51
|
Tian Y, Liu C, Yang W, Li X, Zhang M, Xiong Y, Ren X, Ma Z, Jin X, Wu Y, Dong X, Hu N, Xie Z, Qin Y, Wu S. Highlighting immune features of the tumor ecosystem and prognostic value of Tfh and Th17 cell infiltration in head and neck squamous cell carcinoma by single-cell RNA-seq. Cancer Immunol Immunother 2024; 73:187. [PMID: 39093451 PMCID: PMC11297013 DOI: 10.1007/s00262-024-03767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) typically present with a complex anatomical distribution, often accompanied by insidious symptoms. This combination contributes to its high incidence and poor prognosis. It is now understood that the immune features of cellular components within the tumor ecosystem and their complex interactions are critical factors influencing both tumor progression and the effective immune response. METHODS We obtained single-cell RNA sequencing data of 26,496 cells from three tumor tissues and five normal tissues and performed subsequent analyses. Immunohistochemical staining on tumor sections was used to validate the presence of malignant cells. Additionally, we included bulk RNA sequencing data from 502 HNSCC patients. Kaplan-Meier analysis and the log-rank test were employed to assess predictors of patient outcomes. RESULTS We identified three epithelial subclusters exhibiting immune-related features. These subclusters promoted the infiltration of T cells, dendritic cells, and monocytes into the tumor microenvironment. Additionally, cancer-associated fibroblasts displayed tumor-promoting and angiogenesis characteristics, contrasting with the predominant antigen-presenting and inflammatory roles observed in fibroblasts from normal tissues. Furthermore, tumor endothelial subsets exhibited a double-sided effect, promoting tumor progression and enhancing the effectiveness of immune response. Finally, follicular helper T cells and T helper 17 cells were found to be significantly correlated with improved outcomes in HNSCC patients. These CD4+ T cell subpopulations could promote the anti-tumor immune response by recruiting and activating B and T cells. CONCLUSION Our findings provide deeper insights into the immune features of the tumor ecosystem and reveal the prognostic significance of follicular helper T cells and T helper 17 cells. These findings may pave the way for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Yan Tian
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Wenhui Yang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Li
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Min Zhang
- Department of Radiation Oncology, Peking University People's Hospital, Beijing, China
| | - Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Xueying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Zhiguo Ma
- Department of Neurology, Xi' an Aerospace General Hospital, Xian, China
| | - Xuan Jin
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Yanping Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Xin Dong
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Nanlin Hu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Zhijun Xie
- Department of Medical Oncology, Peking University First Hospital, Beijing, China
| | - Yong Qin
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China.
| | - Shikai Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
52
|
Pupier G, Sautès-Fridman C. B cells! Don't go the wrong way in this tumor. Immunity 2024; 57:1454-1456. [PMID: 38986440 DOI: 10.1016/j.immuni.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
The association of tertiary lymphoid structures (TLSs) with survival and immunotherapy response brought B cells to center stage. In a pan-cancer B cells atlas in Science, Ma et al. show that germinal center reaction generating anti-tumor antibody-secreting cells (ASCs) from B memory cells in mature TLSs co-exist in tumors with extra-follicular reaction generating auto-reactive ASCs from memory B cells in immature TLSs.
Collapse
Affiliation(s)
- Guilhem Pupier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Cité, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Cité, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France.
| |
Collapse
|
53
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
54
|
Wu H, Wu Z, Li H, Wang Z, Chen Y, Bao J, Chen B, Xu S, Xia E, Ye D, Dai X. Glycosylphosphatidylinositol anchor biosynthesis pathway-based biomarker identification with machine learning for prognosis and T cell exhaustion status prediction in breast cancer. Front Immunol 2024; 15:1392940. [PMID: 39015576 PMCID: PMC11249538 DOI: 10.3389/fimmu.2024.1392940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
As the primary component of anti-tumor immunity, T cells are prone to exhaustion and dysfunction in the tumor microenvironment (TME). A thorough understanding of T cell exhaustion (TEX) in the TME is crucial for effectively addressing TEX in clinical settings and promoting the efficacy of immune checkpoint blockade therapies. In eukaryotes, numerous cell surface proteins are tethered to the plasma membrane via Glycosylphosphatidylinositol (GPI) anchors, which play a crucial role in facilitating the proper translocation of membrane proteins. However, the available evidence is insufficient to support any additional functional involvement of GPI anchors. Here, we investigate the signature of GPI-anchor biosynthesis in the TME of breast cancer (BC)patients, particularly its correlation with TEX. GPI-anchor biosynthesis should be considered as a prognostic risk factor for BC. Patients with high GPI-anchor biosynthesis showed more severe TEX. And the levels of GPI-anchor biosynthesis in exhausted CD8 T cells was higher than normal CD8 T cells, which was not observed between malignant epithelial cells and normal mammary epithelial cells. In addition, we also found that GPI -anchor biosynthesis related genes can be used to diagnose TEX status and predict prognosis in BC patients, both the TEX diagnostic model and the prognostic model showed good AUC values. Finally, we confirmed our findings in cells and clinical samples. Knockdown of PIGU gene expression significantly reduced the proliferation rate of MDA-MB-231 and MCF-7 cell lines. Immunofluorescence results from clinical samples showed reduced aggregation of CD8 T cells in tissues with high expression of GPAA1 and PIGU.
