51
|
Chen Z, Liang W, Hu J, Zhu Z, Feng J, Ma Y, Yang Q, Ding G. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Prolif 2022; 55:e13296. [PMID: 35842903 PMCID: PMC9528772 DOI: 10.1111/cpr.13296] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Increasing evidence suggests that mitochondrial dysfunction is the key driver of angiotensin II (Ang II)-induced kidney injury. This study was designed to investigate whether Sirtuin 6 (Sirt6) could affect Ang II-induced mitochondrial damage and the potential mechanisms. MATERIALS AND METHODS Podocyte-specific Sirt6 knockout mice were infused with Ang II and cultured podocytes were stimulated with Ang II to evaluate the effects of Sirt6 on mitochondrial structure and function in podocytes. Immunofluorescence staining was used to detect protein expression and mitochondrial morphology in vitro. Electron microscopy was used to assess mitochondrial morphology in mice. Western blotting was used to quantify protein expression. RESULTS Mitochondrial fission and decreased Sirt6 expression were observed in podocytes from Ang II-infused mice. In Sirt6-deficient mice, Ang II infusion induced increased apoptosis and mitochondrial fragmentation in podocytes than that in Ang II-infused wild-type mice. In cultured human podocytes, Sirt6 knockdown exacerbated Ang II-induced mitochondrial fission, whereas Sirt6 overexpression ameliorated the Ang II-induced changes in the balance between mitochondrial fusion and fission. Functional studies revealed that Sirt6 deficiency exacerbated mitochondrial fission by promoting dynamin-related protein 1 (Drp1) phosphorylation. Furthermore, Sirt6 mediated Drp1 phosphorylation by promoting Rho-associated coiled coil-containing protein kinase 1 (ROCK1) expression. CONCLUSION Our study has identified Sirt6 as a vital factor that protects against Ang II-induced mitochondrial fission and apoptosis in podocytes via the ROCK1-Drp1 signalling pathway.
Collapse
Affiliation(s)
- Zhaowei Chen
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Wei Liang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Jijia Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Zijing Zhu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Jun Feng
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Yiqiong Ma
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Qian Yang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Guohua Ding
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
52
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
53
|
The Mitochondrial Unfolded Protein Response: A Novel Protective Pathway Targeting Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6430342. [PMID: 36187338 PMCID: PMC9519344 DOI: 10.1155/2022/6430342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Mitochondrial protein homeostasis in cardiomyocyte injury determines not only the normal operation of mitochondrial function but also the fate of mitochondria in cardiomyocytes. Studies of mitochondrial protein homeostasis have become an integral part of cardiovascular disease research. Modulation of the mitochondrial unfolded protein response (UPRmt), a protective factor for cardiomyocyte mitochondria, may in the future become an important treatment strategy for myocardial protection in cardiovascular disease. However, because of insufficient understanding of the UPRmt and inadequate elucidation of relevant mechanisms, few therapeutic drugs targeting the UPRmt have been developed. The UPRmt maintains a series of chaperone proteins and proteases and is activated when misfolded proteins accumulate in the mitochondria. Mitochondrial injury leads to metabolic dysfunction in cardiomyocytes. This paper reviews the relationship of the UPRmt and mitochondrial quality monitoring with cardiomyocyte protection. This review mainly introduces the regulatory mechanisms of the UPRmt elucidated in recent years and the relationship between the UPRmt and mitophagy, mitochondrial fusion/fission, mitochondrial biosynthesis, and mitochondrial energy metabolism homeostasis in order to generate new ideas for the study of the mitochondrial protein homeostasis mechanisms as well as to provide a reference for the targeted drug treatment of imbalances in mitochondrial protein homeostasis following cardiomyocyte injury.
Collapse
|
54
|
Protective Effect of Natural Medicinal Plants on Cardiomyocyte Injury in Heart Failure: Targeting the Dysregulation of Mitochondrial Homeostasis and Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3617086. [PMID: 36132224 PMCID: PMC9484955 DOI: 10.1155/2022/3617086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Heart failure occurs because of various cardiovascular pathologies, such as coronary artery disease or cardiorenal syndrome, eventually reaching end-stage disease. Various factors contribute to cardiac structural or functional changes that result in systolic or diastolic dysfunction. Several studies have confirmed that the key factor in heart failure progression is myocardial cell death, and mitophagy is the major mechanism regulating myocardial cell death in heart failure. The clinical mechanisms of heart failure are well understood in practice. However, the essential role of mitophagic regulation in heart failure has only recently received widespread attention. Receptor-mediated mitophagy is involved in various mitochondrial processes like oxidative stress injury, energy metabolism disorders, and calcium homeostasis, which are also the main causes of heart failure. Understanding of the diverse regulatory mechanisms in mitophagy and the complexity of its pathophysiology in heart failure remains incomplete. Related studies have found that various natural medicinal plants and active ingredients, such as flavonoids and saponins, can regulate mitophagy to a certain extent, improve myocardial function, and protect myocardial cells. This review comprehensively covers the relevant mechanisms of different types of mitophagy in regulating heart failure pathology and controlling mitochondrial adaptability to stress injury. Further, it explores the relationship between mitophagy and cardiac ejection dysfunction. Natural medicinal plant-targeted regulation strategies and scientific evidence on mitophagy were provided to elucidate current and potential strategies to apply mitophagy-targeted therapy for heart failure.
