51
|
Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci 2019; 20:E678. [PMID: 30764493 PMCID: PMC6387402 DOI: 10.3390/ijms20030678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease (COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK. These pathways also have roles in interferon production, viral replication, mucus production, and T cell responses, all of which are important processes in inflammatory airway disease. Dual-specificity phosphatases (DUSPs) are known to regulate the MAPKs, and roles for this family of proteins in the pathogenesis of airway disease are emerging. This review summarizes the function of DUSPs in regulation of cytokine expression, mucin production, and viral replication in the airway. The central role of DUSPs in T cell responses, including T cell activation, differentiation, and proliferation, will also be highlighted. In addition, the importance of this protein family in the lung, and the necessity of further investigation into their roles in airway disease, will be discussed.
Collapse
Affiliation(s)
- Grace C A Manley
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
52
|
Messal HA, Alt S, Ferreira RMM, Gribben C, Wang VMY, Cotoi CG, Salbreux G, Behrens A. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature 2019; 566:126-130. [PMID: 30700911 PMCID: PMC7025886 DOI: 10.1038/s41586-019-0891-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Tubular epithelia are a basic building block of organs and a common site of cancer occurrence1-4. During tumorigenesis, transformed cells overproliferate and epithelial architecture is disrupted. However, the biophysical parameters that underlie the adoption of abnormal tumour tissue shapes are unknown. Here we show in the pancreas of mice that the morphology of epithelial tumours is determined by the interplay of cytoskeletal changes in transformed cells and the existing tubular geometry. To analyse the morphological changes in tissue architecture during the initiation of cancer, we developed a three-dimensional whole-organ imaging technique that enables tissue analysis at single-cell resolution. Oncogenic transformation of pancreatic ducts led to two types of neoplastic growth: exophytic lesions that expanded outwards from the duct and endophytic lesions that grew inwards to the ductal lumen. Myosin activity was higher apically than basally in wild-type cells, but upon transformation this gradient was lost in both lesion types. Three-dimensional vertex model simulations and a continuum theory of epithelial mechanics, which incorporate the cytoskeletal changes observed in transformed cells, indicated that the diameter of the source epithelium instructs the morphology of growing tumours. Three-dimensional imaging revealed that-consistent with theory predictions-small pancreatic ducts produced exophytic growth, whereas large ducts deformed endophytically. Similar patterns of lesion growth were observed in tubular epithelia of the liver and lung; this finding identifies tension imbalance and tissue curvature as fundamental determinants of epithelial tumorigenesis.
Collapse
Affiliation(s)
- Hendrik A Messal
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Silvanus Alt
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, London, UK
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Rute M M Ferreira
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
- Cell Death, Cancer and Inflammation Laboratory, University College London Cancer Institute, London, UK
| | | | | | - Corina G Cotoi
- Institute of Liver Studies, King's College Hospital, London, UK
- Department of Cellular Pathology, The Royal Free Hospital, London, UK
| | - Guillaume Salbreux
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, London, UK.
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
- Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
53
|
Bagonis MM, Fusco L, Pertz O, Danuser G. Automated profiling of growth cone heterogeneity defines relations between morphology and motility. J Cell Biol 2019; 218:350-379. [PMID: 30523041 PMCID: PMC6314545 DOI: 10.1083/jcb.201711023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Growth cones are complex, motile structures at the tip of an outgrowing neurite. They often exhibit a high density of filopodia (thin actin bundles), which complicates the unbiased quantification of their morphologies by software. Contemporary image processing methods require extensive tuning of segmentation parameters, require significant manual curation, and are often not sufficiently adaptable to capture morphology changes associated with switches in regulatory signals. To overcome these limitations, we developed Growth Cone Analyzer (GCA). GCA is designed to quantify growth cone morphodynamics from time-lapse sequences imaged both in vitro and in vivo, but is sufficiently generic that it may be applied to nonneuronal cellular structures. We demonstrate the adaptability of GCA through the analysis of growth cone morphological variation and its relation to motility in both an unperturbed system and in the context of modified Rho GTPase signaling. We find that perturbations inducing similar changes in neurite length exhibit underappreciated phenotypic nuance at the scale of the growth cone.
