51
|
Deb BK, Hasan G. SEPT7-mediated regulation of Ca 2+ entry through Orai channels requires other septin subunits. Cytoskeleton (Hoboken) 2018; 76:104-114. [PMID: 30004181 DOI: 10.1002/cm.21476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 11/12/2022]
Abstract
Orai channels are plasma membrane resident Ca2+ channels that allow extracellular Ca2+ uptake after depletion of ER-Ca2+ stores by a process called store-operated Ca2+ entry (SOCE). Septins of the SEPT2 subgroup act as positive regulators of SOCE in human nonexcitable cells. SEPT2 subgroup septins form the central core of hetero-hexameric or hetero-octameric complexes with SEPT6, SEPT7 and SEPT9 subgroup septins. The presence of fewer septin encoding genes coupled with ease of genetic manipulation allows for better understanding of septin subgroup function in Drosophila. Our earlier findings show that although dSEPT7 reduction does not alter Orai-mediated Ca2+ entry during SOCE, it results in constitutive activation of Orai channels in resting neurons. Here, we have investigated the role of other septin subgroup members in regulating Orai channel activation in Drosophila neurons by both cellular and functional assays. We show that dSEPT1, a SEPT2 subgroup septin can exist in a complex with dSEPT2 and dSEPT7 in the central nervous system (CNS) of Drosophila. Our findings suggest that the nature of septin filaments and heteromers obtained after reducing septins of different subgroups alters their ability to regulate Orai channel opening. The molecular mechanisms underlying this complex regulation of Orai function by septins require further cellular investigations.
Collapse
Affiliation(s)
- Bipan K Deb
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Gaiti Hasan
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
52
|
Suzuki R. The Emerging Picture of Mast Cell Activation: The Complex Regulatory Network of High-Affinity Receptor for Immunoglobulin E Signaling. Biol Pharm Bull 2018; 40:1828-1832. [PMID: 29093329 DOI: 10.1248/bpb.b17-00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is now well known that immunoglobulin E (IgE) and mast cells (MCs) are important participants in allergic diseases. MCs contain electron-dense secretory granules which are filled with inflammatory mediators. The interaction of an allergen (antigen) with an antigen-specific IgE-bound high-affinity receptor for IgE (FcεRI) is an essential step in MC activation as well as subsequent downstream signaling events. What we know is that IgE and FcεRI activate a complex regulatory network (i.e., signaling molecules and messengers) that governs both the type of MC activation and the symptoms of allergic disease. This review focuses on recent discoveries that shed new light on FcεRI signaling networks, holding promise for the development of new therapeutic solutions in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
53
|
Fuentes NR, Kim E, Fan YY, Chapkin RS. Omega-3 fatty acids, membrane remodeling and cancer prevention. Mol Aspects Med 2018; 64:79-91. [PMID: 29627343 DOI: 10.1016/j.mam.2018.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Proteins are often credited as the macromolecule responsible for performing critical cellular functions, however lipids have recently garnered more attention as our understanding of their role in cell function and human health becomes more apparent. Although cellular membranes are the lipid environment in which many proteins function, it is now apparent that protein and lipid assemblies can be organized to form distinct micro- or nanodomains that facilitate signaling events. Indeed, it is now appreciated that cellular function is partly regulated by the specific spatiotemporal lipid composition of the membrane, down to the nanosecond and nanometer scale. Furthermore, membrane composition is altered during human disease processes such as cancer and obesity. For example, an increased rate of lipid/cholesterol synthesis in cancerous tissues has long been recognized as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids/cholesterol to cellular function in disease models is not yet fully understood. Furthermore, an important consideration in regard to human health is that diet is a major modulator of cell membrane composition. This can occur directly through incorporation of membrane substrates, such as fatty acids, e.g., n-3 polyunsaturated fatty acids (n-3 PUFA) and cholesterol. In this review, we describe scenarios in which changes in membrane composition impact human health. Particular focus is placed on the importance of intrinsic lipid/cholesterol biosynthesis and metabolism and extrinsic dietary modification in cancer and its effect on plasma membrane properties.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
54
|
Alavizargar A, Berti C, Ejtehadi MR, Furini S. Molecular Dynamics Simulations of Orai Reveal How the Third Transmembrane Segment Contributes to Hydration and Ca 2+ Selectivity in Calcium Release-Activated Calcium Channels. J Phys Chem B 2018; 122:4407-4417. [PMID: 29600712 DOI: 10.1021/acs.jpcb.7b12453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calcium release-activated calcium (CRAC) channels open upon depletion of Ca2+ from the endoplasmic reticulum, and when open, they are permeable to a selective flux of calcium ions. The atomic structure of Orai, the pore domain of CRAC channels, from Drosophila melanogaster has revealed many details about conduction and selectivity in this family of ion channels. However, it is still unclear how residues on the third transmembrane helix can affect the conduction properties of the channel. Here, molecular dynamics and Brownian dynamics simulations were employed to analyze how a conserved glutamate residue on the third transmembrane helix (E262) contributes to selectivity. The comparison between the wild-type and mutated channels revealed a severe impact of the mutation on the hydration pattern of the pore domain and on the dynamics of residues K270, and Brownian dynamics simulations proved that the altered configuration of residues K270 in the mutated channel impairs selectivity to Ca2+ over Na+. The crevices of water molecules, revealed by molecular dynamics simulations, are perfectly located to contribute to the dynamics of the hydrophobic gate and the basic gate, suggesting a possible role in channel opening and in selectivity function.
