51
|
Rinschen MM. Single glomerular proteomics: A novel tool for translational glomerular cell biology. Methods Cell Biol 2019; 154:1-14. [DOI: 10.1016/bs.mcb.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
52
|
Späth MR, Bartram MP, Palacio-Escat N, Hoyer KJR, Debes C, Demir F, Schroeter CB, Mandel AM, Grundmann F, Ciarimboli G, Beyer A, Kizhakkedathu JN, Brodesser S, Göbel H, Becker JU, Benzing T, Schermer B, Höhne M, Burst V, Saez-Rodriguez J, Huesgen PF, Müller RU, Rinschen MM. The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury. Kidney Int 2018; 95:333-349. [PMID: 30522767 DOI: 10.1016/j.kint.2018.08.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 01/18/2023]
Abstract
Acute kidney injury (AKI) leads to significant morbidity and mortality; unfortunately, strategies to prevent or treat AKI are lacking. In recent years, several preconditioning protocols have been shown to be effective in inducing organ protection in rodent models. Here, we characterized two of these interventions-caloric restriction and hypoxic preconditioning-in a mouse model of cisplatin-induced AKI and investigated the underlying mechanisms by acquisition of multi-layered omic data (transcriptome, proteome, N-degradome) and functional parameters in the same animals. Both preconditioning protocols markedly ameliorated cisplatin-induced loss of kidney function, and caloric restriction also induced lipid synthesis. Bioinformatic analysis revealed mRNA-independent proteome alterations affecting the extracellular space, mitochondria, and transporters. Interestingly, our analyses revealed a strong dissociation of protein and RNA expression after cisplatin treatment that showed a strong correlation with the degree of damage. N-degradomic analysis revealed that most posttranscriptional changes were determined by arginine-specific proteolytic processing. This included a characteristic cisplatin-activated complement signature that was prevented by preconditioning. Amyloid and acute-phase proteins within the cortical parenchyma showed a similar response. Extensive analysis of disease-associated molecular patterns suggested that transcription-independent deposition of amyloid P-component serum protein may be a key component in the microenvironmental contribution to kidney damage. This proof-of-principle study provides new insights into the pathogenesis of cisplatin-induced AKI and the molecular mechanisms underlying organ protection by correlating phenotypic and multi-layered omics data.
Collapse
Affiliation(s)
- Martin R Späth
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Malte P Bartram
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nicolàs Palacio-Escat
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen, Germany
| | - K Johanna R Hoyer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Cedric Debes
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Christina B Schroeter
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Amrei M Mandel
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Giuliano Ciarimboli
- Department of Experimental Nephrology, University Hospital of Münster, Münster, Germany
| | - Andreas Beyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Jayachandran N Kizhakkedathu
- Department of Pathology, Centre for Blood Research, The University of British Columbia, British Columbia, Vancouver, Canada; Laboratory Medicine, Department of Chemistry, The University of British Columbia, British Columbia, Vancouver, Canada
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Julio Saez-Rodriguez
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen, Germany; Faculty of Medicine Bioquant, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| | - Markus M Rinschen
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| |
Collapse
|
53
|
YAP/TAZ Signaling as a Molecular Link between Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19113674. [PMID: 30463366 PMCID: PMC6274979 DOI: 10.3390/ijms19113674] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Tissue fibrosis is a pathological condition that is associated with impaired epithelial repair and excessive deposition of extracellular matrix (ECM). Fibrotic lesions increase the risk of cancer in various tissues, but the mechanism linking fibrosis and cancer is unclear. Yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are core components of the Hippo pathway, which have multiple biological functions in the development, homeostasis, and regeneration of tissues and organs. YAP/TAZ act as sensors of the structural and mechanical features of the cell microenvironment. Recent studies have shown aberrant YAP/TAZ activation in both fibrosis and cancer in animal models and human tissues. In fibroblasts, ECM stiffness mechanoactivates YAP/TAZ, which promote the production of profibrotic mediators and ECM proteins. This results in tissue stiffness, thus establishing a feed-forward loop of fibroblast activation and tissue fibrosis. In contrast, in epithelial cells, YAP/TAZ are activated by the disruption of cell polarity and increased ECM stiffness in fibrotic tissues, which promotes the proliferation and survival of epithelial cells. YAP/TAZ are also involved in the epithelial–mesenchymal transition (EMT), which contributes to tumor progression and cancer stemness. Importantly, the crosstalk with transforming growth factor (TGF)-β signaling and Wnt signaling is essential for the profibrotic and tumorigenic roles of YAP/TAZ. In this article, we review the latest advances in the pathobiological roles of YAP/TAZ signaling and their function as a molecular link between fibrosis and cancer.