Collapse
Affiliation(s)
- Maria M Bagonis
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Ludovico Fusco
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier Pertz
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Gaudenz Danuser
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
54
|
Papoff G, Presutti D, Lalli C, Bolasco G, Santini S, Manelfi C, Fustaino V, Alemà S, Ruberti G. CASP4 gene silencing in epithelial cancer cells leads to impairment of cell migration, cell-matrix adhesion and tissue invasion. Sci Rep 2018; 8:17705. [PMID: 30531914 PMCID: PMC6286322 DOI: 10.1038/s41598-018-35792-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammatory caspases, including human caspase-4 (CASP4), play key roles in innate immune responses to promote fusion of phagosomes harboring pathogenic bacteria with lysosomes, halt intracellular replication of pathogens, maturation and secretion of pro-inflammatory cytokines. The role of inflammatory caspases in cancer cells remains poorly investigated. Here, we explored the consequences of modulating CASP4 expression levels on the migratory behavior of epithelial cancer cell lines. By a gene silencing approach and in vitro and in vivo studies we show that down-regulation of CASP4 leads to impaired cell migration and cell-matrix adhesion. This phenotype is accompanied by an increased actin cytoskeleton polymerization, changes in the overall organization of adherens junctions (AJs) and number and size of focal adhesions. Interestingly, the cell migration deficit could be reversed by epithelial growth factor treatment, and depletion of calcium ions unveiled a role of CASP4 in the novo assembly of AJs, suggesting that the role of CASP4 is not cell-autonomous. Finally, CASP4-silenced A431 cells exhibited a severe reduction in their ability to invade lung tissue, when injected into nude mice. Overall, our data support the emerging evidence that inflammatory caspases can regulate cell migration through actin remodeling and uncover a novel role of CASP4 in cancer cell behavior.
Collapse
Affiliation(s)
- Giuliana Papoff
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy.
| | - Dario Presutti
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Cristiana Lalli
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Giulia Bolasco
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Via E. Ramarini 32 Monterotondo (Rome), Italy
| | - Simonetta Santini
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Candida Manelfi
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Valentina Fustaino
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Stefano Alemà
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Giovina Ruberti
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy.
| |
Collapse
|
55
|
Tan X, Luo M, Liu AP. Clathrin-mediated endocytosis regulates fMLP-mediated neutrophil polarization. Heliyon 2018; 4:e00819. [PMID: 30263974 PMCID: PMC6157066 DOI: 10.1016/j.heliyon.2018.e00819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/30/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022] Open
Abstract
A cell's ability to establish polarization is one of the key steps in directional migration. Upon the addition of a chemoattractant, N-formylmethionyl-leucyl-phenylalanine (fMLP), neutrophils rapidly develop a front end marked by a wide and dense actin network which is a feature of cell polarization. Despite a general understanding of bi-directional crosstalk between endocytosis and polarization, it remains unclear how clathrin-mediated endocytosis (CME) induced by chemoattractant binding to formyl peptide receptor (FPR) affects neutrophil polarization. In this work, we characterized the spatial organization of FPR and clathrin-coated pits (CCPs), the functional unit of CME, with and without fMLP and found that fMLP induced different distributions of FPR and CCPs. We further found that cells had impaired polarization induced by fMLP when CME is inhibited by small molecule inhibitors. Under these conditions, pERK, pAkt308, and pAkt473 were all severely blocked or had altered dynamics. The spatial organization between actin and two major clathrin-mediated endocytic proteins, clathrin and β-arrestin, were distinct and supported clathrin and β-arrestin's functional roles in mediating neutrophil polarization. Together these results suggest that CME plays a pivotal role in a complex process such as cell polarization.
Collapse
Affiliation(s)
- Xinyu Tan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Mingzhi Luo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, PR China
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States
- Corresponding author.
| |
Collapse
|
56
|
Profiling cellular morphodynamics by spatiotemporal spectrum decomposition. PLoS Comput Biol 2018; 14:e1006321. [PMID: 30071020 PMCID: PMC6091976 DOI: 10.1371/journal.pcbi.1006321] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/14/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular morphology and associated morphodynamics are widely used for qualitative and quantitative assessments of cell state. Here we implement a framework to profile cellular morphodynamics based on an adaptive decomposition of local cell boundary motion into instantaneous frequency spectra defined by the Hilbert-Huang transform (HHT). Our approach revealed that spontaneously migrating cells with approximately homogeneous molecular makeup show remarkably consistent instantaneous frequency distributions, though they have markedly heterogeneous mobility. Distinctions in cell edge motion between these cells are captured predominantly by differences in the magnitude of the frequencies. We found that acute photo-inhibition of Vav2 guanine exchange factor, an activator of the Rho family of signaling proteins coordinating cell motility, produces significant shifts in the frequency distribution, but does not affect frequency magnitude. We therefore concluded that the frequency spectrum encodes the wiring of the molecular circuitry that regulates cell boundary movements, whereas the magnitude captures the activation level of the circuitry. We also used HHT spectra as multi-scale spatiotemporal features in statistical region merging to identify subcellular regions of distinct motion behavior. In line with our conclusion that different HHT spectra relate to different signaling regimes, we found that subcellular regions with different morphodynamics indeed exhibit distinct Rac1 activities. This algorithm thus can serve as an accurate and sensitive classifier of cellular morphodynamics to pinpoint spatial and temporal boundaries between signaling regimes. Many studies in cell biology employ global shape descriptors to probe mechanisms of cell morphogenesis. Here, we implement a framework in this paper to profile cellular morphodynamics very locally. We employ the Hilbert-Huang transform (HHT) to extract along the entire cell edge spectra of instantaneous edge motion frequency and magnitude and use them to classify overall cell behavior as well as subcellular edge sectors of distinct dynamics. We find in fibroblast-like COS7 cells that the marked heterogeneity in mobility of an unstimulated population is fully captured by differences in the magnitude spectra, while the frequency spectra are conserved between cells. Using optogenetics to acutely inhibit morphogenetic signaling pathways we find that these molecular shifts are reflected by changes in the frequency spectra but not in the magnitude spectra. After clustering cell edge sectors with distinct morphodynamics we observe in cells expressing a Rac1 activity biosensor that the sectors with different frequency spectra associate with different signaling intensity and dynamics. Together, these observations let us conclude that the frequency spectrum encodes the wiring of the molecular circuitry that regulates edge movements, whereas the magnitude captures the activation level of the circuitry.