Collapse
Affiliation(s)
- Azadeh Alavizargar
- School of Nano Science , Institute for Research in Fundamental Sciences (IPM) , Tehran 1958914875 , Iran.,Department of Medical Biotechnologies , University of Siena , Siena 53100 , Italy
| | - Claudio Berti
- Department of Molecular Biophysics and Physiology , Rush University Medical Center , Chicago , Illinois 60612 , United States
| | - Mohammad Reza Ejtehadi
- School of Nano Science , Institute for Research in Fundamental Sciences (IPM) , Tehran 1958914875 , Iran.,Department of Physics , Sharif University of Technology , Tehran 11155-8639 , Iran
| | - Simone Furini
- Department of Medical Biotechnologies , University of Siena , Siena 53100 , Italy
| |
Collapse
|
55
|
Bouron A. Phyto and endocannabinoids exert complex actions on calcium and zinc signaling in mouse cortical neurons. Biochem Pharmacol 2018; 152:244-251. [PMID: 29630867 DOI: 10.1016/j.bcp.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
Live-cell imaging experiments were performed with the fluorescent Ca2+ and Zn2+ probes Fluo-4 and FluoZin-3 on cultured cortical neurons dissociated from embryonic mice to investigate the effects of the cannabinoids anandamide (AEA), cannabidiol (CBD), and N-arachidonoyl glycine (NAGly) on neuronal store-operated Ca2+ entry (SOCE). When tested individually AEA, CBD or NAGly inhibited SOCE. CBD and NAGly also released Ca2+ from the endoplasmic reticulum. Furthermore, NAGly mobilized Zn2+ from a store distinct from the endoplasmic reticulum and mitochondria, and up-regulated the thapsigargin-evoked Ca2+ release. All these effects developed in a cannabinoid receptor CB1/2 independent manner via an intracellular pathway sensitive to the GPR55 antagonist ML193. Evidence is presented that cannabinoids influence Ca2+ and Zn2+ signaling in central nervous system neurons. The lipid sensing receptor GPR55 seems to be a central actor governing these responses. In addition, the alteration of the cytosolic Zn2+ levels produced by NAGly provides support for the existence of a connection between endocannabinoids and Zn2+ signaling in the brain.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000 Grenoble, France.
| |
Collapse
|
56
|
Fahrner M, Pandey SK, Muik M, Traxler L, Butorac C, Stadlbauer M, Zayats V, Krizova A, Plenk P, Frischauf I, Schindl R, Gruber HJ, Hinterdorfer P, Ettrich R, Romanin C, Derler I. Communication between N terminus and loop2 tunes Orai activation. J Biol Chem 2018; 293:1271-1285. [PMID: 29237733 PMCID: PMC5787804 DOI: 10.1074/jbc.m117.812693] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Orai N-terminal region (Orai1 amino acids 73-91; Orai3 amino acids 48-65) is fully conserved in the Orai1 and Orai3 isoforms, Orai3 tolerates larger N-terminal truncations than Orai1 in retaining store-operated activation. In an attempt to uncover the reason for these isoform-specific structural requirements, we analyzed a series of Orai mutants and chimeras. We discovered that it was not the N termini, but the loop2 regions connecting TM2 and TM3 of Orai1 and Orai3 that featured distinct properties, which explained the different, isoform-specific behavior of Orai N-truncation mutants. Atomic force microscopy studies and MD simulations suggested that the remaining N-terminal portion in the non-functional Orai1 N-truncation mutants formed new, inhibitory interactions with the Orai1-loop2 regions, but not with Orai3-loop2. Such a loop2 swap restored activation of the N-truncation Orai1 mutants. To mimic interactions between the N terminus and loop2 in full-length Orai1 channels, we induced close proximity of the N terminus and loop2 via cysteine cross-linking, which actually caused significant inhibition of STIM1-mediated Orai currents. In aggregate, maintenance of Orai activation required not only the conserved N-terminal region but also permissive communication of the Orai N terminus and loop2 in an isoform-specific manner.
