51
|
Thijssen Q, Quaak A, Toombs J, De Vlieghere E, Parmentier L, Taylor H, Van Vlierberghe S. Volumetric Printing of Thiol-Ene Photo-Cross-Linkable Poly(ε-caprolactone): A Tunable Material Platform Serving Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210136. [PMID: 36827642 DOI: 10.1002/adma.202210136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Indexed: 05/12/2023]
Abstract
Current thoroughly described biodegradable and cross-linkable polymers mainly rely on acrylate cross-linking. However, despite the swift cross-linking kinetics of acrylates, the concomitant brittleness of the resulting materials limits their applicability. Here, photo-cross-linkable poly(ε-caprolactone) networks through orthogonal thiol-ene chemistry are introduced. The step-growth polymerized networks are tunable, predictable by means of the rubber elasticity theory and it is shown that their mechanical properties are significantly improved over their acrylate cross-linked counterparts. Tunability is introduced to the materials, by altering Mc (or the molar mass between cross-links), and its effect on the thermal properties, mechanical strength and degradability of the materials is evaluated. Moreover, excellent volumetric printability is illustrated and the smallest features obtained via volumetric 3D-printing to date are reported, for thiol-ene systems. Finally, by means of in vitro and in vivo characterization of 3D-printed constructs, it is illustrated that the volumetrically 3D-printed materials are biocompatible. This combination of mechanical stability, tunability, biocompatibility, and rapid fabrication by volumetric 3D-printing charts a new path toward bedside manufacturing of biodegradable patient-specific implants.
Collapse
Affiliation(s)
- Quinten Thijssen
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Astrid Quaak
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Joseph Toombs
- Department of Mechanical Engineering, University of California, Berkeley, 6159 Etcheverry Hall, Berkeley, CA, 94720-1740, USA
| | - Elly De Vlieghere
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Hayden Taylor
- Department of Mechanical Engineering, University of California, Berkeley, 6159 Etcheverry Hall, Berkeley, CA, 94720-1740, USA
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| |
Collapse
|
52
|
Hai R, Shao G, Ware HOT, Jones EH, Sun C. 3D Printing a Low-Cost Miniature Accommodating Optical Microscope. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208365. [PMID: 36624569 PMCID: PMC10198847 DOI: 10.1002/adma.202208365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Indexed: 05/04/2023]
Abstract
This decade has witnessed the tremendous progress in miniaturizing optical imaging systems. Despite the advancements in 3D printing optical lenses at increasingly smaller dimensions, challenges remain in precisely manufacturing the dimensionally compatible optomechanical components and assembling them into a functional imaging system. To tackle this issue, the use of 3D printing to enable digitalized optomechanical component manufacturing, part-count-reduction design, and the inclusion of passive alignment features is reported here, all for the ease of system assembly. The key optomechanical components of a penny-sized accommodating optical microscope are 3D printed in 50 min at a significantly reduced unit cost near $4. By actuating a built-in voice-coil motor, its accommodating capability is validated to focus on specimens located at different distances, and a focus-stacking function is further utilized to greatly extend depth of field. The microscope can be readily customized and rapidly manufactured to respond to task-specific needs in form factor and optical characteristics.
Collapse
Affiliation(s)
- Rihan Hai
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Guangbin Shao
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Henry Oliver T Ware
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Evan Hunter Jones
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Sun
- Mechanical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
53
|
Yao Z, Lundqvist E, Kuang Y, Ardoña HAM. Engineering Multi-Scale Organization for Biotic and Organic Abiotic Electroactive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205381. [PMID: 36670065 PMCID: PMC10074131 DOI: 10.1002/advs.202205381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Multi-scale organization of molecular and living components is one of the most critical parameters that regulate charge transport in electroactive systems-whether abiotic, biotic, or hybrid interfaces. In this article, an overview of the current state-of-the-art for controlling molecular order, nanoscale assembly, microstructure domains, and macroscale architectures of electroactive organic interfaces used for biomedical applications is provided. Discussed herein are the leading strategies and challenges to date for engineering the multi-scale organization of electroactive organic materials, including biomolecule-based materials, synthetic conjugated molecules, polymers, and their biohybrid analogs. Importantly, this review provides a unique discussion on how the dependence of conduction phenomena on structural organization is observed for electroactive organic materials, as well as for their living counterparts in electrogenic tissues and biotic-abiotic interfaces. Expansion of fabrication capabilities that enable higher resolution and throughput for the engineering of ordered, patterned, and architecture electroactive systems will significantly impact the future of bioelectronic technologies for medical devices, bioinspired harvesting platforms, and in vitro models of electroactive tissues. In summary, this article presents how ordering at multiple scales is important for modulating transport in both the electroactive organic, abiotic, and living components of bioelectronic systems.