Collapse
|
57
|
Remorino A, De Beco S, Cayrac F, Di Federico F, Cornilleau G, Gautreau A, Parrini MC, Masson JB, Dahan M, Coppey M. Gradients of Rac1 Nanoclusters Support Spatial Patterns of Rac1 Signaling. Cell Rep 2018; 21:1922-1935. [PMID: 29141223 DOI: 10.1016/j.celrep.2017.10.069] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 01/03/2023] Open
Abstract
Rac1 is a small RhoGTPase switch that orchestrates actin branching in space and time and protrusion/retraction cycles of the lamellipodia at the cell front during mesenchymal migration. Biosensor imaging has revealed a graded concentration of active GTP-loaded Rac1 in protruding regions of the cell. Here, using single-molecule imaging and super-resolution microscopy, we show an additional supramolecular organization of Rac1. We find that Rac1 partitions and is immobilized into nanoclusters of 50-100 molecules each. These nanoclusters assemble because of the interaction of the polybasic tail of Rac1 with the phosphoinositide lipids PIP2 and PIP3. The additional interactions with GEFs and possibly GAPs, downstream effectors, and other partners are responsible for an enrichment of Rac1 nanoclusters in protruding regions of the cell. Our results show that subcellular patterns of Rac1 activity are supported by gradients of signaling nanodomains of heterogeneous molecular composition, which presumably act as discrete signaling platforms.
Collapse
Affiliation(s)
- Amanda Remorino
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Simon De Beco
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Fanny Cayrac
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Fahima Di Federico
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Gaetan Cornilleau
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR7654, 91120 Palaiseau, France
| | - Maria Carla Parrini
- Institut Curie, Centre de Recherche, Paris Sciences Lettres, ART Group, Inserm U830, Paris 75005, France
| | - Jean-Baptiste Masson
- Decision and Bayesian Computation, Institut Pasteur, 25 Rue du Docteur Roux, Paris, 75015, France; Bioinformatics and Biostatistics Hub - C3BI, USR 3756 IP CNRS, Paris, France
| | - Maxime Dahan
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Mathieu Coppey
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France.
| |
Collapse
|
58
|
Fa Z, Min Z, Tang J, Liu C, Yan G, Xi J. MicroRNA-150 suppresses the growth and malignant behavior of papillary thyroid carcinoma cells via downregulation of MUC4. Exp Ther Med 2018; 16:45-52. [PMID: 29896226 PMCID: PMC5995047 DOI: 10.3892/etm.2018.6197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Previous studies have revealed that microRNA (miR)-150 can act as an oncomiR or a tumor suppressor in numerous types of hematological malignancy and solid tumor. However, the function of miR-150 in papillary thyroid carcinoma (PTC) remains elusive. The present study aimed to investigate the function of miR-150 in PTC and its underlying molecular mechanism. The expression of miR-150 was identified to be significantly downregulated, whereas that of mucin (MUC)4 was significantly upregulated in PTC tissues and cell lines compared with corresponding controls. Further experiments demonstrated that MUC4 is a direct target of miR-150. PTC cell proliferation and capacity for migration and invasion decreased following miR-150 overexpression. It was also demonstrated that miR-150-mediated MUC4 downregulation was associated with an accompanying decrease in human epidermal growth factor receptor 2, as well as its phosphorylated form, resulting in suppressed activation of downstream signaling. In conclusion, the present study demonstrated that miR-150 may serve a key function in suppressing the malignant growth and aggressive behavior of PTC cells through the downregulation of MUC4. These findings may provide a novel approach for diagnostic and therapeutic strategies for PTC.