Collapse
Affiliation(s)
- Marc Fahrner
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Saurabh K Pandey
- the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic
| | - Martin Muik
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Lukas Traxler
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Carmen Butorac
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Michael Stadlbauer
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Vasilina Zayats
- the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic
| | - Adéla Krizova
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Peter Plenk
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Irene Frischauf
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Rainer Schindl
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Hermann J Gruber
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Peter Hinterdorfer
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Rüdiger Ettrich
- the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic
| | - Christoph Romanin
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| | - Isabella Derler
- From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and
| |
Collapse
|
57
|
Balla T. Ca 2+ and lipid signals hold hands at endoplasmic reticulum-plasma membrane contact sites. J Physiol 2018; 596:2709-2716. [PMID: 29210464 DOI: 10.1113/jp274957] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022] Open
Abstract
Discovery of the STIM1 and Orai proteins as the principal components of store-operated Ca2+ entry has drawn attention to contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM). Such contacts between adjacent membranes of different cellular organelles, primarily between the mitochondria and the ER, had already been known as the sites where Ca2+ released from the ER can be efficiently channelled to the mitochondria and also where phosphatidylserine synthesis and transfer takes place. Recent studies have identified contact sites between virtually every organelle and the ER and the functional importance of these small specialized membrane domains is increasingly recognized. Most recent developments have highlighted the role of phosphatidylinositol 4-phosphate gradients as critical determinants of the non-vesicular transport of various lipids from the ER to other organelles such as the Golgi or PM. As we learn more about membrane contact sites it becomes apparent that Ca2+ is not only transported at these sites but also controls both the dynamics and the lipid transfer efficiency of these processes. Conversely, lipids are critical for regulating the Ca2+ entry process. This review will summarize some of the most exciting recent developments in this rapidly expanding research field.
Collapse
Affiliation(s)
- Tamas Balla
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
58
|
Huetsch JC, Suresh K, Shimoda LA. When higher cholesterol is better: membrane cholesterol loss and endothelial Ca 2+ signaling. Am J Physiol Heart Circ Physiol 2017; 314:H780-H783. [PMID: 29351471 DOI: 10.1152/ajpheart.00655.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
59
|
Bohórquez-Hernández A, Gratton E, Pacheco J, Asanov A, Vaca L. Cholesterol modulates the cellular localization of Orai1 channels and its disposition among membrane domains. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1481-1490. [PMID: 28919480 PMCID: PMC5902182 DOI: 10.1016/j.bbalip.2017.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 02/08/2023]
Abstract
Store Operated Calcium Entry (SOCE) is one of the most important mechanisms for calcium mobilization in to the cell. Two main proteins sustain SOCE: STIM1 that acts as the calcium sensor in the endoplasmic reticulum (ER) and Orai1 responsible for calcium influx upon depletion of ER. There are many studies indicating that SOCE is modulated by the cholesterol content of the plasma membrane (PM). However, a myriad of questions remain unanswered concerning the precise molecular mechanism by which cholesterol modulates SOCE. In the present study we found that reducing PM cholesterol results in the internalization of Orai1 channels, which can be prevented by overexpressing caveolin 1 (Cav1). Furthermore, Cav1 and Orai1 associate upon SOCE activation as revealed by FRET and coimmunoprecipitation assays. The effects of reducing cholesterol were not limited to an increased rate of Orai1 internalization, but also, affects the lateral movement of Orai1, inducing movement in a linear pattern (unobstructed diffusion) opposite to basal cholesterol conditions were most of Orai1 channels moves in a confined space, as assessed by Fluorescence Correlation Spectroscopy, Cav1 overexpression inhibited these alterations maintaining Orai1 into a confined and partially confined movement. These results not only highlight the complex effect of cholesterol regulation on SOCE, but also indicate a direct regulatory effect on Orai1 localization and compartmentalization by this lipid.
Collapse
Affiliation(s)
- A Bohórquez-Hernández
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California, Irvine, 3210 Natural Sciences II, Irvine, CA 92697-2715, USA
| | - Jonathan Pacheco
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | | | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
60
|
Frischauf I, Litviňuková M, Schober R, Zayats V, Svobodová B, Bonhenry D, Lunz V, Cappello S, Tociu L, Reha D, Stallinger A, Hochreiter A, Pammer T, Butorac C, Muik M, Groschner K, Bogeski I, Ettrich RH, Romanin C, Schindl R. Transmembrane helix connectivity in Orai1 controls two gates for calcium-dependent transcription. Sci Signal 2017; 10:eaao0358. [PMID: 29184031 PMCID: PMC6433236 DOI: 10.1126/scisignal.aao0358] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The channel Orai1 requires Ca2+ store depletion in the endoplasmic reticulum and an interaction with the Ca2+ sensor STIM1 to mediate Ca2+ signaling. Alterations in Orai1-mediated Ca2+ influx have been linked to several pathological conditions including immunodeficiency, tubular myopathy, and cancer. We screened large-scale cancer genomics data sets for dysfunctional Orai1 mutants. Five of the identified Orai1 mutations resulted in constitutively active gating and transcriptional activation. Our analysis showed that certain Orai1 mutations were clustered in the transmembrane 2 helix surrounding the pore, which is a trigger site for Orai1 channel gating. Analysis of the constitutively open Orai1 mutant channels revealed two fundamental gates that enabled Ca2+ influx: Arginine side chains were displaced so they no longer blocked the pore, and a chain of water molecules formed in the hydrophobic pore region. Together, these results enabled us to identify a cluster of Orai1 mutations that trigger Ca2+ permeation associated with gene transcription and provide a gating mechanism for Orai1.