Collapse
Affiliation(s)
- Ze‐Fan Yao
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
| | - Emil Lundqvist
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Sue & Bill Gross Stem Cell Research CenterUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
54
|
Konstantinova TG, Andronic MM, Baklykov DA, Stukalova VE, Ezenkova DA, Zikiy EV, Bashinova MV, Solovev AA, Lotkov ES, Ryzhikov IA, Rodionov IA. Deep multilevel wet etching of fused silica glass microstructures in BOE solution. Sci Rep 2023; 13:5228. [PMID: 36997654 PMCID: PMC10063648 DOI: 10.1038/s41598-023-32503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Fused silica glass is a material of choice for micromechanical, microfluidic, and optical devices due to its chemical resistance, optical, electrical, and mechanical performance. Wet etching is the key method for fabricating of such microdevices. Protective mask integrity is a big challenge due extremely aggressive properties of etching solution. Here, we propose multilevel microstructures fabrication route based on fused silica deep etching through a stepped mask. First, we provide an analysis of a fused silica dissolution mechanism in buffered oxide etching (BOE) solution and calculate the main fluoride fractions like [Formula: see text], [Formula: see text], [Formula: see text] as a function of pH and NH4F:HF ratio. Then, we experimentally investigate the influence of BOE composition (1:1-14:1) on the mask resistance, etch rate and profile isotropy during deep etching through a metal/photoresist mask. Finally, we demonstrate a high-quality multilevel over-200 μm etching process with the rate up to 3 μm/min, which could be of a great interest for advanced microdevices with flexure suspensions, inertial masses, microchannels, and through-wafer holes.
Collapse
Affiliation(s)
- T G Konstantinova
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia
- Dukhov Automatics Research Institute, VNIIA, Moscow, 127030, Russia
| | - M M Andronic
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia
| | - D A Baklykov
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia
- Dukhov Automatics Research Institute, VNIIA, Moscow, 127030, Russia
| | - V E Stukalova
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia
| | - D A Ezenkova
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia
- Dukhov Automatics Research Institute, VNIIA, Moscow, 127030, Russia
| | - E V Zikiy
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia
- Dukhov Automatics Research Institute, VNIIA, Moscow, 127030, Russia
| | - M V Bashinova
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia
| | - A A Solovev
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia
| | - E S Lotkov
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia
- Dukhov Automatics Research Institute, VNIIA, Moscow, 127030, Russia
| | - I A Ryzhikov
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia
| | - I A Rodionov
- FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia.
- Dukhov Automatics Research Institute, VNIIA, Moscow, 127030, Russia.
| |
Collapse
|
55
|
Tang M, Zhong Z, Ke C. Advanced supramolecular design for direct ink writing of soft materials. Chem Soc Rev 2023; 52:1614-1649. [PMID: 36779285 DOI: 10.1039/d2cs01011a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host-guest inclusion, metal-ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.
Collapse
Affiliation(s)
- Miao Tang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Zhuoran Zhong
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Chenfeng Ke
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| |
Collapse
|
56
|
Dinc NU, Saba A, Madrid-Wolff J, Gigli C, Boniface A, Moser C, Psaltis D. From 3D to 2D and back again. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:777-793. [PMID: 39634355 PMCID: PMC11501230 DOI: 10.1515/nanoph-2022-0512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2024]
Abstract
The prospect of massive parallelism of optics enabling fast and low energy cost operations is attracting interest for novel photonic circuits where 3-dimensional (3D) implementations have a high potential for scalability. Since the technology for data input-output channels is 2-dimensional (2D), there is an unavoidable need to take 2D-nD transformations into account. Similarly, the 3D-2D and its reverse transformations are also tackled in a variety of fields such as optical tomography, additive manufacturing, and 3D optical memories. Here, we review how these 3D-2D transformations are tackled using iterative techniques and neural networks. This high-level comparison across different, yet related fields could yield a useful perspective for 3D optical design.