Collapse
|
54
|
Bonse J, Wennmann DO, Kremerskothen J, Weide T, Michgehl U, Pavenstädt H, Vollenbröker B. Nuclear YAP localization as a key regulator of podocyte function. Cell Death Dis 2018; 9:850. [PMID: 30154411 PMCID: PMC6113334 DOI: 10.1038/s41419-018-0878-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/19/2023]
Abstract
Podocytes are crucial for the establishment of the blood-urine filtration barrier in the glomeruli of the kidney. These cells are mainly affected during glomerulopathies causing proteinuria and kidney function impairment. Ongoing podocyte injury leads to podocyte loss, finally followed by end-stage kidney disease. Podocytes display a predominant nuclear localization of YAP (Yes-associated protein), one effector protein of the Hippo pathway, which regulates the balance between proliferation, differentiation, and apoptosis in cells. Nuclear active YAP seems to be critical for podocyte survival in vivo and in vitro. We can show here that different treatments leading to sequestration of YAP into the cytoplasm in podocytes, like decreased rigidity of the substrate, incubation with dasatinib, or overexpression of Hippo pathway members result in the induction of apoptosis. A RNA sequencing analysis of large tumor suppressor kinase 2 (LATS2) overexpressing podocytes confirmed a significant upregulation of apoptotic genes. The downregulation of Hippo pathway components suggests a feedback mechanism in podocytes. Noteworthy was the regulation of genes involved in cell–cell junction, the composition of the extracellular space, and cell migration. This suggests an influence of Hippo pathway activity on podocyte integrity. As focal segmental glomerulopathy (FSGS) goes along with an activation of the Hippo pathway in podocytes, a comparison of our data with two independent studies of transcriptional regulation in human FSGS glomeruli obtained from the Nephroseq database was performed. This comparison affirmed a multitude of consistent transcriptional changes concerning the regulation of genes influencing apoptosis and the Hippo signaling pathway as well as cell junction formation and cell migration. The link between Hippo pathway activation in podocytes and the regulation of junction and migration processes in vivo might be a fundamental mechanism of glomerular sclerosis and loss of renal function.
Collapse
Affiliation(s)
- Jakob Bonse
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Dirk Oliver Wennmann
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Joachim Kremerskothen
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Thomas Weide
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Ulf Michgehl
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Hermann Pavenstädt
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Beate Vollenbröker
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
55
|
Hagmann H, Brinkkoetter PT. Experimental Models to Study Podocyte Biology: Stock-Taking the Toolbox of Glomerular Research. Front Pediatr 2018; 6:193. [PMID: 30057894 PMCID: PMC6053518 DOI: 10.3389/fped.2018.00193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 01/17/2023] Open
Abstract
Diseases affecting the glomeruli of the kidney, the renal filtration units, are a leading cause of chronic kidney disease and end-stage renal failure. Despite recent advances in the understanding of glomerular biology, treatment of these disorders has remained extraordinarily challenging in many cases. The use of experimental models has proven invaluable to study renal, and in particular, glomerular biology and disease. Over the past 15 years, studies identified different and very distinct pathogenic mechanisms that result in damage, loss of glomerular visceral epithelial cells (podocytes) and progressive renal disease. However, animal studies and, in particular, mouse studies are often protracted and cumbersome due to the long reproductive cycle and high keeping costs. Transgenic and heterologous expression models have been speeded-up by novel gene editing techniques, yet they still take months. In addition, given the complex cellular biology of the filtration barrier, certain questions may not be directly addressed using mouse models due to the limited accessibility of podocytes for analysis and imaging. In this review, we will describe alternative models to study podocyte biology experimentally. We specifically discuss current podocyte cell culture models, their role in experimental strategies to analyze pathophysiologic mechanisms as well as limitations with regard to transferability of results. We introduce current models in Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio that allow for analysis of protein interactions, and principle signaling pathways in functional biological structures, and enable high-throughput transgenic expression or compound screens in multicellular organisms.