Collapse
Affiliation(s)
- Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz A-4020, Austria
| | - Monika Litviňuková
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz A-4020, Austria
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cardiovascular and Metabolic Sciences, Berlin D-13125, Germany
| | - Romana Schober
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz A-4020, Austria
| | - Vasilina Zayats
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady CZ-373 33, Czech Republic
- Center of New Technologies, University of Warsaw, Warsaw 02-097, Poland
| | - Barbora Svobodová
- Institute for Biophysics, Medical University of Graz, Graz A-8010, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady CZ-373 33, Czech Republic
| | - Victoria Lunz
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz A-4020, Austria
| | - Sabrina Cappello
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University Göttingen, Göttingen, Niedersachsen 37073, Germany
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg D-66421, Germany
| | - Laura Tociu
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady CZ-373 33, Czech Republic
- University of Chicago, Chicago, IL 60637, USA
| | - David Reha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady CZ-373 33, Czech Republic
- Faculty of Sciences, University of South Bohemia, Nové Hrady CZ-373 33, Czech Republic
| | - Amrutha Stallinger
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Graz A-8010, Austria
| | - Anna Hochreiter
- Institute for Experimental and Clinical Cell Therapy, Paracelsus Medical University, Salzburg A-5020, Austria
| | - Teresa Pammer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz A-4020, Austria
| | - Carmen Butorac
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz A-4020, Austria
| | - Martin Muik
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz A-4020, Austria
| | - Klaus Groschner
- Institute for Biophysics, Medical University of Graz, Graz A-8010, Austria
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University Göttingen, Göttingen, Niedersachsen 37073, Germany
| | - Rüdiger H Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady CZ-373 33, Czech Republic
- Faculty of Sciences, University of South Bohemia, Nové Hrady CZ-373 33, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz A-4020, Austria
| | - Rainer Schindl
- Institute for Biophysics, Medical University of Graz, Graz A-8010, Austria.
| |
Collapse
|
61
|
Zhang B, Naik JS, Jernigan NL, Walker BR, Resta TC. Reduced membrane cholesterol after chronic hypoxia limits Orai1-mediated pulmonary endothelial Ca 2+ entry. Am J Physiol Heart Circ Physiol 2017; 314:H359-H369. [PMID: 29101179 DOI: 10.1152/ajpheart.00540.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-dependent production of endothelium-derived vasodilators. We recently reported that SOCE in pulmonary arterial endothelial cells (PAECs) is tightly regulated by membrane cholesterol and that decreased membrane cholesterol is responsible for impaired SOCE after CH. However, the ion channels involved in cholesterol-sensitive SOCE are unknown. We hypothesized that cholesterol facilitates SOCE in PAECs through the interaction of Orai1 and stromal interaction molecule 1 (STIM1). The role of cholesterol in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 mmHg) as a physiological stimulus to decrease PAEC cholesterol. The effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control and CH rats after cholesterol supplementation, substitution of endogenous cholesterol with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with Epichol. Using cultured pulmonary endothelial cells to allow better mechanistic analysis of the molecular components of cholesterol-regulated SOCE, we found that Epichol, AnCoA4, and Orai1 siRNA each inhibited SOCE compared with their respective controls. Epichol had no additional effect after knockdown of Orai1. Furthermore, Epichol substitution significantly reduced STIM1-Orai1 interactions as assessed by a proximity ligation assay. We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol after CH limits Orai1-mediated SOCE. NEW & NOTEWORTHY This research demonstrates a novel contribution of cholesterol to regulate the interaction of Orai1 and stromal interaction molecule 1 required for pulmonary endothelial store-operated Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary endothelial Ca2+ influx after chronic hypoxia that may contribute to pulmonary hypertension.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| |
Collapse
|
62
|
Castellano BM, Thelen AM, Moldavski O, Feltes M, van der Welle REN, Mydock-McGrane L, Jiang X, van Eijkeren RJ, Davis OB, Louie SM, Perera RM, Covey DF, Nomura DK, Ory DS, Zoncu R. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science 2017; 355:1306-1311. [PMID: 28336668 DOI: 10.1126/science.aag1417] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that becomes activated at the lysosome in response to nutrient cues. Here, we identify cholesterol, an essential building block for cellular growth, as a nutrient input that drives mTORC1 recruitment and activation at the lysosomal surface. The lysosomal transmembrane protein, SLC38A9, is required for mTORC1 activation by cholesterol through conserved cholesterol-responsive motifs. Moreover, SLC38A9 enables mTORC1 activation by cholesterol independently from its arginine-sensing function. Conversely, the Niemann-Pick C1 (NPC1) protein, which regulates cholesterol export from the lysosome, binds to SLC38A9 and inhibits mTORC1 signaling through its sterol transport function. Thus, lysosomal cholesterol drives mTORC1 activation and growth signaling through the SLC38A9-NPC1 complex.
Collapse
Affiliation(s)
- Brian M Castellano
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ashley M Thelen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ofer Moldavski
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - McKenna Feltes
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reini E N van der Welle
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Laurel Mydock-McGrane
- Department of Developmental Biology and Biochemistry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert J van Eijkeren
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Oliver B Davis
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sharon M Louie
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Rushika M Perera
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Douglas F Covey
- Department of Developmental Biology and Biochemistry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel K Nomura
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA. .,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
63
|
Muallem S, Chung WY, Jha A, Ahuja M. Lipids at membrane contact sites: cell signaling and ion transport. EMBO Rep 2017; 18:1893-1904. [PMID: 29030479 DOI: 10.15252/embr.201744331] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/10/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022] Open
Abstract
Communication between organelles is essential to coordinate cellular functions and the cell's response to physiological and pathological stimuli. Organellar communication occurs at membrane contact sites (MCSs), where the endoplasmic reticulum (ER) membrane is tethered to cellular organelle membranes by specific tether proteins and where lipid transfer proteins and cell signaling proteins are located. MCSs have many cellular functions and are the sites of lipid and ion transfer between organelles and generation of second messengers. This review discusses several aspects of MCSs in the context of lipid transfer, formation of lipid domains, generation of Ca2+ and cAMP second messengers, and regulation of ion transporters by lipids.
