51
|
Shang L, Xu M, Yin Z. Antiviral drug discovery for the treatment of enterovirus 71 infections. Antiviral Res 2012; 97:183-94. [PMID: 23261847 DOI: 10.1016/j.antiviral.2012.12.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is a small, positive-sense, single-stranded RNA virus in the genus Enterovirus, family Picornavirus. It causes hand, foot and mouth disease in infants and children, which in a small percentage of cases progresses to central nervous system infection, ranging from aseptic meningitis to fatal encephalitis. Sporadic cases of EV71 infection occur throughout the world, but large epidemics have occurred recently in Southeast Asia and China. There are currently no approved vaccines or antiviral therapies for the prevention or treatment of EV71 infection. This paper reviews efforts to develop antiviral therapies against EV71.
Collapse
Affiliation(s)
- Luqing Shang
- College of Pharmacy, Nankai University, Tianjin, PR China
| | | | | |
Collapse
|
52
|
Bek EJ, McMinn PC. The Pathogenesis and Prevention of Encephalitis due to Human Enterovirus 71. Curr Infect Dis Rep 2012; 14:397-407. [PMID: 22639066 DOI: 10.1007/s11908-012-0267-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human enterovirus 71 (HEV71) has emerged as a major cause of viral encephalitis in Southeast Asia, with increased epidemic activity observed since 1997. This is reflected in a large increase in scientific publications relating directly to HEV71. New research is elucidating details of the viral life cycle, confirming similarities between HEV71 and other enteroviruses. Scavenger receptor B2 (SCARB2) is a receptor for HEV71, although other receptors are likely to be identified. Currently, the only strategies to prevent HEV71-associated disease are early diagnosis and aggressive supportive management of identified cases. As more information emerges regarding the molecular processes of HEV71 infection, further advances may lead to the development of effective antiviral treatments and ultimately a vaccine-protection strategy. The protective efficacies of several inactivated HEV71 vaccines have been confirmed in animal models, suggesting that an effective vaccine may become available in the next decade.
Collapse
Affiliation(s)
- Emily Jane Bek
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Blackburn Building D06, Sydney, NSW, 2006, Australia
| | | |
Collapse
|
53
|
Lin YJ, Chang YC, Hsiao NW, Hsieh JL, Wang CY, Kung SH, Tsai FJ, Lan YC, Lin CW. Fisetin and rutin as 3C protease inhibitors of enterovirus A71. J Virol Methods 2012; 182:93-8. [PMID: 22465253 DOI: 10.1016/j.jviromet.2012.03.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 12/20/2022]
Abstract
Enterovirus A71 (EV-A71) causes severe complications: encephalitis, pulmonary edema, and death. No effective drug has been approved for clinical use. This study investigated the antiviral effects of flavonoids against EV-A71. An in vitro inhibitor screening assay using recombinant EV-A71 3C protease (3Cpro) demonstrated fisetin and rutin inhibiting 3Cpro enzymatic activity in a dose-dependent manner. Cell-based fluorescence resonance energy transfer (FRET) assay with an EV-A71 3Cpro cleavage motif probe also confirmed that fisetin and rutin inhibited the replication of EV-A71 in cells. A virus replication assay indicated that fisetin and rutin reduced significantly the EV-A71-induced cytopathic effect and viral plaque titers in RD cells culture. The IC(50) values of plaque reduction against EV-A71 were 85 μM for fisetin and 110 μM for rutin. Therapeutic indices (CC50/IC50 of plaque reduction assays) of fisetin and rutin exceeded 10. The study suggests that fisetin and rutin inhibit the replication of EV-A71.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Characterization of a monoclonal antibody against the 3D polymerase of enterovirus 71 and its use for the detection of human enterovirus A infection. J Virol Methods 2012; 180:75-83. [DOI: 10.1016/j.jviromet.2011.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 11/21/2022]
