51
|
Berkow EL, Lockhart SR. Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist 2017; 10:237-245. [PMID: 28814889 PMCID: PMC5546770 DOI: 10.2147/idr.s118892] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Candida albicans and the emerging non-albicans Candida spp. have significant clinical relevance among many patient populations. Current treatment guidelines include fluconazole as a primary therapeutic option for the treatment of these infections, but it is only fungistatic against Candida spp. and both inherent and acquired resistance to fluconazole have been reported. Such mechanisms of resistance include increased drug efflux, alteration or increase in the drug target, and development of compensatory pathways for producing the target sterol, ergosterol. While many mechanisms of resistance observed in C. albicans are also found in the non-albicans species, there are also important and unexpected differences between species. Furthermore, mechanisms of fluconazole resistance in emerging Candida spp., including the global health threat Candida auris, are largely unknown. In order to preserve the utility of one of our fundamental antifungal drugs, fluconazole, it is essential that we fully appreciate the manner by which Candida spp. manifest resistance to it.
Collapse
Affiliation(s)
- Elizabeth L Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
52
|
Competitive Fitness of Fluconazole-Resistant Clinical Candida albicans Strains. Antimicrob Agents Chemother 2017; 61:AAC.00584-17. [PMID: 28461316 DOI: 10.1128/aac.00584-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/23/2017] [Indexed: 12/27/2022] Open
Abstract
The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis. Resistance is often caused by gain-of-function mutations in the transcription factors Mrr1 and Tac1, which result in constitutive overexpression of multidrug efflux pumps, and Upc2, which result in constitutive overexpression of ergosterol biosynthesis genes. However, the deregulated gene expression that is caused by hyperactive forms of these transcription factors also reduces the fitness of the cells in the absence of the drug. To investigate whether fluconazole-resistant clinical C. albicans isolates have overcome the fitness costs of drug resistance, we assessed the relative fitness of C. albicans isolates containing resistance mutations in these transcription factors in competition with matched drug-susceptible isolates from the same patients. Most of the fluconazole-resistant isolates were outcompeted by the corresponding drug-susceptible isolates when grown in rich medium without fluconazole. On the other hand, some resistant isolates with gain-of-function mutations in MRR1 did not exhibit reduced fitness under these conditions. In a mouse model of disseminated candidiasis, three out of four tested fluconazole-resistant clinical isolates did not exhibit a significant fitness defect. However, all four fluconazole-resistant isolates were outcompeted by the matched susceptible isolates in a mouse model of gastrointestinal colonization, demonstrating that the effects of drug resistance on in vivo fitness depend on the host niche. Collectively, our results indicate that the fitness costs of drug resistance in C. albicans are not easily remediated, especially when proper control of gene expression is required for successful adaptation to life within a mammalian host.
Collapse
|
53
|
Rocha MFG, Bandeira SP, de Alencar LP, Melo LM, Sales JA, Paiva MDAN, Teixeira CEC, Castelo-Branco DDSCM, Pereira-Neto WDA, Cordeiro RDA, Sidrim JJC, Brilhante RSN. Azole resistance in Candida albicans from animals: Highlights on efflux pump activity and gene overexpression. Mycoses 2017; 60:462-468. [PMID: 28295690 DOI: 10.1111/myc.12611] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/03/2023]
Abstract
This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol content and gene expression. For this purpose, 30 azole-resistant C. albicans strains from animals were tested for their antifungal susceptibility, according to document M27-A3, efflux pump activity by rhodamine 6G test, ergosterol content and expression of the genes CDR1, CDR2, MDR1, ERG11 by RT-qPCR. These strains were resistant to at least one azole derivative. Resistance to fluconazole and itraconazole was detected in 23 and 26 strains respectively. Rhodamine 6G tests showed increased activity of efflux pumps in the resistant strains, showing a possible resistance mechanism. There was no difference in ergosterol content between resistant and susceptible strains, even after fluconazole exposure. From 30 strains, 22 (73.3%) resistant animal strains overexpressed one or more genes. From this group, 40.9% (9/22) overexpressed CDR1, 18.2% (4/22) overexpressed CDR2, 59.1% (13/22) overexpressed MDR1 and 54.5% (12/22) overexpressed ERG11. Concerning gene expression, a positive correlation was observed only between CDR1 and CDR2. Thus, azole resistance in C. albicans strains from animals is a multifactorial process that involves increased efflux pump activity and the overexpression of different genes.
Collapse
Affiliation(s)
- Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lucas Pereira de Alencar
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Luciana Magalhães Melo
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Jamille Alencar Sales
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Manoel de Araújo Neto Paiva
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Carlos Eduardo Cordeiro Teixeira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Waldemiro de Aquino Pereira-Neto
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
54
|
Chew KL, Cheng JW, Jureen R, Lin RT, Teo JW. ERG11 mutations are associated with high-level azole resistance in clinical Candida tropicalis isolates, a Singapore study. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
55
|
Rodrigues CF, Rodrigues ME, Silva S, Henriques M. Candida glabrata Biofilms: How Far Have We Come? J Fungi (Basel) 2017; 3:E11. [PMID: 29371530 PMCID: PMC5715960 DOI: 10.3390/jof3010011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 11/25/2022] Open
Abstract
Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata's biofilms are emerging. In this article, the knowledge available on C. glabrata's resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them.