Collapse
Affiliation(s)
- Zhenzhong Fa
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| | - Zhenyu Min
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| | - Jianjun Tang
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| | - Chuanlei Liu
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| | - Guodu Yan
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| | - Jianbo Xi
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| |
Collapse
|
59
|
Hoshi M, Reginensi A, Joens MS, Fitzpatrick JAJ, McNeill H, Jain S. Reciprocal Spatiotemporally Controlled Apoptosis Regulates Wolffian Duct Cloaca Fusion. J Am Soc Nephrol 2018; 29:775-783. [PMID: 29326158 DOI: 10.1681/asn.2017040380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/04/2017] [Indexed: 01/04/2023] Open
Abstract
The epithelial Wolffian duct (WD) inserts into the cloaca (primitive bladder) before metanephric kidney development, thereby establishing the initial plumbing for eventual joining of the ureters and bladder. Defects in this process cause common anomalies in the spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). However, developmental, cellular, and molecular mechanisms of WD-cloaca fusion are poorly understood. Through systematic analysis of early WD tip development in mice, we discovered that a novel process of spatiotemporally regulated apoptosis in WD and cloaca was necessary for WD-cloaca fusion. Aberrant RET tyrosine kinase signaling through tyrosine (Y) 1062, to which PI3K- or ERK-activating proteins dock, or Y1015, to which PLCγ docks, has been shown to cause CAKUT-like defects. Cloacal apoptosis did not occur in RetY1062F mutants, in which WDs did not reach the cloaca, or in RetY1015F mutants, in which WD tips reached the cloaca but did not fuse. Moreover, inhibition of ERK or apoptosis prevented WD-cloaca fusion in cultures, and WD-specific genetic deletion of YAP attenuated cloacal apoptosis and WD-cloacal fusion in vivo Thus, cloacal apoptosis requires direct contact and signals from the WD tip and is necessary for WD-cloacal fusion. These findings may explain the mechanisms of many CAKUT.
Collapse
Affiliation(s)
- Masato Hoshi
- Division of Nephrology, Department of Internal Medicine
| | - Antoine Reginensi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - James A J Fitzpatrick
- Center for Cellular Imaging.,Department of Cell Biology and Physiology.,Department of Neuroscience, and
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sanjay Jain
- Division of Nephrology, Department of Internal Medicine, .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
60
|
Cummins TD, Wu KZL, Bozatzi P, Dingwell KS, Macartney TJ, Wood NT, Varghese J, Gourlay R, Campbell DG, Prescott A, Griffis E, Smith JC, Sapkota GP. PAWS1 controls cytoskeletal dynamics and cell migration through association with the SH3 adaptor CD2AP. J Cell Sci 2018; 131:jcs.202390. [PMID: 29175910 PMCID: PMC5818054 DOI: 10.1242/jcs.202390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Our previous studies of PAWS1 (protein associated with SMAD1; also known as FAM83G) have suggested that this molecule has roles beyond BMP signalling. To investigate these roles, we have used CRISPR/Cas9 to generate PAWS1-knockout U2OS osteosarcoma cells. Here, we show that PAWS1 plays a role in the regulation of the cytoskeletal machinery, including actin and focal adhesion dynamics, and cell migration. Confocal microscopy and live cell imaging of actin in U2OS cells indicate that PAWS1 is also involved in cytoskeletal dynamics and organization. Loss of PAWS1 causes severe defects in F-actin organization and distribution as well as in lamellipodial organization, resulting in impaired cell migration. PAWS1 interacts in a dynamic fashion with the actin/cytoskeletal regulator CD2AP at lamellae, suggesting that its association with CD2AP controls actin organization and cellular migration. Genetic ablation of CD2AP from U2OS cells instigates actin and cell migration defects reminiscent of those seen in PAWS1-knockout cells. This article has an associated First Person interview with the first authors of the paper. Summary: PAWS1 (also known as FAM83G) controls cell migration by influencing the organization of F-actin and focal adhesions and the distribution of the actin stress fibre network through its association with CD2AP.