|
55
|
Zhang G, Zhou F, Gu B, Ding C, Feng D, Xie F, Wang J, Zhang C, Cao Q, Deng Y, Hu W, Yao K. In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch Virol 2012; 157:669-79. [DOI: 10.1007/s00705-011-1222-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/02/2011] [Indexed: 11/30/2022]
|
56
|
Yan XF, Gao S, Xia JF, Ye R, Yu H, Long JE. Epidemic characteristics of hand, foot, and mouth disease in Shanghai from 2009 to 2010: Enterovirus 71 subgenotype C4 as the primary causative agent and a high incidence of mixed infections with coxsackievirus A16. ACTA ACUST UNITED AC 2011; 44:297-305. [PMID: 22176514 DOI: 10.3109/00365548.2011.634433] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Enterovirus 71 (EV71) has been the main causative agent of hand, foot, and mouth disease (HFMD) outbreaks in recent years. A significant increase in the number of HFMD cases in China over the last 3 y has made the public prevention and therapy of this disease a critical issue. METHODS A total of 3208 HFMD patients in Shanghai during the period 2009 to 2010 were analyzed; 437 clinical specimens were collected for the determination of causative pathogens. Eight of the isolated EV71 strains were sequenced and phylogenetically analyzed. RESULTS The widespread outbreak of HFMD in Shanghai was caused predominantly by EV71 (86.5%), and in part by coxsackievirus A16 (CA16) (6.9%). The high incidence of mixed infections with EV71 and CA16 (17.6% of the total CA16-infected cases) has never before been observed in China. Most HFMD patients (76.9%) were aged 1-4 y. Boys showed a higher HFMD prevalence rate (65.3%) than girls (34.7%). Phylogenetic analysis on the basis of the VP1 gene and the complete genome sequences revealed that the EV71 strains that circulated in Shanghai belonged to the C4 subgenotype. CONCLUSIONS EV71 subgenotype C4 was the major causative agent of the HFMD outbreak in Shanghai. A high incidence of mixed infections with EV71 and CA16 was also observed.
Collapse
Affiliation(s)
- Xiu-Feng Yan
- Laboratory of Medical Microbiology, Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
57
|
Zhu QC, Wang Y, Liu YP, Zhang RQ, Li X, Su WH, Long F, Luo XD, Peng T. Inhibition of enterovirus 71 replication by chrysosplenetin and penduletin. Eur J Pharm Sci 2011; 44:392-8. [PMID: 21914477 DOI: 10.1016/j.ejps.2011.08.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/25/2011] [Accepted: 08/28/2011] [Indexed: 01/30/2023]
Abstract
In recent years, enterovirus 71 (EV71) infections have caused an increasing epidemic in young children, accompanying with more severe nervous system disease and more deaths. Unfortunately, there is no specific medication for it so far. Here we investigated the anti-EV71 activity of chrysosplenetin and penduletin, two o-methylated flavonols isolated from the leaves of Laggera pterodonta. These two compounds were found to have strong activity in vitro against EV71 with low cytotoxicity. In the cytopathic effect (CPE) inhibition assays, both plaque reduction assay and virus yield inhibition assay, the compounds showed a similar 50% inhibitory concentration (IC(50)) value of about 0.20 μM. The selectivity indices (SI) of chrysosplenetin and penduletin were 107.5 and 655.6 in African green monkey kidney (Vero) cells, and 69.5 and 200.5 in human rhabdomyosarcoma (RD) cells, accordingly. The preliminary mechanism analysis indicates that they function not through blocking virus entry or inactivating virus directly but inhibiting viral RNA replication. In the time-of-addition assay, both compounds inhibited progeny virus production and RNA replication by nearly 100% when introduced within 4h post infection. In addition to EV71, both compounds inhibited several other human enteroviruses with similar efficacy. These findings provide a significant lead for the discovery of anti-EV71 drug.
