51
|
Antimicrobial Treatment Options for Difficult-to-Treat Resistant Gram-Negative Bacteria Causing Cystitis, Pyelonephritis, and Prostatitis: A Narrative Review. Drugs 2022; 82:407-438. [PMID: 35286622 PMCID: PMC9057390 DOI: 10.1007/s40265-022-01676-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
Urinary tract infections, including cystitis, acute pyelonephritis, and prostatitis, are among the most common diagnoses prompting antibiotic prescribing. The rise in antimicrobial resistance over the past decades has led to the increasing challenge of urinary tract infections because of multidrug-resistant and "difficult-to-treat resistance" among Gram-negative bacteria. Recent advances in pharmacotherapy and medical microbiology are modernizing how these urinary tract infections are treated. Advances in pharmacotherapy have included not only the development and approval of novel antibiotics, such as ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, ceftolozane/tazobactam, cefiderocol, plazomicin, and glycylcyclines, but also the re-examination of the potential role of legacy antibiotics, including older aminoglycosides and tetracyclines. Recent advances in medical microbiology allow phenotypic and molecular mechanism of resistance testing, and thus antibiotic prescribing can be tailored to the mechanism of resistance in the infecting pathogen. Here, we provide a narrative review on the clinical and pre-clinical studies of drugs that can be used for difficult-to-treat resistant Gram-negative bacteria, with a particular focus on data relevant to the urinary tract. We also offer a pragmatic framework for antibiotic selection when encountering urinary tract infections due to difficult-to-treat resistant Gram-negative bacteria based on the organism and its mechanism of resistance.
Collapse
|
52
|
Del Rio A, Muresu N, Sotgiu G, Saderi L, Sechi I, Cossu A, Usai M, Palmieri A, Are BM, Deiana G, Cocuzza C, Martinelli M, Calaresu E, Piana AF. High-Risk Clone of Klebsiella pneumoniae Co-Harbouring Class A and D Carbapenemases in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052623. [PMID: 35270321 PMCID: PMC8909938 DOI: 10.3390/ijerph19052623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Background: Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is endemic globally, causing severe infections in hospitalized patients. Surveillance programs help monitor and promptly identify the emergence of new clones. We reported the rapid spread of a novel clone of K. pneumoniae co-harbouring class A and D carbapenemases in colonized patients, and the potential risk factors involved in the development of infections. Methods: Rectal swabs were used for microbiological analyses and detection of the most common carbapenemase encoding genes by real-time PCR (i.e., blaKPC, blaOXA-48, blaNDM, blaVIM, and blaIMP). All strains co-harbouring KPC and OXA-48 genes were evaluated. For each patient, the following variables were collected: age, sex, length and ward of stay, device use, and outcome. Clonality of CR-Kp was assessed by preliminary pulsed field gel electrophoresis (PFGE), followed by multi-locus sequence typing (MLST) analyses. Results: A total of 127 isolates of K. pneumoniae co-harbouring KPC and OXA-48 were collected between September 2019 and December 2020. The median age (IQR) of patients was 70 (61–77). More than 40% of patients were admitted to intensive care unit (ICU). Around 25% of patients developed an invasive infection, the majority of which were respiratory tract infections (17/31; 54.8%). ICU stay and invasive infection increased the risk of mortality (OR: 5.39, 95% CI: 2.42–12.00; OR 6.12, 95% CI: 2.55–14.69, respectively; p-value ≤ 0.001). The antibiotic susceptibility test showed a resistance profile for almost all antibiotics considered. Monoclonal origin was confirmed by PFGE and MLST showing a similar restriction pattern and belonging to ST-512. Conclusions: We report the spread and the marked antibiotic resistance profiles of K. pneumoniae strains co-producing KPC and OXA-48. Further study could clarify the roles of clinical and microbiological variables in the development of invasive infection and increasing risk of mortality, in colonized patients.
Collapse
Affiliation(s)
- Arcadia Del Rio
- Biomedical Science PhD School, Biomedical Science Department, University of Sassari, 07100 Sassari, Italy; (A.D.R.); (G.D.)
| | - Narcisa Muresu
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Correspondence: ; Tel.: +39-079-229959
| | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Illari Sechi
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| | - Andrea Cossu
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| | - Manuela Usai
- Department of Humanistic and Social Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Alessandra Palmieri
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| | - Bianca Maria Are
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| | - Giovanna Deiana
- Biomedical Science PhD School, Biomedical Science Department, University of Sassari, 07100 Sassari, Italy; (A.D.R.); (G.D.)
| | - Clementina Cocuzza
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.C.); (M.M.); (E.C.)
| | - Marianna Martinelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.C.); (M.M.); (E.C.)
| | - Enrico Calaresu
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.C.); (M.M.); (E.C.)
| | - Andrea Fausto Piana
- Hygiene Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (N.M.); (I.S.); (A.C.); (A.P.); (B.M.A.); (A.F.P.)
| |
Collapse
|
53
|
Hong Nguyen M, Shields RK, Chen L, William Pasculle A, Hao B, Cheng S, Sun J, Kline EG, Kreiswirth BN, Clancy CJ. Molecular Epidemiology, Natural History, and Long-Term Outcomes of Multidrug-Resistant Enterobacterales Colonization and Infections Among Solid Organ Transplant Recipients. Clin Infect Dis 2022; 74:395-406. [PMID: 33970222 PMCID: PMC8834656 DOI: 10.1093/cid/ciab427] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multidrug-resistant Enterobacterales (MDR-E), including carbapenem-resistant and third-generation cephalosporin-resistant Enterobacterales (CRE, CefR-E), are major pathogens following solid organ transplantation (SOT). METHODS We prospectively studied patients who underwent lung, liver, and small bowel transplant from February 2015 through March 2017. Weekly perirectal swabs (up to 100 days post-transplant) were cultured for MDR-E. Whole-genome sequencing (WGS) was performed on gastrointestinal (GI) tract-colonizing and disease-causing isolates. RESULTS Twenty-five percent (40 of 162) of patients were MDR-E GI-colonized. Klebsiella pneumoniae was the most common CRE and CefR-E. Klebsiella pneumoniae carbapenemases and CTX-M were leading causes of CR and CefR, respectively. Thirty-five percent of GI colonizers developed MDR-E infection vs 2% of noncolonizers (P < .0001). The attack rate was higher among CRE colonizers than CefR-E colonizers (53% vs 21%, P = .049). GI colonization and high body mass index were independent risk factors for MDR-E infection (P ≤ .004). Thirty-day mortality among infected patients was 6%. However, 44% of survivors developed recurrent infections; 43% of recurrences were late (285 days to 3.9 years after the initial infection). Long-term survival (median, 4.3 years post-transplant) did not differ significantly between MDR-E-infected and MDR-E-noninfected patients (71% vs 77%, P = .56). WGS phylogenetic analyses revealed that infections were caused by GI-colonizing strains and suggested unrecognized transmission of novel clonal group-258 sublineage CR-K. pneumoniae and horizontal transfer of resistance genes. CONCLUSIONS MDR-E GI colonization was common following SOT and predisposed patients to infections by colonizing strains. MDR-E infections were associated with low short- and long-term mortality, but recurrences were frequent and often occurred years after initial infections. Findings provide support for MDR-E surveillance in our SOT program.
