51
|
Maloverjan A, Piirsoo M, Kasak L, Peil L, Østerlund T, Kogerman P. Dual function of UNC-51-like kinase 3 (Ulk3) in the Sonic hedgehog signaling pathway. J Biol Chem 2010; 285:30079-90. [PMID: 20643644 DOI: 10.1074/jbc.m110.133991] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway controls a variety of developmental processes and is implicated in tissue homeostasis maintenance and neurogenesis in adults. Recently, we identified Ulk3 as an active kinase able to positively regulate Gli proteins, mediators of the Shh signaling in mammals. Here, we provide several lines of evidence that Ulk3 participates in the transduction of the Shh signal also independently of its kinase activity. We demonstrate that Ulk3 through its kinase domain interacts with Suppressor of Fused (Sufu), a protein required for negative regulation of Gli proteins. Sufu blocks Ulk3 autophosphorylation and abolishes its ability to phosphorylate and positively regulate Gli proteins. We show that Shh signaling destabilizes the Sufu-Ulk3 complex and induces the release of Ulk3. We demonstrate that the Sufu-Ulk3 complex, when co-expressed with Gli2, promotes generation of the Gli2 repressor form, and that reduction of the Ulk3 mRNA level in Shh-responsive cells results in higher potency of the cells to transmit the Shh signal. Our data suggests a dual function of Ulk3 in the Shh signal transduction pathway and propose an additional way of regulating Gli proteins by Sufu, through binding to and suppression of Ulk3.
Collapse
Affiliation(s)
- Alla Maloverjan
- Department of Gene Technology, Institute of Clinical Medicine, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | | | | | | | | | | |
Collapse
|
52
|
Wilson CW, Chuang PT. Mechanism and evolution of cytosolic Hedgehog signal transduction. Development 2010; 137:2079-94. [PMID: 20530542 DOI: 10.1242/dev.045021] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hedgehog (Hh) signaling is required for embryonic patterning and postnatal physiology in invertebrates and vertebrates. With the revelation that the primary cilium is crucial for mammalian Hh signaling, the prevailing view that Hh signal transduction mechanisms are conserved across species has been challenged. However, more recent progress on elucidating the function of core Hh pathway cytosolic regulators in Drosophila, zebrafish and mice has confirmed that the essential logic of Hh transduction is similar between species. Here, we review Hh signaling events at the membrane and in the cytosol, and focus on parallel and divergent functions of cytosolic Hh regulators in Drosophila and mammals.
Collapse
Affiliation(s)
- Christopher W Wilson
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
53
|
Abstract
RNA interference (RNAi) is an effective tool for genome-scale, high-throughput analysis of gene function. In the past five years, a number of genome-scale RNAi high-throughput screens (HTSs) have been done in both Drosophila and mammalian cultured cells to study diverse biological processes, including signal transduction, cancer biology, and host cell responses to infection. Results from these screens have led to the identification of new components of these processes and, importantly, have also provided insights into the complexity of biological systems, forcing new and innovative approaches to understanding functional networks in cells. Here, we review the main findings that have emerged from RNAi HTS and discuss technical issues that remain to be improved, in particular the verification of RNAi results and validation of their biological relevance. Furthermore, we discuss the importance of multiplexed and integrated experimental data analysis pipelines to RNAi HTS.
Collapse
Affiliation(s)
- Stephanie Mohr
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
54
|
Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 2010; 11:331-44. [PMID: 20395968 DOI: 10.1038/nrg2774] [Citation(s) in RCA: 1428] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The primary cilium has recently stepped into the spotlight, as a flood of data show that this organelle has crucial roles in vertebrate development and human genetic diseases. Cilia are required for the response to developmental signals, and evidence is accumulating that the primary cilium is specialized for hedgehog signal transduction. The formation of cilia, in turn, is regulated by other signalling pathways, possibly including the planar cell polarity pathway. The cilium therefore represents a nexus for signalling pathways during development. The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction.