Collapse
Affiliation(s)
- Célia F Rodrigues
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Sónia Silva
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Mariana Henriques
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
56
|
Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD. Azole Antifungal Resistance in Candida albicans and Emerging Non- albicans Candida Species. Front Microbiol 2017; 7:2173. [PMID: 28127295 PMCID: PMC5226953 DOI: 10.3389/fmicb.2016.02173] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/28/2016] [Indexed: 12/15/2022] Open
Abstract
Within the limited antifungal armamentarium, the azole antifungals are the most frequent class used to treat Candida infections. Azole antifungals such as fluconazole are often preferred treatment for many Candida infections as they are inexpensive, exhibit limited toxicity, and are available for oral administration. There is, however, extensive documentation of intrinsic and developed resistance to azole antifungals among several Candida species. As the frequency of azole resistant Candida isolates in the clinical setting increases, it is essential to elucidate the mechanisms of such resistance in order to both preserve and improve upon the azole class of antifungals for the treatment of Candida infections. This review examines azole resistance in infections caused by C. albicans as well as the emerging non-albicans Candida species C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata and in particular, describes the current understanding of molecular basis of azole resistance in these fungal species.
Collapse
Affiliation(s)
- Sarah G Whaley
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| | - Elizabeth L Berkow
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| | - Jeffrey M Rybak
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| | - Andrew T Nishimoto
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| | - Katherine S Barker
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| | - P David Rogers
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science CenterMemphis, TN, USA; Center for Pediatric Pharmacokinetics and Therapeutics, University of Tennessee Health Science CenterMemphis, TN, USA
| |
Collapse
|
57
|
A Case Report of Penile Infection Caused by Fluconazole- and Terbinafine-Resistant Candida albicans. Mycopathologia 2016; 182:397-402. [DOI: 10.1007/s11046-016-0070-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|
58
|
Lv QZ, Yan L, Jiang YY. The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn. Virulence 2016; 7:649-59. [PMID: 27221657 DOI: 10.1080/21505594.2016.1188236] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sterols are the basal components of the membranes of the fungal pathogen Candida albicans, and these membranes determine the susceptibility of C. albicans cells to a variety of stresses, such as ionic, osmotic and oxidative pressures, and treatment with antifungal drugs. The common antifungal azoles in clinical use are targeted to the biosynthesis of ergosterol. In the past years, the synthesis, storage and metabolism of ergosterol in Saccharomyces cerevisiae has been characterized in some detail; however, these processes has not been as well investigated in the human opportunistic pathogen C. albicans. In this review, we summarize the genes involved in ergosterol synthesis and regulation in C. albicans. As well, genes in S. cerevisiae implicated in ergosterol storage and conversions with other lipids are noted, as these provide us clues and directions for the study of the homologous genes in C. albicans. In this report we have particularly focused on the essential roles of ergosterol in the dynamic process of cell biology and its fundamental status in the biological membrane system that includes lipid rafts, lipid droplets, vacuoles and mitochondria. We believe that a thorough understanding of this classic and essential pathway will give us new ideas about drug resistance and morphological switching in C. albicans.
Collapse
Affiliation(s)
- Quan-Zhen Lv
- a Center for New Drug Research, College of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Lan Yan
- a Center for New Drug Research, College of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Yuan-Ying Jiang
- a Center for New Drug Research, College of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| |
Collapse
|
59
|
Resistance Mechanisms and Clinical Features of Fluconazole-Nonsusceptible Candida tropicalis Isolates Compared with Fluconazole-Less-Susceptible Isolates. Antimicrob Agents Chemother 2016; 60:3653-61. [PMID: 27044550 DOI: 10.1128/aac.02652-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/28/2016] [Indexed: 01/14/2023] Open
Abstract
We investigated the azole resistance mechanisms and clinical features of fluconazole-nonsusceptible (FNS) isolates of Candida tropicalis recovered from Korean surveillance cultures in comparison with fluconazole-less-susceptible (FLS) isolates. Thirty-five clinical isolates of C. tropicalis, comprising 9 FNS (fluconazole MIC, 4 to 64 μg/ml), 12 FLS (MIC, 1 to 2 μg/ml), and 14 control (MIC, 0.125 to 0.5 μg/ml) isolates, were assessed. CDR1, MDR1, and ERG11 expression was quantified, and the ERG11 and UPC2 genes were sequenced. Clinical features of 16 patients with FNS or FLS bloodstream isolates were analyzed. Both FNS and FLS isolates had >10-fold higher mean expression levels of CDR1, MDR1, and ERG11 genes than control isolates (P values of <0.02 for all). When FNS and FLS isolates were compared, FNS isolates had 3.4-fold higher mean ERG11 expression levels than FLS isolates (P = 0.004), but there were no differences in those of CDR1 or MDR1 Of all 35 isolates, 4 (2 FNS and 2 FLS) and 28 (8 FNS, 11 FLS, and 9 control) isolates exhibited amino acid substitutions in Erg11p and Upc2p, respectively. Both FNS and FLS bloodstream isolates were associated with azole therapeutic failure (3/4 versus 4/7) or uncleared fungemia (4/6 versus 4/10), but FNS isolates were identified more frequently from patients with previous azole exposure (6/6 versus 3/10; P = 0.011) and immunosuppression (6/6 versus 3/10; P = 0.011). These results reveal that the majority of FNS C. tropicalis isolates show overexpression of CDR1, MDR1, and ERG11 genes, and fungemia develops after azole exposure in patients with immunosuppression.
