51
|
Pseudomonas aeruginosa Coharboring BlaKPC-2 and BlaVIM-2 Carbapenemase Genes. Antibiotics (Basel) 2019; 8:antibiotics8030098. [PMID: 31330771 PMCID: PMC6784026 DOI: 10.3390/antibiotics8030098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/11/2019] [Accepted: 05/18/2019] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa, a bacterium commonly isolated from hospital settings, exhibits intrinsic resistance to a number of antibiotics and can acquire resistance during antibiotic therapy. Resistance towards carbapenems is increasing due to its overuse in the treatment of infections caused by extended-spectrum β-lactamase (ESBL) producing organisms. Nonetheless, carbapenems are essential for the treatment of high-risk infections and are one of the remaining weapons in the fight against “extreme drug resistance” of Gram-negative/positive bacilli. Herein, we describe a case report of infections caused by P. aeruginosa strains that carry blaVIM-2 and blaKPC-2 carbapenemase genes simultaneously, identified in five patients who were admitted to a high complexity health institution in Colombia. Molecular characterization included PCR screening for blaKPC, blaGES, blaOXA-48, blaIMP, blaNDM, and blaVIM carbapenemase and other resistance genes as well as analysis of the genetic relationships by genome macro-restriction and Pulsed-Field Gel Electrophoresis (PFGE) separation. In conclusion, these infections represent a major challenge to public health due to the risk of the infection spreading compounded by the fact that limited treatment options are available, thereby increasing the risk of increased morbidity and mortality.
Collapse
|
52
|
Karlowsky JA, Hackel MA, Tsuji M, Yamano Y, Echols R, Sahm DF. In Vitro Activity of Cefiderocol, a Siderophore Cephalosporin, Against Gram-Negative Bacilli Isolated by Clinical Laboratories in North America and Europe in 2015-2016: SIDERO-WT-2015. Int J Antimicrob Agents 2019; 53:456-466. [PMID: 30471402 DOI: 10.1016/j.ijantimicag.2018.11.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Abstract
Cefiderocol (S-649266) is a parenteral siderophore cephalosporin in phase III of clinical development. In this study, we determined the in vitro susceptibility to cefiderocol and comparators of a 2015-2016 collection of 8954 clinical isolates of Gram-negative bacilli (GNB), provided by 100 clinical laboratories in North America and Europe, using the Clinical and Laboratory Standards Institute broth microdilution method. Iron-depleted cation-adjusted Mueller-Hinton broth was used to test cefiderocol. The concentration of cefiderocol inhibiting 90% of isolates (MIC90) was 0.5 mg/L (North America; n=2470) and 1 mg/L (Europe; n=3,543) for Enterobacteriaceae, 0.5 mg/L (North America; n=619) and 0.5 mg/L (Europe; n=921) for Pseudomonas aeruginosa, 1 mg/L (North America; n=308) and 2 mg/L (Europe; n=664) for Acinetobacter spp., 0.5 mg/L (North America; n=165) and 0.25 mg/L (Europe; n=175) for Stenotrophomonas maltophilia, and 0.12 mg/L (North America; n=40) and 0.5 mg/L (Europe; n=49) for Burkholderia cepacia complex spp. Cefiderocol MICs were ≤4 mg/L for 99.9% (6005/6013) of Enterobacteriaceae, 99.9% (1539/1540) of P. aeruginosa, 96.4% (937/972) of Acinetobacter spp., 99.4% (338/340) of S. maltophilia, and 94.4% (84/89) of Burkholderia cepacia complex spp. isolates tested. Against meropenem-non-susceptible isolates, MICs to cefiderocol were ≤4 mg/L for 99.6% (245/246) of Enterobacteriaceae, 99.7% (394/395) of P. aeruginosa, 96.1% (540/562) of Acinetobacter spp., and 87.1% (27/31) of B. cepacia complex spp. We conclude that cefiderocol demonstrated potent in vitro activity (MIC ≤4 mg/L) against the majority (99.4%, 8903/8954) of clinical isolates of GNB in a recent (2015-2016), multi-continent collection, including carbapenem-non-susceptible isolates.
Collapse
Affiliation(s)
- James A Karlowsky
- International Health Management Associates, Inc., Schaumburg, Illinois, USA; Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meredith A Hackel
- International Health Management Associates, Inc., Schaumburg, Illinois, USA.
| | - Masakatsu Tsuji
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshinori Yamano
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Roger Echols
- Clinical Development and Medical Affairs, ID3C, LLC, Easton, CT USA
| | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| |
Collapse
|
53
|
Dose Selection and Validation for Ceftazidime-Avibactam in Adults with Complicated Intra-abdominal Infections, Complicated Urinary Tract Infections, and Nosocomial Pneumonia. Antimicrob Agents Chemother 2019; 63:AAC.02187-18. [PMID: 30670413 DOI: 10.1128/aac.02187-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Avibactam is a non-β-lactam β-lactamase inhibitor that has been approved in combination with ceftazidime for the treatment of complicated intra-abdominal infections, complicated urinary tract infections, and nosocomial pneumonia, including ventilator-associated pneumonia. In Europe, ceftazidime-avibactam is also approved for the treatment of Gram-negative infections with limited treatment options. Selection and validation of the ceftazidime-avibactam dosage regimen was guided by an iterative process of population pharmacokinetic (PK) modelling, whereby population PK models for ceftazidime and avibactam were developed using PK data from clinical trials and updated periodically. These models were used in probability of target attainment (PTA) simulations using joint pharmacodynamic (PD) targets for ceftazidime and avibactam derived from preclinical data. Joint PTA was calculated based on the simultaneous achievement of the individual PK/PD targets (50% free time above the ceftazidime-avibactam MIC for ceftazidime and free time above a critical avibactam threshold concentration of 1 mg/liter for avibactam). The joint PTA analyses supported a ceftazidime-avibactam dosage regimen of 2,000 + 500 mg every 8 h by 2-h intravenous infusion for patients with creatinine clearance (CLCR) >50 ml/min across all approved indications and modified dosage regimens for patients with CLCR ≤50 ml/min. Subgroup simulations for individual phase 3 patients showed that the dosage regimen was robust, with high target attainment (>95%) against MICs ≤8 mg/liter achieved regardless of older age, obesity, augmented renal clearance, or severity of infection. This review summarizes how the approved ceftazidime-avibactam dosage regimens were developed and validated using PK/PD targets, population PK modeling, and PTA analyses.
Collapse
|
54
|
In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas aeruginosa Collected in Latin American Countries: Results from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrob Agents Chemother 2019; 63:AAC.01814-18. [PMID: 30670424 DOI: 10.1128/aac.01814-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 02/02/2023] Open
Abstract
The International Network for Optimal Resistance Monitoring (INFORM) global surveillance program collected clinical isolates of Enterobacteriaceae (n = 7,665) and Pseudomonas aeruginosa (n = 1,794) from 26 medical centers in six Latin American countries from 2012 to 2015. The in vitro activity of ceftazidime-avibactam and comparators was determined for the isolates using the Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution method. Enterobacteriaceae were highly susceptible (99.7%) to ceftazidime-avibactam, including 99.9% of metallo-β-lactamase (MBL)-negative isolates; 87.4% of all P. aeruginosa isolates and 92.8% of MBL-negative isolates were susceptible to ceftazidime-avibactam. Susceptibility to ceftazidime-avibactam ranged from 99.4% to 100% for Enterobacteriaceae and from 79.1% to 94.7% for P. aeruginosa when isolates were analyzed by country of origin. Ceftazidime-avibactam inhibited 99.6% to 100% of Enterobacteriaceae isolates that carried serine β-lactamases, including extended-spectrum β-lactamases (ESBLs), AmpC cephalosporinases, and carbapenemases (KPC and OXA-48-like) as well as 99.7%, 99.6%, 99.5%, and 99.2% of MBL-negative isolates demonstrating ceftazidime-nonsusceptible, multidrug-resistant (MDR), meropenem-nonsusceptible, and colistin-resistant phenotypes, respectively. Among carbapenem-nonsusceptible isolates of P. aeruginosa (n = 750), 14.7% carried MBLs with or without additional acquired serine β-lactamases, while in the majority of isolates (70.0%), no acquired β-lactamase was identified. Ceftazidime-avibactam inhibited 89.5% of carbapenem-nonsusceptible P. aeruginosa isolates in which no acquired β-lactamase was detected. Overall, clinical isolates of Enterobacteriaceae collected in Latin America from 2012 to 2015 were highly susceptible to ceftazidime-avibactam, including isolates that exhibited resistance to ceftazidime, meropenem, colistin, or an MDR phenotype. Country-specific variations were noted in the susceptibility of P. aeruginosa isolates to ceftazidime-avibactam.