Collapse
Affiliation(s)
| | - Paul T. Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
56
|
Zhou JX, Liu YJ, Chen X, Zhang X, Xu J, Yang K, Wang D, Lin S, Ye J. Low-Intensity Pulsed Ultrasound Protects Retinal Ganglion Cell From Optic Nerve Injury Induced Apoptosis via Yes Associated Protein. Front Cell Neurosci 2018; 12:160. [PMID: 29950973 PMCID: PMC6008403 DOI: 10.3389/fncel.2018.00160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/25/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Low-intensity pulsed ultrasound (LIPUS) has been used in clinical studies. But little is known about its effects on the central nervous system (CNS), or its mechanism of action. Retinal ganglion cells (RGCs) are CNS neuronal cells that can be utilized as a classic model system to evaluate outcomes of LIPUS protection from external trauma-induced retinal injury. In this study, we aim to: (1) determine the pulse energy and the capability of LIPUS in RGC viability, (2) ascertain the protective role of LIPUS in optic nerve (ON) crush-induced retinal injury, and 3) explore the cellular mechanisms of RGC apoptosis prevention by LIPUS. Methods: An ON crush model was set up to induce RGC death. LIPUS was used to treat mice eyes daily, and the retina samples were dissected for immunostaining and Western blot. The expression of yes-associated protein (YAP) and apoptosis-related proteins was detected by immunostaining and Western blot in vitro and in vivo. Apoptosis of RGCs was evaluated by TUNEL staining, the survival of RGCs and retained axons were labeled by Fluoro-gold and Tuj1 antibody, respectively. Rotenone was used to set up an in vitro cellular degenerative model and siYAP was used to interfering the expression of YAP to detect the LIPUS protective function. Results: LIPUS protected RGC from loss and apoptosis in vivo and in vitro. The ratio of cleaved/pro-caspase3 also decreased significantly under LIPUS treatment. As a cellular mechanical sensor, YAP expression increased and YAP translocated to nucleus in LIPUS stimulation group, however, phospho-YAP was found to be decreased. When YAP was inhibited, the LIPUS could not protect RGC from caspase3-dependent apoptosis. Conclusion: LIPUS prevented RGCs from apoptosis in an ON crush model and in vitro cellular degenerative model, which indicates a potential treatment for further traumatic ON injury. The mechanism of protection is dependent on YAP activation and correlated with caspase-3 signaling.
Collapse
Affiliation(s)
- Jia-Xing Zhou
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yun-Jia Liu
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xi Zhang
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Xu
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ke Yang
- Chongqing Engineering Technical Center Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
57
|
Höhne M, Frese CK, Grahammer F, Dafinger C, Ciarimboli G, Butt L, Binz J, Hackl MJ, Rahmatollahi M, Kann M, Schneider S, Altintas MM, Schermer B, Reinheckel T, Göbel H, Reiser J, Huber TB, Kramann R, Seeger-Nukpezah T, Liebau MC, Beck BB, Benzing T, Beyer A, Rinschen MM. Single-nephron proteomes connect morphology and function in proteinuric kidney disease. Kidney Int 2018; 93:1308-1319. [PMID: 29530281 DOI: 10.1016/j.kint.2017.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022]
Abstract
In diseases of many parenchymatous organs, heterogeneous deterioration of individual functional units determines the clinical prognosis. However, the molecular characterization at the level of such individual subunits remains a technological challenge that needs to be addressed in order to better understand pathological mechanisms. Proteinuric glomerular kidney diseases are frequent and assorted diseases affecting a fraction of glomeruli and their draining tubules to variable extents, and for which no specific treatment exists. Here, we developed and applied a mass spectrometry-based methodology to investigate heterogeneity of proteomes from individually isolated nephron segments from mice with proteinuric kidney disease. In single glomeruli from two different mouse models of sclerotic glomerular disease, we identified a coherent protein expression module consisting of extracellular matrix protein deposition (reflecting glomerular sclerosis), glomerular albumin (reflecting proteinuria) and LAMP1, a lysosomal protein. This module was associated with a loss of podocyte marker proteins while genetic ablation of LAMP1-correlated lysosomal proteases could ameliorate glomerular damage in vivo. Furthermore, proteomic analyses of individual glomeruli from patients with genetic sclerotic and non-sclerotic proteinuric diseases revealed increased abundance of lysosomal proteins, in combination with a decreased abundance of mutated gene products. Thus, altered protein homeostasis (proteostasis) is a conserved key mechanism in proteinuric kidney diseases. Moreover, our technology can capture intra-individual variability in diseases of the kidney and other tissues at a sub-biopsy scale.