Collapse
|
60
|
Haque F, Alfatah M, Ganesan K, Bhattacharyya MS. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth. Sci Rep 2016; 6:23575. [PMID: 27030404 PMCID: PMC4876995 DOI: 10.1038/srep23575] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
Candida albicans causes superficial and life-threatening systemic infections.
These are difficult to treat often due to drug resistance, particularly because
C. albicans biofilms are inherently resistant to most antifungals.
Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial
and anticancer properties. In this study, we investigated the effect of SL on C.
albicans biofilm formation and preformed biofilms. SL was found to inhibit
C. albicans biofilm formation as well as reduce the viability of
preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or
fluconazole (FLZ), was found to act synergistically against biofilm formation and
preformed biofilms. Effect of SL on C. albicans biofilm formation was further
visualized by scanning electron microscopy (SEM) and confocal laser scanning
microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture
and alteration in the morphology of biofilm cells. We also found that SL
downregulates the expression of hypha specific genes HWP1, ALS1,
ALS3, ECE1 and SAP4, which possibly explains the inhibitory
effect of SL on hyphae and biofilm formation.
Collapse
Affiliation(s)
- Farazul Haque
- Biocatalysis and Fermentation Science Laboratory, Biochemical Engineering Research &Process Development Center (BERPDC), CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh-160 036, India
| | - Md Alfatah
- Yeast Molecular Biology Laboratory, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh-160 036, India
| | - K Ganesan
- Yeast Molecular Biology Laboratory, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh-160 036, India
| | - Mani Shankar Bhattacharyya
- Biocatalysis and Fermentation Science Laboratory, Biochemical Engineering Research &Process Development Center (BERPDC), CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh-160 036, India
| |
Collapse
|
61
|
Liu S, Yue L, Gu W, Li X, Zhang L, Sun S. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans. PLoS One 2016; 11:e0150859. [PMID: 26986478 PMCID: PMC4795682 DOI: 10.1371/journal.pone.0150859] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/19/2016] [Indexed: 11/18/2022] Open
Abstract
Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane).
Collapse
Affiliation(s)
- Shuyuan Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People’s Republic of China
- Department of Pharmacy, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, People’s Republic of China
| | - Longtao Yue
- Translational Medicine Research Centre, Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, Shandong Province, People’s Republic of China
| | - Wenrui Gu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People’s Republic of China
| | - Xiuyun Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People’s Republic of China
| | - Liuping Zhang
- School of Pharmaceutical Sciences, Taishan Medical University, taian, 271000, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, Shandong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
62
|
Sanglard D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front Med (Lausanne) 2016; 3:11. [PMID: 27014694 PMCID: PMC4791369 DOI: 10.3389/fmed.2016.00011] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/03/2016] [Indexed: 12/15/2022] Open
Abstract
The use of antifungal drugs in the therapy of fungal diseases can lead to the development of antifungal resistance. Resistance has been described for virtually all antifungal agents in diverse pathogens, including Candida and Aspergillus species. The majority of resistance mechanisms have also been elucidated at the molecular level in these pathogens. Drug resistance genes and genome mutations have been identified. Therapeutic choices are limited for the control of fungal diseases, and it is tempting to combine several drugs to achieve better therapeutic efficacy. In the recent years, several novel resistance patterns have been observed, including antifungal resistance originating from environmental sources in Aspergillus fumigatus and the emergence of simultaneous resistance to different antifungal classes (multidrug resistance) in different Candida species. This review will summarize these current trends.
Collapse
Affiliation(s)
- Dominique Sanglard
- Institute of Microbiology, University Hospital Center, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
63
|
Álvarez-Pérez S, García ME, Cutuli MT, Fermín ML, Daza MÁ, Peláez T, Blanco JL. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog. Med Mycol Case Rep 2016; 11:9-12. [PMID: 26949597 PMCID: PMC4760230 DOI: 10.1016/j.mmcr.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/04/2022] Open
Abstract
Multi-azole resistance acquisition by Candida tropicalis after prolonged antifungal therapy in a dog with urinary candidiasis is reported. Pre- and post-azole treatment isolates were clonally related and had identical silent mutations in the ERG11 gene, but the latter displayed increased azole minimum inhibitory concentrations. A novel frameshift mutation in ERG3 was found in some isolates recovered after resistance development, so it appears unlikely that this mutation is responsible for multi-azole resistance.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Marta E. García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- Hospital Clínico Veterinario Complutense, Madrid 28040, Spain
| | - María Teresa Cutuli
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- Hospital Clínico Veterinario Complutense, Madrid 28040, Spain
| | - María Luisa Fermín
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - María Ángeles Daza
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Teresa Peláez
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid 28007, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - José L. Blanco
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- Hospital Clínico Veterinario Complutense, Madrid 28040, Spain
| |
Collapse
|
64
|
Kołaczkowska A, Kołaczkowski M. Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother 2016; 71:1438-50. [PMID: 26801081 DOI: 10.1093/jac/dkv445] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fungal pathogens use various mechanisms to survive exposure to drugs. Prolonged treatment very often leads to the stepwise acquisition of resistance. The limited number of antifungal therapeutics and their mostly fungistatic rather than fungicidal character facilitates selection of resistant strains. These are able to cope with cytotoxic molecules by acquisition of appropriate mutations, re-wiring gene expression and metabolic adjustments. Recent evidence points to the paramount importance of the permeability barrier and cell wall integrity in the process of adaptation to high drug concentrations. Molecular details of basal and acquired drug resistance are best characterized in the most frequent human fungal pathogen, Candida albicans Effector genes directly related to the acquisition of elevated tolerance of this species to azole and echinocandin drugs are well described. The emergence of high-level drug resistance against intrinsically lower susceptibility to azoles in yeast species other than C. albicans is, however, of particular concern. This is due to their steadily increasing contribution to high mortality rates associated with disseminated infections. Recent findings concerning underlying mechanisms associated with elevated drug resistance suggest a link to cell wall and plasma membrane metabolism in non-albicans Candida species.