Collapse
Affiliation(s)
- Niyazi Ulas Dinc
- Optics Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
- Laboratory of Applied Photonics Devices, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Amirhossein Saba
- Optics Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Jorge Madrid-Wolff
- Laboratory of Applied Photonics Devices, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Carlo Gigli
- Optics Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Antoine Boniface
- Laboratory of Applied Photonics Devices, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Demetri Psaltis
- Optics Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
57
|
Xu Y, Mao H, Liu C, Du Z, Yan W, Yang Z, Partanen J, Chen Y. Hopping Light Vat Photopolymerization for Multiscale Fabrication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205784. [PMID: 36541744 DOI: 10.1002/smll.202205784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
3D objects with features spanning from microscale to macroscale have various applications. However, the fabrication of such objects presents challenges to additive manufacturing (AM) due to the tradeoffs among manufacturable feature resolution, maximum build area, and printing speed. This paper presents a projection-based AM process called hopping light vat photopolymerization (HL-VPP) to address this critical barrier. The key idea of HL-VPP is to synchronize linear scanning projection with a galvo mirror's rotation. The projector moves continuously at a constant speed while periodically rotating a one-axis galvo mirror to compensate for the projector's linear movement so synchronized hopping motion can be achieved. By this means, HL-VPP can simultaneously achieve large-area (over 200 mm), fast-speed (scanning speed of 13.5 mm s-1 ), and high-resolution (10 µm pixel size) fabrication. The distinguishing characteristic of HL-VPP is that it allows for hundreds of times lower refresh rates without motion blur. Thus, HL-VPP decouples the fabrication efficiency limit imposed by the refresh rate and will enable super-fast curing in the future. This work will significantly advance VPP's use in applications that require macroscale part size with microscale features. The process has been verified by fabricating multiple multiscale objects, including microgrids and biomimetic structures.
Collapse
Affiliation(s)
- Yang Xu
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Huachao Mao
- School of Engineering Technology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cenyi Liu
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhengyu Du
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Weijia Yan
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhuoyuan Yang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jouni Partanen
- Department of Mechanical Engineering, Aalto University, Puumiehenkuja 5, Espoo, 02150, Finland
| | - Yong Chen
- Center for Advanced Manufacturing, University of Southern California, Los Angeles, CA, 90007, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
58
|
Liu YQ, Xiong Z, Zhang YL, Liu H. Breakthroughs in projection-enabled additive manufacturing: From novel strategies to cutting-edge applications. Innovation (N Y) 2023; 4:100395. [PMID: 36993154 PMCID: PMC10040815 DOI: 10.1016/j.xinn.2023.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 03/28/2023] Open
Affiliation(s)
- Yu-Qing Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zheng Xiong
- Corning Research & Development Corporation, 1 Riverfront Plaza, Corning, NY 14831, USA
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hua Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
- Corresponding author
| |
Collapse
|
59
|
You S, Xiang Y, Hwang HH, Berry DB, Kiratitanaporn W, Guan J, Yao E, Tang M, Zhong Z, Ma X, Wangpraseurt D, Sun Y, Lu TY, Chen S. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. SCIENCE ADVANCES 2023; 9:eade7923. [PMID: 36812321 PMCID: PMC9946358 DOI: 10.1126/sciadv.ade7923] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Three-dimensional (3D) bioprinting techniques have emerged as the most popular methods to fabricate 3D-engineered tissues; however, there are challenges in simultaneously satisfying the requirements of high cell density (HCD), high cell viability, and fine fabrication resolution. In particular, bioprinting resolution of digital light processing-based 3D bioprinting suffers with increasing bioink cell density due to light scattering. We developed a novel approach to mitigate this scattering-induced deterioration of bioprinting resolution. The inclusion of iodixanol in the bioink enables a 10-fold reduction in light scattering and a substantial improvement in fabrication resolution for bioinks with an HCD. Fifty-micrometer fabrication resolution was achieved for a bioink with 0.1 billion per milliliter cell density. To showcase the potential application in tissue/organ 3D bioprinting, HCD thick tissues with fine vascular networks were fabricated. The tissues were viable in a perfusion culture system, with endothelialization and angiogenesis observed after 14 days of culture.