Collapse
Affiliation(s)
- Qin-Chang Zhu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Thibaut HJ, De Palma AM, Neyts J. Combating enterovirus replication: state-of-the-art on antiviral research. Biochem Pharmacol 2011; 83:185-92. [PMID: 21889497 DOI: 10.1016/j.bcp.2011.08.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
Enteroviruses form an important genus within the large family of Picornaviridae. They are small, non-enveloped (+)RNA viruses, many of which are important pathogens in human and veterinary science. Despite their huge medical and socio-economical impact, there is still no approved antiviral therapy at hand for the treatment of these infections. Three capsid-targeting molecules (pleconaril, BTA-798 and V-073) are in clinical development. Pleconaril and BTA-798 are in phase II clinical trials for the treatment of enterovirus-induced sepsis syndrome and rhinovirus-induced aggravation of pre-existing asthma or COPD respectively. V-073 is in preclinical development for the treatment of poliovirus infections in the context of the worldwide polio eradication program. The capsid binding molecules have shown good in vitro potency against a number of enterovirus species, but lack activity against others. Another potential drawback of capsid inhibitors in the clinical setting could be the rapid emergence of drug resistance. It will therefore be important to develop inhibitors that affect other stages in the viral replication cycle. Several viral proteins, such as the viral 3C protease, the putative 2C helicase and the 3D RNA-dependent RNA polymerase may be/are excellent targets for inhibition of viral replication. Also host cell factors that are crucial in viral replication may be considered as potential targets for an antiviral approach. Unraveling these complex virus-host interactions will also provide better insights into the replication of enteroviruses. This review aims to summarize and discuss known inhibitors and potential viral and cellular targets for antiviral therapy against enteroviruses.
Collapse
Affiliation(s)
- Hendrik Jan Thibaut
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
59
|
Cao RY, Han JF, Jiang T, Tian X, Yu M, Deng YQ, Qin ED, Qin CF. In vitro and in vivo characterization of a new enterovirus type 71-specific human intravenous immunoglobulin manufactured from selected plasma donors. J Clin Virol 2011; 51:246-9. [DOI: 10.1016/j.jcv.2011.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/13/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
|
60
|
Yi L, Lu J, Kung HF, He ML. The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol 2011; 37:313-27. [PMID: 21651436 DOI: 10.3109/1040841x.2011.580723] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71), a member of the Enterovirus genus in the Picornaviridae family, was first recognized as a dermotrophic virus that usually cause mild, self-limiting hand-foot-and-mouth disease (HFMD). However, EV71 infection can sometimes induce a variety of severe neurological complications and even death. Current large outbreaks of EV71 make this virus being a major public health issue. Intense effort has been made to address its underlying pathogenesis and to develop effective means for combating EV71 infections. Here, we aimed to provide an overview of cellular mechanisms underlying EV71 infection and to assess potential agents for prevention and treatment of EV71 infections.
Collapse
Affiliation(s)
- Lina Yi
- Stanley Ho Center for Emerging Infectious Diseases, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
61
|
Jiang H, Weng L, Zhang N, Arita M, Li R, Chen L, Toyoda T. Biochemical characterization of enterovirus 71 3D RNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:211-9. [PMID: 21220056 DOI: 10.1016/j.bbagrm.2011.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/27/2010] [Accepted: 01/03/2011] [Indexed: 11/24/2022]
Abstract
An unusual enterovirus 71 (EV71) epidemic has begun in China since 2008. EV71 RNA polymerases (3D(pol)) showed polymerase activity with an Mn(2+). Little activity was detected with Co(2+), and no activity was detected with Mg(2+), Ca(2+), Cu(2+), Ni(2+), Cd(2+), or Zn(2+). It is a primer-dependent polymerase, and the enzyme functioned with both di- and 10-nucleotide RNA primers. DNA primer, dT15, increased primer activity, similar to other enterovirus 3D(pol). However, EV71 3D(pol) initiated de novo transcription with a poly(C) template and genome RNA. Its RNA binding activity was weak. Terminal nucleotidyl transferase and reverse transcriptase activity were not detected. The Km and Vmax for EV71 3D(pol) were calculated from classic Lineweaver-Burk plots. The Km values were 2.35±0.05 (ATP), 5.40±0.93 (CTP), 1.12±0.10 (GTP) and 2.81±0.31 (UTP), and the Vmax values were 0.00078±0.00005/min (ATP), 0.011±0.0017/min (CTP), 0.050±0.0043/min (GTP) and 0.0027±0.0005/min (UTP). The Km of EV71 3D(pol) was similar to that of foot and mouth disease virus and rhinovirus. Polymerase activity of BrCr-TR strain and a strain from a clinical isolate in Beijing, 2008 were similar, indicating the potential for 3D(pol) as an antiviral drug target.