Collapse
Affiliation(s)
- Anna Kołaczkowska
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Norwida 31, PL 50-375, Wroclaw, Poland
| | - Marcin Kołaczkowski
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, PL50-368, Wroclaw, Poland
| |
Collapse
|
65
|
Ahmad A, Wani MY, Khan A, Manzoor N, Molepo J. Synergistic Interactions of Eugenol-tosylate and Its Congeners with Fluconazole against Candida albicans. PLoS One 2015; 10:e0145053. [PMID: 26694966 PMCID: PMC4980062 DOI: 10.1371/journal.pone.0145053] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/29/2015] [Indexed: 01/30/2023] Open
Abstract
We previously reported the antifungal properties of a monoterpene phenol “Eugenol” against different Candida strains and have observed that the addition of methyl group to eugenol drastically increased its antimicrobial potency. Based on the results and the importance of medicinal synthetic chemistry, we synthesized eugenol-tosylate and its congeners (E1-E6) and tested their antifungal activity against different clinical fluconazole (FLC)- susceptible and FLC- resistant C. albicans isolates alone and in combination with FLC by determining fractional inhibitory concentration indices (FICIs) and isobolograms calculated from microdilution assays. Minimum inhibitory concentration (MIC) results confirmed that all the tested C. albicans strains were variably susceptible to the semi-synthetic derivatives E1-E6, with MIC values ranging from 1–62 μg/ml. The test compounds in combination with FLC exhibited either synergy (36%), additive (41%) or indifferent (23%) interactions, however, no antagonistic interactions were observed. The MICs of FLC decreased 2–9 fold when used in combination with the test compounds. Like their precursor eugenol, all the derivatives showed significant impairment of ergosterol biosynthesis in all C. albicans strains coupled with down regulation of the important ergosterol biosynthesis pathway gene-ERG11. The results were further validated by docking studies, which revealed that the inhibitors snugly fitting the active site of the target enzyme, mimicking fluconazole, may well explain their excellent inhibitory activity. Our results suggest that these compounds have a great potential as antifungals, which can be used as chemosensitizing agents with the known antifungal drugs.
Collapse
Affiliation(s)
- Aijaz Ahmad
- Department of Oral Biological Sciences, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa
| | - Mohmmad Younus Wani
- Departmento de Quimica, FCTUC, Universidade de Coimbra, Rua Larga, Coimbra, Portugal
| | - Amber Khan
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa
| | - Nikhat Manzoor
- College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah, KSA
- Department of Biosciences, Jamia Millia Islamia, New Delhi, Delhi, India
- * E-mail: (JM); (NM)
| | - Julitha Molepo
- Department of Oral Biological Sciences, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, South Africa
- * E-mail: (JM); (NM)
| |
Collapse
|
66
|
Acquired Multidrug Antifungal Resistance in Candida lusitaniae during Therapy. Antimicrob Agents Chemother 2015; 59:7715-22. [PMID: 26438490 DOI: 10.1128/aac.02204-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 12/20/2022] Open
Abstract
Candida lusitaniae is usually susceptible to echinocandins. Beta-1,3-glucan synthase encoded by FKS genes is the target of echinocandins. A few missense mutations in the C. lusitaniae FKS1 hot spot 1 (HS1) have been reported. We report here the rapid emergence of antifungal resistance in C. lusitaniae isolated during therapy with amphotericin B (AMB), caspofungin (CAS), and azoles for treatment of persistent candidemia in an immunocompromised child with severe enterocolitis and visceral adenoviral disease. As documented from restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) analysis, the five C. lusitaniae isolates examined were related to each other. From antifungal susceptibility and molecular analyses, 5 different profiles (P) were obtained. These profiles included the following: profile 1 (P1) (CAS MIC [μg/ml], 0.5; fluconazole [FLC] MIC, 0.25), determined while the patient was being treated with liposomal AMB for 3 months; P2 (FLC MIC [μg/ml], 0.25; CAS MIC, 4), while the patient was being treated with CAS for 2 weeks; P3 (CAS MIC [μg/ml], 0.5; FLC MIC, 32), while the patient was being treated with azoles and CAS initially followed by azoles alone for a week; P4 (CAS MIC [μg/ml], 8; FLC MIC, 8), while the patient was being treated with both drugs for 3 weeks; and P5 (AMB MIC [μg/ml], 0.125; CAS MIC, 8), while the patient was being treated with AMB and FLC for 2 weeks. CAS resistance was associated with resistance not only to micafungin and anidulafungin but also to AMB. Analysis of CAS resistance revealed 3 novel FKS1 mutations in CAS-resistant isolates (S638Y in P2; S631Y in P4; S638P in P5). While S638Y and -P are within HS1, S631Y is in close proximity to this domain but was confirmed to confer candin resistance using a site-directed mutagenesis approach. FLC resistance could be linked with overexpression of major facilitator gene 7 (MFS7) in C. lusitaniae P2 and P4 and was associated with resistance to 5-flurocytosine. This clinical report describes resistance of C. lusitaniae to all common antifungals. While candins or azole resistance followed monotherapy, multidrug antifungal resistance emerged during combined therapy.
