-00109-w] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
The circadian clock evolved in diverse organisms to integrate external environmental changes and internal physiology. The clock endows the host with temporal precision and robust adaptation to the surrounding environment. When circadian rhythms are perturbed or misaligned, as a result of jet lag, shiftwork or other lifestyle factors, adverse health consequences arise, and the risks of diseases such as cancer, cardiovascular diseases or metabolic disorders increase. Although the negative impact of circadian rhythm disruption is now well established, it remains underappreciated how to take advantage of biological timing, or correct it, for health benefits. In this Review, we provide an updated account of the circadian system and highlight several key disease areas with altered circadian signalling. We discuss environmental and lifestyle modifications of circadian rhythm and clock-based therapeutic strategies, including chronotherapy, in which dosing time is deliberately optimized for maximum therapeutic index, and pharmacological agents that target core clock components and proximal regulators. Promising progress in research, disease models and clinical applications should encourage a concerted effort towards a new era of circadian medicine.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
60
|
Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci 2021; 78:889-907. [PMID: 32965515 PMCID: PMC8650628 DOI: 10.1007/s00018-020-03641-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
The melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of atypical ganglion cell photoreceptor. These ipRGCs are a morphologically and physiologically heterogeneous population that project widely throughout the brain and mediate a wide array of visual functions ranging from photoentrainment of our circadian rhythms, to driving the pupillary light reflex to improve visual function, to modulating our mood, alertness, learning, sleep/wakefulness, regulation of body temperature, and even our visual perception. The presence of melanopsin as a unique molecular signature of ipRGCs has allowed for the development of a vast array of molecular and genetic tools to study ipRGC circuits. Given the emerging complexity of this system, this review will provide an overview of the genetic tools and methods used to study ipRGCs, how these tools have been used to dissect their role in a variety of visual circuits and behaviors in mice, and identify important directions for future study.
Collapse
Affiliation(s)
- Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
61
|
Orlowska-Feuer P, Smyk MK, Alwani A, Lewandowski MH. Neuronal Responses to Short Wavelength Light Deficiency in the Rat Subcortical Visual System. Front Neurosci 2021; 14:615181. [PMID: 33488355 PMCID: PMC7815651 DOI: 10.3389/fnins.2020.615181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
The amount and spectral composition of light changes considerably during the day, with dawn and dusk being the most crucial moments when light is within the mesopic range and short wavelength enriched. It was recently shown that animals use both cues to adjust their internal circadian clock, thereby their behavior and physiology, with the solar cycle. The role of blue light in circadian processes and neuronal responses is well established, however, an unanswered question remains: how do changes in the spectral composition of light (short wavelengths blocking) influence neuronal activity? In this study we addressed this question by performing electrophysiological recordings in image (dorsal lateral geniculate nucleus; dLGN) and non-image (the olivary pretectal nucleus; OPN, the suprachiasmatic nucleus; SCN) visual structures to determine neuronal responses to spectrally varied light stimuli. We found that removing short-wavelength from the polychromatic light (cut off at 525 nm) attenuates the most transient ON and sustained cells in the dLGN and OPN, respectively. Moreover, we compared the ability of different types of sustained OPN neurons (either changing or not their response profile to filtered polychromatic light) to irradiance coding, and show that both groups achieve it with equal efficacy. On the other hand, even very dim monochromatic UV light (360 nm; log 9.95 photons/cm2/s) evokes neuronal responses in the dLGN and SCN. To our knowledge, this is the first electrophysiological experiment supporting previous behavioral findings showing visual and circadian functions disruptions under short wavelength blocking environment. The current results confirm that neuronal activity in response to polychromatic light in retinorecipient structures is affected by removing short wavelengths, however, with type and structure – specific action. Moreover, they show that rats are sensitive to even very dim UV light.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Kraków, Kraków, Poland.,Department of Neurophysiology and Chronobiology, Jagiellonian University in Kraków, Kraków, Poland
| | - Magdalena Kinga Smyk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Kraków, Kraków, Poland.,Department of Neurophysiology and Chronobiology, Jagiellonian University in Kraków, Kraków, Poland
| | - Anna Alwani
- Department of Neurophysiology and Chronobiology, Jagiellonian University in Kraków, Kraków, Poland
| | | |
Collapse
|
62
|