Collapse
Affiliation(s)
- Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| |
Collapse
|
64
|
Thelen AM, Zoncu R. Emerging Roles for the Lysosome in Lipid Metabolism. Trends Cell Biol 2017; 27:833-850. [PMID: 28838620 DOI: 10.1016/j.tcb.2017.07.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Precise regulation of lipid biosynthesis, transport, and storage is key to the homeostasis of cells and organisms. Cells rely on a sophisticated but poorly understood network of vesicular and nonvesicular transport mechanisms to ensure efficient delivery of lipids to target organelles. The lysosome stands at the crossroads of this network due to its ability to process and sort exogenous and endogenous lipids. The lipid-sorting function of the lysosome is intimately connected to its recently discovered role as a metabolic command-and-control center, which relays multiple nutrient cues to the master growth regulator, mechanistic target of rapamycin complex (mTORC)1 kinase. In turn, mTORC1 potently drives anabolic processes, including de novo lipid synthesis, while inhibiting lipid catabolism. Here, we describe the dual role of the lysosome in lipid transport and biogenesis, and we discuss how integration of these two processes may play important roles both in normal physiology and in disease.
Collapse
Affiliation(s)
- Ashley M Thelen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
65
|
Fahrner M, Schindl R, Muik M, Derler I, Romanin C. The STIM-Orai Pathway: The Interactions Between STIM and Orai. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:59-81. [PMID: 28900909 DOI: 10.1007/978-3-319-57732-6_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A primary Ca2+ entry pathway in non-excitable cells is established by the Ca2+ release-activated Ca2+ channels. Their two limiting molecular components include the Ca2+-sensor protein STIM1 located in the endoplasmic reticulum and the Orai channel in the plasma membrane. STIM1 senses the luminal Ca2+ content, and store depletion induces its oligomerization into puncta-like structures, thereby triggering coupling to as well as activation of Orai channels. A C-terminal STIM1 domain is assumed to couple to both C- and N-terminal, cytosolic strands of Orai, accomplishing gating of the channel. Here we highlight the inter- and intramolecular steps of the STIM1-Orai signaling cascade together with critical sites of the pore structure that accomplishes Ca2+ permeation.
Collapse
Affiliation(s)
- Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria.
| | - Rainer Schindl
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria
| | - Martin Muik
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria.
| |
Collapse
|
66
|
The STIM-Orai Pathway: Light-Operated Ca 2+ Entry Through Engineered CRAC Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:117-138. [PMID: 28900912 DOI: 10.1007/978-3-319-57732-6_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ca2+ signals regulate a plethora of cellular functions that include muscle contraction, heart beating, hormone secretion, lymphocyte activation, gene expression, and metabolism. To study the impact of Ca2+ signals on biological processes, pharmacological tools and caged compounds have been commonly applied to induce fluctuations of intracellular Ca2+ concentrations. These conventional approaches, nonetheless, lack rapid reversibility and high spatiotemporal resolution. To overcome these disadvantages, we and others have devised a series of photoactivatable genetically encoded Ca2+ actuators (GECAs) by installing light sensitivities into a bona fide highly selective Ca2+ channel, the Ca2+ release-activated Ca2+ (CRAC) channel. Store-operated CRAC channel serves as a major route for Ca2+ entry in many cell types. These GECAs enable remote and precise manipulation of Ca2+ signaling in both excitable and non-excitable cells. When combined with nanotechnology, it becomes feasible to wirelessly photo-modulate Ca2+-dependent activities in vivo. In this chapter, we briefly review most recent advances in engineering CRAC channels to achieve optical control over Ca2+ signaling, outline their design principles and kinetic features, and present exemplary applications of GECAs engineered from CRAC channels.
Collapse
|
67
|
Groschner K, Shrestha N, Fameli N. Cardiovascular and Hemostatic Disorders: SOCE in Cardiovascular Cells: Emerging Targets for Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:473-503. [PMID: 28900929 DOI: 10.1007/978-3-319-57732-6_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of the store-operated Ca2+ entry (SOCE) phenomenon is tightly associated with its recognition as a pathway of high (patho)physiological significance in the cardiovascular system. Early on, SOCE has been investigated primarily in non-excitable cell types, and the vascular endothelium received particular attention, while a role of SOCE in excitable cells, specifically cardiac myocytes and pacemakers, was initially ignored and remains largely enigmatic even to date. With the recent gain in knowledge on the molecular components of SOCE as well as their cellular organization within nanodomains, potential tissue/cell type-dependent heterogeneity of the SOCE machinery along with high specificity of linkage to downstream signaling pathways emerged for cardiovascular cells. The basis of precise decoding of cellular Ca2+ signals was recently uncovered to involve correct spatiotemporal organization of signaling components, and even minor disturbances in these assemblies trigger cardiovascular pathologies. With this chapter, we wish to provide an overview on current concepts of cellular organization of SOCE signaling complexes in cardiovascular cells with particular focus on the spatiotemporal aspects of coupling to downstream signaling and the potential disturbance of these mechanisms by pathogenic factors. The significance of these mechanistic concepts for the development of novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria.