Collapse
Affiliation(s)
- M Hong Nguyen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Transplant Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - A William Pasculle
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Binghua Hao
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Shaoji Cheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan Sun
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ellen G Kline
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Barry N Kreiswirth
- Division of Infectious Diseases, Transplant Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- XDR Pathogen Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Department of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
54
|
Impact of ceftazidime-avibactam treatment in the emergence of novel KPC variants in ST307- Klebsiella pneumoniae high-risk clone and consequences for their routine detection. J Clin Microbiol 2022; 60:e0224521. [PMID: 35107303 DOI: 10.1128/jcm.02245-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emergence of Klebsiella pneumoniae (Kp) isolates carrying novel blaKPC variants conferring ceftazidime-avibactam (CAZ/AVI) resistance is being increasingly reported. We evaluated the accuracy of phenotypic methods commonly used in routine clinical laboratories in the detection of novel KPC enzymes. Additionally, we characterized by WGS the KPC-ST307-Kp isolates recovered in our hospital before and after CAZ/AVI therapy. Rectal colonization or infection by carbapenem-resistant KPC-3-Kp isolates (imipenem MIC 16 mg/L, meropenem MIC 8->16 mg/L) and CAZ/AVI-susceptible (CAZ/AVI MIC 1-2 mg/L) were first detected in three ICU patients admitted between March-2020 and July-2020. KPC-Kp isolates with increased CAZ/AVI MICs (8-32 mg/L) and carbapenem susceptibility (imipenem and meropenem MIC <1 mg/L) were recovered within 6-24 days after CAZ/AVI treatment. WGS confirmed that all KPC-Kp isolates belonged to the ST307 high-risk clone and carried identical antimicrobial resistance genes and virulence factors. The presence of the novel blaKPC-46, blaKPC-66 and blaKPC-92 genes was confirmed in the Kp isolates with increased CAZ/AVI MICs and restored carbapenem activity. KPC production was confirmed by immunochromatography, the eazyplex®-Superbug-CRE system and the Xpert® Carba-R assay in all KPC-Kp isolates, but not in any isolate using chromogenic agar plates for carbapenemase producers (ChromID-CARBA), the KPC/MBL/OXA-48 Confirm Kit and the β-CARBA test. Nevertheless, all grew in chromogenic agar plates for ESBL producers (ChromID-ESBL). We report the failure of the most common phenotypic methods used for the detection of novel KPC carbapenemases but not of rapid molecular or immunochromatography assays thus highlighting their relevance in microbiology laboratories.
Collapse
|
55
|
Mendes G, Ramalho JF, Bruschy-Fonseca A, Lito L, Duarte A, Melo-Cristino J, Caneiras C. First Description of Ceftazidime/Avibactam Resistance in an ST13 KPC-70-Producing Klebsiella pneumoniae Strain from Portugal. Antibiotics (Basel) 2022; 11:antibiotics11020167. [PMID: 35203770 PMCID: PMC8868070 DOI: 10.3390/antibiotics11020167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
The combination of ceftazidime/avibactam (CZA) is a novel β-lactam/β-lactamase inhibitor with activity against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales. Emerging cases caused by CZA-resistant strains that produce variants of KPC genes have already been reported worldwide. However, to the best of our knowledge, no CZA-resistant strains were reported in Portugal. In September 2019, a K. pneumoniae CZA-resistant strain was collected from ascitic fluid at a surgery ward of a tertiary University Hospital Center in Lisboa, Portugal. The strain was resistant to ceftazidime/avibactam, as well as to ceftazidime, cefoxitin, gentamicin, amoxicillin/clavulanic acid, and ertapenem, being susceptible to imipenem and tigecycline. A hypermucoviscosity phenotype was confirmed by string test. Whole-genome sequencing (WGS) analysis revealed the presence of an ST13 KPC70-producing K. pneumoniae, a KPC-3 variant, differing in two amino-acid substitutions (D179Y and T263A). The D179Y mutation in the KPC Ω-loop region is the most common amino-acid substitution in KPC-2 and KPC-3, further leading to CZA resistance. The second mutation causes a KPC-70 variant in which threonine replaces alanine (T263A). The CZA-resistant strain showed the capsular locus KL3 and antigen locus O1v2. Other important virulence factors were identified: fimbrial adhesins type 1 and type 3, as well as the cluster of iron uptake systems aerobactin, enterobactin, salmochelin, and yersiniabactin included in integrative conjugative element 10 (ICEKp10) with the genotoxin colibactin cluster. Herein, we report the molecular characterization of the first hypervirulent CZA-resistant ST13 KPC-70-producing K. pneumoniae strain in Portugal. The emergence of CZA-resistant strains might pose a serious threat to public health and suggests an urgent need for enhanced clinical awareness and epidemiologic surveillance.
Collapse
Affiliation(s)
- Gabriel Mendes
- Microbiology Research Laboratory on Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa (ULisboa), 1649-028 Lisboa, Portugal; (G.M.); (J.F.R.)
| | - João F. Ramalho
- Microbiology Research Laboratory on Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa (ULisboa), 1649-028 Lisboa, Portugal; (G.M.); (J.F.R.)
| | - Ana Bruschy-Fonseca
- Microbiology Laboratory, Clinical Pathology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisboa, Portugal; (A.B.-F.); (L.L.); (J.M.-C.)
| | - Luís Lito
- Microbiology Laboratory, Clinical Pathology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisboa, Portugal; (A.B.-F.); (L.L.); (J.M.-C.)
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa (ULisboa), 1649-033 Lisboa, Portugal;
- Egas Moniz Interdisciplinary Research Center, Egas Moniz University Institute, 2829-511 Monte da Caparica, Portugal
| | - José Melo-Cristino
- Microbiology Laboratory, Clinical Pathology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisboa, Portugal; (A.B.-F.); (L.L.); (J.M.-C.)
- Institute of Microbiology, Faculty of Medicine, Universidade de Lisboa (ULisboa), 1649-028 Lisboa, Portugal
| | - Cátia Caneiras
- Microbiology Research Laboratory on Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Faculty of Medicine, Universidade de Lisboa (ULisboa), 1649-028 Lisboa, Portugal; (G.M.); (J.F.R.)
- Faculty of Pharmacy, Universidade de Lisboa (ULisboa), 1649-033 Lisboa, Portugal;
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Universidade de Lisboa (ULisboa), 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
56
|
Arcari G, Oliva A, Sacco F, Di Lella FM, Raponi G, Tomolillo D, Curtolo A, Venditti M, Carattoli A. Interplay between Klebsiella pneumoniae producing KPC-31 and KPC-3 under treatment with high dosage meropenem: a case report. Eur J Clin Microbiol Infect Dis 2022; 41:495-500. [PMID: 34988712 PMCID: PMC8731190 DOI: 10.1007/s10096-021-04388-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022]
Abstract
The objective was to study ceftazidime-avibactam resistant and susceptible Klebsiella pneumoniae isolated from a patient admitted to the Policlinico Umberto I of Rome for SARS-CoV2. Data on the evolution of patient's conditions, antimicrobial therapies, and microbiological data were collected. Whole-genome sequencing performed by Illumina and Nanopore sequencing methods were used to type the strains. During the hospitalization, a SARS-CoV2-infected patient was colonized by a KPC-producing K. pneumoniae strain and empirically treated with ceftazidime-avibactam (CZA) when presenting spiking fever symptoms. Successively, ST2502 CZA-resistant strain producing the KPC-31 variant gave a pulmonary infection to the patient. The infection was treated with high doses of meropenem. The KPC-31-producing strain disappeared but the patient remained colonized by a KPC-3-producing K. pneumoniae strain. An interplay between highly conserved KPC-31- and KPC-3-producing ST2502 strains occurred in the SARS-CoV2 patient during the hospitalization, selected by CZA and carbapenem treatments, respectively.