Collapse
Affiliation(s)
- Martin Höhne
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Christian K Frese
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Dafinger
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Pediatrics, Division of Pediatric Nephrology, University Hospital of Cologne, Cologne, Germany
| | | | - Linus Butt
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Julia Binz
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mahdieh Rahmatollahi
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Schneider
- Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Thomas Reinheckel
- Institut of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - Heike Göbel
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Jochen Reiser
- Rush University Medical Center, Chicago, Illinois, USA
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | | | - Max C Liebau
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany; Department of Pediatrics, Division of Pediatric Nephrology, University Hospital of Cologne, Cologne, Germany
| | - Bodo B Beck
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Andreas Beyer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| |
Collapse
|
58
|
Schroeter CB, Koehler S, Kann M, Schermer B, Benzing T, Brinkkoetter PT, Rinschen MM. Protein half-life determines expression of proteostatic networks in podocyte differentiation. FASEB J 2018; 32:4696-4713. [PMID: 29694247 DOI: 10.1096/fj.201701307r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Podocytes are highly specialized, epithelial, postmitotic cells, which maintain the renal filtration barrier. When adapting to considerable metabolic and mechanical stress, podocytes need to accurately maintain their proteome. Immortalized podocyte cell lines are a widely used model for studying podocyte biology in health and disease in vitro. In this study, we performed a comprehensive proteomic analysis of the cultured human podocyte proteome in both proliferative and differentiated conditions at a depth of >7000 proteins. Similar to mouse podocytes, human podocyte differentiation involved a shift in proteostasis: undifferentiated podocytes have high expression of proteasomal proteins, whereas differentiated podocytes have high expression of lysosomal proteins. Additional analyses with pulsed stable-isotope labeling by amino acids in cell culture and protein degradation assays determined protein dynamics and half-lives. These studies unraveled a globally increased stability of proteins in differentiated podocytes. Mitochondrial, cytoskeletal, and membrane proteins were stabilized, particularly in differentiated podocytes. Importantly, protein half-lives strongly contributed to protein abundance in each state. These data suggest that regulation of protein turnover of particular cellular functions determines podocyte differentiation, a paradigm involving mitophagy and, potentially, of importance in conditions of increased podocyte stress and damage.-Schroeter, C. B., Koehler, S., Kann, M., Schermer, B., Benzing, T., Brinkkoetter, P. T., Rinschen, M. M. Protein half-life determines expression of proteostatic networks in podocyte differentiation.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sybille Koehler
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (SybaCol), Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (SybaCol), Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (SybaCol), Cologne, Germany
| |
Collapse
|
59
|
Zhou Y, Huang T, Zhang J, Cheng ASL, Yu J, Kang W, To KF. Emerging roles of Hippo signaling in inflammation and YAP-driven tumor immunity. Cancer Lett 2018; 426:73-79. [PMID: 29654891 DOI: 10.1016/j.canlet.2018.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/26/2022]
Abstract
Initially identified as a cell and organ size controller, Hippo pathway turns into a hotspot for researchers. Within recent years, more and more mechanisms about Hippo pathway were uncovered. Even though Hippo signaling has been revealed to exert controversial roles according to different cell context and microenvironment, which is because of its diversified interplays with a great variety of signaling transduction cascades; mechanisms other than size-limitation, however, remain to be elucidated. Recently, a growing number of studies tend to put Hippo on inflammatory and immunological focus: its antimicrobial role in flies, its pro- or anti-inflammation in mammals, as well as its relevance to cancerous immunity. From inflammation to tumor immunogenicity, Hippo has been gradually justified to play a crucial role. This review summarized the latest findings regarding the involvement of Hippo pathway in immunity, and a more comprehensive understanding of Hippo pathway will shed light on clinical translational potential even precision medicine.