Collapse
Affiliation(s)
- Timothy D Cummins
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Kevin Z L Wu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Polyxeni Bozatzi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | | | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Nicola T Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Joby Varghese
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Robert Gourlay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - David G Campbell
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| | - Alan Prescott
- Cell Signalling and Immunology, University of Dundee, Dundee DD1 5EH, UK
| | - Eric Griffis
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | - James C Smith
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee DD1 5EH, UK
| |
Collapse
|
61
|
Schoppmeyer R, Zhao R, Cheng H, Hamed M, Liu C, Zhou X, Schwarz EC, Zhou Y, Knörck A, Schwär G, Ji S, Liu L, Long J, Helms V, Hoth M, Yu X, Qu B. Human profilin 1 is a negative regulator of CTL mediated cell-killing and migration. Eur J Immunol 2017; 47:1562-1572. [PMID: 28688208 DOI: 10.1002/eji.201747124] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/12/2017] [Accepted: 07/05/2017] [Indexed: 12/30/2022]
Abstract
The actin-binding protein profilin1 (PFN1) plays a central role in actin dynamics, which is essential for cytotoxic T lymphocyte (CTL) functions. The functional role of PFN1 in CTLs, however still remains elusive. Here, we identify PFN1 as the only member of the profilin family expressed in primary human CD8+ T cells. Using in vitro assays, we find that PFN1 is a negative regulator of CTL-mediated elimination of target cells. Furthermore, PFN1 is involved in activation-induced lytic granule (LG) release, CTL migration and modulation of actin structures at the immunological synapse (IS). During CTL migration, PFN1 modulates the velocity, protrusion formation patterns and protrusion sustainability. In contrast, PFN1 does not significantly affect migration persistence and the rates of protrusion emergence and retraction. Under in vitro conditions mimicking a tumor microenvironment, we show that PFN1 downregulation promotes CTL invasion into a 3D matrix, without affecting the viability of CTLs in a hydrogen peroxide-enriched microenvironment. Highlighting its potential relevance in cancer, we find that in pancreatic cancer patients, PFN1 expression is substantially decreased in peripheral CD8+ T cells. Taken together, we conclude that PFN1 is a negative regulator for CTL-mediated cytotoxicity and may have an impact on CTL functionality in a tumor-related context.
Collapse
Affiliation(s)
- Rouven Schoppmeyer
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - He Cheng
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai, P.R. China
| | - Mohamed Hamed
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Centre, Rostock, Germany
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai, P.R. China
| | - Xiao Zhou
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Yan Zhou
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Shunrong Ji
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai, P.R. China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai, P.R. China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai, P.R. China
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
- Pancreatic Cancer Institute, Fudan University, Shanghai, P.R. China
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
62
|
Schwarz J, Bierbaum V, Vaahtomeri K, Hauschild R, Brown M, de Vries I, Leithner A, Reversat A, Merrin J, Tarrant T, Bollenbach T, Sixt M. Dendritic Cells Interpret Haptotactic Chemokine Gradients in a Manner Governed by Signal-to-Noise Ratio and Dependent on GRK6. Curr Biol 2017; 27:1314-1325. [PMID: 28457871 DOI: 10.1016/j.cub.2017.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
Navigation of cells along gradients of guidance cues is a determining step in many developmental and immunological processes. Gradients can either be soluble or immobilized to tissues as demonstrated for the haptotactic migration of dendritic cells (DCs) toward higher concentrations of immobilized chemokine CCL21. To elucidate how gradient characteristics govern cellular response patterns, we here introduce an in vitro system allowing to track migratory responses of DCs to precisely controlled immobilized gradients of CCL21. We find that haptotactic sensing depends on the absolute CCL21 concentration and local steepness of the gradient, consistent with a scenario where DC directionality is governed by the signal-to-noise ratio of CCL21 binding to the receptor CCR7. We find that the conditions for optimal DC guidance are perfectly provided by the CCL21 gradients we measure in vivo. Furthermore, we find that CCR7 signal termination by the G-protein-coupled receptor kinase 6 (GRK6) is crucial for haptotactic but dispensable for chemotactic CCL21 gradient sensing in vitro and confirm those observations in vivo. These findings suggest that stable, tissue-bound CCL21 gradients as sustainable "roads" ensure optimal guidance in vivo.
Collapse
Affiliation(s)
- Jan Schwarz
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Veronika Bierbaum
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Kari Vaahtomeri
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Translational Cancer Biology Program, Wihuri Research Institute, 00014 Helsinki, Finland
| | - Robert Hauschild
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Markus Brown
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Medizinische Universität Wien, 1090 Vienna, Austria
| | - Ingrid de Vries
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alexander Leithner
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Anne Reversat
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Teresa Tarrant
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA
| | - Tobias Bollenbach
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Universität zu Köln, Institut für Theoretische Physik, 50937 Cologne, Germany.
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
63
|
Liu L, Luo Q, Sun J, Wang A, Shi Y, Ju Y, Morita Y, Song G. Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells. Exp Cell Res 2017; 355:172-181. [PMID: 28392353 DOI: 10.1016/j.yexcr.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs and reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration.
Collapse
Affiliation(s)
- Lingling Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Jinghui Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Aoli Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Yisong Shi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Yasuyuki Morita
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|
64
|
Relaxation oscillations and hierarchy of feedbacks in MAPK signaling. Sci Rep 2017; 7:38244. [PMID: 28045041 PMCID: PMC5206726 DOI: 10.1038/srep38244] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
We formulated a computational model for a MAPK signaling cascade downstream of the EGF receptor to investigate how interlinked positive and negative feedback loops process EGF signals into ERK pulses of constant amplitude but dose-dependent duration and frequency. A positive feedback loop involving RAS and SOS, which leads to bistability and allows for switch-like responses to inputs, is nested within a negative feedback loop that encompasses RAS and RAF, MEK, and ERK that inhibits SOS via phosphorylation. This negative feedback, operating on a longer time scale, changes switch-like behavior into oscillations having a period of 1 hour or longer. Two auxiliary negative feedback loops, from ERK to MEK and RAF, placed downstream of the positive feedback, shape the temporal ERK activity profile but are dispensable for oscillations. Thus, the positive feedback introduces a hierarchy among negative feedback loops, such that the effect of a negative feedback depends on its position with respect to the positive feedback loop. Furthermore, a combination of the fast positive feedback involving slow-diffusing membrane components with slower negative feedbacks involving faster diffusing cytoplasmic components leads to local excitation/global inhibition dynamics, which allows the MAPK cascade to transmit paracrine EGF signals into spatially non-uniform ERK activity pulses.