Collapse
|
55
|
Zhanel GG, Golden AR, Zelenitsky S, Wiebe K, Lawrence CK, Adam HJ, Idowu T, Domalaon R, Schweizer F, Zhanel MA, Lagacé-Wiens PRS, Walkty AJ, Noreddin A, Lynch Iii JP, Karlowsky JA. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019; 79:271-289. [PMID: 30712199 DOI: 10.1007/s40265-019-1055-2] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cefiderocol is an injectable siderophore cephalosporin discovered and being developed by Shionogi & Co., Ltd., Japan. As with other β-lactam antibiotics, the principal antibacterial/bactericidal activity of cefiderocol occurs by inhibition of Gram-negative bacterial cell wall synthesis by binding to penicillin binding proteins; however, it is unique in that it enters the bacterial periplasmic space as a result of its siderophore-like property and has enhanced stability to β-lactamases. The chemical structure of cefiderocol is similar to both ceftazidime and cefepime, which are third- and fourth-generation cephalosporins, respectively, but with high stability to a variety of β-lactamases, including AmpC and extended-spectrum β-lactamases (ESBLs). Cefiderocol has a pyrrolidinium group in the side chain at position 3 like cefepime and a carboxypropanoxyimino group in the side chain at position 7 of the cephem nucleus like ceftazidime. The major difference in the chemical structures of cefiderocol, ceftazidime and cefepime is the presence of a catechol group on the side chain at position 3. Together with the high stability to β-lactamases, including ESBLs, AmpC and carbapenemases, the microbiological activity of cefiderocol against aerobic Gram-negative bacilli is equal to or superior to that of ceftazidime-avibactam and meropenem, and it is active against a variety of Ambler class A, B, C and D β-lactamases. Cefiderocol is also more potent than both ceftazidime-avibactam and meropenem versus Acinetobacter baumannii, including meropenem non-susceptible and multidrug-resistant (MDR) isolates. Cefiderocol's activity against meropenem-non-susceptible and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriales is comparable or superior to ceftazidime-avibactam. Cefiderocol is also more potent than both ceftazidime-avibactam and meropenem against all resistance phenotypes of Pseudomonas aeruginosa and against Stenotrophomonas maltophilia. The current dosing regimen being used in phase III studies is 2 g administered intravenously every 8 h (q8 h) using a 3-h infusion. The pharmacokinetics of cefiderocol are best described by a three-compartment linear model. The mean plasma half-life (t½) was ~ 2.3 h, protein binding is 58%, and total drug clearance ranged from 4.6-6.0 L/h for both single- and multi-dose infusions and was primarily renally excreted unchanged (61-71%). Cefiderocol is primarily renally excreted unchanged and clearance correlates with creatinine clearance. Dosage adjustment is thus required for both augmented renal clearance and in patients with moderate to severe renal impairment. In vitro and in vivo pharmacodynamic studies have reported that as with other cephalosporins the pharmacodynamic index that best predicts clinical outcome is the percentage of time that free drug concentrations exceed the minimum inhibitory concentration (%fT > MIC). In vivo efficacy of cefiderocol has been studied in a variety of humanized drug exposure murine and rat models of infection utilizing a variety of MDR and extremely drug resistant strains. Cefiderocol has performed similarly to or has been superior to comparator agents, including ceftazidime and cefepime. A phase II prospective, multicenter, double-blind, randomized clinical trial assessed the safety and efficacy of cefiderocol 2000 mg q8 h versus imipenem/cilastatin 1000 mg q8 h, both administered intravenously for 7-14 days over 1 h, in the treatment of complicated urinary tract infection (cUTI, including pyelonephritis) or acute uncomplicated pyelonephritis in hospitalized adults. A total of 452 patients were initially enrolled in the study, with 303 in the cefiderocol arm and 149 in the imipenem/cilastatin arm. The primary outcome measure was a composite of clinical cure and microbiological eradication at the test-of-cure (TOC) visit, that is, 7 days after the end of treatment in the microbiological intent-to-treat (MITT) population. Secondary outcome measures included microbiological response per pathogen and per patient at early assessment (EA), end of treatment (EOT), TOC, and follow-up (FUP); clinical response per pathogen and per patient at EA, EOT, TOC, and FUP; plasma, urine and concentrations of cefiderocol; and the number of participants with adverse events. The composite of clinical and microbiological response rates was 72.6% (183/252) for cefiderocol and 54.6% (65/119) for imipenem/cilastatin in the MITT population. Clinical response rates per patient at the TOC visit were 89.7% (226/252) for cefiderocol and 87.4% (104/119) for imipenem/cilastatin in the MITT population. Microbiological eradication rates were 73.0% (184/252) for cefiderocol and 56.3% (67/119) for imipenem/cilastatin in the MITT population. Additionally, two phase III clinical trials are currently being conducted by Shionogi & Co., Ltd., Japan. The two trials are evaluating the efficacy of cefiderocol in the treatment of serious infections in adult patients caused by carbapenem-resistant Gram-negative pathogens and evaluating the efficacy of cefiderocol in the treatment of adults with hospital-acquired bacterial pneumonia, ventilator-associated pneumonia or healthcare-associated pneumonia caused by Gram-negative pathogens. Cefiderocol appears to be well tolerated (minor reported adverse effects were gastrointestinal and phlebitis related), with a side effect profile that is comparable to other cephalosporin antimicrobials. Cefiderocol appears to be well positioned to help address the increasing number of infections caused by carbapenem-resistant and MDR Gram-negative bacilli, including ESBL- and carbapenemase-producing strains (including metallo-β-lactamase producers). A distinguishing feature of cefiderocol is its activity against resistant P. aeruginosa, A. baumannii, S. maltophilia and Burkholderia cepacia.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Clinical Microbiology, Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada.
| | - Alyssa R Golden
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sheryl Zelenitsky
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Karyn Wiebe
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Courtney K Lawrence
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diagnostic Services, Shared Health, Winnipeg, MB, Canada
| | - Temilolu Idowu
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ronald Domalaon
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Frank Schweizer
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Michael A Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Philippe R S Lagacé-Wiens
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diagnostic Services, Shared Health, Winnipeg, MB, Canada
| | - Andrew J Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diagnostic Services, Shared Health, Winnipeg, MB, Canada
| | - Ayman Noreddin
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Joseph P Lynch Iii
- Division of Pulmonary, Critical Care, Allergy and Clinical Immunology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diagnostic Services, Shared Health, Winnipeg, MB, Canada
| |
Collapse
|
56
|
Dowzicky MJ, Chmelařová E. Antimicrobial susceptibility of Gram-negative and Gram-positive bacteria collected from Eastern Europe: Results from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.), 2011-2016. J Glob Antimicrob Resist 2018; 17:44-52. [PMID: 30445209 DOI: 10.1016/j.jgar.2018.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES The Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) is a global surveillance programme monitoring the in vitro activity of a panel of antimicrobial agents against clinically important bacterial isolates. Data for Gram-positive and Gram-negative isolates collected in Eastern Europe between 2011 and 2016 are presented here. METHODS Minimum inhibitory concentrations (MICs) were determined by the broth microdilution method using CLSI guidelines. Antimicrobial susceptibility was assessed using EUCAST breakpoints. RESULTS Nine Eastern European countries submitted 4289 isolates. Among Acinetobacter baumannii, resistance to levofloxacin, amikacin and meropenem was 77.5%, 63.4% and 62.2%, respectively. Multidrug resistance among A. baumannii was higher in 2015 than in previous years (44.1% in 2011 and 71.0% in 2015), decreasing to 51.7% in 2016. The multidrug resistance percentage for Pseudomonas aeruginosa was 26.9% and was relatively stable over time. The percentage of extended-spectrum β-lactamase (ESBL)-positive isolates among Escherichia coli and Klebsiella pneumoniae was 20.1% and 55.7%, respectively. Resistance to amikacin, meropenem and tigecycline was low among E. coli and K. pneumoniae and the ESBL-producing subset (≤5.9%). Among Staphylococcus aureus isolates, 36.7% were methicillin-resistant (MRSA); percentages varied year-on-year. No S. aureus isolates, including MRSA, were resistant to linezolid, vancomycin or tigecycline. Among Enterococcus faecium isolates, resistance was 22.6% to vancomycin and 2.3% to linezolid; no isolates were resistant to tigecycline. CONCLUSION This study shows low resistance to meropenem and tigecycline among Enterobacteriaceae isolates and continued activity of linezolid, vancomycin and tigecycline against Gram-positive organisms. However, antimicrobial resistance continues to be problematic in Eastern Europe and requires continued surveillance.