Collapse
Affiliation(s)
- Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Jinglin Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Alfred S L Cheng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| |
Collapse
|
60
|
Embry AE, Liu Z, Henderson JM, Byfield FJ, Liu L, Yoon J, Wu Z, Cruz K, Moradi S, Gillombardo CB, Hussain RZ, Doelger R, Stuve O, Chang AN, Janmey PA, Bruggeman LA, Miller RT. Similar Biophysical Abnormalities in Glomeruli and Podocytes from Two Distinct Models. J Am Soc Nephrol 2018; 29:1501-1512. [PMID: 29572404 DOI: 10.1681/asn.2017050475] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/21/2018] [Indexed: 01/19/2023] Open
Abstract
Background FSGS is a pattern of podocyte injury that leads to loss of glomerular function. Podocytes support other podocytes and glomerular capillary structure, oppose hemodynamic forces, form the slit diaphragm, and have mechanical properties that permit these functions. However, the biophysical characteristics of glomeruli and podocytes in disease remain unclear.Methods Using microindentation, atomic force microscopy, immunofluorescence microscopy, quantitative RT-PCR, and a three-dimensional collagen gel contraction assay, we studied the biophysical and structural properties of glomeruli and podocytes in chronic (Tg26 mice [HIV protein expression]) and acute (protamine administration [cytoskeletal rearrangement]) models of podocyte injury.Results Compared with wild-type glomeruli, Tg26 glomeruli became progressively more deformable with disease progression, despite increased collagen content. Tg26 podocytes had disordered cytoskeletons, markedly abnormal focal adhesions, and weaker adhesion; they failed to respond to mechanical signals and exerted minimal traction force in three-dimensional collagen gels. Protamine treatment had similar but milder effects on glomeruli and podocytes.Conclusions Reduced structural integrity of Tg26 podocytes causes increased deformability of glomerular capillaries and limits the ability of capillaries to counter hemodynamic force, possibly leading to further podocyte injury. Loss of normal podocyte mechanical integrity could injure neighboring podocytes due to the absence of normal biophysical signals required for podocyte maintenance. The severe defects in podocyte mechanical behavior in the Tg26 model may explain why Tg26 glomeruli soften progressively, despite increased collagen deposition, and may be the basis for the rapid course of glomerular diseases associated with severe podocyte injury. In milder injury (protamine), similar processes occur but over a longer time.
Collapse
Affiliation(s)
- Addie E Embry
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhenan Liu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joel M Henderson
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - F Jefferson Byfield
- Department of Physiology and Biophysics, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liping Liu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Medicine, Dallas Veterans Affairs Medical Center, Dallas, Texas
| | - Joonho Yoon
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhenzhen Wu
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Katrina Cruz
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Sara Moradi
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Rihanna Z Hussain
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Richard Doelger
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Audrey N Chang
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Paul A Janmey
- Department of Physiology and Biophysics, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Leslie A Bruggeman
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - R Tyler Miller
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; .,Department of Medicine, Dallas Veterans Affairs Medical Center, Dallas, Texas
| |
Collapse
|
61
|
Lachowski D, Cortes E, Robinson B, Rice A, Rombouts K, Del Río Hernández AE. FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis. FASEB J 2018; 32:1099-1107. [PMID: 29070586 DOI: 10.1096/fj.201700721r] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Focal adhesion kinase (FAK) is a key molecule in focal adhesions and regulates fundamental processes in cells such as growth, survival, and migration. FAK is one of the first molecules recruited to focal adhesions in response to external mechanical stimuli and therefore is a pivotal mediator of cell mechanosignaling, and relays these stimuli to other mechanotransducers within the cytoplasm. Yes-associated protein (YAP) has been identified recently as one of these core mechanotransducers. YAP translocates to the nucleus following changes in cell mechanics to promote the expression of genes implicated in motility, apoptosis, proliferation, and organ growth. Here, we show that FAK controls the nuclear translocation and activation of YAP in response to mechanical activation and submit that the YAP-dependent process of durotaxis requires a cell with an asymmetric distribution of active and inactive FAK molecules.-Lachowski, D., Cortes, E., Robinson, B., Rice, A., Rombouts, K., Del Río Hernández, A. E. FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis.