Collapse
Affiliation(s)
- Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Sacco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Microbiology and Virology Unit, University Hospital Policlinico Umberto I, Rome, Italy
| | | | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Microbiology and Virology Unit, University Hospital Policlinico Umberto I, Rome, Italy
| | - Dario Tomolillo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ambrogio Curtolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
57
|
Xiong L, Wang X, Wang Y, Yu W, Zhou Y, Chi X, Xiao T, Xiao Y. Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam. WIREs Mech Dis 2022; 14:e1571. [PMID: 35891616 PMCID: PMC9788277 DOI: 10.1002/wsbm.1571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/30/2022]
Abstract
Ceftazidime/avibactam (CAZ/AVI), a combination of ceftazidime and a novel β-lactamase inhibitor (avibactam) that has been approved by the U.S. Food and Drug Administration, the European Union, and the National Regulatory Administration in China. CAZ/AVI is used mainly to treat complicated urinary tract infections and complicated intra-abdominal infections in adults, as well as to treat patients infected with Carbapenem-resistant Enterobacteriaceae (CRE) susceptible to CAZ/AVI. However, increased clinical application of CAZ/AVI has resulted in the development of resistant strains. Mechanisms of resistance in most of these strains have been attributed to blaKPC mutations, which lead to amino acid substitutions in β-lactamase and changes in gene expression. Resistance to CAZ/AVI is also associated with reduced expression and loss of outer membrane proteins or overexpression of efflux pumps. In this review, the prevalence of CAZ/AVI-resistance bacteria, resistance mechanisms, and selection of detection methods of CAZ/AVI are demonstrated, aiming to provide scientific evidence for the clinical prevention and treatment of CAZ/AVI resistant strains, and provide guidance for the development of new drugs. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Luying Xiong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Xueting Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yuan Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Wei Yu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yanzi Zhou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Xiaohui Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Tingting Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina,Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
58
|
Tumbarello M, Raffaelli F, Cascio A, Falcone M, Signorini L, Mussini C, De Rosa FG, Losito AR, De Pascale G, Pascale R, Giacobbe DR, Oliva A, Farese A, Morelli P, Tiseo G, Meschiari M, Del Giacomo P, Montagnani F, Fabbiani M, Vargas J, Spanu T, Bassetti M, Venditti M, Viale P. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac022. [PMID: 35265842 PMCID: PMC8900192 DOI: 10.1093/jacamr/dlac022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives To explore the real-life performance of meropenem/vaborbactam for treating serious KPC-producing Klebsiella pneumoniae infections, including those resistant to ceftazidime/avibactam. Methods A retrospective observational cohort study was conducted in 12 Italian hospitals. Enrolled patients had K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp) infections (59.5% of which were ceftazidime/avibactam resistant). Patients who received ≥72 h of meropenem/vaborbactam therapy (with or without other antimicrobials) in a compassionate-use setting were included. Results The 37 infections (all hospital-acquired) were mainly bacteraemic (BSIs, n = 23) or lower respiratory tract infections (LRTIs, n = 10). Clinical cure was achieved in 28 (75.6%) cases and microbiologically confirmed in all 25 with follow-up cultures. Three (10.7%) of the 28 clinical cures (all BSIs, 2/3 microbiologically confirmed) were followed by in-hospital recurrences after meropenem/vaborbactam was discontinued (median interval: 18 days). All three recurrences were susceptible to meropenem/vaborbactam and successfully managed with meropenem/vaborbactam combined with colistin or fosfomycin. Nine patients (24.3%) (all with BSIs or LRTIs) died in hospital with persistent signs of infection. Most were aged over 60 years, with high comorbidity burdens and INCREMENT scores ≥8. Only one had received meropenem/vaborbactam monotherapy. Six began meropenem/vaborbactam therapy >48 h after infection onset. Outcomes were unrelated to the isolate’s ceftazidime/avibactam susceptibility status. The single adverse event observed consisted of severe leukopenia with thrombocytopenia. Conclusions With the well-known limitations of real-life retrospective studies, our results support previous findings indicating that meropenem/vaborbactam therapy will be a safe, effective tool for managing serious KPC-Kp infections, including the increasing proportion displaying resistance to ceftazidime/avibactam.
Collapse
Affiliation(s)
- Mario Tumbarello
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- UOC Malattie Infettive e Tropicali, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
- Corresponding author. E-mail: ;
| | - Francesca Raffaelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Cascio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127, Palermo, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Liana Signorini
- UOC Malattie Infettive, Spedali Civili di Brescia, Brescia, Italy
| | - Cristina Mussini
- Clinica delle Malattie Infettive, Università di Modena e Reggio Emilia, Modena, Italy
| | | | - Angela Raffaella Losito
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
- Dipartimento di Scienze dell’emergenze, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Renato Pascale
- Dipartimento scienze mediche e chirurgiche, Università di Bologna/IRCCS Policlinico Sant’Orsola, Bologna, Italy
| | - Daniele Roberto Giacobbe
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università di Genova, Genova, Italy
| | - Alessandra Oliva
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Roma, Italy
| | - Alberto Farese
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Paola Morelli
- Infectious Diseases Unit, Hospital Health Direction, Humanitas Clinical and Research Center – IRCCS, Rozzano, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Giusy Tiseo
- Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marianna Meschiari
- Clinica delle Malattie Infettive, Università di Modena e Reggio Emilia, Modena, Italy
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Francesca Montagnani
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- UOC Malattie Infettive e Tropicali, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Massimiliano Fabbiani
- UOC Malattie Infettive e Tropicali, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Joel Vargas
- Dipartimento di Scienze dell’emergenze, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Teresa Spanu
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Dipartimento di Scienze dell’emergenze, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Matteo Bassetti
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università di Genova, Genova, Italy
| | - Mario Venditti
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Roma, Italy
| | - Pierluigi Viale
- Dipartimento scienze mediche e chirurgiche, Università di Bologna/IRCCS Policlinico Sant’Orsola, Bologna, Italy
| |
Collapse
|
59
|
Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae subsp. pneumoniae Isolates in a Tertiary Italian Hospital: Identification of a New Mutation of the Carbapenemase Type 3 (KPC-3) Gene Conferring Ceftazidime/Avibactam Resistance. Microorganisms 2021; 9:microorganisms9112356. [PMID: 34835481 PMCID: PMC8624296 DOI: 10.3390/microorganisms9112356] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022] Open
Abstract
Several Klebsiella pneumoniae carpabenemase (KPC) gene mutations are associated with ceftazidime/avibactam (CAZ-AVI) resistance. Here, we describe four Klebsiella pneumoniae subsp. pneumoniae CAZ-AVI-resistant clinical isolates, collected at the University Hospital of Tor Vergata, Rome, Italy, from July 2019 to February 2020. These resistant strains were characterized as KPC-3, having the transition from cytosine to thymine (CAC-TAC) at nucleotide position 814, with histidine that replaces tyrosine (H272Y). In addition, two different types of KPC gene mutations were detected. The first one, common to three strains, was the D179Y (G532T), associated with CAZ-AVI resistance. The second mutation, found only in one strain, is a new mutation of the KPC-3 gene: a transversion from thymine to adenine (CTG-CAG) at nucleotide position 553. This mutation causes a KPC variant in which glutamine replaces leucine (Q168L). None of the isolates were detected by a rapid immunochromatographic assay for detection of carbapenemase (NG Biotech, Guipry, France) and were unable to grow on a selective chromogenic medium Carba SMART (bioMerieux, Firenze, Italy). Thus, they escaped common tests used for the prompt detection of Klebsiella pneumoniae KPC-producing.
Collapse
|
60
|
Cavallini S, Unali I, Bertoncelli A, Cecchetto R, Mazzariol A. Ceftazidime/avibactam resistance is associated with different mechanisms in KPC-producing Klebsiella pneumoniae strains. Acta Microbiol Immunol Hung 2021:2021.01626. [PMID: 34747363 DOI: 10.1556/030.2021.01626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 01/13/2023]
Abstract
This study focused on Klebsiella pneumoniae isolates that were resistant or had low susceptibility to a combination of ceftazidime/avibactam. We aimed to investigate the mechanisms underlying this resistance. A total of 24 multi-drug resistant isolates of K. pneumoniae were included in the study. The phenotypic determination of carbapenemase presence was based on the CARBA NP test. NG-Test CARBA 5 was also performed, and it showed KPC production in 22 out 24 strains. The molecular characterisation of blaKPC carbapenemase gene, ESBL genes (blaCTX-M, blaTEM, and blaSHV) and porin genes ompK35/36 was performed using the PCR. Finally, ILLUMINA sequencing was performed to determine the presence of genetic mutations.Various types of mutations in the KPC sequence, leading to ceftazidime/avibactam resistance, were detected in the analysed resistant strains. We observed that KPC-31 harboured the D179Y mutation, the deletion of the amino acids 167-168, and the mutation of T243M associated with ceftazidime/avibactam resistance. The isolates that did not present carbapenemase alterations were found to have other mechanisms such as mutations in the porins. The mutations both on the KPC-3 enzyme and in the porins confirmed, that diverse mechanisms confer resistance to ceftazidime/avibactam in K. pneumoniae.