Harrison KR, Chervenak AP, Resnick SM, Reifler AN, Wong KY. Amacrine Cells Forming Gap Junctions With Intrinsically Photosensitive Retinal Ganglion Cells: ipRGC Types, Neuromodulator Contents, and Connexin Isoform. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 33410914 PMCID: PMC7804497 DOI: 10.1167/iovs.62.1.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only centrally to non-image-forming visual centers of the brain but also intraretinally to amacrine interneurons through gap junction electrical coupling, potentially modulating image-forming retinal processing. We aimed to determine (1) which ipRGC types couple with amacrine cells, (2) the neuromodulator contents of ipRGC-coupled amacrine cells, and (3) whether connexin36 (Cx36) contributes to ipRGC-amacrine coupling. Methods Gap junction-permeable Neurobiotin tracer was injected into green fluorescent protein (GFP)-labeled ipRGCs in Opn4Cre/+; Z/EG mice to stain coupled amacrine cells, and immunohistochemistry was performed to reveal the neuromodulator contents of the Neurobiotin-stained amacrine cells. We also created Opn4Cre/+; Cx36flox/flox; Z/EG mice to knock out Cx36 in GFP-labeled ipRGCs and looked for changes in the number of ipRGC-coupled amacrine cells. Results Seventy-three percent of ipRGCs, including all six types (M1-M6), were tracer-coupled with amacrine somas 5.7 to 16.5 µm in diameter but not with ganglion cells. Ninety-two percent of the ipRGC-coupled somas were in the ganglion cell layer and the rest in the inner nuclear layer. Some ipRGC-coupled amacrine cells were found to accumulate serotonin or to contain nitric oxide synthase or neuropeptide Y. Knocking out Cx36 in M2 and M4 dramatically reduced the number of coupled somas. Conclusions Heterologous gap junction coupling with amacrine cells is widespread across mouse ipRGC types. ipRGC-coupled amacrine cells probably comprise multiple morphologic types and use multiple neuromodulators, suggesting that gap junctional ipRGC-to-amacrine signaling likely exerts diverse modulatory effects on retinal physiology. ipRGC-amacrine coupling is mediated partly, but not solely, by Cx36.
Collapse
Affiliation(s)
- Krystal R. Harrison
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Andrew P. Chervenak
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Sarah M. Resnick
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Aaron N. Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Kwoon Y. Wong
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
63
|
Harding C, Bechtold DA, Brown TM. Suprachiasmatic nucleus-dependent and independent outputs driving rhythmic activity in hypothalamic and thalamic neurons. BMC Biol 2020; 18:134. [PMID: 32998726 PMCID: PMC7528611 DOI: 10.1186/s12915-020-00871-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Daily variations in mammalian physiology are under control of a central clock in the suprachiasmatic nucleus (SCN). SCN timing signals are essential for coordinating cellular clocks and associated circadian variations in cell and tissue function across the body; however, direct SCN projections primarily target a restricted set of hypothalamic and thalamic nuclei involved in physiological and behavioural control. The role of the SCN in driving rhythmic activity in these targets remains largely unclear. Here, we address this issue via multielectrode recording and manipulations of SCN output in adult mouse brain slices. RESULTS Electrical stimulation identifies cells across the midline hypothalamus and ventral thalamus that receive inhibitory input from the SCN and/or excitatory input from the retina. Optogenetic manipulations confirm that SCN outputs arise from both VIP and, more frequently, non-VIP expressing cells and that both SCN and retinal projections almost exclusively target GABAergic downstream neurons. The majority of midline hypothalamic and ventral thalamic neurons exhibit circadian variation in firing and those receiving inhibitory SCN projections consistently exhibit peak activity during epochs when SCN output is low. Physical removal of the SCN confirms that neuronal rhythms in ~ 20% of the recorded neurons rely on central clock input but also reveals many neurons that can express circadian variation in firing independent of any SCN input. CONCLUSIONS We identify cell populations across the midline hypothalamus and ventral thalamus exhibiting SCN-dependent and independent rhythms in neural activity, providing new insight into the mechanisms by which the circadian system generates daily physiological rhythms.
Collapse
Affiliation(s)
- Court Harding
- Centre for Biological Timing, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
64
|
Li W. Ground squirrel - A cool model for a bright vision. Semin Cell Dev Biol 2020; 106:127-134. [PMID: 32593518 DOI: 10.1016/j.semcdb.2020.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 01/04/2023]
Abstract
The great evolutionary biologist, Theodosius Dobzhansky, once said, "Nothing in biology makes sense except in the light of evolution." Vision, no doubt, is a poster child for the work of evolution. If it has not already been said, I would humbly add that "Nothing in biology makes sense except in the context of metabolism." Marrying these two thoughts together, when one chooses an animal model for vision research, the ground squirrel jumps out immediately for its unique cone dominant retina, which has evolved for its diurnal lifestyle, and for hibernation-an adaptation to unique metabolic challenges encountered during its winter sojourn.
Collapse
Affiliation(s)
- Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, USA.
| |
Collapse
|
65
|
Ding J, Wei W. Dampening light sensitivity. Science 2020; 368:471-472. [PMID: 32355019 DOI: 10.1126/science.abb7529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jennifer Ding
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Wei Wei
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|