Collapse
Affiliation(s)
- Michael J Dowzicky
- Pfizer, Inc., 500 Arcola Road, E Dock, Office F-3232, Collegeville, PA 19426, USA.
| | - Eva Chmelařová
- Department of Microbiology, AGEL Laboratories, Ostrava - Vítkovice, Czech Republic
| |
Collapse
|
57
|
Poulakou G, Lagou S, Karageorgopoulos DE, Dimopoulos G. New treatments of multidrug-resistant Gram-negative ventilator-associated pneumonia. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:423. [PMID: 30581831 PMCID: PMC6275416 DOI: 10.21037/atm.2018.10.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 01/10/2023]
Abstract
Ventilator-associated pneumonia (VAP) remains an important clinical problem globally, being associated with significant morbidity and mortality. As management of VAP requires adequate and timely antibiotic administration, global emergence of antimicrobial resistance poses serious challenges over our ability to maintain this axiom. Development of antimicrobials against MDR Gram-negative pathogens has therefore emerged as a priority and some new antibiotics have been marketed or approach late stage of development. The aim of this review is to analyse new therapeutic options from the point view of potential treatment of VAP. Among recently developed antimicrobials presented herein, it is obvious that we will have promising therapeutic options against VAP caused by Enterobacteriaceae excluding those producing metallo-β-lactamases, against which only cefiderocol and aztreonam/avibactam are expected to be active. Against infections caused by carbapenem non-susceptible Pseudomonas aeruginosa, ceftolozane/tazobactam and to a lesser extend ceftazidime/avibactam may cover a proportion of current medical needs, but there still remain a considerable proportion of strains which harbor other resistance mechanisms. Murepavadin and cefiderocol hold promise against this particularly notorious pathogen. Finally, Acinetobacter baummannii remains a treatment-challenge. Eravacycline, cefiderocol and probably plazomicin seem to be the most promising agents against this difficult-to treat pathogen, but we have still a long road ahead, to see their position in clinical practice and particularly in VAP. In summary, despite persisting and increasing unmet medical needs, several newly approved and forthcoming agents hold promise for the treatment of VAP and hopefully will enrich our antimicrobial arsenal in the next few years. Targeted pharmacokinetic and clinical studies in real-life scenario of VAP are important to position these new agents in clinical practice, whereas vigilant use will ensure their longevity in our armamentarium.
Collapse
Affiliation(s)
- Garyphallia Poulakou
- Third Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria General Hospital, Athens, Greece
| | - Styliani Lagou
- Third Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria General Hospital, Athens, Greece
| | - Drosos E. Karageorgopoulos
- Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Attikon University General Hospital, Athens, Greece
| | - George Dimopoulos
- Department of Critical Care, National and Kapodistrian University of Athens, School of Medicine, Attikon University General Hospital, Athens, Greece
| |
Collapse
|
58
|
Abstract
β-Lactamases, the major resistance determinant for β-lactam antibiotics in Gram-negative bacteria, are ancient enzymes whose origins can be traced back millions of years ago. These well-studied enzymes, currently numbering almost 2,800 unique proteins, initially emerged from environmental sources, most likely to protect a producing bacterium from attack by naturally occurring β-lactams. Their ancestors were presumably penicillin-binding proteins that share sequence homology with β-lactamases possessing an active-site serine. Metallo-β-lactamases also exist, with one or two catalytically functional zinc ions. Although penicillinases in Gram-positive bacteria were reported shortly after penicillin was introduced clinically, transmissible β-lactamases that could hydrolyze recently approved cephalosporins, monobactams, and carbapenems later became important in Gram-negative pathogens. Nomenclature is based on one of two major systems. Originally, functional classifications were used, based on substrate and inhibitor profiles. A later scheme classifies β-lactamases according to amino acid sequences, resulting in class A, B, C, and D enzymes. A more recent nomenclature combines the molecular and biochemical classifications into 17 functional groups that describe most β-lactamases. Some of the most problematic enzymes in the clinical community include extended-spectrum β-lactamases (ESBLs) and the serine and metallo-carbapenemases, all of which are at least partially addressed with new β-lactamase inhibitor combinations. New enzyme variants continue to be described, partly because of the ease of obtaining sequence data from whole-genome sequencing studies. Often, these new enzymes are devoid of any phenotypic descriptions, making it more difficult for clinicians and antibiotic researchers to address new challenges that may be posed by unusual β-lactamases.
Collapse
Affiliation(s)
- Karen Bush
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
59
|
Li J, Lovern M, Green ML, Chiu J, Zhou D, Comisar C, Xiong Y, Hing J, MacPherson M, Wright JG, Riccobene T, Carrothers TJ, Das S. Ceftazidime-Avibactam Population Pharmacokinetic Modeling and Pharmacodynamic Target Attainment Across Adult Indications and Patient Subgroups. Clin Transl Sci 2018; 12:151-163. [PMID: 30221827 PMCID: PMC6440567 DOI: 10.1111/cts.12585] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023] Open
Abstract
Ceftazidime‐avibactam is a novel β‐lactam/β‐lactamase inhibitor combination for the treatment of serious infections caused by resistant gram‐negative pathogens. Population pharmacokinetic (PopPK) models were built to incorporate pharmacokinetic (PK) data from five phase III trials in patients with complicated intra‐abdominal infection (cIAI), complicated urinary tract infection (cUTI), or nosocomial (including ventilator‐associated) pneumonia. Ceftazidime and avibactam pharmacokinetics were well‐described by two‐compartment disposition models, with creatinine clearance (CrCL) the key covariate determining clearance variability. Steady‐state ceftazidime and avibactam exposure for most patient subgroups differed by ≤ 20% vs. healthy volunteers. Probability of PK/pharmacodynamic (PD) target attainment (free plasma ceftazidime > 8 mg/L and avibactam > 1 mg/L for ≥ 50% of dosing interval) was ≥ 94.9% in simulations for all patient subgroups, including indication and renal function categories. No exposure‐microbiological response relationship was identified because target exposures were achieved in almost all patients. These modeling results support the approved ceftazidime‐avibactam dosage regimens (2000‐500 mg every 8 hours, adjusted for CrCL ≤ 50 mL/min).
Collapse
Affiliation(s)
- Jianguo Li
- AstraZeneca, Waltham, Massachusetts, USA
| | - Mark Lovern
- Quantitative Solutions, Raleigh, North Carolina, USA
| | | | | | | | - Craig Comisar
- Quantitative Solutions, Raleigh, North Carolina, USA
| | - Yuan Xiong
- Quantitative Solutions, Raleigh, North Carolina, USA
| | - Jeremy Hing
- Quantitative Solutions, Raleigh, North Carolina, USA
| | | | | | | | | | - Shampa Das
- AstraZeneca, Alderley Park, Macclesfield, UK
| |
Collapse
|
60
|
Pitout JDD. Transmission Surveillance for Antimicrobial-Resistant Organisms in the Health System. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0010-2016. [PMID: 30191805 PMCID: PMC11633628 DOI: 10.1128/microbiolspec.mtbp-0010-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 11/20/2022] Open
Abstract
Surveillance of antibiotic resistance involves the collection of antibiotic susceptibility patterns undertaken by clinical microbiology laboratories on bacteria isolated from clinical specimens. Global surveillance programs have shown that antibiotic resistance is a major threat to the public at large and play a crucial role in the development of enhanced diagnostics as well as potential vaccines and novel antibiotics with activity against antimicrobial-resistant organisms. This review focuses primarily on examples of global surveillance systems. Local, national, and global integrated surveillance programs with sufficient data linkage between these schemes, accompanied by enhanced genomics and user-friendly bioinformatics systems, promise to overcome some of the stumbling blocks encountered in the understanding, emergence, and transmission of antimicrobial-resistant organisms.