Collapse
|
67
|
Backes GL, Jursic BS, Neumann DM. Potent antimicrobial agents against azole-resistant fungi based on pyridinohydrazide and hydrazomethylpyridine structural motifs. Bioorg Med Chem 2015; 23:3397-407. [DOI: 10.1016/j.bmc.2015.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/02/2015] [Accepted: 04/13/2015] [Indexed: 11/29/2022]
|
68
|
Wang H, Dai B, Liu B, Lu H. Coumarins as new matrices for matrix-assisted laser-desorption/ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of hydrophobic compounds. Anal Chim Acta 2015; 882:49-57. [DOI: 10.1016/j.aca.2015.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
|
69
|
Stergiopoulou T, Walsh TJ. Clinical pharmacology of antifungal agents to overcome drug resistance in pediatric patients. Expert Opin Pharmacother 2015; 16:213-26. [PMID: 25579070 DOI: 10.1517/14656566.2015.1000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Antifungal resistance is an emerging problem that increases morbidity and mortality in immunosuppressed pediatric patients, who suffer from invasive fungal diseases. Optimal pharmacological management is critical for the successful treatment of invasive fungal infections by resistant strains. AREAS COVERED This paper reviews the mechanisms of resistance of different classes of antifungal agents and the current understanding of pediatric antifungal pharmacology for overcoming antifungal resistance in children based on laboratory and clinical studies in the English literature. The therapeutic choices against fungal pathogens with intrinsic or acquired resistance are further reviewed. EXPERT OPINION There is a paucity of data in the pediatric population regarding the epidemiology of the resistant organisms to different antifungal agents. It is also unknown if there are more prevalent molecular mechanisms that promote antifungal resistance. Selection and dosages of the most effective antifungal agent for overcoming the antifungal resistance is crucial. However, there are limited studies guiding the optimal dosage and duration of treatment for management of emergent antifungal resistance. Further studies are warranted to elucidate the optimal pharmacology of the current antifungal agents against resistant organisms and to advance the development of new antifungal agents.
Collapse
|
70
|
Abstract
Invasive fungal infections remain a major source of global morbidity and mortality, especially among patients with underlying immune suppression. Successful patient management requires antifungal therapy. Yet, treatment choices are restricted due to limited classes of antifungal agents and the emergence of antifungal drug resistance. In some settings, the evolution of multidrug-resistant strains insensitive to several classes of antifungal agents is a major concern. The resistance mechanisms responsible for acquired resistance are well characterized and include changes in drug target affinity and abundance, and reduction in the intracellular level of drug by biofilms and efflux pumps. The development of high-level and multidrug resistance occurs through a stepwise evolution of diverse mechanisms. The genetic factors that influence these mechanisms are emerging and they form a complex symphony of cellular interactions that enable the cell to adapt and/or overcome drug-induced stress. Drivers of resistance involve a complex blend of host and microbial factors. Understanding these mechanisms will facilitate development of better diagnostics and therapeutic strategies to overcome and prevent antifungal resistance.
Collapse
Affiliation(s)
- David S Perlin
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | - Erika Shor
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | - Yanan Zhao
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| |
Collapse
|
71
|
Valiante V, Macheleidt J, Föge M, Brakhage AA. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol 2015; 6:325. [PMID: 25932027 PMCID: PMC4399325 DOI: 10.3389/fmicb.2015.00325] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/31/2015] [Indexed: 01/06/2023] Open
Abstract
Aspergillus fumigatus is the most important airborne fungal pathogen, causing severe infections with invasive growth in immunocompromised patients. The fungal cell wall (CW) prevents the cell from lysing and protects the fungus against environmental stress conditions. Because it is absent in humans and because of its essentiality, the fungal CW is a promising target for antifungal drugs. Nowadays, compounds acting on the CW, i.e., echinocandin derivatives, are used to treat A. fumigatus infections. However, studies demonstrating the clinical effectiveness of echinocandins in comparison with antifungals currently recommended for first-line treatment of invasive aspergillosis are still lacking. Therefore, it is important to elucidate CW biosynthesis pathways and their signal transduction cascades, which potentially compensate the inhibition caused by CW- perturbing compounds. Like in other fungi, the central core of the cell wall integrity (CWI) signaling pathway in A. fumigatus is composed of three mitogen activated protein kinases. Deletion of these genes resulted in severely enhanced sensitivity of the mutants against CW-disturbing compounds and in drastic alterations of the fungal morphology. Additionally, several cross-talk interactions between the CWI pathways and other signaling pathways are emerging, raising the question about their role in the CW compensatory mechanisms. In this review we focused on recent advances in understanding the CWI signaling pathway in A. fumigatus and its role during drug stress response and virulence.