Collapse
Affiliation(s)
- Shangting You
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Henry H. Hwang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David B. Berry
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wisarut Kiratitanaporn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zheng Zhong
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyue Ma
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Wangpraseurt
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting-yu Lu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
60
|
Toombs JT, Shan IK, Taylor HK. Ethyl Cellulose-Based Thermoreversible Organogel Photoresist for Sedimentation-Free Volumetric Additive Manufacturing. Macromol Rapid Commun 2023; 44:e2200872. [PMID: 36781416 DOI: 10.1002/marc.202200872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Liquid photoresists are abundant in the field of light-based additive manufacturing (AM). However, printing unsupported directly into a vat of material in emerging volumetric AM technologies-typically a benefit due to fewer geometric constraints and less material waste-can be a limitation when printing low-viscosity liquid monomers and multimaterial constructs due to part drift or sedimentation. With ethyl cellulose (EC), a thermoplastic soluble in organic liquids, a simple three-component transparent thermoreversible gel photoresist with melting temperature of ≈64 °C is formulated. The physically crosslinked network of the gel leads to storage moduli in the range of 0.1-10 kPa and maximum yield stress of 2.7 kPa for a 10 wt% EC gel photoresist. Nonzero yield stress enables sedimentation-free tomographic volumetric patterning in low-viscosity monomer without additional hardware or modification of apparatus. In addition, objects inserted into the print container can be suspended in the gel material which enables overprinting of multimaterial devices without anchors connecting the object to the printing container. Flexural strength is also improved by 100% compared to the neat monomer for a formulation with 7 wt% EC.
Collapse
Affiliation(s)
- Joseph T Toombs
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Ingrid K Shan
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Hayden K Taylor
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
61
|
Webber D, Zhang Y, Picard M, Boisvert J, Paquet C, Orth A. Versatile volumetric additive manufacturing with 3D ray tracing. OPTICS EXPRESS 2023; 31:5531-5546. [PMID: 36823831 DOI: 10.1364/oe.481318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Tomographic volumetric additive manufacturing (VAM) is an optical 3D printing technique where an object is formed by photopolymerizing resin via tomographic projections. Currently, these projections are calculated using the Radon transform from computed tomography but it ignores two fundamental properties of real optical projection systems: finite etendue and non-telecentricity. In this work, we introduce 3D ray tracing as a new method of computing projections in tomographic VAM and demonstrate high fidelity printing in non-telecentric and higher etendue systems, leading to a 3x increase in vertical build volume than the standard Radon method. The method introduced here expands the possible tomographic VAM printing configurations, enabling faster, cheaper, and higher fidelity printing.
Collapse
|
62
|
Aubry G, Lee HJ, Lu H. Advances in Microfluidics: Technical Innovations and Applications in Diagnostics and Therapeutics. Anal Chem 2023; 95:444-467. [PMID: 36625114 DOI: 10.1021/acs.analchem.2c04562] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyun Jee Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
63
|
Pazhamannil RV, Hadidi HM, Puthumana G. Development of a low‐cost volumetric additive manufacturing printer using less viscous commercial resins. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ribin Varghese Pazhamannil
- Department of Mechanical Engineering, Government College of Engineering Kannur APJ Abdul Kalam Technological University Thiruvananthapuram India
| | - Haitham M. Hadidi
- Department of Mechanical Engineering, College of Engineering Jazan University Jazan Kingdom of Saudi Arabia
| | - Govindan Puthumana
- Department of Mechanical Engineering, Government College of Engineering Kannur APJ Abdul Kalam Technological University Thiruvananthapuram India
| |
Collapse
|
64
|
Feng J, Neuzil J, Manz A, Iliescu C, Neuzil P. Microfluidic trends in drug screening and drug delivery. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
65
|
Monia Kabandana GK, Zhang T, Chen C. Emerging 3D printing technologies and methodologies for microfluidic development. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2885-2906. [PMID: 35866586 DOI: 10.1039/d2ay00798c] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This review paper examines recent (mostly 2018 or later) advancements in 3D printed microfluidics. Microfluidic devices are widely applied in various fields such as drug delivery, point-of-care diagnosis, and bioanalytical research. In addition to soft lithography, 3D printing has become an appealing technology to develop microfluidics recently. In this work, three main 3D printing technologies, stereolithography, fused filament deposition, and polyjet, which are commonly used to fabricate microfluidic devices, are thoroughly discussed. The advantages, limitations, and recent microfluidic applications are analyzed. New technical advancements within these technology frameworks are also summarized, which are especially suitable for microfluidic development. Next, new emerging 3D-printing technologies are introduced, including the direct printing of polydimethylsiloxane (PDMS), glass, and biopolymers. Although limited microfluidic applications based on these technologies can be found in the literature, they show high potential to revolutionize the next generation of 3D-printed microfluidic apparatus.