| | - Niroj Shrestha
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
| | - Nicola Fameli
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
68
|
LIU RENYI, FAN WEI, KRÜGER KARSTEN, XIAO YU, PILAT CHRISTIAN, SEIMETZ MICHAEL, RINGSEIS ROBERT, BAUMGART-VOGT EVELINE, EDER KLAUS, WEISSMANN NORBERT, MOOREN FRANKCHRISTOPH. Exercise Affects T-Cell Function by Modifying Intracellular Calcium Homeostasis. Med Sci Sports Exerc 2017; 49:29-39. [DOI: 10.1249/mss.0000000000001080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
69
|
Metabolic Disorders and Cancer: Hepatocyte Store-Operated Ca2+ Channels in Nonalcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:595-621. [DOI: 10.1007/978-3-319-57732-6_30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
70
|
STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca 2+ Entry: Impact on Ca 2+ Signaling and Cell Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:159-188. [PMID: 28900914 DOI: 10.1007/978-3-319-57732-6_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Store-operated calcium entry (SOCE) is a ubiquitous Ca2+ entry pathway that is activated in response to depletion of ER-Ca2+ stores and critically controls the regulation of physiological functions in a wide variety of cell types. The transient receptor potential canonical (TRPC) channels (TRPCs 1-7), which are activated by stimuli leading to PIP2 hydrolysis, were first identified as molecular components of SOCE channels. While TRPC1 was associated with SOCE and regulation of function in several cell types, none of the TRPC members displayed I CRAC, the store-operated current identified in lymphocytes and mast cells. Intensive search finally led to the identification of Orai1 and STIM1 as the primary components of the CRAC channel. Orai1 was established as the pore-forming channel protein and STIM1 as the ER-Ca2+ sensor protein involved in activation of Orai1. STIM1 also activates TRPC1 via a distinct domain in its C-terminus. However, TRPC1 function depends on Orai1-mediated Ca2+ entry, which triggers recruitment of TRPC1 into the plasma membrane where it is activated by STIM1. TRPC1 and Orai1 form distinct store-operated Ca2+ channels that regulate specific cellular functions. It is now clearly established that regulation of TRPC1 trafficking can change plasma membrane levels of the channel, the phenotype of the store-operated Ca2+ current, as well as pattern of SOCE-mediated [Ca2+]i signals. Thus, TRPC1 is activated downstream of Orai1 and modifies the initial [Ca2+]i signal generated by Orai1. This review will highlight current concepts of the activation and regulation of TRPC1 channels and its impact on cell function.
Collapse
|
71
|
Peters M, Katz B, Lev S, Zaguri R, Gutorov R, Minke B. Depletion of Membrane Cholesterol Suppresses Drosophila Transient Receptor Potential-Like (TRPL) Channel Activity. CURRENT TOPICS IN MEMBRANES 2017; 80:233-254. [DOI: 10.1016/bs.ctm.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
72
|
Gudlur A, Hogan PG. The STIM-Orai Pathway: Orai, the Pore-Forming Subunit of the CRAC Channel. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:39-57. [PMID: 28900908 DOI: 10.1007/978-3-319-57732-6_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter focuses on the Orai proteins, Orai1-Orai3, with special emphasis on Orai1, in humans and other mammals, and on the definitive evidence that Orai is the pore subunit of the CRAC channel. It begins by reviewing briefly the defining characteristics of the CRAC channel, then discusses the studies that implicated Orai as part of the store-operated Ca2+ entry pathway and as the CRAC channel pore subunit, and finally examines ongoing work that is providing insights into CRAC channel structure and gating.
Collapse
Affiliation(s)
- Aparna Gudlur
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, USA.
| | - Patrick G Hogan
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, USA.
| |
Collapse
|
73
|
The STIM1-binding site nexus remotely controls Orai1 channel gating. Nat Commun 2016; 7:13725. [PMID: 27929067 PMCID: PMC5155162 DOI: 10.1038/ncomms13725] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/26/2016] [Indexed: 01/17/2023] Open
Abstract
The ubiquitously expressed Orai Ca2+ channels are gated through a unique process of intermembrane coupling with the Ca2+-sensing STIM proteins. Despite the significance of Orai1-mediated Ca2+ signals, how gating of Orai1 is triggered by STIM1 remains unknown. A widely held gating model invokes STIM1 binding directly to Orai1 pore-forming helix. Here we report that an Orai1 C-terminal STIM1-binding site, situated far from the N-terminal pore helix, alone provides the trigger that is necessary and sufficient for channel gating. We identify a critical ‘nexus' within Orai1 connecting the peripheral C-terminal STIM1-binding site to the Orai1 core helices. Mutation of the nexus transforms Orai1 into a persistently open state exactly mimicking the action of STIM1. We suggest that the Orai1 nexus transduces the STIM1-binding signal through a conformational change in the inner core helices, and that STIM1 remotely gates the Orai1 channel without the necessity for direct STIM1 contact with the pore-forming helix.