Collapse
Affiliation(s)
- Hongbing Jiang
- Unit of Viral Genome Regulation, Institut Pasteur of Shanghai, Key Laboratory of Molecular Virology & Immunology, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
62
|
Wu KX, Ng MML, Chu JJH. Developments towards antiviral therapies against enterovirus 71. Drug Discov Today 2010; 15:1041-51. [PMID: 20974282 PMCID: PMC7108380 DOI: 10.1016/j.drudis.2010.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/20/2010] [Accepted: 10/18/2010] [Indexed: 12/21/2022]
Abstract
Enterovirus 71 (EV71) has emerged as a clinically important neurotropic virus that can cause acute flaccid paralysis and encephalitis, leading to cardiopulmonary failure and death. Recurring outbreaks of EV71 have been reported in several countries. The current lack of approved anti-EV71 therapy has prompted intense research into antiviral development. Several strategies--ranging from target-based chemical design to compound library screenings--have been employed, while others revisited compound series generated from antiviral developments against poliovirus and human rhinoviruses. These efforts have given rise to a diversity of antiviral candidates that include small molecules and non-conventional nucleic-acid-based strategies. This review aims to highlight candidates with potential for further clinical development based on their putative modes of action.
Collapse
Affiliation(s)
- Kan X Wu
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore
| | | | | |
Collapse
|
63
|
Hung HC, Chen TC, Fang MY, Yen KJ, Shih SR, Hsu JTA, Tseng CP. Inhibition of enterovirus 71 replication and the viral 3D polymerase by aurintricarboxylic acid. J Antimicrob Chemother 2010; 65:676-83. [PMID: 20089540 PMCID: PMC7110181 DOI: 10.1093/jac/dkp502] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives Enterovirus 71 (EV71) causes serious diseases in humans. The aim of this study was to examine the effects of aurintricarboxylic acid (ATA) on EV71 replication and to explore the underlying mechanism. Methods To measure the activity of ATA in inhibiting the cytopathic effect (CPE) of EV71, a cell-based neutralization (inhibition of virus-induced CPE) assay was performed. The effect of ATA was further confirmed using plaque reduction and viral yield reduction assays. A time of addition assay was performed to identify the mechanisms of ATA's anti-EV71 activity. We examined the effects of ATA on the following key steps involved in virus replication: (i) translation of the internal ribosomal entry site (IRES)-mediated viral polyprotein; (ii) the proteolytic activity of viral proteases 2A and/or 3C; and (iii) the viral 3D RNA-dependent RNA polymerase (RdRp) activity. Results In this study, ATA was found to be a potent inhibitor of the replication of EV71. In the antiviral neutralization assay, ATA exhibited inhibitory activity against EV71 (TW/4643/98) and EV71 (TW/2231/98). Plaque assay further demonstrated that ATA inhibited EV71 replication with an EC50 (effective concentration at which 50% of plaques were removed) of 2.9 µM. Studies on the mechanism of action revealed that ATA targets the early stage of the viral life cycle after viral entry. ATA was able to inhibit the RdRp activity of EV71, while neither the IRES-mediated translation of viral polyprotein nor the viral 3C protease activity was affected. Conclusions Overall, the findings in this study suggest that ATA is able to effectively inhibit EV71 replication through interfering with the viral 3D polymerase.
Collapse
Affiliation(s)
- Hui-Chen Hung
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | | | | | | | | | | | | |
Collapse
|