Collapse
Affiliation(s)
- Sara Cavallini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ilaria Unali
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Bertoncelli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
61
|
In-Vitro Selection of Ceftazidime/Avibactam Resistance in OXA-48-Like-Expressing Klebsiella pneumoniae: In-Vitro and In-Vivo Fitness, Genetic Basis and Activities of β-Lactam Plus Novel β-Lactamase Inhibitor or β-Lactam Enhancer Combinations. Antibiotics (Basel) 2021; 10:antibiotics10111318. [PMID: 34827256 PMCID: PMC8614831 DOI: 10.3390/antibiotics10111318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ceftazidime/avibactam uniquely demonstrates activity against both KPC and OXA-48-like carbapenemase-expressing Enterobacterales. Clinical resistance to ceftazidime/avibactam in KPC-producers was foreseen in in-vitro resistance studies. Herein, we assessed the resistance selection propensity of ceftazidime/avibactam in K. pneumoniae expressing OXA-48-like β-lactamases (n = 10), employing serial transfer approach. Ceftazidime/avibactam MICs (0.25–4 mg/L) increased to 16–256 mg/L after 15 daily-sequential transfers. The whole genome sequence analysis of terminal mutants showed modifications in proteins linked to efflux (AcrB/AcrD/EmrA/Mdt), outer membrane permeability (OmpK36) and/or stress response pathways (CpxA/EnvZ/RpoE). In-vitro growth properties of all the ceftazidime/avibactam-selected mutants were comparable to their respective parents and they retained the ability to cause pulmonary infection in neutropenic mice. Against these mutants, we explored the activities of various combinations of β-lactams (ceftazidime or cefepime) with structurally diverse β-lactamase inhibitors or a β-lactam enhancer, zidebactam. Zidebactam, in combination with either cefepime or ceftazidime, overcame ceftazidime/avibactam resistance (MIC range 0.5–8 mg/L), while cefepime/avibactam was the second best (MIC: 0.5–16 mg/L) in yielding lower MICs. The present work revealed the possibility of ceftazidime/avibactam resistance in OXA-48-like K. pneumoniae through mutations in proteins involved in efflux and/or porins without concomitant fitness cost mandating astute monitoring of ceftazidime/avibactam resistance among OXA-48 genotypes.
Collapse
|
62
|
Wang C, Zhao J, Liu Z, Sun A, Sun L, Li B, Lu B, Liu Y, Cao B. In vivo Selection of Imipenem Resistance Among Ceftazidime-Avibactam-Resistant, Imipenem-Susceptible Klebsiella pneumoniae Isolate With KPC-33 Carbapenemase. Front Microbiol 2021; 12:727946. [PMID: 34630354 PMCID: PMC8496447 DOI: 10.3389/fmicb.2021.727946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
We describe in vivo evolution of carbapenem and ceftazidime-avibactam resistance by analyzing four longitudinal Klebsiella pneumoniae clinical isolates from a patient with pneumonia following antimicrobial treatment. The patient had fever, cough associated with expectoration, and new infiltration was found on the chest CT. Antimicrobial susceptibility was determined, and whole genome sequencing (WGS) was performed to investigate its dynamic change of resistance phenotype. Population analysis profile was performed to investigate the population of Klebsiella pneumoniae. The infection started with a KPC-2-producing K. pneumoniae (ZRKP01, ceftazidime-avibactam-S/carbapenem-R). Then, after ceftazidime-avibactam treatment, the strain switched to D179Y mutant that is KPC-33 (ZRKP02, ceftazidime-avibactam-R/carbapenem-S), which restored carbapenem susceptibility. However, the restored carbapenem susceptibility in vivo was not stable and the subsequent use of imipenem against KPC-33-producing K. pneumoniae infection resulted in a reversion of KPC-2 producers (ZRKP03 and ZRKP04, ceftazidime-avibactam-S/carbapenem-R). Genetic analysis demonstrated that all four K. pneumoniae isolates belonged to sequence type 11and had identical capsular polysaccharide (KL47), identical porin genes, and same plasmid replicon types. Phylogenetic analysis indicated that four K. pneumoniae isolates showed a high degree of relatedness. Single nucleotide polymorphisms analysis indicated that the number of mutations observed in the KPC-33 isolate was more than in the wild-type KPC-2 isolates and the four KPC-Kp isolates evolved from a longitudinal evolution of K. pneumoniae harboring blaKPC-2 gene. This is the first report to observe the in vivo evolution of wild-type KPC-2 to KPC-33 and then the reversion to its original wild-type KPC-2. Through WGS, we demonstrated the role of selective pressure of antibiotic in the mutation and reversion of blaKPC genes, which leading to the dynamic change of KPC enzymes and the dynamic emergence of resistance to ceftazidime-avibactam and carbapenems. Statement: Recently, studies reported the emergence of ceftazidime-avibactam-resistant strains. The KPC mutations mediating ceftazidime-avibactam resistance are generally associated with the restoration of carbapenem susceptibility. However, clinical significance of this observation is unclear. In this manuscript, we demonstrate the role of selective pressure of antibiotic in the mutation and reversion of blaKPC genes, which leading to the dynamic change of KPC enzymes and the dynamic emergence of resistance to ceftazidime-avibactam and carbapenems. To the best of our knowledge, this is the first report to observe the in vivo evolution of wild-type KPC-2 to KPC-33 and then the reversion to its original wild-type KPC-2. It should be noted that understanding the clinical significance of this observation is of critical importance, and reversion to carbapenem susceptibility would not imply a potential role for carbapenems monotherapy. We hope our study will draw attention to clinicians, so that this agent can be used most effectively for the longest period of time.
Collapse
Affiliation(s)
- Chunlei Wang
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Centre for Respiratory Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Chinese Academy of Medical Science, Clinical Research Center of Respiratory Diseases, Institute of Respiratory Medicine, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Centre for Respiratory Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Chinese Academy of Medical Science, Clinical Research Center of Respiratory Diseases, Institute of Respiratory Medicine, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Zhibo Liu
- Centre for Respiratory Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Chinese Academy of Medical Science, Clinical Research Center of Respiratory Diseases, Institute of Respiratory Medicine, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Aihua Sun
- Centre for Respiratory Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Chinese Academy of Medical Science, Clinical Research Center of Respiratory Diseases, Institute of Respiratory Medicine, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Lingxiao Sun
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Centre for Respiratory Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Chinese Academy of Medical Science, Clinical Research Center of Respiratory Diseases, Institute of Respiratory Medicine, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Binbin Li
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Centre for Respiratory Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Chinese Academy of Medical Science, Clinical Research Center of Respiratory Diseases, Institute of Respiratory Medicine, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Centre for Respiratory Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Chinese Academy of Medical Science, Clinical Research Center of Respiratory Diseases, Institute of Respiratory Medicine, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Yingmei Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Centre for Respiratory Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Chinese Academy of Medical Science, Clinical Research Center of Respiratory Diseases, Institute of Respiratory Medicine, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Bin Cao
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Centre for Respiratory Diseases, China-Japan Friendship Hospital, Department of Pulmonary and Critical Care Medicine, Beijing, China.,Chinese Academy of Medical Science, Clinical Research Center of Respiratory Diseases, Institute of Respiratory Medicine, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| |
Collapse
|
63
|
Guo Y, Liu N, Lin Z, Ba X, Zhuo C, Li F, Wang J, Li Y, Yao L, Liu B, Xiao S, Jiang Y, Zhuo C. Mutations in porin LamB contribute to ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae. Emerg Microbes Infect 2021; 10:2042-2051. [PMID: 34551677 PMCID: PMC8567916 DOI: 10.1080/22221751.2021.1984182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ceftazidime-avibactam (CAZ-AVI) shows promising activity against carbapenem-resistant Klebsiella pneumoniae (CRKP), however, CAZ-AVI resistance have emerged recently. Mutations in KPCs, porins OmpK35 and/or OmpK36, and PBPs are known to contribute to the resistance to CAZ-AVI in CRKP. To identify novel CAZ-AVI resistance mechanism, we generated 10 CAZ-AVI-resistant strains from 14 CAZ-AVI susceptible KPC-producing K. pneumoniae (KPC-Kp) strains through in vitro multipassage resistance selection using low concentrations of CAZ-AVI. Comparative genomic analysis for the original and derived mutants identified CAZ-AVI resistance-associated mutations in KPCs, PBP3 (encoded by ftsI), and LamB, an outer membrane maltoporin. CAZ-AVI susceptible KPC-Kp strains became resistant when complemented with mutated blaKPC genes. Complementation experiments also showed that a plasmid borne copy of wild-type lamB or ftsI gene reduced the MIC value of CAZ-AVI in the induced resistant strains. In addition, blaKPC expression level increased in four of the six CAZ-AVI-resistant strains without KPC mutations, indicating a probable association between increased blaKPC expression and increased resistance in these strains. In conclusion, we here identified a novel mechanism of CAZ-AVI resistance associated with mutations in porin LamB in KPC-Kp.