How plasma membrane Orai Ca2+ channels are activated by STIM proteins to activate Ca2+ signals is still not fully known. Here the authors show that a nexus region located at the Orai1 C-terminus allows channel gating without a direct interaction of STIM1 with the channel pore.
Collapse
|
74
|
Pacheco J, Dominguez L, Bohórquez-Hernández A, Asanov A, Vaca L. A cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions. Sci Rep 2016; 6:29634. [PMID: 27459950 PMCID: PMC4962086 DOI: 10.1038/srep29634] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/20/2016] [Indexed: 11/09/2022] Open
Abstract
STIM1 and Orai1 are the main components of a widely conserved Calcium influx pathway known as store-operated calcium entry (SOCE). STIM1 is a calcium sensor, which oligomerizes and activates Orai channels when calcium levels drop inside the endoplasmic reticulum (ER). The series of molecular rearrangements that STIM1 undergoes until final activation of Orai1 require the direct exposure of the STIM1 domain known as SOAR (Stim Orai Activating Region). In addition to these complex molecular rearrangements, other constituents like lipids at the plasma membrane, play critical roles orchestrating SOCE. PI(4,5)P2 and enriched cholesterol microdomains have been shown as important signaling platforms that recruit the SOCE machinery in steps previous to Orai1 activation. However, little is known about the molecular role of cholesterol once SOCE is activated. In this study we provide clear evidence that STIM1 has a cholesterol-binding domain located inside the SOAR region and modulates Orai1 channels. We demonstrate a functional association of STIM1 and SOAR to cholesterol, indicating a close proximity of SOAR to the inner layer of the plasma membrane. In contrast, the depletion of cholesterol induces the SOAR detachment from the plasma membrane and enhances its association to Orai1. These results are recapitulated with full length STIM1.
Collapse
Affiliation(s)
- Jonathan Pacheco
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF 04510, México
| | - A Bohórquez-Hernández
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| | | | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| |
Collapse
|
75
|
Svobodova B, Groschner K. Reprint of "Mechanisms of lipid regulation and lipid gating in TRPC channels". Cell Calcium 2016; 60:133-41. [PMID: 27431463 DOI: 10.1016/j.ceca.2016.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/04/2023]
Abstract
TRPC proteins form cation channels that integrate and relay cellular signals by mechanisms involving lipid recognition and lipid-dependent gating. The lipohilic/amphiphilic molecules that function as cellular activators or modulators of TRPC proteins span a wide range of chemical structures. In this context, cellular redox balance is likely linked to the lipid recognition/gating features of TRPC channels. Both classical ligand-protein interactions as well as indirect and promiscuous sensory mechanisms have been proposed. Some of the recognition processes are suggested to involve ancillary lipid-binding scaffolds or regulators as well as dynamic protein-protein interactions determined by bilayer architecture. A complex interplay of protein-protein and protein-lipid interactions is likely to govern the gating and/or plasma membrane recruitment of TRPC channels, thereby providing a distinguished platform for signal integration and coincident signal detection. Both the primary molecular event(s) of lipid recognition by TRPC channels as well as the transformation of these events into distinct gating movements is poorly understood at the molecular level, and it remains elusive whether lipid sensing in TRPCs is conferred to a distinct sensor domain. Recent structural information on the molecular action of lipophilic activators in distantly related members of the TRP superfamily encourages speculations on TRPC gating mechanisms involved in lipid recognition/gating. This review aims to provide an update on the current understanding of the lipid-dependent control of TRPC channels with focus on the TRPC lipid sensing, signal-integration hub and a short discussion of potential links to redox signaling.
Collapse
Affiliation(s)
- Barbora Svobodova
- Institute of Biophysics, Medical University of Graz, A-8010 Graz, Austria
| | - Klaus Groschner
- Institute of Biophysics, Medical University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
76
|
Mechanisms of lipid regulation and lipid gating in TRPC channels. Cell Calcium 2016; 59:271-9. [PMID: 27125985 DOI: 10.1016/j.ceca.2016.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022]
Abstract
TRPC proteins form cation channels that integrate and relay cellular signals by mechanisms involving lipid recognition and lipid-dependent gating. The lipohilic/amphiphilic molecules that function as cellular activators or modulators of TRPC proteins span a wide range of chemical structures. In this context, cellular redox balance is likely linked to the lipid recognition/gating features of TRPC channels. Both classical ligand-protein interactions as well as indirect and promiscuous sensory mechanisms have been proposed. Some of the recognition processes are suggested to involve ancillary lipid-binding scaffolds or regulators as well as dynamic protein-protein interactions determined by bilayer architecture. A complex interplay of protein-protein and protein-lipid interactions is likely to govern the gating and/or plasma membrane recruitment of TRPC channels, thereby providing a distinguished platform for signal integration and coincident signal detection. Both the primary molecular event(s) of lipid recognition by TRPC channels as well as the transformation of these events into distinct gating movements is poorly understood at the molecular level, and it remains elusive whether lipid sensing in TRPCs is conferred to a distinct sensor domain. Recent structural information on the molecular action of lipophilic activators in distantly related members of the TRP superfamily encourages speculations on TRPC gating mechanisms involved in lipid recognition/gating. This review aims to provide an update on the current understanding of the lipid-dependent control of TRPC channels with focus on the TRPC lipid sensing, signal-integration hub and a short discussion of potential links to redox signaling.