Collapse
Affiliation(s)
- Sarah C Goetz
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
55
|
|
56
|
Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol Cell Biol 2010; 30:1910-22. [PMID: 20154143 DOI: 10.1128/mcb.01089-09] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hedgehog (Hh) signaling in vertebrates depends on intraflagellar transport (IFT) within primary cilia. The Hh receptor Patched is found in cilia in the absence of Hh and is replaced by the signal transducer Smoothened within an hour of Hh stimulation. By generating antibodies capable of detecting endogenous pathway transcription factors Gli2 and Gli3, we monitored their kinetics of accumulation in cilia upon Hh stimulation. Localization occurs within minutes of Hh addition, making it the fastest reported readout of pathway activity, which permits more precise temporal and spatial localization of Hh signaling events. We show that the species of Gli3 that accumulates at cilium tips is full-length and likely not protein kinase A phosphorylated. We also confirmed that phosphorylation and betaTrCP/Cul1 are required for endogenous Gli3 processing and that this is inhibited by Hh. Surprisingly, however, Hh-dependent inhibition of processing does not lead to accumulation of full-length Gli3, but instead renders it labile, leading to its proteasomal degradation via the SPOP/Cul3 complex. In fact, full-length Gli3 disappears with faster kinetics than the Gli3 repressor, the latter not requiring SPOP/Cul3 or betaTrCP/Cul1. This may contribute to the increased Gli3 activator/repressor ratios found in IFT mutants.
Collapse
|
57
|
Abstract
Cilia are microtubule-based structures that protrude from the cell surface and function as sensors for mechanical and chemical environmental cues that regulate cellular differentiation or division. In metazoans, ciliary signaling is important during organismal development and in the homeostasis controls of adult tissues, with receptors for the Hedgehog, platelet derived growth factor (PDGF), Wnt, and other signaling cascades arrayed and active along the ciliary membrane. In normal cells, cilia are dynamically regulated during cell cycle progression: present in G0 and G1 cells, and usually in S/G2 cells, but almost invariably resorbed before mitotic entry, to reappear post-cytokinesis. This periodic resorption and reassembly of cilia, specified by the intrinsic cell cycle the intrinsic cell cycle machinery, influences the susceptibility of cells to the influence of extrinsic signals with cilia-associated receptors. Pathogenic conditions of mammals associated with loss of or defects in ciliary integrity include a number of developmental disorders, cystic syndromes in adults, and some cancers. With the continuing expansion of the list of human diseases associated with ciliary abnormalities, the identification of the cellular mechanisms regulating ciliary growth and disassembly has become a topic of intense research interest. Although these mechanisms are far from being understood, a number of recent studies have begun to identify key regulatory factors that may begin to offer insight into disease pathogenesis and treatment. In this chapter we will discuss the current state of knowledge regarding cell cycle control of ciliary dynamics, and provide general methods that can be applied to investigate cell cycle-dependent ciliary growth and disassembly.
Collapse
|
58
|
Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 2009; 29:469-81. [PMID: 19935712 DOI: 10.1038/onc.2009.392] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hedgehog pathway, initially discovered by two Nobel laureates Drs E Wieschaus and C Nusslein-Volhard in Drosophila, is a major regulator for cell differentiation, tissue polarity and cell proliferation. Studies from many laboratories reveal activation of this pathway in a variety of human cancer, including basal cell carcinomas (BCCs), medulloblastomas, leukemia, gastrointestinal, lung, ovarian, breast and prostate cancers. It is thus believed that targeted inhibition of hedgehog signaling may be effective in treatment and prevention of human cancer. Even more exciting is the discovery and synthesis of specific signaling antagonists for the hedgehog pathway, which have significant clinical implications in novel cancer therapeutics. In this review, we will summarize major advances in the last 2 years in our understanding of hedgehog signaling activation in human cancer, interactions between hedgehog signaling and other pathways in carcinogenesis, potential antagonists for hedgehog signaling inhibition and their clinical implications for human cancer treatment.
Collapse
|
59
|
Ruel L, Thérond PP. Variations in Hedgehog signaling: divergence and perpetuation in Sufu regulation of Gli. Genes Dev 2009; 23:1843-8. [PMID: 19684109 DOI: 10.1101/gad.1838109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Hedgehog (Hh) proteins play a universal role in metazoan development. Nevertheless, fundamental differences exist between Drosophila and vertebrates in the transduction of the Hh signal, notably regarding the role of primary cilia in mammalian cells. In this issue of Genes & Development, Chen and colleagues (pp. 1910-1928) demonstrate that mouse Suppressor of fused (Sufu) regulates the stability of the transcription factors Gli2 and Gli3 by antagonizing the conserved Gli degradation device mediated by Hib/Spop in a cilia-independent manner.