Collapse
Affiliation(s)
- Yingyi Guo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ningjing Liu
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhiwei Lin
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Guangdong, People's Republic of China
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Chuyue Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Feifeng Li
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiong Wang
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yitan Li
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Guangdong, People's Republic of China
| | - Likang Yao
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Baomo Liu
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shunian Xiao
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ying Jiang
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chao Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
64
|
Olehnovics E, Yin J, Pérez A, De Fabritiis G, Bonomo RA, Bhowmik D, Haider S. The Role of Hydrophobic Nodes in the Dynamics of Class A β-Lactamases. Front Microbiol 2021; 12:720991. [PMID: 34621251 PMCID: PMC8490755 DOI: 10.3389/fmicb.2021.720991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Class A β-lactamases are known for being able to rapidly gain broad spectrum catalytic efficiency against most β-lactamase inhibitor combinations as a result of elusively minor point mutations. The evolution in class A β-lactamases occurs through optimisation of their dynamic phenotypes at different timescales. At long-timescales, certain conformations are more catalytically permissive than others while at the short timescales, fine-grained optimisation of free energy barriers can improve efficiency in ligand processing by the active site. Free energy barriers, which define all coordinated movements, depend on the flexibility of the secondary structural elements. The most highly conserved residues in class A β-lactamases are hydrophobic nodes that stabilize the core. To assess how the stable hydrophobic core is linked to the structural dynamics of the active site, we carried out adaptively sampled molecular dynamics (MD) simulations in four representative class A β-lactamases (KPC-2, SME-1, TEM-1, and SHV-1). Using Markov State Models (MSM) and unsupervised deep learning, we show that the dynamics of the hydrophobic nodes is used as a metastable relay of kinetic information within the core and is coupled with the catalytically permissive conformation of the active site environment. Our results collectively demonstrate that the class A enzymes described here, share several important dynamic similarities and the hydrophobic nodes comprise of an informative set of dynamic variables in representative class A β-lactamases.
Collapse
Affiliation(s)
- Edgar Olehnovics
- Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Junqi Yin
- Oak Ridge National Laboratory, National Center for Computational Sciences, Oak Ridge, TN, United States
| | - Adrià Pérez
- Computational Science Laboratory, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gianni De Fabritiis
- Computational Science Laboratory, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
- Veterans Affairs Northeast Ohio Healthcare System, Research Service, Cleveland, OH, United States
| | - Debsindhu Bhowmik
- Computer Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shozeb Haider
- Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| |
Collapse
|
65
|
Evaluation of SuperCAZ/AVI® Medium for Screening Ceftazidime-avibactam Resistant Gram-negative Isolates. Diagn Microbiol Infect Dis 2021; 101:115475. [PMID: 34419742 DOI: 10.1016/j.diagmicrobio.2021.115475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
The industrial version of SuperCAZ/AVI® medium developed for screening CAZ/AVI resistant Gram-negative isolates has been evaluated here using a collection of 87 well-characterized clinical isolates of worldwide origin. In addition, testing was performed by spiking stools with a series of resistant and susceptible isolates. In those conditions, the SuperCAZ/AVI® medium exhibited a sensitivity and specificity of 100 %, down to the lower limit of detection of 101 to 102 CFU/ml. The SuperCAZ/AVI® medium is a sensitive and specific screening medium for detection of CZA-resistant bacteria regardless of their resistance mechanisms.
Collapse
|
66
|
In Vivo Evolution of GES β-Lactamases Driven by Ceftazidime/Avibactam Treatment of Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother 2021; 65:e0098621. [PMID: 34125593 DOI: 10.1128/aac.00986-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underlying an in vivo switch in the resistance phenotype of P. aeruginosa after ceftazidime-avibactam treatment was investigated. The initial isolate (a blood culture) was resistant to meropenem but remained susceptible to antipseudomonal cephalosporins and combinations with β-lactamase inhibitors. One week after ceftazidime-avibactam therapy, a subsequent isolate (a rectal swab) recovered from the same patient showed the opposite phenotype. Whole-genome sequence analysis revealed a single SNP difference between both (ST235) isolates, leading to a P162S change in blaGES-5, creating blaGES-15. Thus, blaGES-1, blaGES-5, and blaGES-15 were cloned and expressed in the wild-type strain PAO1. Susceptibility profiles confirmed the P162S substitution reverted the carbapenemase phenotype determined by the G170S change of GES-5 back into the ESBL phenotype of GES-1.
Collapse
|
67
|
KPC-Mediated Resistance to Ceftazidime-Avibactam and Collateral Effects in Klebsiella pneumoniae. Antimicrob Agents Chemother 2021; 65:e0089021. [PMID: 34228551 DOI: 10.1128/aac.00890-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Enterobacterales, such as Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae, represent a major threat to public health due to their rapid spread. Novel drug combinations such as ceftazidime-avibactam (CZA), combining a broad-spectrum cephalosporin along with a broad-spectrum β-lactamase inhibitor, have recently been introduced and have been shown to exhibit excellent activity toward multidrug-resistant KPC-producing Enterobacterales strains. However, CZA-resistant K. pneumoniae isolates are now being increasingly reported, mostly corresponding to producers of KPC variants. In this study, we evaluated in vitro the nature of the mutations in the KPC-2 and KPC-3 β-lactamase sequences (the most frequent KPC-type enzymes) that lead to CZA resistance and the subsequent effects of these mutations on susceptibility to other β-lactam antibiotics. Single-step in vitro selection assays were conducted, resulting in the identification of a series of mutations in the KPC sequence which conferred the ability of those mutated enzymes to confer resistance to CZA. Hence, 16 KPC-2 variants and 10 KPC-3 variants were obtained. Production of the KPC variants in an Escherichia coli recombinant strain resulted in a concomitant increased susceptibility to broad-spectrum cephalosporins and carbapenems, with the exceptions of ceftazidime and piperacillin-tazobactam, compared to wild-type KPC enzymes. Enzymatic assays showed that all of the KPC variants identified exhibited an increased affinity toward ceftazidime and a slightly decreased sensitivity to avibactam, sustaining their impact on CZA resistance. However, their respective carbapenemase activities were concurrently negatively impacted.