Collapse
|
77
|
Galandrin S, Onfroy L, Poirot MC, Sénard JM, Galés C. Delineating biased ligand efficacy at 7TM receptors from an experimental perspective. Int J Biochem Cell Biol 2016; 77:251-63. [PMID: 27107932 DOI: 10.1016/j.biocel.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
Abstract
During the last 10 years, the concept of "biased agonism" also called "functional selectivity" swamped the pharmacology of 7 transmembrane receptors and paved the way for developing signaling pathway-selective drugs with increased efficacy and less adverse effects. Initially thought to select the activation of only a subset of the signaling pathways by the reference agonist, bias ligands revealed higher complexity as they have been shown to stabilize variable receptor conformations that associate with distinct signaling events from the reference. Today, one major challenge relies on the in vitro determination of the bias and classification of these ligands, as a prerequisite for future in vivo and clinical translation. In this review, current experimental considerations for the bias evaluation related to choice of the cellular model, of the signaling pathway as well as of the assays are presented and discussed.
Collapse
Affiliation(s)
- Ségolène Galandrin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Lauriane Onfroy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Mathias Charles Poirot
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France; Service de Pharmacologie Clinique, Faculté de médecine, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, F-31000 Toulouse, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France.
| |
Collapse
|
78
|
Albarran L, Lopez JJ, Amor NB, Martin-Cano FE, Berna-Erro A, Smani T, Salido GM, Rosado JA. Dynamic interaction of SARAF with STIM1 and Orai1 to modulate store-operated calcium entry. Sci Rep 2016; 6:24452. [PMID: 27068144 PMCID: PMC4828706 DOI: 10.1038/srep24452] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/30/2016] [Indexed: 12/16/2022] Open
Abstract
Ca(2+) influx by store-operated Ca(2+) channels is a major mechanism for intracellular Ca(2+) homeostasis and cellular function. Here we present evidence for the dynamic interaction between the SOCE-associated regulatory factor (SARAF), STIM1 and Orai1. SARAF overexpression attenuated SOCE and the STIM1-Orai1 interaction in cells endogenously expressing STIM1 and Orai1 while RNAi-mediated SARAF silencing induced opposite effects. SARAF impaired the association between Orai1 and the Orai1-activating small fragment of STIM1 co-expressed in the STIM1-deficient NG115-401L cells. Cell treatment with thapsigargin or physiological agonists results in direct association of SARAF with Orai1. STIM1-independent interaction of SARAF with Orai1 leads to activation of this channel. In cells endogenously expressing STIM1 and Orai1, Ca(2+) store depletion leads to dissociation of SARAF with STIM1 approximately 30s after treatment with thapsigargin, which paralleled the increase in SARAF-Orai1 interaction, followed by reinteraction with STIM1 and dissociation from Orai1. Co-expression of SARAF and either Orai1 or various N-terminal deletion Orai1 mutants did not alter SARAF-Orai1 interaction; however, expression of C-terminal deletion Orai1 mutants or blockade of the C-terminus of Orai1 impair the interaction with SARAF. These observations suggest that SARAF exerts an initial positive role in the activation of SOCE followed by the facilitation of SCDI of Orai1.
Collapse
Affiliation(s)
- Letizia Albarran
- Department of Physiology (Cellular Physiology and Muscle Physiology Research Groups), University of Extremadura, 10003 Cáceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cellular Physiology and Muscle Physiology Research Groups), University of Extremadura, 10003 Cáceres, Spain
| | - Nidhal Ben Amor
- Department of Physiology (Cellular Physiology and Muscle Physiology Research Groups), University of Extremadura, 10003 Cáceres, Spain
| | - Francisco E Martin-Cano
- Department of Physiology (Cellular Physiology and Muscle Physiology Research Groups), University of Extremadura, 10003 Cáceres, Spain
| | - Alejandro Berna-Erro
- Department of Physiology (Cellular Physiology and Muscle Physiology Research Groups), University of Extremadura, 10003 Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Sevilla, Sevilla, Spain
| | - Gines M Salido
- Department of Physiology (Cellular Physiology and Muscle Physiology Research Groups), University of Extremadura, 10003 Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology and Muscle Physiology Research Groups), University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
79
|
Abstract
Orai channels at the plasma membrane mediate store-operated Ca(2+) entry in response to Ca(2+) depletion of the endoplasmic reticulum. Orai channels are gated by stromal-interacting molecule proteins, which act as Ca(2+) sensors, and the association of these proteins is enhanced in cholesterol-rich lipid rafts. In research published in Science Signaling, Derler et al. report that cholesterol inhibits Orai function through direct association with the channel amino terminus.
Collapse
Affiliation(s)
- Robert Hooper
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA. Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|