Collapse
Affiliation(s)
- Johann D D Pitout
- Departments of Pathology & Laboratory Medicine, Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada; and Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
61
|
Gong X, Zhang J, Su S, Fu Y, Bao M, Wang Y, Zhang X. Molecular characterization and epidemiology of carbapenem non-susceptible Enterobacteriaceae isolated from the Eastern region of Heilongjiang Province, China. BMC Infect Dis 2018; 18:417. [PMID: 30134844 PMCID: PMC6106938 DOI: 10.1186/s12879-018-3294-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022] Open
Abstract
Background The aim of this study was to elucidate the molecular epidemiology of carbapenem non-susceptible Enterobacteriaceae(CNSE) isolated in the Eastern region of Heilongjiang Province, China, and the mechanism of carbapenem resistance. Methods A total of 53 CNSE isolates were collected in a grade-3 hospital in Heilongjiang province. Sensitivity to antibiotics was determined using the VITEK-2 Compact automatic system. The modified Hodge test (MHT) and modified carbapenem inactivation test (mCIM) were performed for phenotypic identification. Beta-lactamases gene were detected by Polymerase chain reaction(PCR) and DNA sequencing. The transfer of blaNDM and blaKPC was investigated through conjugation experiment. The clinical data of patients were retrospectively reviewed. Homology of Carbapenem-resistant Klebsiella pneumoniae(CRKP) was conducted by multilocus sequence typing (MLST). Results CNSE were highly resistant to the majority of antimicrobial agents. The resistance rate was 100% for first, third, fourth generation cephalosporins and enzyme inhibitor compounds. Gentamicin and tobramycin recorded a resistance rate higher than 80%. Less than 30% resistance was detected for amikacin and levofloxacin. Among CNSE 52(98.1%) and 48(90.6%) of CNSE were positive for mCIM and MHT respectively. There were 42 positive blaKPC genes, three blaNDM-1 genes, three blaNDM-5 genes, one blaNDM-7 gene, and six blaIMP-4 genes. Most isolates harbored multiple drug resistance gene, especially as related to extended-spectrum-β-lactamases, blaSHV, blaTEM and blaCTX-M-15 genes.The resistant gene was transferred into recipient Escherichia coli J53 through conjugation in 21.3% (10/47) of the strains. MLST revealed that ST76 (n = 36) was the most predominant clone, followed by ST896, ST323 and ST11. A new one ST 2946 was identity by this study. Conclusion The carbapenem resistance phenomenon is alarming and blaKPC-2 is the main resistant gene of CNSE in our hospital. This is the first report of an outbreak caused by blaKPC-2 positive K. pneumoniae ST76 in the Eastern region of Heilongjiang Province, China. Relevant departments should implement infection control and prevention measures to avoid further dissemination of the multi drug-resistant bacteria (MDR).
Collapse
Affiliation(s)
- Xue Gong
- Department of Microbiology, the First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jisheng Zhang
- Department of Microbiology, the First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shanshan Su
- Department of Microbiology, the First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yanjun Fu
- Department of Microbiology, the First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Mingjia Bao
- Center for Disease Control and Prevention, Jiamusi, Heilongjiang, China
| | - Yong Wang
- Department of Microbiology, the First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China.
| | - Xiaoli Zhang
- Department of Microbiology, the First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
62
|
Seifert H, Blondeau J, Dowzicky MJ. In vitro activity of tigecycline and comparators (2014-2016) among key WHO 'priority pathogens' and longitudinal assessment (2004-2016) of antimicrobial resistance: a report from the T.E.S.T. study. Int J Antimicrob Agents 2018; 52:474-484. [PMID: 30012439 DOI: 10.1016/j.ijantimicag.2018.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 01/20/2023]
Abstract
We report contemporary (2014-2016) Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) global data on activity of tigecycline and comparators against WHO 'priority pathogens', and global trends (2004-2016) in antimicrobial resistance. MICs were determined using CLSI broth microdilution methodology. Antimicrobial resistance was determined using CLSI breakpoints (FDA breakpoints for tigecycline). Data are reported for Africa, Asia, Europe, North America and South America. From 2014-2016, Africa, Asia and South America reported highest resistance rates among Acinetobacter baumannii; North America lowest (all antimicrobials tested). The tigecycline MIC90 against A. baumannii was 2 mg/L in all regions except South America (1 mg/L). Among Enterobacteriaceae, meropenem resistance was low and tigecycline resistance was ≤1.3% in all regions (Escherichia coli, 0.0-0.3%; Klebsiella pneumoniae 0.0-1.3%; Enterobacter spp. 0.5-1.1%; Serratia marcescens 0.0-1.3%). Ceftriaxone resistance among E. coli ranged from 14.5% (North America) to 54.7% (Asia), and among K. pneumoniae from 9.1% (North America) to 54.0% (South America). North America reported highest rates of vancomycin-resistant Enterococcus faecium (64.6%); Europe lowest (17.7%). The tigecycline MIC90 against methicillin-resistant Staphylococcus aureus (MRSA) ranged from 0.12 mg/L (Africa and North America) to 0.5 mg/L (Asia). From 2004-2016, carbapenem resistance increased among A. baumannii (all regions), reaching 92.3% in Africa and 85.7% in South America (2016). Rates of ceftriaxone-resistant E. coli increased in all regions except Asia. Ceftriaxone resistance in K. pneumoniae increased in Europe. Rates of vancomycin-resistant E. faecium and MRSA were highest in North America and South America (and Asia for MRSA); lowest in Europe.
Collapse
Affiliation(s)
- Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Cologne, Germany.
| | - Joseph Blondeau
- Clinical Microbiology, Royal University and the Saskatoon Health Region, Departments of Pathology and Laboratory Medicine, Microbiology and Immunology, and Ophthalmology, University of Saskatchewan, Saskatoon, Canada S7N 0W8
| | | |
Collapse
|
63
|
Aztreonam-Avibactam Combination Restores Susceptibility of Aztreonam in Dual-Carbapenemase-Producing Enterobacteriaceae. Antimicrob Agents Chemother 2018; 62:AAC.00414-18. [PMID: 29760136 DOI: 10.1128/aac.00414-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
64
|
In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas aeruginosa Collected in Asia-Pacific Countries: Results from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrob Agents Chemother 2018; 62:AAC.02569-17. [PMID: 29760124 DOI: 10.1128/aac.02569-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/25/2018] [Indexed: 01/13/2023] Open
Abstract
The in vitro activities of ceftazidime-avibactam and comparators against 9,149 isolates of Enterobacteriaceae and 2,038 isolates of Pseudomonas aeruginosa collected by 42 medical centers in nine countries in the Asia-Pacific region from 2012 to 2015 were determined as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance program. Antimicrobial susceptibility testing was conducted by Clinical and Laboratory Standards Institute (CLSI) broth microdilution, and isolate subset analysis was performed on the basis of the resistant phenotypes and β-lactamase content. Ceftazidime-avibactam demonstrated potent in vitro activity (MIC, ≤8 μg/ml) against all Enterobacteriaceae tested (99.0% susceptible) and was the most active against isolates that were metallo-β-lactamase (MBL) negative (99.8% susceptible). Against P. aeruginosa, 92.6% of all isolates and 96.1% of MBL-negative isolates were susceptible to ceftazidime-avibactam (MIC, ≤8 μg/ml). The rates of susceptibility to ceftazidime-avibactam ranged from 97.0% (Philippines) to 100% (Hong Kong, South Korea) for Enterobacteriaceae and from 83.1% (Thailand) to 100% (Hong Kong) among P. aeruginosa isolates, with lower susceptibilities being observed in countries where MBLs were more frequently encountered (Philippines, Thailand). Ceftazidime-avibactam inhibited 97.2 to 100% of Enterobacteriaceae isolates, per country, that carried serine β-lactamases, including extended-spectrum β-lactamases, AmpC cephalosporinases, and carbapenemases (KPC, GES, OXA-48-like). It also inhibited 91.3% of P. aeruginosa isolates that were carbapenem nonsusceptible in which no acquired β-lactamase was detected. Among MBL-negative Enterobacteriaceae isolates that were ceftazidime nonsusceptible, meropenem nonsusceptible, colistin resistant, and multidrug resistant, ceftazidime-avibactam inhibited 96.1, 87.7, 100, and 98.8% of isolates, respectively, and among MBL-negative P. aeruginosa isolates that were ceftazidime nonsusceptible, meropenem nonsusceptible, colistin resistant, and multidrug resistant, ceftazidime-avibactam inhibited 79.6, 83.6, 83.3, and 68.2% of isolates, respectively. Overall, clinical isolates of Enterobacteriaceae and P. aeruginosa collected in nine Asia-Pacific countries from 2012 to 2015 were highly susceptible to ceftazidime-avibactam.