Collapse
|
65
|
Fu P, Ebenezer DL, Berdyshev EV, Bronova IA, Shaaya M, Harijith A, Natarajan V. Role of Sphingosine Kinase 1 and S1P Transporter Spns2 in HGF-mediated Lamellipodia Formation in Lung Endothelium. J Biol Chem 2016; 291:27187-27203. [PMID: 27864331 DOI: 10.1074/jbc.m116.758946] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/18/2016] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) signaling via c-Met is known to promote endothelial cell motility and angiogenesis. We have previously reported that HGF stimulates lamellipodia formation and motility of human lung microvascular endothelial cells (HLMVECs) via PI3K/Akt signal transduction and reactive oxygen species generation. Here, we report a role for HGF-induced intracellular sphingosine-1-phosphate (S1P) generation catalyzed by sphingosine kinase 1 (SphK1), S1P transporter, spinster homolog 2 (Spns2), and S1P receptor, S1P1, in lamellipodia formation and perhaps motility of HLMVECs. HGF stimulated SphK1 phosphorylation and enhanced intracellular S1P levels in HLMVECs, which was blocked by inhibition of SphK1. HGF enhanced co-localization of SphK1/p-SphK1 with actin/cortactin in lamellipodia and down-regulation or inhibition of SphK1 attenuated HGF-induced lamellipodia formation in HLMVECs. In addition, down-regulation of Spns2 also suppressed HGF-induced lamellipodia formation, suggesting a key role for inside-out S1P signaling. The HGF-mediated phosphorylation of SphK1 and its localization in lamellipodia was dependent on c-Met and ERK1/2 signaling, but not the PI3K/Akt pathway; however, blocking PI3K/Akt signaling attenuated HGF-mediated phosphorylation of Spns2. Down-regulation of S1P1, but not S1P2 or S1P3, with specific siRNA attenuated HGF-induced lamellipodia formation. Further, HGF enhanced association of Spns2 with S1P1 that was blocked by inhibiting SphK1 activity with PF-543. Moreover, HGF-induced migration of HLMVECs was attenuated by down-regulation of Spns2. Taken together, these results suggest that HGF/c-Met-mediated lamellipodia formation, and perhaps motility is dependent on intracellular generation of S1P via activation and localization of SphK1 to cell periphery and Spns2-mediated extracellular transportation of S1P and its inside-out signaling via S1P1.
Collapse
Affiliation(s)
| | | | - Evgeny V Berdyshev
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Irina A Bronova
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | | | | | - Viswanathan Natarajan
- From the Departments of Pharmacology, .,Medicine, University of Illinois, Chicago, Illinois 60612 and
| |
Collapse
|
66
|
Burn GL, Cornish GH, Potrzebowska K, Samuelsson M, Griffié J, Minoughan S, Yates M, Ashdown G, Pernodet N, Morrison VL, Sanchez-Blanco C, Purvis H, Clarke F, Brownlie RJ, Vyse TJ, Zamoyska R, Owen DM, Svensson LM, Cope AP. Superresolution imaging of the cytoplasmic phosphatase PTPN22 links integrin-mediated T cell adhesion with autoimmunity. Sci Signal 2016; 9:ra99. [PMID: 27703032 DOI: 10.1126/scisignal.aaf2195] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Integrins are heterodimeric transmembrane proteins that play a fundamental role in the migration of leukocytes to sites of infection or injury. We found that protein tyrosine phosphatase nonreceptor type 22 (PTPN22) inhibits signaling by the integrin lymphocyte function-associated antigen-1 (LFA-1) in effector T cells. PTPN22 colocalized with its substrates at the leading edge of cells migrating on surfaces coated with the LFA-1 ligand intercellular adhesion molecule-1 (ICAM-1). Knockout or knockdown of PTPN22 or expression of the autoimmune disease-associated PTPN22-R620W variant resulted in the enhanced phosphorylation of signaling molecules downstream of integrins. Superresolution imaging revealed that PTPN22-R620 (wild-type PTPN22) was present as large clusters in unstimulated T cells and that these disaggregated upon stimulation of LFA-1, enabling increased association of PTPN22 with its binding partners at the leading edge. The failure of PTPN22-R620W molecules to be retained at the leading edge led to increased LFA-1 clustering and integrin-mediated cell adhesion. Our data define a previously uncharacterized mechanism for fine-tuning integrin signaling in T cells, as well as a paradigm of autoimmunity in humans in which disease susceptibility is underpinned by inherited phosphatase mutations that perturb integrin function.