Collapse
|
68
|
Evolutionary Trajectories toward Ceftazidime-Avibactam Resistance in Klebsiella pneumoniae Clinical Isolates. Antimicrob Agents Chemother 2021; 65:e0057421. [PMID: 34339281 DOI: 10.1128/aac.00574-21] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From January 2019 to April 2020, 32 KPC-producing, ceftazidime-avibactam (CZA) resistant Klebsiella pneumoniae strains were isolated in a university hospital in Rome, Italy. These strains belonged to the ST512, ST101 and ST307 high-risk clones. Nine different CZA-resistant KPC-3 protein variants were identified, five of them never previously reported (KPC-66 to KPC-70). Among them, KPC-31, KPC-39, KPC-49, KPC-66, KP-68, KPC-69 and KPC-70 showed amino acid substitutions, insertions and deletions in the Ω loop of the protein. KPC-29 has the duplication, while the novel KPC-67 has the triplication of the KDD triplet in the 270-loop of the protein. Genomics performed on contemporary resistant and susceptible clones underlined that those novel mutations emerged in blaKPC-3 genes located on conserved plasmids: in ST512, all blaKPC-3 mutant genes were located in pKpQIL plasmids, while the three novel blaKPC-3 mutants identified in ST101 were on FIIk-FIA(HI1)-R plasmids. Selection also promoted multiplication of the carbapenemase gene copy number by transposition, recombination, and fusion of resident plasmids. When expressed in Escherichia coli recipient cells cloned in the high-copy number pTOPO vector, the Ω loop mutated variants showed CZA-resistant phenotype associated with susceptibility to carbapenems, while KPC variants with insertions in the 270-loop showed residual activity on carbapenems. The investigation of CZA-resistance mechanisms offered the unique opportunity to study vertical, horizontal, and oblique evolutionary trajectories of K. pneumoniae high-risk clones.
Collapse
|
69
|
Time-Kill Evaluation of Antibiotic Combinations Containing Ceftazidime-Avibactam against Extensively Drug-Resistant Pseudomonas aeruginosa and Their Potential Role against Ceftazidime-Avibactam-Resistant Isolates. Microbiol Spectr 2021; 9:e0058521. [PMID: 34319141 PMCID: PMC8552783 DOI: 10.1128/spectrum.00585-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ceftazidime-avibactam (CZA) has emerged as a promising solution to the lack of new antibiotics against Pseudomonas aeruginosa infections. Data from in vitro assays of CZA combinations, however, are scarce. The objective of our study was to perform a time-kill analysis of the effectiveness of CZA alone and in combination with other antibiotics against a collection of extensively drug-resistant (XDR) P. aeruginosa isolates. Twenty-one previously characterized representative XDR P. aeruginosa isolates were selected. Antibiotic susceptibility was tested by broth microdilution, and results were interpreted using CLSI criteria. The time-kill experiments were performed in duplicate for each isolate. Antibiotics were tested at clinically achievable free-drug concentrations. Different treatment options, including CZA alone and combined with amikacin, aztreonam, meropenem, and colistin, were evaluated to identify the most effective combinations. Seven isolates were resistant to CZA (MIC ≥ 16/4 mg/liter), including four metallo-β-lactamase (MBL)-carrying isolates and two class A carbapenemases. Five of them were resistant or intermediate to aztreonam (MIC ≥ 16 mg/liter). Three isolates were resistant to amikacin (MIC ≥ 64 mg/liter) and one to colistin (MIC ≥ 4 mg/liter). CZA monotherapy had a bactericidal effect in 100% (14/14) of the CZA-susceptible isolates. Combination therapies achieved a greater overall reduction in bacterial load than monotherapy for the CZA-resistant isolates. CZA plus colistin was additive or synergistic in 100% (7/7) of the CZA-resistant isolates, while CZA plus amikacin and CZA plus aztreonam were additive or synergistic in 85%. CZA combined with colistin, amikacin, or aztreonam was more effective than monotherapy against XDR P. aeruginosa isolates. A CZA combination could be useful for treating XDR P. aeruginosa infections, including those caused by CZA-resistant isolates. IMPORTANCE The emergence of resistance to antibiotics is a serious public health problem worldwide and can be a cause of mortality. For this reason, antibiotic treatment is compromised, and we have few therapeutic options to treat infections. The main goal of our study is to search for new treatment options for infections caused by difficult-to-treat resistant germs. Pseudomonas aeruginosa is a Gram-negative bacterium distributed throughout the world with the ability to become resistant to most available antibiotics. Ceftazidime-avibactam (CZA) emerged as a promising solution to the lack of new antibiotics against infections caused by P. aeruginosa strains. This study intended to analyze the effect of CZA alone or in combination with other available antibiotics against P. aeruginosa strains. The combination of CZA with other antibiotics could be more effective than monotherapy against extensively drug-resistant P. aeruginosa strains.
Collapse
|
70
|
McCreary EK, Heil EL, Tamma PD. New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrob Agents Chemother 2021; 65:e0217120. [PMID: 34031052 PMCID: PMC8373209 DOI: 10.1128/aac.02171-20] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial resistance to carbapenem agents has reached alarming levels. Accordingly, collaborative efforts between national and international organizations and the pharmaceutical industry have led to an impressive expansion of commercially available β-lactam agents in recent years. No available agent comes close to the broad range of activity afforded by cefiderocol, a novel siderophore-cephalosporin conjugate. The novelty of and need for cefiderocol are clear, but available clinical data are conflicting, leaving infectious diseases specialists puzzled as to when to prescribe this agent in clinical practice. After a brief overview of cefiderocol pharmacokinetics and pharmacodynamics, safety data, cefiderocol susceptibility testing, and putative mechanisms of cefiderocol resistance, this review focuses on determining cefiderocol's role in the management of specific pathogens, including carbapenem-resistant Acinetobacter baumannii complex, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, and less commonly identified glucose-nonfermenting organisms such as Stenotrophomonas maltophilia, Burkholderia species, and Achromobacter species. Available preclinical, clinical trial, and postmarketing data are summarized for each organism, and each section concludes with our opinions on where to position cefiderocol as a clinical therapeutic.
Collapse
Affiliation(s)
- Erin K. McCreary
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily L. Heil
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Pranita D. Tamma
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Baltimore, Maryland, USA
| |
Collapse
|
71
|
Vázquez-Ucha JC, Seoane-Estévez A, Rodiño-Janeiro BK, González-Bardanca M, Conde-Pérez K, Martínez-Guitián M, Alvarez-Fraga L, Arca-Suárez J, Lasarte-Monterrubio C, Gut M, Gut I, Álvarez-Tejado M, Oviaño M, Beceiro A, Bou G. Activity of imipenem/relebactam against a Spanish nationwide collection of carbapenemase-producing Enterobacterales. J Antimicrob Chemother 2021; 76:1498-1510. [PMID: 33677560 DOI: 10.1093/jac/dkab043] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Imipenem/relebactam is a novel carbapenem/β-lactamase inhibitor combination, developed to act against carbapenemase-producing Enterobacterales (CPE). OBJECTIVES To assess the in vitro activity of imipenem/relebactam against a Spanish nationwide collection of CPE by testing the susceptibility of these isolates to 16 widely used antimicrobials and to determine the underlying β-lactam resistance mechanisms involved and the molecular epidemiology of carbapenemases in Spain. MATERIALS AND METHODS Clinical CPE isolates (n = 401) collected for 2 months from 24 hospitals in Spain were tested. MIC50, MIC90 and susceptibility/resistance rates were interpreted in accordance with the EUCAST guidelines. β-Lactam resistance mechanisms and molecular epidemiology were characterized by WGS. RESULTS For all isolates, high rates of susceptibility to colistin (86.5%; MIC50/90 = 0.12/8 mg/L), imipenem/relebactam (85.8%; MIC50/90 = 0.5/4 mg/L) and ceftazidime/avibactam (83.8%, MIC50/90 = 1/≥256 mg/L) were observed. The subgroups of isolates producing OXA-48-like (n = 305, 75.1%) and KPC-like enzymes (n = 44, 10.8%) were highly susceptible to ceftazidime/avibactam (97.7%, MIC50/90 = 1/2 mg/L) and imipenem/relebactam (100.0%, MIC50/90 = ≤0.25/1 mg/L), respectively.The most widely disseminated high-risk clones of carbapenemase-producing Klebsiella pneumoniae across Spain were found to be ST11, ST147, ST392 and ST15 (mostly associated with OXA-48) and ST258/512 (in all cases producing KPC). CONCLUSIONS Imipenem/relebactam, colistin and ceftazidime/avibactam were the most active antimicrobials against all CPEs. Imipenem/relebactam is a valuable addition to the antimicrobial arsenal used in the fight against CPE, particularly against KPC-producing isolates, which in all cases were susceptible to this combination.