Collapse
|
65
|
Balabanian G, Rose M, Manning N, Landman D, Quale J. Effect of Porins and bla KPC Expression on Activity of Imipenem with Relebactam in Klebsiella pneumoniae: Can Antibiotic Combinations Overcome Resistance? Microb Drug Resist 2018; 24:877-881. [PMID: 29782237 DOI: 10.1089/mdr.2018.0065] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Imipenem with relebactam is a novel β-lactam-β-lactamase inhibitor that has activity against most KPC-producing Enterobacteriaceae. Using 10 isolates of KPC-possessing Klebsiella pneumoniae, we assessed the relationship between imipenem-relebactam minimum inhibitory concentrations (MICs) and mechanisms known to contribute to antimicrobial resistance. The effect of adding a second agent was assessed by time-kill experiments. Mutations affecting the genes encoding porins ompK35 and ompK36 and identification of β-lactamases were assessed by PCR. Expression of blaKPC and acrB was assessed by real-time reverse-transcriptase (RT)-PCR, and production of OmpK36 by SDS-PAGE. Time-kill studies were performed using combinations of imipenem-relebactam with polymyxin B, amikacin, or tigecycline. Seven isolates having a disruption in a single porin, or in neither porin, remained susceptible to imipenem-relebactam. The addition of a second agent did not improve the activity of imipenem-relebactam for these isolates, although the addition of tigecycline was antagonistic for three isolates. Three isolates had major disruptions in both ompK35 and ompK36 that correlated with reduced activity of imipenem-relebactam (MICs 2/4, 8/4, and 512/4 μg/mL). Two of these isolates also had overexpression of blaKPC, including the isolate with the highest MIC. These isolates were also resistant to polymyxin B and amikacin. The addition of amikacin provided both synergistic and bactericidal activity for the two more resistant isolates. The activity of imipenem-relebactam against K. pneumoniae is affected by major disruptions of both ompK35 and ompK36 and by expression of the KPC gene. Combining imipenem-relebactam with an aminoglycoside may be a promising approach for isolates with reduced susceptibility to imipenem-relebactam.
Collapse
Affiliation(s)
- Gregory Balabanian
- Department of Medicine and Division of Infectious Diseases, SUNY Downstate Medical Center , Brooklyn, New York
| | - Michael Rose
- Department of Medicine and Division of Infectious Diseases, SUNY Downstate Medical Center , Brooklyn, New York
| | - Nyla Manning
- Department of Medicine and Division of Infectious Diseases, SUNY Downstate Medical Center , Brooklyn, New York
| | - David Landman
- Department of Medicine and Division of Infectious Diseases, SUNY Downstate Medical Center , Brooklyn, New York
| | - John Quale
- Department of Medicine and Division of Infectious Diseases, SUNY Downstate Medical Center , Brooklyn, New York
| |
Collapse
|
66
|
Aquino-Andrade A, Merida-Vieyra J, Arias de la Garza E, Arzate-Barbosa P, De Colsa Ranero A. Carbapenemase-producing Enterobacteriaceae in Mexico: report of seven non-clonal cases in a pediatric hospital. BMC Microbiol 2018; 18:38. [PMID: 29673319 PMCID: PMC5907697 DOI: 10.1186/s12866-018-1166-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Background Carbapenemases-producing Enterobacteriaceae (CPE) are a worldwide public health emergency. In Mexico, reports of CPE are limited, particularly in the pediatric population. Here, we describe the clinical, epidemiological, and molecular characteristics of seven consecutive cases in a third-level pediatric hospital in Mexico City over a four-month period during 2016. Results The Enterobacteriaceae identified were three Escherichia coli strains (producing OXA-232, NDM-1 and KPC-2), two Klebsiella pneumoniae strains (producing KPC-2 and NDM-1), one Klebsiella oxytoca strain producing OXA-48 and one Enterobacter cloacae strain producing NDM-1. The majority of patients had underlying disesases, three were immunocompromised, and three had infections involved the skin and soft tissues. Half patients died as a result of CPE infection. Conclusions This study represents the first report of E. coli ST131-O25b clone producing NDM-1 in Latin America. In addition, this study is the first finding of K. oxytoca producing OXA-48 and E. coli producing OXA-232 in Mexican pediatric patients.
Collapse
Affiliation(s)
- Alejandra Aquino-Andrade
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Insurgentes Cuicuilco, ZC, 04530, Coyoacán Mexico City, Mexico
| | - Jocelin Merida-Vieyra
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Insurgentes Cuicuilco, ZC, 04530, Coyoacán Mexico City, Mexico
| | | | | | - Agustín De Colsa Ranero
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Insurgentes Cuicuilco, ZC, 04530, Coyoacán Mexico City, Mexico. .,Pediatric Infectious Disease Department, Instituto Nacional de Pediatria, Mexico City, Mexico.
| |
Collapse
|
67
|
Shirley M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018; 78:675-692. [PMID: 29671219 DOI: 10.1007/s40265-018-0902-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ceftazidime-avibactam (Zavicefta®) is an intravenously administered combination of the third-generation cephalosporin ceftazidime and the novel, non-β-lactam β-lactamase inhibitor avibactam. In the EU, ceftazidime-avibactam is approved for the treatment of adults with complicated urinary tract infections (cUTIs) [including pyelonephritis], complicated intra-abdominal infections (cIAIs), hospital-acquired pneumonia (HAP) [including ventilator-associated pneumonia (VAP)], and other infections caused by aerobic Gram-negative organisms in patients with limited treatment options. This article discusses the in vitro activity and pharmacological properties of ceftazidime-avibactam, and reviews data on the agent's clinical efficacy and tolerability relating to use in these indications, with a focus on the EU label. Ceftazidime-avibactam has excellent in vitro activity against many important Gram-negative pathogens, including many extended-spectrum β-lactamase-, AmpC-, Klebsiella pneumoniae carbapenemase- and OXA-48-producing Enterobacteriaceae and drug-resistant Pseudomonas aeruginosa isolates; it is not active against metallo-β-lactamase-producing strains. The clinical efficacy of ceftazidime-avibactam in the treatment of cUTI, cIAI and HAP (including VAP) in adults was demonstrated in pivotal phase III non-inferiority trials with carbapenem comparators. Ceftazidime-avibactam treatment was associated with high response rates at the test-of-cure visit in patients with infections caused by ceftazidime-susceptible and -nonsusceptible Gram-negative pathogens. Ceftazidime-avibactam was generally well tolerated, with a safety and tolerability profile consistent with that of ceftazidime alone and that was generally typical of the injectable cephalosporins. Thus, ceftazidime-avibactam represents a valuable new treatment option for these serious and difficult-to-treat infections.