Collapse
Affiliation(s)
- Garth L Burn
- Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K
| | - Georgina H Cornish
- Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K
| | | | - Malin Samuelsson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Juliette Griffié
- Department of Physics and Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K
| | - Sophie Minoughan
- Department of Physics and Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K
| | - Mark Yates
- Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K
| | - George Ashdown
- Department of Physics and Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K
| | - Nicolas Pernodet
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Vicky L Morrison
- Institute of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G12 8TA, U.K
| | - Cristina Sanchez-Blanco
- Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K
| | - Harriet Purvis
- Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K
| | - Fiona Clarke
- Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K
| | - Rebecca J Brownlie
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, U.K
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, U.K
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, U.K
| | - Dylan M Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K
| | - Lena M Svensson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden.
| | - Andrew P Cope
- Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, U.K.
| |
Collapse
|
67
|
Stramer B, Mayor R. Mechanisms and in vivo functions of contact inhibition of locomotion. Nat Rev Mol Cell Biol 2016; 18:43-55. [PMID: 27677859 DOI: 10.1038/nrm.2016.118] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Contact inhibition of locomotion (CIL) is a process whereby a cell ceases motility or changes its trajectory upon collision with another cell. CIL was initially characterized more than half a century ago and became a widely studied model system to understand how cells migrate and dynamically interact. Although CIL fell from interest for several decades, the scientific community has recently rediscovered this process. We are now beginning to understand the precise steps of this complex behaviour and to elucidate its regulatory components, including receptors, polarity proteins and cytoskeletal elements. Furthermore, this process is no longer just in vitro phenomenology; we now know from several different in vivo models that CIL is essential for embryogenesis and in governing behaviours such as cell dispersion, boundary formation and collective cell migration. In addition, changes in CIL responses have been associated with other physiological processes, such as cancer cell dissemination during metastasis.
Collapse
Affiliation(s)
- Brian Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London WC1E 6BT, UK
| |
Collapse
|
68
|
Schäfer C, Mohan A, Burford W, Driscoll MK, Ludlow AT, Wright WE, Shay JW, Danuser G. Differential Kras V12 protein levels control a switch regulating lung cancer cell morphology and motility. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2016; 2:035004. [PMID: 29057096 DOI: 10.1088/2057-1739/2/3/035004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Oncogenic Kras mutations are important drivers of lung cancer development and metastasis. They are known to activate numerous cellular signaling pathways implicated in enhanced proliferation, survival, tumorigenicity and motility during malignant progression. OBJECTIVES Most previous studies of Kras in cancer have focused on the comparison of cell states in the absence or presence of oncogenic Kras mutations. Here we show that differential expression of the constitutively active mutation KrasV12 has profound effects on cell morphology and motility that drive metastatic processes. METHODS The study relies on lung cancer cell transformation models, patient-derived lung cancer cell lines, and human lung tumor sections combined with molecular biology techniques, live-cell imaging and staining methods. RESULTS Our analysis shows two cell functional states driven by KrasV12 protein levels: a non-motile state associated with high KrasV12 levels and tumorigenicity, and a motile state associated with low KrasV12 levels and cell dissemination. Conversion between the states is conferred by differential activation of a mechano-sensitive double-negative feedback between KrasV12/ERK/Myosin II and matrix-adhesion signaling. KrasV12 expression levels change upon cues such as hypoxia and integrin-mediated cell-matrix adhesion, rendering KrasV12 levels an integrator of micro-environmental signals that translate into cellular function. By live cell imaging of tumor models we observe shedding of mixed high and low KrasV12 expressers forming multi-functional collectives with potentially optimal metastatic properties composed of a highly mobile and a highly tumorigenic unit. DISCUSSION Together these data highlight previously unappreciated roles for the quantitative effects of expression level variation of oncogenic signaling molecules in conferring fundamental alterations in cell function regulation required for cancer progression.