Collapse
Affiliation(s)
- Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Benjamin Robinson
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, United Kingdom
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| |
Collapse
|
62
|
Srivastava T, Dai H, Heruth DP, Alon US, Garola RE, Zhou J, Duncan RS, El-Meanawy A, McCarthy ET, Sharma R, Johnson ML, Savin VJ, Sharma M. Mechanotransduction signaling in podocytes from fluid flow shear stress. Am J Physiol Renal Physiol 2018; 314:F22-F34. [PMID: 28877882 PMCID: PMC5866353 DOI: 10.1152/ajprenal.00325.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022] Open
Abstract
Recently, we and others have found that hyperfiltration-associated increase in biomechanical forces, namely, tensile stress and fluid flow shear stress (FFSS), can directly and distinctly alter podocyte structure and function. The ultrafiltrate flow over the major processes and cell body generates FFSS to podocytes. Our previous work suggests that the cyclooxygenase-2 (COX-2)-PGE2-PGE2 receptor 2 (EP2) axis plays an important role in mechanoperception of FFSS in podocytes. To address mechanotransduction of the perceived stimulus through EP2, cultured podocytes were exposed to FFSS (2 dyn/cm2) for 2 h. Total RNA from cells at the end of FFSS treatment, 2-h post-FFSS, and 24-h post-FFSS was used for whole exon array analysis. Differentially regulated genes ( P < 0.01) were analyzed using bioinformatics tools Enrichr and Ingenuity Pathway Analysis to predict pathways/molecules. Candidate pathways were validated using Western blot analysis and then further confirmed to be resulting from a direct effect of PGE2 on podocytes. Results show that FFSS-induced mechanotransduction as well as exogenous PGE2 activate the Akt-GSK3β-β-catenin (Ser552) and MAPK/ERK but not the cAMP-PKA signal transduction cascades. These pathways are reportedly associated with FFSS-induced and EP2-mediated signaling in other epithelial cells as well. The current regimen for treating hyperfiltration-mediated injury largely depends on targeting the renin-angiotensin-aldosterone system. The present study identifies specific transduction mechanisms and provides novel information on the direct effect of FFSS on podocytes. These results suggest that targeting EP2-mediated signaling pathways holds therapeutic significance for delaying progression of chronic kidney disease secondary to hyperfiltration.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City , Kansas City, Missouri
| | - Hongying Dai
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Daniel P Heruth
- Department of Experimental and Translational Genetics Research, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Jianping Zhou
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - R Scott Duncan
- Department of Ophthalmology, University of Missouri at Kansas City , Kansas City, Missouri
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City , Kansas City, Missouri
| | - Virginia J Savin
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| | - Mukut Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
63
|
Wasik AA, Schiller HB. Functional proteomics of cellular mechanosensing mechanisms. Semin Cell Dev Biol 2017; 71:118-128. [DOI: 10.1016/j.semcdb.2017.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
|
64
|
Schenk LK, Möller-Kerutt A, Klosowski R, Wolters D, Schaffner-Reckinger E, Weide T, Pavenstädt H, Vollenbröker B. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes. FASEB J 2017; 31:5019-5035. [PMID: 28768720 DOI: 10.1096/fj.201700142r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/17/2017] [Indexed: 02/02/2023]
Abstract
Within the kidney, angiotensin II (AngII) targets different cell types in the vasculature, tubuli, and glomeruli. An important part of the renal filtration barrier is composed of podocytes with their actin-rich foot processes. In this study, we used stable isotope labeling with amino acids in cell culture coupled to mass spectrometry to characterize relative changes in the phosphoproteome of human podocytes in response to short-term treatment with AngII. In 4 replicates, we identified a total of 17,956 peptides that were traceable to 2081 distinct proteins. Bioinformatic analyses revealed that among the increasingly phosphorylated peptides are predominantly peptides that are related to actin filaments, cytoskeleton, lamellipodia, mammalian target of rapamycin, and MAPK signaling. Among others, this screening approach highlighted the increased phosphorylation of actin-bundling protein, l-plastin (LCP1). AngII-dependent phosphorylation of LCP1 in cultured podocytes was mediated by the kinases ERK, p90 ribosomal S6 kinase, PKA, or PKC. LCP1 phosphorylation increased filopodia formation. In addition, treatment with AngII led to LCP1 redistribution to the cell margins, membrane ruffling, and formation of lamellipodia. Our data highlight the importance of AngII-triggered actin cytoskeleton-associated signal transduction in podocytes.-Schenk, L. K., Möller-Kerutt, A., Klosowski, R., Wolters, D., Schaffner-Reckinger, E., Weide, T., Pavenstädt, H., Vollenbröker, B. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes.