Collapse
Affiliation(s)
- Matt Shirley
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
68
|
Sherry N, Howden B. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam – epidemiology, laboratory detection and treatment implications. Expert Rev Anti Infect Ther 2018. [DOI: 10.1080/14787210.2018.1453807] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Norelle Sherry
- Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
| | - Benjamin Howden
- Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
| |
Collapse
|
69
|
Shlaes DM, Bradford PA. Antibiotics-From There to Where?: How the antibiotic miracle is threatened by resistance and a broken market and what we can do about it. Pathog Immun 2018; 3:19-43. [PMID: 30993248 PMCID: PMC6423724 DOI: 10.20411/pai.v3i1.231] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/18/2018] [Indexed: 12/15/2022] Open
Abstract
To fully appreciate the importance of antibiotics to everyday life, we must step back to the edge of the pre-antibiotic era when these lifesaving drugs were first introduced into clinical use.
Collapse
Affiliation(s)
- David M. Shlaes
- Anti-infectives Consulting (retired), Stonington, Connecticut
| | | |
Collapse
|
70
|
Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol Rev 2018; 31:31/2/e00079-17. [PMID: 29444952 DOI: 10.1128/cmr.00079-17] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Therapy of invasive infections due to multidrug-resistant Enterobacteriaceae (MDR-E) is challenging, and some of the few active drugs are not available in many countries. For extended-spectrum β-lactamase and AmpC producers, carbapenems are the drugs of choice, but alternatives are needed because the rate of carbapenem resistance is rising. Potential active drugs include classic and newer β-lactam-β-lactamase inhibitor combinations, cephamycins, temocillin, aminoglycosides, tigecycline, fosfomycin, and, rarely, fluoroquinolones or trimethoprim-sulfamethoxazole. These drugs might be considered in some specific situations. AmpC producers are resistant to cephamycins, but cefepime is an option. In the case of carbapenemase-producing Enterobacteriaceae (CPE), only some "second-line" drugs, such as polymyxins, tigecycline, aminoglycosides, and fosfomycin, may be active; double carbapenems can also be considered in specific situations. Combination therapy is associated with better outcomes for high-risk patients, such as those in septic shock or with pneumonia. Ceftazidime-avibactam was recently approved and is active against KPC and OXA-48 producers; the available experience is scarce but promising, although development of resistance is a concern. New drugs active against some CPE isolates are in different stages of development, including meropenem-vaborbactam, imipenem-relebactam, plazomicin, cefiderocol, eravacycline, and aztreonam-avibactam. Overall, therapy of MDR-E infection must be individualized according to the susceptibility profile, type, and severity of infection and the features of the patient.
Collapse
|
71
|
Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against Carbapenem-Nonsusceptible and Multidrug-Resistant Isolates of Gram-Negative Bacilli Collected Worldwide in 2014 to 2016. Antimicrob Agents Chemother 2018; 62:e01968-17. [PMID: 29158270 PMCID: PMC5786755 DOI: 10.1128/aac.01968-17] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
The in vitro activity of the investigational siderophore cephalosporin, cefiderocol (formerly S-649266), was determined against a 2014-2016, 52-country, worldwide collection of clinical isolates of carbapenem-nonsusceptible Enterobacteriaceae (n = 1,022), multidrug-resistant (MDR) Acinetobacter baumannii (n = 368), MDR Pseudomonas aeruginosa (n = 262), Stenotrophomonas maltophilia (n = 217), and Burkholderia cepacia (n = 4) using the Clinical and Laboratory Standards Institute (CLSI) standard broth microdilution method. Iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB), prepared according to a recently approved (2017), but not yet published, CLSI protocol, was used to test cefiderocol; all other antimicrobial agents were tested using CAMHB. The concentration of cefiderocol inhibiting 90% (MIC90) of isolates of carbapenem-nonsusceptible Enterobacteriaceae was 4 μg/ml; cefiderocol MICs ranged from 0.004 to 32 μg/ml, and 97.0% (991/1,022) of isolates demonstrated cefiderocol MICs of ≤4 μg/ml. The MIC90s for cefiderocol for MDR A. baumannii, MDR P. aeruginosa, and S. maltophilia were 8, 1, and 0.25 μg/ml, respectively, with 89.7% (330/368), 99.2% (260/262), and 100% (217/217) of isolates demonstrating cefiderocol MICs of ≤4 μg/ml. Cefiderocol MICs for B. cepacia ranged from 0.004 to 8 μg/ml. We conclude that cefiderocol demonstrated potent in vitro activity against a 2014-2016, worldwide collection of clinical isolates of carbapenem-nonsusceptible Enterobacteriaceae, MDR A. baumannii, MDR P. aeruginosa, S. maltophilia, and B. cepacia isolates as 96.2% of all (1,801/1,873) isolates tested had cefiderocol MICs of ≤4 μg/ml.
Collapse
Affiliation(s)
- Meredith A Hackel
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | - Masakatsu Tsuji
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshinori Yamano
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Roger Echols
- Clinical Development and Medical Affairs, ID3C, LLC, Easton, Connecticut, USA
| | - James A Karlowsky
- Department of Medical Microbiology, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| |
Collapse
|
72
|
Hackel MA, Lomovskaya O, Dudley MN, Karlowsky JA, Sahm DF. In Vitro Activity of Meropenem-Vaborbactam against Clinical Isolates of KPC-Positive Enterobacteriaceae. Antimicrob Agents Chemother 2018; 62:e01904-17. [PMID: 29084745 PMCID: PMC5740317 DOI: 10.1128/aac.01904-17] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/20/2017] [Indexed: 11/20/2022] Open
Abstract
Vaborbactam (formerly RPX7009) is a novel inhibitor of serine β-lactamases, including Ambler class A carbapenemases, such as KPCs. The current study evaluated the in vitro activity of the combination agent meropenem-vaborbactam against a global collection of 991 isolates of KPC-positive Enterobacteriaceae collected in 2014 and 2015 using the Clinical and Laboratory Standards Institute (CLSI) standard broth microdilution method. The MIC90 of meropenem (when tested with a fixed concentration of 8 μg/ml of vaborbactam) for isolates of KPC-positive Enterobacteriaceae was 1 μg/ml, and MIC values ranged from ≤0.03 to >32 μg/ml; 99.0% (981/991) of isolates had meropenem-vaborbactam MICs of ≤4 μg/ml, the U.S. FDA-approved MIC breakpoint for susceptibility to meropenem-vaborbactam (Vabomere). Vaborbactam lowered the meropenem MIC50 from 32 to 0.06 μg/ml and the MIC90 from >32 to 1 μg/ml. There were no differences in the activity of meropenem-vaborbactam when the isolates were stratified by KPC variant type. We conclude that meropenem-vaborbactam demonstrates potent in vitro activity against a worldwide collection of clinical isolates of KPC-positive Enterobacteriaceae collected in 2014 and 2015.
Collapse
Affiliation(s)
- Meredith A Hackel
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | | | | | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| |
Collapse
|
73
|
Doi Y, Bonomo RA, Hooper DC, Kaye KS, Johnson JR, Clancy CJ, Thaden JT, Stryjewski ME, van Duin D. Gram-Negative Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group. Clin Infect Dis 2017; 64:S30-S35. [PMID: 28350901 DOI: 10.1093/cid/ciw829] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Antimicrobial resistance in pathogenic gram-negative bacteria is one of the most pressing challenges in the field of infectious diseases and is one of 4 key areas of unmet medical need identified by the Antibacterial Resistance Leadership Group (ARLG). The mission of the Gram-Negative Committee is to advance our knowledge of these challenging infections and implement studies to improve patient outcomes. Studies have fallen primarily into 2 broad categories: prospective cohort studies and interventional trials. Among the observational studies, CRACKLE (Consortium on Resistance Against Carbapenems in Klebsiella pneumoniae and Other Enterobacteriaceae) has contributed seminal multicenter data describing risk factors and clinical outcomes of carbapenem-resistant Enterobacteriaceae (CRE) in sentinel US hospitals. Building on this success, CRACKLE II will expand the network to hospitals across the United States and Colombia. Similar protocols have been proposed to include Acinetobacter baumannii and Pseudomonas aeruginosa (SNAP and POP studies). In addition, the CREST study (Carbapenem-Resistant Enterobacteriaceae in Solid Organ Transplant Patients) has provided pivotal data on extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and CRE carriage among solid organ transplant recipients to inform management of this vulnerable patient population. Two clinical trials to define novel ways of using an existing antibiotic, fosfomycin, to treat ESBL-producing Enterobacteriaceae (one that has completed enrollment and the other in late protocol development) will determine the clinical efficacy of fosfomycin as step-down oral therapy to treat complicated urinary tract infections. Additional clinical studies and trials using immunotherapeutic or newly approved agents are also in the planning stage, with the main goals of generating actionable data that will inform clinical decision making and facilitate development of new treatment options for highly resistant gram-negative bacterial infections.