Collapse
Affiliation(s)
- C Schäfer
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry-Hines Blvd, Dallas, Texas 75390
| | - A Mohan
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry-Hines Blvd, Dallas, Texas 75390
| | - W Burford
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry-Hines Blvd, Dallas, Texas 75390
| | - M K Driscoll
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry-Hines Blvd, Dallas, Texas 75390
| | - A T Ludlow
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry-Hines Blvd, Dallas, Texas 75390
| | - W E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry-Hines Blvd, Dallas, Texas 75390
| | - J W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry-Hines Blvd, Dallas, Texas 75390
| | - G Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry-Hines Blvd, Dallas, Texas 75390
| |
Collapse
|
69
|
Huang J, Wang L, Xiong C, Yuan F. Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment. Biomaterials 2016; 98:103-12. [DOI: 10.1016/j.biomaterials.2016.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
|
70
|
Hetmanski JHR, Zindy E, Schwartz JM, Caswell PT. A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion. PLoS Comput Biol 2016; 12:e1004909. [PMID: 27138333 PMCID: PMC4854413 DOI: 10.1371/journal.pcbi.1004909] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP) dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN) containing extracellular matrix (ECM), by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase signalling to inhibit Rac1 and activate a RhoA-ROCK-Formin homology domain-containing 3 (FHOD3) pathway and generate filopodial actin-spike protrusions which drive invasion. To further understand the signalling network that drives RCP-driven invasive migration, we generated a Boolean logical model based on existing network pathways/models, where each node can be interrogated by computational simulation. The model predicted an unanticipated feedback loop, whereby Raf/MEK/ERK signalling maintains suppression of Rac1 by inhibiting the Rac-activating Sos1-Eps8-Abi1 complex, allowing RhoA activity to predominate in invasive protrusions. MEK inhibition was sufficient to promote lamellipodia formation and oppose filopodial actin-spike formation, and led to activation of Rac and inactivation of RhoA at the leading edge of cells moving in 3D matrix. Furthermore, MEK inhibition abrogated RCP/α5β1/EGFR1-driven invasive migration. However, upon knockdown of Eps8 (to suppress the Sos1-Abi1-Eps8 complex), MEK inhibition had no effect on RhoGTPase activity and did not oppose invasive migration, suggesting that MEK-ERK signalling suppresses the Rac-activating Sos1-Abi1-Eps8 complex to maintain RhoA activity and promote filopodial actin-spike formation and invasive migration. Our study highlights the predictive potential of mathematical modelling approaches, and demonstrates that a simple intervention (MEK-inhibition) could be of therapeutic benefit in preventing invasive migration and metastasis. The majority of cancer-related fatalities are caused by the movement of cancer cells away from the primary site to form metastases, making understanding the signalling mechanisms which underpin cell migration and invasion through their local environment of paramount importance. Much has been discovered about key events leading to invasive cell migration. Here, we have taken this prior knowledge to build a powerful predictive model based on simple ON/OFF relations and logic to determine potential intervention targets to reduce harmful invasive migration. Interrogating our model, we have identified a negative feedback loop important to the signalling that determines invasive migration, the breaking of which reverts cells to a slower, less invasive phenotype. We have supported this feedback loop prediction using an array of in vitro experiments performed in cells within 2-D and physiologically relevant 3-D environments. Our findings demonstrate the predictive power of such modelling techniques, and could form the basis for clinical intervention to prevent metastasis in certain cancers.
Collapse
Affiliation(s)
- Joseph H. R. Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Egor Zindy
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
71
|
Identification and characterization of a unique role for EDB fibronectin in phagocytosis. J Mol Med (Berl) 2015; 94:567-81. [PMID: 26637426 PMCID: PMC4856727 DOI: 10.1007/s00109-015-1373-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 01/21/2023]
Abstract
Abstract Plasma fibronectin is a circulating protein that facilitates phagocytosis by connecting bacteria to immune cells. A fibronectin isoform, which includes a sequence of 90 AA called extra-domain B (EDB), is synthesized de novo at the messenger RNA (mRNA) level in immune cells, but the reason for its expression remains elusive. We detected an 80-fold increase in EDB-containing fibronectin in the cerebrospinal fluid of patients with bacterial meningitis that was most pronounced in staphylococcal infections. A role for this isoform in phagocytosis was further suggested by enhanced EDB fibronectin release after internalization of Staphylococcus aureus in vitro. Using transgenic mouse models, we established that immune cell production of fibronectin contributes to phagocytosis, more so than circulating plasma fibronectin, and that accentuated release of EDB-containing fibronectin by immune cells improved phagocytosis. In line with this, administration of EDB fibronectin enhanced in vitro phagocytosis to a larger extent than plasma fibronectin. This enhancement was mediated by αvβ3 integrin as shown using inhibitors or cells from β3 integrin knockout mice. Thus, we identified both a novel function for EDB fibronectin in augmenting phagocytosis over circulating plasma fibronectin, as well as the mediating receptor. Our data also establish for the first time, a direct role for β3 integrin in bacterial phagocytosis in mammals. Key messages • Fibronectin containing an extra domain called EDB is released in bacterial meningitis. • EDB-containing fibronectin enhances phagocytosis more than plasma fibronectin. • The enhancement is mediated by activation of αvβ3 integrin in the presence of EDB. Electronic supplementary material The online version of this article (doi:10.1007/s00109-015-1373-0) contains supplementary material, which is available to authorized users.
Collapse
|