Collapse
|
55
|
Maity S, Guchhait R, Pramanick K. Melatonin mediated activation of MAP kinase pathway may reduce DNA damage stress in plants: A review. Biofactors 2022; 48:965-971. [PMID: 35938772 DOI: 10.1002/biof.1882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Melatonin is an important biomolecule found in diverse groups of organisms. Under different abiotic stresses, the synthesis of melatonin is markedly increased suggesting pivotal roles of melatonin in plants enduring stresses. Being an endogenous signaling molecule with antioxidant activity, melatonin alters many physiological responses and is found to be involved in regulating DNA damage responses. However, the molecular mechanisms of melatonin in response to DNA damage have not yet been studied. The present review aims to provide insights into the molecular mechanisms of melatonin in response to DNA damage in plants. We propose that the MAP kinase pathway is involved in regulating melatonin dependent response of plants under DNA damage stress. Where melatonin might activate MAPK via H2 O2 or Ca2+ dependent pathways. The activated MAPK in turn might phosphorylate and activate SOG1 and repressor type MYBs to mitigate DNA damage under abiotic stress.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Rajkumar Guchhait
- P.G. Department of Zoology, Mahishadal Raj College, Purba Medinipur, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
56
|
Guo W, Long X, Lv M, Deng S, Liu D, Yang Q. Effect of thymoquinone on sepsis-induced cardiac damage via anti-inflammatory and anti-apoptotic mechanisms. J Int Med Res 2022; 50:3000605221118680. [PMID: 36071631 PMCID: PMC9459483 DOI: 10.1177/03000605221118680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Sepsis is a systemic and deleterious host reaction to severe infection.
Cardiac dysfunction is an established serious outcome of multiorgan failure
associated with this condition. Therefore, it is important to develop drugs
targeting sepsis-induced cardiac damage and inflammation. Thymoquinone (TQ)
has anti-inflammatory, anti-oxidant, anti-fibrotic, anti-tumor, and
anti-apoptotic effects. This study examined the effects of thymoquinone on
sepsis-induced cardiac damage. Methods Male BALB/c mice were randomly segregated into four groups: control, TQ,
cecal ligation and puncture (CLP), and CLP + TQ groups. CLP was performed
after gavaging the mice with TQ for 2 weeks. After 48 hours, we estimated
the histopathological changes in the cardiac tissue and the serum levels of
cardiac troponin-T. We evaluated the expression of factors associated with
inflammation, apoptosis, oxidative stress, and the PI3K/AKT pathway. Results TQ significantly reduced intestinal histological alterations and inhibited
the upregulation of interleukin-6, tumor necrosis factor-α, Bax, NOX4,
p-PI3K, and p-AKT. TQ also increased Bcl-2, HO-1, and NRF2 expression. Conclusion These results suggest that TQ effectively modulates pro-inflammatory,
apoptotic, oxidative stress, and PI3K/AKT pathways, making it indispensable
in the treatment of sepsis-induced cardiac damage.
Collapse
Affiliation(s)
- Wenyan Guo
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China
| | - Xiaofeng Long
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China
| | - Mingyi Lv
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China
| | - Shuling Deng
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China
| | - Duping Liu
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China
| | - Qin Yang
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China
| |
Collapse
|
57
|
Fan H, Shao H, Gao X. Long Non-Coding RNA HOTTIP is Elevated in Patients with Sepsis and Promotes Cardiac Dysfunction. Immunol Invest 2022; 51:2086-2096. [PMID: 35921152 DOI: 10.1080/08820139.2022.2107932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cardiac dysfunction is the most common clinical complication of sepsis. Herein, the study explored the clinical importance of long non-coding RNA (lncRNA) HOXA terminal transcript antisense RNA (HOTTIP) in the onset of sepsis and the development of cardiac dysfunction. METHODS 120 patients with sepsis were recruited and divided into cardiac dysfunction group and non-cardiac dysfunction group. Serum HOTTIP levels were measured via RT-qPCR. AC16 cells were treated with lipopolysaccharide (LPS) for cell experiments and detected for cell viability and apoptosis. RESULTS High serum HOTTIP levels were tested in sepsis patients, which was associated with procalcitonin (PCT) level. Serum HOTTIP can identify sepsis cases from healthy people with the AUC of 0.927. 72 cases developed into cardiac dysfunction, accompanied by elevated levels of HOTTIP. ROC curve displayed the predictive ability of serum HOTTIP in the development of cardiac dysfunction in patients with sepsis. After adjusting for other clinical parameters, HOTTIP can independently affect the development of cardiac dysfunction. In vitro, HOTTIP knockdown promoted the recovery of cell viability and reversed LPS-induced cell apoptosis and excessive interleukin-6 (IL-6) release. CONCLUSION LncRNA HOTTIP is closely related to the condition of patients with sepsis and the development of cardiac dysfunction, possibly owing to its function in LPS-induced myocardial apoptosis and inflammation.