Collapse
Affiliation(s)
- Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pennsylvania
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Departments of Medicine, Pharmacology, Biochemistry and Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Boston
| | - Keith S Kaye
- Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor
| | | | - Cornelius J Clancy
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pennsylvania
| | - Joshua T Thaden
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | - Martin E Stryjewski
- Department of Medicine, Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno," Ciudad Autónoma de Buenos Aires, Argentina; and
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill
| | | |
Collapse
|
74
|
New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect 2017; 23:704-712. [PMID: 28893690 DOI: 10.1016/j.cmi.2017.09.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/24/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Antibiotic resistance in Gram-negative resistance has developed without a commensurate response in the successful development of antibiotic agents, though recent progress has been made. AIMS This review aims to provide a summary of the existing evidence on efficacy, spectrum of activity and the development of resistance of new agents that have been licensed or have completed advanced clinical trials and that possess activity against resistant Gram-negative organisms. SOURCES A review of the published literature via MEDLINE database was performed. Relevant clinical trials were identified with the aid of the clinicaltrials.gov registry. Further data were ascertained from review of abstracts from recent international meetings and pharmaceutical companies. CONTENT Data on the mechanism of action, microbiological spectrum, clinical efficacy and development of resistance are reported for new agents that have activity against Gram-negative organisms. This includes the β-lactam/β-lactamase inhibitor combinations ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/cilastatin/relebactam, meropenem/vaborbactam and aztreonam/avibactam; cefiderocol, a siderophore cephalosporin; plazomicin and eravacycline. IMPLICATIONS The development of new agents with activity against multidrug-resistant Gram-negative pathogens has provided important therapeutic options for clinicians. Polymyxins appear to have been supplanted by new agents as first-line therapy for Klebsiella pneumoniae carbapenemase producers. Cefiderocol and ceftazidime/avibactam/aztreonam are promising options for metallo-β-lactamase producers, and cefiderocol and ceftolozane/tazobactam for multiply resistant Pseudomonas aeruginosa, but definitive data showing clinical efficacy is as yet lacking. Reports of the development of resistance early after the release and use of new agents is of concern. Orally administered options and agents active effective against Acinetobacter baumannii are under-represented in clinical development.
Collapse
|
75
|
Karlowsky JA, Kazmierczak KM, de Jonge BLM, Hackel MA, Sahm DF, Bradford PA. In Vitro Activity of Aztreonam-Avibactam against Enterobacteriaceae and Pseudomonas aeruginosa Isolated by Clinical Laboratories in 40 Countries from 2012 to 2015. Antimicrob Agents Chemother 2017; 61:e00472-17. [PMID: 28630192 PMCID: PMC5571336 DOI: 10.1128/aac.00472-17] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/09/2017] [Indexed: 01/08/2023] Open
Abstract
The combination of the monobactam aztreonam and the non-β-lactam β-lactamase inhibitor avibactam is currently in clinical development for the treatment of serious infections caused by metallo-β-lactamase (MBL)-producing Enterobacteriaceae, a difficult-to-treat subtype of carbapenem-resistant Enterobacteriaceae for which therapeutic options are currently very limited. The present study tested clinically significant isolates of Enterobacteriaceae (n = 51,352) and Pseudomonas aeruginosa (n = 11,842) collected from hospitalized patients in 208 medical center laboratories from 40 countries from 2012 to 2015 for in vitro susceptibility to aztreonam-avibactam, aztreonam, and comparator antimicrobial agents using a standard broth microdilution methodology. Avibactam was tested at a fixed concentration of 4 μg/ml in combination with 2-fold dilutions of aztreonam. The MIC90s of aztreonam-avibactam and aztreonam were 0.12 and 64 μg/ml, respectively, for all Enterobacteriaceae isolates; >99.9% of all isolates and 99.8% of meropenem-nonsusceptible isolates (n = 1,498) were inhibited by aztreonam-avibactam at a concentration of ≤8 μg/ml. PCR and DNA sequencing identified 267 Enterobacteriaceae isolates positive for MBL genes (NDM, VIM, IMP); all Enterobacteriaceae carrying MBLs demonstrated aztreonam-avibactam MICs of ≤8 μg/ml and a MIC90 of 1 μg/ml. Against all P. aeruginosa isolates tested, the MIC90 of both aztreonam-avibactam and aztreonam was 32 μg/ml; against MBL-positive P. aeruginosa isolates (n = 452), MIC90 values for aztreonam-avibactam and aztreonam were 32 and 64 μg/ml, respectively. The current study demonstrated that aztreonam-avibactam possesses potent in vitro activity against a recent, sizeable global collection of Enterobacteriaceae clinical isolates, including isolates that were meropenem nonsusceptible, and against MBL-positive isolates of Enterobacteriaceae, for which there are few treatment options.
Collapse
Affiliation(s)
- James A Karlowsky
- Department of Medical Microbiology, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Meredith A Hackel
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | | |
Collapse
|
76
|
Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against a Recent Collection of Clinically Relevant Gram-Negative Bacilli from North America and Europe, Including Carbapenem-Nonsusceptible Isolates (SIDERO-WT-2014 Study). Antimicrob Agents Chemother 2017; 61:e00093-17. [PMID: 28630181 PMCID: PMC5571285 DOI: 10.1128/aac.00093-17] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/28/2017] [Indexed: 01/01/2023] Open
Abstract
Cefiderocol (formerly S-649266) is an investigational siderophore cephalosporin. Iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB) was prepared according to the Clinical and Laboratory Standards Institute (CLSI) protocol and used to perform broth microdilution testing of cefiderocol against a 2014-2015 collection of clinical isolates of Gram-negative bacilli from North America (n = 4,239) and Europe (n = 4,966). The concentrations of cefiderocol inhibiting 90% of isolates tested (MIC90s) were 0.5 μg/ml (North America; n = 3,007) and 1 μg/ml (Europe; n = 3,080) for all isolates of Enterobacteriaceae; 1 μg/ml (North America; n = 30) and 4 μg/ml (Europe; n = 139) for meropenem-nonsusceptible (MIC ≥ 2 μg/ml) isolates of Enterobacteriaceae; 0.5 μg/ml for both North American (n = 765) and European (n = 765) isolates of Pseudomonas aeruginosa; 0.5 μg/ml (North America; n = 151) and 1 μg/ml (Europe; n = 202) for meropenem-nonsusceptible (MIC ≥ 4 μg/ml) isolates of P. aeruginosa; 1 μg/ml for both North American (n = 309) and European (n = 839) isolates of all Acinetobacter baumannii strains as well as for both North American (n = 173) and European (n = 595) isolates of meropenem-nonsusceptible A. baumannii; and 0.5μg/ml (North America; n = 152) and 0.25 μg/ml (Europe; n = 276) for isolates of Stenotrophomonas maltophilia MICs of cefiderocol were ≤4 μg/ml for 99.9% (6,078/6,087) of all Enterobacteriaceae, 97.0% (164/169) of meropenem-nonsusceptible Enterobacteriaceae, 99.9% (1,529/1,530) of all P. aeruginosa isolates, 100% (353/353) of meropenem-nonsusceptible P. aeruginosa isolates, 97.6% (1,120/1,148) of all A. baumannii isolates, 96.9% (744/768) of meropenem-nonsusceptible A. baumannii isolates, 100% of isolates of S. maltophilia (428/428) and 93.8% of isolates of Burkholderia cepecia (11/12). We conclude that cefiderocol demonstrated potent in vitro activity against a recent collection of clinical isolates of commonly encountered Gram-negative bacilli, including carbapenem-nonsusceptible isolates.