Collapse
Affiliation(s)
- Juan Carlos Vázquez-Ucha
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | - Alejandro Seoane-Estévez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | - Bruno Kotska Rodiño-Janeiro
- Prof. Martin Polz Laboratory, University of Vienna, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Vienna, Austria
| | - Mónica González-Bardanca
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | - Kelly Conde-Pérez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | - Marta Martínez-Guitián
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | - Laura Alvarez-Fraga
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | - Jorge Arca-Suárez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | - Cristina Lasarte-Monterrubio
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Marina Oviaño
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (CICA-INIBIC), Complejo Hospitalario Universitario A Coruña, Spain
| | | |
Collapse
|
72
|
Arca-Suárez J, Lasarte-Monterrubio C, Rodiño-Janeiro BK, Cabot G, Vázquez-Ucha JC, Rodríguez-Iglesias M, Galán-Sánchez F, Beceiro A, González-Bello C, Oliver A, Bou G. Molecular mechanisms driving the in vivo development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR Pseudomonas aeruginosa infections. J Antimicrob Chemother 2021; 76:91-100. [PMID: 33083833 DOI: 10.1093/jac/dkaa396] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of Pseudomonas aeruginosa infections is concerning. OBJECTIVES Characterization of the mechanisms leading to the development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR P. aeruginosa infections. METHODS Four paired ceftolozane/tazobactam- and ceftazidime/avibactam-susceptible/resistant isolates were evaluated. MICs were determined by broth microdilution. STs, resistance mechanisms and genetic context of β-lactamases were determined by genotypic methods, including WGS. The OXA-10 variants were cloned in PAO1 to assess their impact on resistance. Models for the OXA-10 derivatives were constructed to evaluate the structural impact of the amino acid changes. RESULTS The same XDR ST253 P. aeruginosa clone was detected in all four cases evaluated. All initial isolates showed OprD deficiency, produced an OXA-10 enzyme and were susceptible to ceftazidime, ceftolozane/tazobactam, ceftazidime/avibactam and colistin. During treatment, the isolates developed resistance to all cephalosporins. Comparative genomic analysis revealed that the evolved resistant isolates had acquired mutations in the OXA-10 enzyme: OXA-14 (Gly157Asp), OXA-794 (Trp154Cys), OXA-795 (ΔPhe153-Trp154) and OXA-824 (Asn143Lys). PAO1 transformants producing the evolved OXA-10 derivatives showed enhanced ceftolozane/tazobactam and ceftazidime/avibactam resistance but decreased meropenem MICs in a PAO1 background. Imipenem/relebactam retained activity against all strains. Homology models revealed important changes in regions adjacent to the active site of the OXA-10 enzyme. The blaOXA-10 gene was plasmid borne and acquired due to transposition of Tn6746 in the pHUPM plasmid scaffold. CONCLUSIONS Modification of OXA-10 is a mechanism involved in the in vivo acquisition of resistance to cephalosporin/β-lactamase inhibitor combinations in P. aeruginosa.
Collapse
Affiliation(s)
- Jorge Arca-Suárez
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Cristina Lasarte-Monterrubio
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Bruno-Kotska Rodiño-Janeiro
- Prof. Martin Polz Laboratory, University of Vienna, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Vienna, Austria
| | - Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdiSBA), Palma de Mallorca, Spain
| | - Juan Carlos Vázquez-Ucha
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Manuel Rodríguez-Iglesias
- Servicio de Microbiología and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar; Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Fátima Galán-Sánchez
- Servicio de Microbiología and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar; Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdiSBA), Palma de Mallorca, Spain
| | - Germán Bou
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| |
Collapse
|
73
|
Giani T, Antonelli A, Sennati S, Di Pilato V, Chiarelli A, Cannatelli A, Gatsch C, Luzzaro F, Spanu T, Stefani S, Rossolini GM. Results of the Italian infection-Carbapenem Resistance Evaluation Surveillance Trial (iCREST-IT): activity of ceftazidime/avibactam against Enterobacterales isolated from urine. J Antimicrob Chemother 2021; 75:979-983. [PMID: 31958125 DOI: 10.1093/jac/dkz547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To assess the in vitro antibacterial activity of ceftazidime/avibactam against a recent Italian collection of carbapenem-resistant Enterobacterales (CRE) isolated from urine specimens. METHODS Consecutive Gram-negative isolates from urine specimens, collected from inpatients in five Italian hospitals during the period October 2016 to February 2017, were screened for CRE phenotype using chromogenic selective medium and identified using MALDI-TOF MS. Antimicrobial susceptibility testing was performed by reference broth microdilution (BMD) and, for ceftazidime/avibactam, also by Etest® CZA. Results were interpreted according to the EUCAST breakpoints. All confirmed CRE were subjected to real-time PCR targeting blaKPC-type, blaVIM-type, blaNDM-type and blaOXA-48-type carbapenemase genes. Non-MBL-producing isolates resistant to ceftazidime/avibactam were subjected to WGS and their resistome and clonality were analysed. RESULTS Overall, 318 non-replicate presumptive CRE were collected following screening of 9405 isolates of Enterobacterales (3.4%) on chromogenic selective medium. Molecular analysis revealed that 216 isolates were positive for a carbapenemase gene (of which 92.1%, 2.8%, 1.4% and 1.4% were positive for blaKPC-type, blaOXA-48-type, blaNDM-type and blaVIM-type, respectively). Against the confirmed carbapenemase-producing Enterobacterales (CPE), ceftazidime/avibactam was the most active compound, followed by colistin (susceptibility rates 91.6% and 69.4%, respectively). Compared with BMD, Etest® for ceftazidime/avibactam yielded consistent results (100% category agreement). All class B β-lactamase producers were resistant to ceftazidime/avibactam, while OXA-48 and KPC producers were susceptible, with the exception of seven KPC-producing isolates (4.2%). The latter exhibited an MIC of 16 to >32 mg/L, belonged to ST512, produced KPC-3 and showed alterations in the OmpK35 and Ompk36 porins. CONCLUSIONS Ceftazidime/avibactam showed potent in vitro activity against a recent Italian collection of CPE from urine.
Collapse
Affiliation(s)
- Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Samanta Sennati
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Adriana Chiarelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Antonio Cannatelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Christopher Gatsch
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, Lecco A. Manzoni Hospital, Lecco, Italy
| | - Teresa Spanu
- Institute of Microbiology, A. Gemelli University Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, section of Microbiology, University of Catania, Catania, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
74
|
Tiseo G, Falcone M, Leonildi A, Giordano C, Barnini S, Arcari G, Carattoli A, Menichetti F. Meropenem-Vaborbactam as Salvage Therapy for Ceftazidime-Avibactam-, Cefiderocol-Resistant ST-512 Klebsiella pneumoniae-Producing KPC-31, a D179Y Variant of KPC-3. Open Forum Infect Dis 2021; 8:ofab141. [PMID: 34189161 PMCID: PMC8233566 DOI: 10.1093/ofid/ofab141] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 01/06/2023] Open
Abstract
A 68-year-old man had recurrent bacteremia by Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae resistant to ceftazidime-avibactam and cefiderocol. The sequencing of a target region showed that it harbored a KPC-3 variant enzyme (D179Y; KPC-31), which confers resistance to ceftazidime-avibactam and restores meropenem susceptibility. The patient was successfully treated with meropenem-vaborbactam.