Collapse
Affiliation(s)
- Giraso Keza Monia Kabandana
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Tao Zhang
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
66
|
Zhang X, Chen G, Cai L, Fan L, Zhao Y. Dip-Printed Microneedle Motors for Oral Macromolecule Delivery. Research (Wash D C) 2022; 2022:9797482. [PMID: 35958112 PMCID: PMC9343079 DOI: 10.34133/2022/9797482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Micromotors have demonstrated values in drug delivery, and recent attempts focus on developing effective approaches to generate functional micromotors to improve this area. Here, with the integration of microfluidic droplet printing and wettability-induced drawing photolithography, we present an innovative spatiotemporal serial multistep dip-printing strategy to generate novel independent microneedle motors (IMNMs) for orally delivering macromolecular drugs. As the strategy combines the advantages of the hydrophilic wettability, extension effects, and capillary effects, the IMNMs with an oblate basement and a needle-shaped head or a core-shell structured multicomponent head can be created by simply printing pregel droplets layer by layer, following with simultaneous wiredrawing and solidification. Owing to the polarized magnetic particles in the bottom basement and the rapidly dissolvable polymers as the middle basement, the resultant IMNMs can respond to magnetic fields, move to desired places under a magnet, penetrate tissue-like substrates, induce head-basement separation, and leave only the needles for cargo release. Based on these features, we have demonstrated that these IMNMs can deliver insulin via intestinal tracts to realize effective blood glucose control of diabetic rabbit models. These results indicate the practical values and bright future of the dip-printing stratagem and these IMNMs in clinical applications.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guopu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100101, China
| |
Collapse
|
67
|
Smith KA, Habibi S, de Beer MP, Pritchard ZD, Burns MA. Dual-wavelength volumetric stereolithography of multilevel microfluidic devices. BIOMICROFLUIDICS 2022; 16:044106. [PMID: 35935121 PMCID: PMC9352368 DOI: 10.1063/5.0094721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Microfluidic devices are typically fabricated in an expensive, multistep process (e.g., photolithography, etching, and bonding). Additive manufacturing (AM) has emerged as a revolutionary technology for simple and inexpensive fabrication of monolithic structures-enabling microfluidic designs that are challenging, if not impossible, to make with existing fabrication techniques. Here, we introduce volumetric stereolithography (vSLA), an AM method in which polymerization is constrained to specific heights within a resin vat, allowing layer-by-layer fabrication without a moving platform. vSLA uses an existing dual-wavelength chemistry that polymerizes under blue light (λ = 458 nm) and inhibits polymerization under UV light (λ = 365 nm). We apply vSLA to fabricate microfluidic channels with different spatial and vertical geometries in less than 10 min. Channel heights ranged from 400 μm to 1 mm and could be controlled with an optical dose, which is a function of blue and UV light intensities and exposure time. Oxygen in the resin was found to significantly increase the amount of dose required for curing (i.e., polymerization to a gelled state), and we recommend that an inert vSLA system is used for rapid and reproducible microfluidic fabrication. Furthermore, we recommend polymerizing far beyond the gel point to form more rigid structures that are less susceptible to damage during post-processing, which can be done by simultaneously increasing the blue and UV light absorbance of the resin with light intensities. We believe that vSLA can simplify the fabrication of complex multilevel microfluidic devices, extending microfluidic innovation and availability to a broader community.
Collapse
Affiliation(s)
- Kaylee A. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sanaz Habibi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Zachary D. Pritchard
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mark A. Burns
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|