Collapse
Affiliation(s)
- Meredith A Hackel
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | - Masakatsu Tsuji
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshinori Yamano
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Roger Echols
- Clinical Development and Medical Affairs, ID3C, LLC, Easton, Connecticut, USA
| | - James A Karlowsky
- Department of Medical Microbiology, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| |
Collapse
|
77
|
Wang H, Drake SK, Youn JH, Rosenberg AZ, Chen Y, Gucek M, Suffredini AF, Dekker JP. Peptide Markers for Rapid Detection of KPC Carbapenemase by LC-MS/MS. Sci Rep 2017; 7:2531. [PMID: 28566732 PMCID: PMC5451396 DOI: 10.1038/s41598-017-02749-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022] Open
Abstract
Carbapenemase producing organisms (CPOs) represent an urgent public health threat, and the need for new rapid methods to detect these organisms has been widely recognized. CPOs carrying the Klebsiella pneumoniae carbapenemase (blaKPC) gene have caused outbreaks globally with substantial attributable mortality. Here we describe the validation of a rapid MS method for the direct detection of unique tryptic peptides of the KPC protein in clinical bacterial isolates with an isolate-to-result time of less than 90 minutes. Using a genoproteomic discovery approach that combines theoretical peptidome analysis and liquid chromatography-tandem MS (LC-MS/MS), we selected three high abundance peptide markers of the KPC protein that can be robustly detected following rapid tryptic digestion. Protein BLAST analysis confirmed that the chosen peptide markers were unique to KPC. A blinded validation set containing 20 KPC-positive and 80 KPC-negative clinical isolates, performed in triplicate (300 runs) demonstrated 100% sensitivity and 100% specificity (60/60 positive identifications, 240/240 negative identifications) using defined rules for positive calls. The most robust tryptic peptide marker in the validation was LTLGSALAAPQR. The peptide discovery and detection methods validated here are general and should be broadly applicable to allow the direct and rapid detection of other resistance determinants.
Collapse
Affiliation(s)
- Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven K Drake
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Ho Youn
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Avi Z Rosenberg
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yong Chen
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony F Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P Dekker
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
78
|
Lob SH, Hackel MA, Kazmierczak KM, Hoban DJ, Young K, Motyl MR, Karlowsky JA, Sahm DF. Invitro activity of imipenem-relebactam against gram-negative bacilli isolated from patients with lower respiratory tract infections in the United States in 2015 - Results from the SMART global surveillance program. Diagn Microbiol Infect Dis 2017; 88:171-176. [PMID: 28291628 DOI: 10.1016/j.diagmicrobio.2017.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
Abstract
The β-lactamase inhibitor relebactam inactivates class A β-lactamases, including KPC-type carbapenemases, and class C β-lactamases. Relebactam combined with imipenem is in clinical development for several indications, including hospital-acquired and ventilator-associated pneumonia. Employing CLSI-defined broth microdilution methodology, we evaluated the activities of imipenem-relebactam (using imipenem MIC breakpoints) and comparators against non-Proteeae Enterobacteriaceae (n=853) and Pseudomonas aeruginosa (n=598) isolated from lower respiratory tract infection samples in 20 hospital laboratories in the United States participating in the 2015 SMART (Study for Monitoring Antimicrobial Resistance Trends) global surveillance program. Imipenem-relebactam and imipenem susceptibilities were 97.2% and 91.6% for non-Proteeae Enterobacteriaceae and 93.1% and 68.1% for P. aeruginosa. Relebactam restored imipenem susceptibility to 66.7% and 78.5% of imipenem-non-susceptible non-Proteeae Enterobacteriaceae isolates (n=72) and P. aeruginosa (n=191), respectively. Further development of imipenem-relebactam as therapy for lower respiratory tract infections is warranted given relebactam's ability to restore activity to imipenem against non-susceptible non-Proteeae Enterobacteriaceae and P. aeruginosa.
Collapse
Affiliation(s)
- Sibylle H Lob
- International Health Management Associates, Inc., 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
| | - Meredith A Hackel
- International Health Management Associates, Inc., 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
| | - Krystyna M Kazmierczak
- International Health Management Associates, Inc., 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
| | - Daryl J Hoban
- International Health Management Associates, Inc., 2122 Palmer Drive, Schaumburg, IL, 60173, USA; Department of Medical Microbiology, College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Katherine Young
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - Mary R Motyl
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - James A Karlowsky
- Department of Medical Microbiology, College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Daniel F Sahm
- International Health Management Associates, Inc., 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
| |
Collapse
|
79
|
Low Frequency of Ceftazidime-Avibactam Resistance among Enterobacteriaceae Isolates Carrying blaKPC Collected in U.S. Hospitals from 2012 to 2015. Antimicrob Agents Chemother 2017; 61:AAC.02369-16. [PMID: 28031200 DOI: 10.1128/aac.02369-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/22/2016] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae isolates have been increasingly reported worldwide, and therapeutic options to treat infections caused by these organisms are limited. We evaluated the activity of ceftazidime-avibactam and comparators against 456 Enterobacteriaceae isolates carrying blaKPC collected from 79 U.S. hospitals during 2012 to 2015. Overall, ceftazidime-avibactam (MIC50/90, 0.5/2 μg/ml; 99.3% susceptible) and tigecycline (MIC50/90, 0.5/1 μg/ml; 98.9% susceptible at ≤2 μg/ml) were the most active agents. Only 80.5% and 59.0% of isolates were susceptible to colistin and amikacin, respectively. All three isolates (0.7%) displaying resistance to ceftazidime-avibactam (K. pneumoniae; MICs, ≥16 μg/ml) were evaluated using whole-genome sequencing analysis and relative quantification of expression levels of porins and efflux pump. Two isolates carried metallo-β-lactamase genes, blaNDM-1 or blaVIM-4, among other β-lactam resistance mechanisms, and one displayed a premature stop codon in ompK35 and decreased expression of ompK36 Ceftazidime-avibactam was active against 100.0 and 99.3% of isolates carrying blaKPC-3 (n = 221) and blaKPC-2 (n = 145), respectively. Isolates carrying blaKPC were more commonly recovered from pneumonia (n = 155), urinary tract (n = 93), and skin/soft tissue (n = 74) infections. Ceftazidime-avibactam (97.8 to 100.0% susceptible) was consistently active against isolates from all infection sites. K. pneumoniae (83.3% of the collection) susceptibility rates were 99.2% for ceftazidime-avibactam, 98.9% for tigecycline, and 80.1% for colistin. Ceftazidime-avibactam susceptibility did not vary substantially when comparing isolates from intensive care unit (ICU) patients to those from non-ICU patients. Ceftazidime-avibactam was active against this large collection of isolates carrying blaKPC and represents a valuable addition to the armamentarium currently available for the treatment of infections caused by KPC-producing Enterobacteriaceae.
Collapse
|
80
|
Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2016; 15:277-297. [PMID: 27915487 DOI: 10.1080/14787210.2017.1268918] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Enterobacteriaceae, Pseudomonas spp., and Acinetobacter spp. infections are major causes of morbidity and mortality, especially due to the emergence and spread of β-lactamases. Carbapenemases, which are β-lactamases with the capacity to hydrolyze or inactivate carbapenems, have become a serious concern as they have the largest hydrolytic spectrum and therefore limit the utility of most β-lactam antibiotics. Areas covered: Here, we present an update of the current status of carbapenemases in Latin America and the Caribbean. Expert commentary: The increased frequency of reports on carbapenemases in Latin America and the Caribbean shows that they have successfully spread and have even become endemic in some countries. Countries such as Brazil, Colombia, Argentina, and Mexico account for the majority of these reports. Early suspicion and detection along with implementation of antimicrobial stewardship programs in all healthcare settings are crucial for the control and prevention of carbapenemase-producing bacteria.
Collapse
Affiliation(s)
- Kevin Escandón-Vargas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Reyes
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Gutiérrez
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - María Virginia Villegas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia.,b Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics , Universidad El Bosque , Bogotá , Colombia
| |
Collapse
|