Collapse
Affiliation(s)
- Vito Valiante
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Juliane Macheleidt
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Martin Föge
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| | - Axel A Brakhage
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| |
Collapse
|
72
|
Hull CM, Purdy NJ, Moody SC. Mitigation of human-pathogenic fungi that exhibit resistance to medical agents: can clinical antifungal stewardship help? Future Microbiol 2015; 9:307-25. [PMID: 24762306 DOI: 10.2217/fmb.13.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reducing indiscriminate antimicrobial usage to combat the expansion of multidrug-resistant human-pathogenic bacteria is fundamental to clinical antibiotic stewardship. In contrast to bacteria, fungal resistance traits are not understood to be propagated via mobile genetic elements, and it has been proposed that a global explosion of resistance to medical antifungals is therefore unlikely. Clinical antifungal stewardship has focused instead on reducing the drug toxicity and high costs associated with medical agents. Mitigating the problem of human-pathogenic fungi that exhibit resistance to antimicrobials is an emergent issue. This article addresses the extent to which clinical antifungal stewardship could influence the scale and epidemiology of resistance to medical antifungals both now and in the future. The importance of uncharted selection pressure exerted by agents outside the clinical setting (agricultural pesticides, industrial xenobiotics, biocides, pharmaceutical waste and others) on environmentally ubiquitous spore-forming molds that are lesserstudied but increasingly responsible for drug-refractory infections is considered.
Collapse
Affiliation(s)
- Claire M Hull
- Swansea University, College of Medicine, Institute of Life Science: Microbes & Immunity, SA2 8PP, Wales, UK
| | | | | |
Collapse
|
73
|
Xie JL, Polvi EJ, Shekhar-Guturja T, Cowen LE. Elucidating drug resistance in human fungal pathogens. Future Microbiol 2014; 9:523-42. [PMID: 24810351 DOI: 10.2217/fmb.14.18] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fungal pathogens cause life-threatening infections in immunocompetent and immunocompromised individuals. Millions of people die each year due to fungal infections, comparable to the mortality attributable to tuberculosis or malaria. The three most prevalent fungal pathogens are Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Fungi are eukaryotes like their human host, making it challenging to identify fungal-specific therapeutics. There is a limited repertoire of antifungals in clinical use, and drug resistance and host toxicity compromise the clinical utility. The three classes of antifungals for treatment of invasive infections are the polyenes, azoles and echinocandins. Understanding mechanisms of resistance to these antifungals has been accelerated by global and targeted approaches, which have revealed that antifungal drug resistance is a complex phenomenon involving multiple mechanisms. Development of novel strategies to block the emergence of drug resistance and render resistant pathogens responsive to antifungals will be critical to treating life-threatening fungal infections.
Collapse
Affiliation(s)
- Jinglin Lucy Xie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
74
|
Molecular mechanisms of fluconazole resistance in Candida parapsilosis isolates from a U.S. surveillance system. Antimicrob Agents Chemother 2014; 59:1030-7. [PMID: 25451046 DOI: 10.1128/aac.04613-14] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida parapsilosis is the second or third most common cause of candidemia in many countries. The Infectious Diseases Society of America recommends fluconazole as the primary therapy for C. parapsilosis candidemia. Although the rate of fluconazole resistance among C. parapsilosis isolates is low in most U.S. institutions, the resistance rate can be as high as 7.5%. This study was designed to assess the mechanisms of fluconazole resistance in 706 incident bloodstream isolates from U.S. hospitals. We sequenced the ERG11 and MRR1 genes of 122 C. parapsilosis isolates with resistant (30 isolates; 4.2%), susceptible dose-dependent (37 isolates; 5.2%), and susceptible (55 isolates) fluconazole MIC values and used real-time PCR of RNA from 17 isolates to investigate the regulation of MDR1. By comparing these isolates to fully fluconazole-susceptible isolates, we detected at least two mechanisms of fluconazole resistance: an amino acid substitution in the 14-α-demethylase gene ERG11 and overexpression of the efflux pump MDR1, possibly due to point mutations in the MRR1 transcription factor that regulates MDR1. The ERG11 single nucleotide polymorphism (SNP) was found in 57% of the fluconazole-resistant isolates and in no susceptible isolates. The MRR1 SNPs were more difficult to characterize, as not all resulted in overexpression of MDR1 and not all MDR1 overexpression was associated with an SNP in MRR1. Further work to characterize the MRR1 SNPs and search for overexpression of other efflux pumps is needed.
Collapse
|
75
|
|
76
|
Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb Perspect Med 2014; 5:a019752. [PMID: 25384768 DOI: 10.1101/cshperspect.a019752] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.
Collapse
Affiliation(s)
- Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dominique Sanglard
- University of Lausanne and University Hospital Center, Institute of Microbiology, 1011 Lausanne, Switzerland
| | - Susan J Howard
- University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - P David Rogers
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
77
|
The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother 2014; 58:7121-7. [PMID: 25224009 DOI: 10.1128/aac.03707-14] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The binding and cytochrome P45051 (CYP51) inhibition properties of a novel antifungal compound, VT-1161, against purified recombinant Candida albicans CYP51 (ERG11) and Homo sapiens CYP51 were compared with those of clotrimazole, fluconazole, itraconazole, and voriconazole. VT-1161 produced a type II binding spectrum with Candida albicans CYP51, characteristic of heme iron coordination. The binding affinity of VT-1161 for Candida albicans CYP51 was high (dissociation constant [Kd], ≤ 39 nM) and similar to that of the pharmaceutical azole antifungals (Kd, ≤ 50 nM). In stark contrast, VT-1161 at concentrations up to 86 μM did not perturb the spectrum of recombinant human CYP51, whereas all the pharmaceutical azoles bound to human CYP51. In reconstitution assays, VT-1161 inhibited Candida albicans CYP51 activity in a tight-binding fashion with a potency similar to that of the pharmaceutical azoles but failed to inhibit the human enzyme at the highest concentration tested (50 μM). In addition, VT-1161 (MIC = 0.002 μg ml(-1)) had a more pronounced fungal sterol disruption profile (increased levels of methylated sterols and decreased levels of ergosterol) than the known CYP51 inhibitor voriconazole (MIC = 0.004 μg ml(-1)). Furthermore, VT-1161 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. In summary, VT-1161 potently inhibited Candida albicans CYP51 and culture growth but did not inhibit human CYP51, demonstrating a >2,000-fold selectivity. This degree of potency and selectivity strongly supports the potential utility of VT-1161 in the treatment of Candida infections.