Collapse
Affiliation(s)
- Laurent Ruel
- Institut Biologie du Développement et Cancer-IBDC, Université de Nice-Sophia Antipolis, CNRS UMR 6543, Centre de Biochimie, Nice Cedex 02, France
| | | |
Collapse
|
60
|
Hilton LK, White MC, Quarmby LM. The NIMA-related kinase NEK1 cycles through the nucleus. Biochem Biophys Res Commun 2009; 389:52-6. [PMID: 19699716 DOI: 10.1016/j.bbrc.2009.08.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
Mutations in NEK1 in mice are causal for cystic kidneys, and model the ciliopathy polycystic kidney disease caused by abnormal ciliary structure or signaling. NEK1 has previously been shown to localize near centrosomes and to play a role in centrosomal stability and ciliogenesis. Recent data suggest that the etiology of kidney cysts involves aberrant signaling from the primary cilium to the nucleus. Here we demonstrate that NEK1 contains functional nuclear localization signals, is exported from the nucleus via a nuclear export signal-dependent pathway and that the protein cycles through the nucleus. Our data suggest that NEK1 is a candidate to transduce messages from the ciliary-basal body region to the regulation of nuclear gene expression.
Collapse
Affiliation(s)
- Laura K Hilton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | | | | |
Collapse
|
61
|
Kise Y, Morinaka A, Teglund S, Miki H. Sufu recruits GSK3beta for efficient processing of Gli3. Biochem Biophys Res Commun 2009; 387:569-74. [PMID: 19622347 DOI: 10.1016/j.bbrc.2009.07.087] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 11/17/2022]
Abstract
Hedgehog (Hh) signaling activates the transcription factor Gli by suppressing the function of the suppressor of fused (Sufu) protein in mammals. Here, a novel role of mammalian Sufu is identified where it mediates the phosphorylation of Gli3 by GSK3beta, essential for Gli3 processing to generate a transcriptional repressor for Hh-target genes. Studies using Sufu(-/-) mouse embryonic fibroblasts and siRNA targeting Sufu demonstrate the requirement of Sufu for Gli3 processing. In addition, Sufu can bind to GSK3beta as well as Gli3, and mediates formation of the trimolecular complex Gli3/Sufu/GSK3beta. Thus, Sufu stimulates Gli3 phosphorylation by GSK3beta and Gli3 processing. Furthermore, Sonic Hh stimulation dissociates the Sufu/GSK3beta complex from Gli3, resulting in the blockade of Gli3 processing. Collectively, Sufu presumably functions as a GSK3beta recruiter for Hh-dependent regulation of Gli3 processing. Such a function is very similar to that of Costal2 in Drosophila, suggesting a functional complementation through evolution.
Collapse
Affiliation(s)
- Yoshiaki Kise
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
62
|
Endoh-Yamagami S, Evangelista M, Wilson D, Wen X, Theunissen JW, Phamluong K, Davis M, Scales SJ, Solloway MJ, de Sauvage FJ, Peterson AS. The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol 2009; 19:1320-6. [PMID: 19592253 DOI: 10.1016/j.cub.2009.06.046] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/19/2022]
Abstract
The Hedgehog (Hh) signaling pathway regulates development in animals ranging from flies to humans. Although its framework is conserved, differences in pathway components have been reported. A kinesin-like protein, Costal2 (Cos2), plays a central role in the Hh pathway in flies. Knockdown of a zebrafish homolog of Cos2, Kif7, results in ectopic Hh signaling, suggesting that Kif7 acts primarily as a negative regulator of Hh signal transduction. However, in vitro analysis of the function of mammalian Kif7 and the closely related Kif27 has led to the conclusion that neither protein has a role in Hh signaling. Using Kif7 knockout mice, we demonstrate that mouse Kif7, like its zebrafish and Drosophila homologs, plays a role in transducing the Hh signal. We show that Kif7 accumulates at the distal tip of the primary cilia in a Hh-dependent manner. We also demonstrate a requirement for Kif7 in the efficient localization of Gli3 to cilia in response to Hh and for the processing of Gli3 to its repressor form. These results suggest a role for Kif7 in coordinating Hh signal transduction at the tip of cilia and preventing Gli3 cleavage into a repressor form in the presence of Hh.