Collapse
Affiliation(s)
- Hao Fan
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Shao
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyu Gao
- Department of Burn Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
58
|
Cai C, Wu F, Zhuang B, Ou Q, Peng X, Shi N, Peng L, Li Z, Wang J, Cai S, Tan Y. Empagliflozin activates Wnt/β-catenin to stimulate FUNDC1-dependent mitochondrial quality surveillance against type-3 cardiorenal syndrome. Mol Metab 2022; 64:101553. [PMID: 35863636 PMCID: PMC9372775 DOI: 10.1016/j.molmet.2022.101553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives Cardiorenal syndrome type-3 (CRS-3) is an abrupt worsening of cardiac function secondary to acute kidney injury. Mitochondrial dysfunction is a key pathological mechanism of CRS-3, and empagliflozin can improve mitochondrial biology by promoting mitophagy. Here, we assessed the effects of empagliflozin on mitochondrial quality surveillance in a mouse model of CRS-3. Methods Cardiomyocyte-specific FUNDC1-knockout (FUNDC1CKO) mice were subjected to CRS-3 prior to assessment of mitochondrial homeostasis in the presence or absence of empagliflozin. Results CRS-3 model mice exhibited lower heart function, increased inflammatory responses and exacerbated myocardial oxidative stress than sham-operated controls; however, empagliflozin attenuated these alterations. Empagliflozin stabilized the mitochondrial membrane potential, suppressed mitochondrial reactive oxygen species production, increased mitochondrial respiratory complex activity and restored the oxygen consumption rate in cardiomyocytes from CRS-3 model mice. Empagliflozin also normalized the mitochondrial morphology, mitochondrial dynamics and mitochondrial permeability transition pore opening rate in cardiomyocytes. Cardiomyocyte-specific ablation of FUN14 domain-containing protein 1 (FUNDC1) in mice abolished the protective effects of empagliflozin on mitochondrial homeostasis and myocardial performance. Empagliflozin activated β-catenin and promoted its nuclear retention, thus increasing FUNDC1-induced mitophagy in heart tissues; however, a β-catenin inhibitor reversed these effects. Conclusions In summary, empagliflozin activated Wnt/β-catenin to stimulate FUNDC1-dependent mitochondrial quality surveillance, ultimately improving mitochondrial function and cardiac performance during CRS-3. Thus, empagliflozin could be considered for the clinical management of heart function following acute kidney injury. Empagliflozin reduces myocardial damage and improves myocardial function after CRS-3. Empagliflozin normalizes the mitochondrial structure in cardiomyocytes during CRS-3. Empagliflozin attenuates cardiomyocyte mitochondrial dysfunction during CRS-3. Empagliflozin activates FUNDC1-dependent mitophagy and preserves mitochondrial integrity in the heart during CRS-3. Loss of FUNDC1 abolishes the cardioprotective effects of empagliflozin during CRS-3.
Collapse
Affiliation(s)
- Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bingjie Zhuang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lan Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ziying Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jin Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China.
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
59
|
Persad KL, Lopaschuk GD. Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Front Cell Dev Biol 2022; 10:886393. [PMID: 35865630 PMCID: PMC9294643 DOI: 10.3389/fcell.2022.886393] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Alterations in energy metabolism play a major role in the lineage of cardiomyocytes, such as the dramatic changes that occur in the transition from neonate to newborn. As cardiomyocytes mature, they shift from a primarily glycolytic state to a mitochondrial oxidative metabolic state. Metabolic intermediates and metabolites may have epigenetic and transcriptional roles in controlling cell fate by increasing mitochondrial biogenesis. In the maturing cardiomyocyte, such as in the postnatal heart, fatty acid oxidation increases in conjunction with increased mitochondrial biogenesis driven by the transcriptional coregulator PGC1-α. PGC1-α is necessary for mitochondrial biogenesis in the heart at birth, with deficiencies leading to postnatal cardiomyopathy. While stem cell therapy as a treatment for heart failure requires further investigation, studies suggest that adult stem cells may secrete cardioprotective factors which may regulate cardiomyocyte differentiation and survival. This review will discuss how metabolism influences mitochondrial biogenesis and how mitochondrial biogenesis influences cell fate, particularly in the context of the developing cardiomyocyte. The implications of energy metabolism on stem cell differentiation into cardiomyocytes and how this may be utilized as a therapy against heart failure and cardiovascular disease will also be discussed.