Collapse
|
78
|
Backes GL, Neumann DM, Jursic BS. Synthesis and antifungal activity of substituted salicylaldehyde hydrazones, hydrazides and sulfohydrazides. Bioorg Med Chem 2014; 22:4629-36. [DOI: 10.1016/j.bmc.2014.07.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/07/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
79
|
Parker JE, Warrilow AGS, Price CL, Mullins JGL, Kelly DE, Kelly SL. Resistance to antifungals that target CYP51. J Chem Biol 2014; 7:143-61. [PMID: 25320648 DOI: 10.1007/s12154-014-0121-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022] Open
Abstract
Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue.
Collapse
Affiliation(s)
- Josie E Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Andrew G S Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Claire L Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Jonathan G L Mullins
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Diane E Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| |
Collapse
|
80
|
Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans. Biochem J 2014; 460:223-35. [PMID: 24621232 DOI: 10.1042/bj20140010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The QDR (quinidine drug resistance) family of genes encodes transporters belonging to the MFS (major facilitator superfamily) of proteins. We show that QDR transporters, which are localized to the plasma membrane, do not play a role in drug transport. Hence, null mutants of QDR1, QDR2 and QDR3 display no alterations in susceptibility to azoles, polyenes, echinocandins, polyamines or quinolines, or to cell wall inhibitors and many other stresses. However, the deletion of QDR genes, individually or collectively, led to defects in biofilm architecture and thickness. Interestingly, QDR-lacking strains also displayed attenuated virulence, but the strongest effect was observed with qdr2∆, qdr3∆ and in qdr1/2/3∆ strains. Notably, the attenuated virulence and biofilm defects could be reversed upon reintegration of QDR genes. Transcripts profiling confirmed differential expression of many biofilm and virulence-related genes in the deletion strains as compared with wild-type Candida albicans cells. Furthermore, lipidomic analysis of QDR-deletion mutants suggests massive remodelling of lipids, which may affect cell signalling, leading to the defect in biofilm development and attenuation of virulence. In summary, the results of the present study show that QDR paralogues encoding MFS antiporters do not display conserved functional linkage as drug transporters and perform functions that significantly affect the virulence of C. albicans.
Collapse
|
81
|
Osei-Twum JA, Wasan KM. Does P-glycoprotein contribute to amphotericin B epithelial transport in Caco-2 cells? Drug Dev Ind Pharm 2014; 41:1130-6. [PMID: 24963546 DOI: 10.3109/03639045.2014.931970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Amphotericin B (AmB) is a highly efficacious therapeutic for invasive fungal infections and protozoal diseases. Increasing prevalence of these conditions warrants the development of an oral AmB formulation. Efflux transporters, such as the ABCB1 gene product P-glycoprotein, affect the oral bioavailability and disposition of a range of clinically relevant compounds. At present, it remains to be determined whether AmB is a substrate of P-glycoprotein mediated efflux. The objective of this study was to determine whether P-glycoprotein contributes to the epithelial transport of AmB in a Caco-2 cell model. METHODS Stimulation of P-glycoprotein ATPase activity was assessed using membranes containing human recombinant P-glycoprotein. An ABCB1 knockdown Caco-2 cell model was employed to determine non-toxic concentrations of AmB. AmB cellular association, following a 180 min incubation, was determined using an high performance liquid chromatography-ultraviolet (HPLC-UV) assay. RESULTS At the concentrations investigated, AmB did not stimulate P-glycoprotein ATPase activity. Non-toxic concentrations of AmB were 1 μg/mL-5 μg/mL; these were used in subsequent experiments. No significant difference in AmB cellular association was observed for ABCB1 small interfering ribonucleic acid transfected and non-transfected Caco-2 cells, following a 180 min incubation with 1 μg/mL and 2.5 μg/mL AmB. However, significantly greater AmB was associated with transfected cells as compared to non-transfected cells, when cells were incubated with 5 μg/mL AmB. CONCLUSIONS These results suggest that AmB is not a substrate of P-glycoprotein mediated efflux in this Caco-2 cell model. P-glycoprotein is not expected to be a major barrier to the oral absorption and disposition of AmB.
Collapse
Affiliation(s)
- Jo-Ann Osei-Twum
- Faculty of Pharmaceutical Sciences, University of British Columbia , Vancouver, BC , Canada
| | | |
Collapse
|
82
|
Alcazar-Fuoli L, Mellado E. Current status of antifungal resistance and its impact on clinical practice. Br J Haematol 2014; 166:471-84. [PMID: 24749533 DOI: 10.1111/bjh.12896] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/17/2014] [Indexed: 11/30/2022]
Abstract
Mortality linked to invasive fungal diseases remains very high despite the availability of novel antifungals and new therapeutic strategies. Candida albicans and Aspergillus fumigatus account for most invasive mycosis produced by yeast or moulds, respectively. Other Candida non-albicans are increasingly being reported and newly emerging, as well as cryptic, filamentous fungi often cause disseminated infections in immunocompromised hosts. Management of invasive fungal infections is becoming a challenge as emerging fungal pathogens generally show poor response to many antifungals. The ability of reference antifungal susceptibility testing methods to detect emerging resistance patterns, together with the molecular characterization of antifungal resistance mechanisms, are providing useful information to optimize the effectiveness of antifungal therapy. The current status of antifungal resistance epidemiology with special emphasis on the molecular resistant mechanisms that have been described in the main pathogenic fungal species are reviewed.