Collapse
Affiliation(s)
- Haodong Wu
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhixuan Wu
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongfeng Li
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziqiong Wang
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Chen
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Bao
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Buran Chen
- School of Molecular Science, University of Western Australia, Perth, WA, Australia
| | - Shuning Xu
- Department of Computer Information Systems, Georgia State University, Atlanta, GA, United States
| | - Erjie Xia
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Daijiao Ye
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanxuan Dai
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
55
|
Paparoditis P, Shulman Z. The tumor-driven antibody-mediated immune response in cancer. Curr Opin Immunol 2024; 88:102431. [PMID: 38866666 DOI: 10.1016/j.coi.2024.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Immune cells in the tumor microenvironment play a crucial role in cancer prognosis and response to immunotherapy. Recent studies highlight the significance of tumor-infiltrating B cells and tertiary lymphoid structures as markers of favorable prognosis and patient-positive response to immune checkpoint blockers in some types of cancer. Although the presence of germinal center B cells and plasma cells in the tumor microenvironment has been established, determining their tumor reactivity remains challenging. The few known tumor targets range from viral proteins to self and altered self-proteins. The emergence of self-reactive antibodies in patients with cancer, involves the opposing forces of antigen-driven affinity increase and peripheral tolerance mechanisms. Here, B cell tumor antigen specificity and affinity maturation in tumor-directed immune responses in cancer are discussed.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Systems Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Shulman
- Department of Systems Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
56
|
Skinner OP, Asad S, Haque A. Advances and challenges in investigating B-cells via single-cell transcriptomics. Curr Opin Immunol 2024; 88:102443. [PMID: 38968762 DOI: 10.1016/j.coi.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNAseq) and Variable, Diversity, Joining (VDJ) profiling have improved our understanding of B-cells. Recent scRNAseq-based approaches have led to the discovery of intermediate B-cell states, including preplasma cells and pregerminal centre B-cells, as well as unveiling protective roles for B-cells within tertiary lymphoid structures in respiratory infections and cancers. These studies have improved our understanding of transcriptional and epigenetic control of B-cell development and of atypical and memory B-cell differentiation. Advancements in temporal profiling in parallel with transcriptomic and VDJ sequencing have consolidated our understanding of the trajectory of B-cell clones over the course of infection and vaccination. Challenges remain in studying B-cell states across tissues in humans, in relating spatial location with B-cell phenotype and function, in examining antibody isotype switching events, and in unequivocal determination of clonal relationships. Nevertheless, ongoing multiomic assessments and studies of cellular interactions within tissues promise new avenues for improving humoral immunity and combatting autoimmune conditions.
Collapse
Affiliation(s)
- Oliver P Skinner
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia.
| | - Saba Asad
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia
| | - Ashraful Haque
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia.
| |
Collapse
|
57
|
Tellier J, Nutt SL. B cell trajectories influence cancer outcomes. Science 2024; 384:510-511. [PMID: 38696586 DOI: 10.1126/science.adp1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Two types of B cell in the tumor microenvironment modulate antitumor immunity.
Collapse
Affiliation(s)
- Julie Tellier
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
58
|
Chai W, Zhang M, He Y, Chai W. Characteristics of immune cells and causal relationship with chondromalacia: A two-sample, bidirectional mendelian randomization study. Mol Pain 2024; 20:17448069241289962. [PMID: 39313492 PMCID: PMC11528737 DOI: 10.1177/17448069241289962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Chondromalacia, characterized by the softening of cartilage, is a prevalent condition affecting joint health with complex etiology. The immune system's role in its pathogenesis has been implicated but remains to be fully elucidated. To address a critical knowledge gap, we conducted a two-sample Mendelian randomization analysis of 731 immune cell phenotypes, assessing parameters like fluorescence, cell count, and morphology. After sensitivity and pleiotropy checks, and applying a false discovery rate correction, our study linked 17 phenotypes to chondromalacia (p < .05). Among them, seven immune cell phenotypes were found to have a protective effect against chondromalacia (IVW: p < .05, OR <1), while 10 were considered risk factors (IVW:p < .05, OR >1). Despite the constraints of sample size and possible genetic differences among populations, our research has identified a notable genetic correlation between specific immune cell indicators and chondromalacia. This breakthrough sheds light on the pathophysiological mechanisms of the condition. The identification of protective and risk-associated immune cell phenotypes provides a foundation for further exploration of immunological mechanisms in chondromalacia and may pave the way for targeted interventions. Future research is warranted to validate these findings and explore their clinical implications.
Collapse
Affiliation(s)
- Weiwei Chai
- Department of Knee Surgery, Luoyang Orthopedic-Traumatological Hospital of Henan Province(Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Mengwei Zhang
- Department of Emergency, Luoyang Orthopedic-Traumatological Hospital of Henan Province(Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yan He
- Department of Radiology, The Third Afiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Weihao Chai
- Department of Graduate School, Xinjiang Medical University, Urumqi, China
| |
Collapse
|