Collapse
|
60
|
Zou R, Shi W, Qiu J, Zhou N, Du N, Zhou H, Chen X, Ma L. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol 2022; 21:106. [PMID: 35705980 PMCID: PMC9202214 DOI: 10.1186/s12933-022-01532-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Empagliflozin has been reported to protect endothelial cell function, regardless of diabetes status. However, the role of empagliflozin in microvascular protection during myocardial ischemia reperfusion injury (I/R) has not been fully understood. METHODS Electron microscopy, western blots, immunofluorescence, qPCR, mutant plasmid transfection, co-immunoprecipitation were employed to explore whether empagliflozin could alleviate microvascular damage and endothelial injury during cardiac I/R injury. RESULTS In mice, empagliflozin attenuated I/R injury-induced microvascular occlusion and microthrombus formation. In human coronary artery endothelial cells, I/R injury led to adhesive factor upregulation, endothelial nitric oxide synthase inactivation, focal adhesion kinase downregulation, barrier dysfunction, cytoskeletal degradation and cellular apoptosis; however, empagliflozin treatment diminished these effects. Empagliflozin improved mitochondrial oxidative stress, mitochondrial respiration and adenosine triphosphate metabolism in I/R-treated human coronary artery endothelial cells by preventing the phosphorylation of dynamin-related protein 1 (Drp1) and mitochondrial fission 1 protein (Fis1), thus repressing mitochondrial fission. The protective effects of empagliflozin on mitochondrial homeostasis and endothelial function were abrogated by the re-introduction of phosphorylated Fis1, but not phosphorylated Drp1, suggesting that Fis1 dephosphorylation is the predominant mechanism whereby empagliflozin inhibits mitochondrial fission during I/R injury. Besides, I/R injury induced Fis1 phosphorylation primarily by activating the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) pathway, while empagliflozin inactivated this pathway by exerting anti-oxidative effects. CONCLUSIONS These results demonstrated that empagliflozin can protect the microvasculature by inhibiting the DNA-PKcs/Fis1/mitochondrial fission pathway during myocardial I/R injury.
Collapse
Affiliation(s)
- Rongjun Zou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wanting Shi
- Department of Paediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.,Child Healthcare Department, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Na Zhou
- Child Healthcare Department, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.,Department of extracorporeal circulation, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Na Du
- Department of Nursing, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, Beijing, China. .,Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, 100037, Beijing, China.
| | - Xinxin Chen
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Li Ma
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
61
|
Shan S, Liu Z, Wang S, Liu Z, Huang Z, Yang Y, Zhang C, Song F. Drp1-mediated mitochondrial fission promotes carbon tetrachloride-induced hepatic fibrogenesis in mice. Toxicol Res (Camb) 2022; 11:486-497. [PMID: 35782650 DOI: 10.1093/toxres/tfac027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Mitochondrial dynamics is essential for the maintenance of healthy mitochondrial network. Emerging evidence suggests that mitochondrial dysfunction is closely linked to the pathogenesis of hepatic fibrogenesis following chronic liver injury. However, the role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in the context of liver fibrosis remains unclear.
Methods and Results
In this study, C57BL/6 mice were used to establish a model of liver fibrosis via oral gavage with CCl4 treatment for 8 weeks. Furthermore, mitochondrial fission intervention experiments were achieved by the mitochondrial division inhibitor 1 (Mdivi-1). The results demonstrated that chronic CCl4 exposure resulted in severe hepatic fibrogenesis and mitochondrial damage. By contrast, pharmacological inhibition of mitochondrial division by Mdivi-1 substantially reduced the changes of mitochondrial dynamics and finally prevented the deposition of extracellular matrix proteins. Mechanistically, excessive mitochondrial fission may activate hepatic stellate cells through RIPK1-MLKL-dependent hepatocyte death, which ultimately promotes liver fibrosis.
Conclusion
Our study imply that inhibiting Drp1-mediated mitochondrial fission attenuates CCl4-induced liver fibrosis and may serve as a therapeutic target for retarding progression of chronic liver disease.
Collapse
Affiliation(s)
- Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| |
Collapse
|