Collapse
Affiliation(s)
- Laura Alcazar-Fuoli
- Mycology Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
83
|
Calcineurin controls hyphal growth, virulence, and drug tolerance of Candida tropicalis. EUKARYOTIC CELL 2014; 13:844-54. [PMID: 24442892 DOI: 10.1128/ec.00302-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Candida tropicalis, a species closely related to Candida albicans, is an emerging fungal pathogen associated with high mortality rates of 40 to 70%. Like C. albicans and Candida dubliniensis, C. tropicalis is able to form germ tubes, pseudohyphae, and hyphae, but the genes involved in hyphal growth machinery and virulence remain unclear in C. tropicalis. Recently, echinocandin- and azole-resistant C. tropicalis isolates have frequently been isolated from various patients around the world, making treatment difficult. However, studies of the C. tropicalis genes involved in drug tolerance are limited. Here, we investigated the roles of calcineurin and its potential target, Crz1, for core stress responses and pathogenesis in C. tropicalis. We demonstrate that calcineurin and Crz1 are required for hyphal growth, micafungin tolerance, and virulence in a murine systemic infection model, while calcineurin but not Crz1 is essential for tolerance of azoles, caspofungin, anidulafungin, and cell wall-perturbing agents, suggesting that calcineurin has both Crz1-dependent and -independent functions in C. tropicalis. In addition, we found that calcineurin and Crz1 have opposite roles in controlling calcium tolerance. Calcineurin serves as a negative regulator, while Crz1 plays a positive role for calcium tolerance in C. tropicalis.
Collapse
|
84
|
Neumann DM, Cammarata A, Backes G, Palmer GE, Jursic BS. Synthesis and antifungal activity of substituted 2,4,6-pyrimidinetrione carbaldehyde hydrazones. Bioorg Med Chem 2013; 22:813-26. [PMID: 24361188 DOI: 10.1016/j.bmc.2013.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/25/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022]
Abstract
Opportunistic fungal infections caused by the Candida spp. are the most common human fungal infections, often resulting in severe systemic infections-a significant cause of morbidity and mortality in at-risk populations. Azole antifungals remain the mainstay of antifungal treatment for candidiasis, however development of clinical resistance to azoles by Candida spp. limits the drugs' efficacy and highlights the need for discovery of novel therapeutics. Recently, it has been reported that simple hydrazone derivatives have the capability to potentiate antifungal activities in vitro. Similarly, pyrimidinetrione analogs have long been explored by medicinal chemists as potential therapeutics, with more recent focus being on the potential for pyrimidinetrione antimicrobial activity. In this work, we present the synthesis of a class of novel hydrazone-pyrimidinetrione analogs using novel synthetic procedures. In addition, structure-activity relationship studies focusing on fungal growth inhibition were also performed against two clinically significant fungal pathogens. A number of derivatives, including phenylhydrazones of 5-acylpyrimidinetrione exhibited potent growth inhibition at or below 10μM with minimal mammalian cell toxicity. In addition, in vitro studies aimed at defining the mechanism of action of the most active analogs provide preliminary evidence that these compound decrease energy production and fungal cell respiration, making this class of analogs promising novel therapies, as they target pathways not targeted by currently available antifungals.
Collapse
Affiliation(s)
- Donna M Neumann
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, United States; Department of Ophthalmology, LSUHSC, New Orleans, United States.
| | - Amy Cammarata
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, United States
| | - Gregory Backes
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, United States
| | - Glen E Palmer
- Department of Microbiology, Immunology and Parasitology, LSUHSC-New Orleans, United States
| | - Branko S Jursic
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, United States; STEPHARM, LLC., P.O. Box 24220, New Orleans, LA 70184, United States
| |
Collapse
|
85
|
Candida tropicalis antifungal cross-resistance is related to different azole target (Erg11p) modifications. Antimicrob Agents Chemother 2013; 57:4769-81. [PMID: 23877676 DOI: 10.1128/aac.00477-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Candida tropicalis ranks between third and fourth among Candida species most commonly isolated from clinical specimens. Invasive candidiasis and candidemia are treated with amphotericin B or echinocandins as first-line therapy, with extended-spectrum triazoles as acceptable alternatives. Candida tropicalis is usually susceptible to all antifungal agents, although several azole drug-resistant clinical isolates are being reported. However, C. tropicalis resistant to amphotericin B is uncommon, and only a few strains have reliably demonstrated a high level of resistance to this agent. The resistance mechanisms operating in C. tropicalis strains isolated from clinical samples showing resistance to azole drugs alone or with amphotericin B cross-resistance were elucidated. Antifungal drug resistance was related to mutations of the azole target (Erg11p) with or without alterations of the ergosterol biosynthesis pathway. The antifungal drug resistance shown in vitro correlated very well with the results obtained in vivo using the model host Galleria mellonella. Using this panel of strains, the G. mellonella model system was validated as a simple, nonmammalian minihost model that can be used to study in vitro-in vivo correlation of antifungals in C. tropicalis. The development in C. tropicalis of antifungal drug resistance with different mechanisms during antifungal treatment has potential clinical impact and deserves specific prospective studies.
Collapse
|