Collapse
Affiliation(s)
- Laura K Schenk
- Medizinischen Klinik und Poliklinik D, Universitätsklinikum Münster, Munster, Germany
| | - Annika Möller-Kerutt
- Medizinischen Klinik und Poliklinik D, Universitätsklinikum Münster, Munster, Germany
| | - Rafael Klosowski
- Analytische Chemie, Biomolekulare Massenspektrometrie, Ruhr-Universität Bochum, Bochum, Germany
| | - Dirk Wolters
- Analytische Chemie, Biomolekulare Massenspektrometrie, Ruhr-Universität Bochum, Bochum, Germany
| | - Elisabeth Schaffner-Reckinger
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Weide
- Medizinischen Klinik und Poliklinik D, Universitätsklinikum Münster, Munster, Germany
| | - Hermann Pavenstädt
- Medizinischen Klinik und Poliklinik D, Universitätsklinikum Münster, Munster, Germany
| | - Beate Vollenbröker
- Medizinischen Klinik und Poliklinik D, Universitätsklinikum Münster, Munster, Germany;
| |
Collapse
|
65
|
Rinschen MM, Hoppe AK, Grahammer F, Kann M, Völker LA, Schurek EM, Binz J, Höhne M, Demir F, Malisic M, Huber TB, Kurschat C, Kizhakkedathu JN, Schermer B, Huesgen PF, Benzing T. N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton. J Am Soc Nephrol 2017; 28:2867-2878. [PMID: 28724775 DOI: 10.1681/asn.2016101119] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/08/2017] [Indexed: 11/03/2022] Open
Abstract
Regulated intracellular proteostasis, controlled in part by proteolysis, is essential in maintaining the integrity of podocytes and the glomerular filtration barrier of the kidney. We applied a novel proteomics technology that enables proteome-wide identification, mapping, and quantification of protein N-termini to comprehensively characterize cleaved podocyte proteins in the glomerulus in vivo We found evidence that defined proteolytic cleavage results in various proteoforms of important podocyte proteins, including those of podocin, nephrin, neph1, α-actinin-4, and vimentin. Quantitative mapping of N-termini demonstrated perturbation of protease action during podocyte injury in vitro, including diminished proteolysis of α-actinin-4. Differentially regulated protease substrates comprised cytoskeletal proteins as well as intermediate filaments. Determination of preferential protease motifs during podocyte damage indicated activation of caspase proteases and inhibition of arginine-specific proteases. Several proteolytic processes were clearly site-specific, were conserved across species, and could be confirmed by differential migration behavior of protein fragments in gel electrophoresis. Some of the proteolytic changes discovered in vitro also occurred in two in vivo models of podocyte damage (WT1 heterozygous knockout mice and puromycin aminonucleoside-treated rats). Thus, we provide direct and systems-level evidence that the slit diaphragm and podocyte cytoskeleton are regulated targets of proteolytic modification, which is altered upon podocyte damage.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Ann-Kathrin Hoppe
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Florian Grahammer
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medicine IV, Medical Center and Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Martin Kann
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Linus A Völker
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Eva-Maria Schurek
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Julie Binz
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Martin Höhne
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Milena Malisic
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Tobias B Huber
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medicine IV, Medical Center and Faculty of Medicine - University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany; and
| | - Christine Kurschat
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Bernhard Schermer
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany;
| | - Thomas Benzing
- Department II of Internal Medicine, .,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| |
Collapse
|
66
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|