Collapse
Affiliation(s)
- Setsu Endoh-Yamagami
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Manning BD, VanHook AM. Science Signaling
Podcast: 07 April 2009. Sci Signal 2009. [DOI: 10.1126/scisignal.265pc7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The sets of kinases required by different cancer cell lines are highly divergent.
Collapse
Affiliation(s)
- Brendan D. Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Annalisa M. VanHook
- Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, N.W., Washington, DC 20005, USA
| |
Collapse
|
64
|
Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST. Primary cilia and signaling pathways in mammalian development, health and disease. NEPHRON. PHYSIOLOGY 2009; 111:p39-53. [PMID: 19276629 PMCID: PMC2881330 DOI: 10.1159/000208212] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although first described as early as 1898 and long considered a vestigial organelle of little functional importance, the primary cilium has become one of the hottest research topics in modern cell biology and physiology. Primary cilia are nonmotile sensory organelles present in a single copy on the surface of most growth-arrested or differentiated mammalian cells, and defects in their assembly or function are tightly coupled to many developmental defects, diseases and disorders. In normal tissues, the primary cilium coordinates a series of signal transduction pathways, including Hedgehog, Wnt, PDGFRalpha and integrin signaling. In the kidney, the primary cilium may function as a mechano-, chemo- and osmosensing unit that probes the extracellular environment and transmits signals to the cell via, e.g., polycystins, which depend on ciliary localization for appropriate function. Indeed, hypomorphic mutations in the mouse ift88 (previously called Tg737) gene, which encodes a ciliogenic intraflagellar transport protein, result in malformation of primary cilia, and in the collecting ducts of kidney tubules this is accompanied by development of autosomal recessive polycystic kidney disease (PKD). While PKD was one of the first diseases to be linked to dysfunctional primary cilia, defects in this organelle have subsequently been associated with many other phenotypes, including cancer, obesity, diabetes as well as a number of developmental defects. Collectively, these disorders of the cilium are now referred to as the ciliopathies. In this review, we provide a brief overview of the structure and function of primary cilia and some of their roles in coordinating signal transduction pathways in mammalian development, health and disease.
Collapse
Affiliation(s)
- Iben R Veland
- Department of Biology, Section of Cell and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
65
|
Patterson VL, Damrau C, Paudyal A, Reeve B, Grimes DT, Stewart ME, Williams DJ, Siggers P, Greenfield A, Murdoch JN. Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Hum Mol Genet 2009; 18:1719-39. [PMID: 19223390 PMCID: PMC2671985 DOI: 10.1093/hmg/ddp075] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mammalian Sonic hedgehog (Shh) signalling pathway is essential for embryonic development and the patterning of multiple organs. Disruption or activation of Shh signalling leads to multiple birth defects, including holoprosencephaly, neural tube defects and polydactyly, and in adults results in tumours of the skin or central nervous system. Genetic approaches with model organisms continue to identify novel components of the pathway, including key molecules that function as positive or negative regulators of Shh signalling. Data presented here define Tulp3 as a novel negative regulator of the Shh pathway. We have identified a new mouse mutant that is a strongly hypomorphic allele of Tulp3 and which exhibits expansion of ventral markers in the caudal spinal cord, as well as neural tube defects and preaxial polydactyly, consistent with increased Shh signalling. We demonstrate that Tulp3 acts genetically downstream of Shh and Smoothened (Smo) in neural tube patterning and exhibits a genetic interaction with Gli3 in limb development. We show that Tulp3 does not appear to alter expression or processing of Gli3, and we demonstrate that transcriptional regulation of other negative regulators (Rab23, Fkbp8, Thm1, Sufu and PKA) is not affected. We discuss the possible mechanism of action of Tulp3 in Shh-mediated signalling in light of these new data.
Collapse
Affiliation(s)
- Victoria L Patterson
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxon, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
The Hedgehog (Hh) family of secreted proteins governs a wide variety of processes during embryonic development and adult tissue homeostasis. Here we review the current understanding of the molecular and cellular basis of Hh morphogen gradient formation and signal transduction, and the multifaceted roles of Hh signaling in development and tumorigenesis. We discuss how the Hh pathway has diverged during evolution and how it integrates with other signaling pathways to control cell growth and patterning.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | | |
Collapse
|
67
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2008. [DOI: 10.1089/zeb.2008.9980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|