Collapse
Affiliation(s)
- Giusy Tiseo
- Infectious Diseases Clinic, Department of Clinical and Experimental Medicine, Azienda Universitaria Ospedaliera Pisana, University of Pisa, Pisa, Italy
| | - Marco Falcone
- Infectious Diseases Clinic, Department of Clinical and Experimental Medicine, Azienda Universitaria Ospedaliera Pisana, University of Pisa, Pisa, Italy
| | | | - Cesira Giordano
- Microbiology Unit, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | - Simona Barnini
- Microbiology Unit, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | - Gabriele Arcari
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | | | - Francesco Menichetti
- Infectious Diseases Clinic, Department of Clinical and Experimental Medicine, Azienda Universitaria Ospedaliera Pisana, University of Pisa, Pisa, Italy
| |
Collapse
|
75
|
Villegas MV, Esparza G, Reyes J. Should ceftriaxone-resistant Enterobacterales be tested for ESBLs? A PRO/CON debate. JAC Antimicrob Resist 2021; 3:dlab035. [PMID: 34223110 PMCID: PMC8210106 DOI: 10.1093/jacamr/dlab035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ESBLs are a group of plasmid-mediated, diverse, complex and rapidly evolving enzymes that pose a therapeutic challenge today in hospital- and community-acquired infections. Thirty-six years after the first report, diagnostic and therapeutic approaches for ESBLs are still the subject of controversy. Detection of these enzymes is recommended for epidemiological purposes and facilitates targeted therapy, necessary for antimicrobial stewardship. On the other hand, ESBLs are not confined to specific species, phenotypic detection methods have pitfalls, and concerns exist about the accuracy of antimicrobial susceptibility testing systems to rely on MIC values for cephalosporins and β-lactam combination agents. In this issue, we present a PRO/CON debate on ESBL testing for ceftriaxone-non-susceptible Enterobacterales.
Collapse
Affiliation(s)
| | - German Esparza
- Programa de proeficiencia en microbiología, PROASECAL SAS, Bogota, Colombia
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|
76
|
Xu M, Zhao J, Xu L, Yang Q, Xu H, Kong H, Zhou J, Fu Y. Emergence of transferable ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae due to a novel CMY AmpC β-lactamase in China. Clin Microbiol Infect 2021; 28:136.e1-136.e6. [PMID: 34044150 DOI: 10.1016/j.cmi.2021.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To evaluate the molecular mechanisms of ceftazidime/avibactam (CAZ/AVI) resistance in six Klebsiella pneumoniae strains that co-produce K. pneumoniae carbapenemase (KPC)-2 and a novel variant of CMY cephalosporinase in a Chinese hospital. METHODS Antimicrobial susceptibility was determined by broth microdilution. Whole-genome sequencing (WGS) was performed to investigate potential resistance determinants. Plasmid conjugation, electroporation, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) hybridization and cloning experiment were carried out to investigate the resistance plasmids and genes. RESULTS A high level of CAZ/AVI resistance was observed in six KPC-Kp strains (MIC 128 mg/L). Five strains were isolated in 2015 and one in 2016, before the approval of CAZ/AVI in China. Sequence analysis indicated that all the strains belonged to sequence type (ST) 11 and uniformly carried a novel CMY AmpC β-lactamase gene, designated blaCMY-172. When compared with CMY-2, CMY-172 has a deletion of three consecutive amino acids (K290, V291 and A292) in the R2-loop region and a non-synonymous amino acid substitution at position 346 (N346I). The blaCMY-172-bearing plasmid, pKPCZA02_4, was 93.3 Kb, IncI1-I type, and conjugative; blaCMY-172 was located in an IS1294-mediated transposon. Plasmid conjugation and DNA fragment cloning proved that blaCMY-172 was responsible for CAZ/AVI resistance. CONCLUSIONS Our study identified conjugative plasmid-mediated blaCMY-172 as a new mechanism for CAZ/AVI resistance in clinical KPC-Kp strains. Careful monitoring of CAZ/AVI susceptibility is imperative for preventing the spread of the resistance gene.
Collapse
Affiliation(s)
- Min Xu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Zhao
- Department of Respiratory Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Clinical Laboratory, Yangzhou Centre for Disease Control and Prevention, Yangzhou, China
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haishen Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yiqi Fu
- Department of Respiratory Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
77
|
Galani I, Karaiskos I, Giamarellou H. Multidrug-resistant Klebsiella pneumoniae: mechanisms of resistance including updated data for novel β-lactam-β-lactamase inhibitor combinations. Expert Rev Anti Infect Ther 2021; 19:1457-1468. [PMID: 33945387 DOI: 10.1080/14787210.2021.1924674] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Multi-drug-resistant Klebsiella pneumoniae is currently one of the most pressing emerging issues in bacterial resistance. Treatment of K.pneumoniae infections is often problematic due to the lack of available therapeutic options, with a relevant impact in terms of morbidity, mortality and healthcare-associated costs. Soon after the launch of Ceftazidime-Avibactam, one of the approved new β-lactam/β-lactamase inhibitor combinations, reports of ceftazidime-avibactam-resistant strains developing resistance during treatment were published. Being a hospital-associated pathogen, K.pneumoniae is continuously exposed to multiple antibiotics resulting in constant selective pressure, which in turn leads to additional mutations that are positively selected.Areas covered: Herein the authors present the K.pneumoniae mechanisms of resistance to different antimicrobials, including updated data for ceftazidime-avibactam.Expert opinion: K.pneumoniae is a nosocomial pathogen commonly implicated in hospital outbreaks with a propensity for antimicrobial resistance toward mainstay β-lactam antibiotics and multiple other antibiotic classes. Following the development of drug resistance and understanding the mechanisms involved, we can improve the efficacy of current antimicrobials, by applying careful stewardship and rational use to preserve their potential utility. The knowledge on antibiotic resistance mechanisms should be used to inform the design of novel therapeutic agents that might not be subject to, or can circumvent, mechanisms of resistance.
Collapse
Affiliation(s)
- Irene Galani
- Medicine, Infectious Diseases Laboratory, 4thDepartment of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Karaiskos
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Helen Giamarellou
- 1 Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| |
Collapse
|
78
|
Emergence of Resistance to Ceftazidime-Avibactam in a Pseudomonas aeruginosa Isolate Producing Derepressed bla PDC in a Hollow-Fiber Infection Model. Antimicrob Agents Chemother 2021; 65:AAC.00124-21. [PMID: 33782013 DOI: 10.1128/aac.00124-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Ceftazidime (CAZ)-avibactam (AVI) is a β-lactam/β-lactamase inhibitor combination with activity against type A and type C β-lactamases. Resistance emergence has been seen, with multiple mechanisms accounting for the resistance. We performed four experiments in the dynamic hollow-fiber infection model, delineating the linkage between drug exposure and both the rate of bacterial kill and resistance emergence by all mechanisms. The Pseudomonas aeruginosa isolate had MICs of 1.0 mg/liter (CAZ) and 4 mg/liter (AVI). We demonstrated that the time at ≥4.0 mg/liter AVI was linked to the rate of bacterial kill. Linkage to resistance emergence/suppression was more complex. In one experiment in which CAZ and AVI administration was intermittent and continuous, respectively, and in which AVI was given in unitary steps from 1 to 8 mg/liter, AVI at up to 3 mg/liter allowed resistance emergence, whereas higher values did not. The threshold value was 3.72 mg/liter as a continuous infusion to counterselect resistance (AVI area under the concentration-time curve [AUC] of 89.3 mg · h/liter). The mechanism involved a 7-amino-acid deletion in the Ω-loop region of the Pseudomonas-derived cephalosporinase (PDC) β-lactamase. Further experiments in which CAZ and AVI were both administered intermittently with regimens above and below the AUC of 89.3 mg · h/liter resulted in resistance in the lower-exposure groups. Deletion mutants were not identified. Finally, in an experiment in which paired exposures as both continuous and intermittent infusions were performed, the lower value of 25 mg · h/liter by both profiles allowed selection of deletion mutants. Of the five instances in which these mutants were recovered, four had a continuous-infusion profile. Both continuous-infusion administration and low AVI AUC exposures have a role in selection of this mutation.
Collapse
|
79
|
Li D, Li K, Dong H, Ren D, Gong D, Jiang F, Shi C, Li J, Zhang Q, Yan W, Li Y. Ceftazidime-Avibactam Resistance in Klebsiella pneumoniae Sequence Type 11 Due to a Mutation in Plasmid-Borne bla kpc-2 to bla kpc-33, in Henan, China. Infect Drug Resist 2021; 14:1725-1731. [PMID: 34007191 PMCID: PMC8121278 DOI: 10.2147/idr.s306095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/22/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose Carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a serious problem worldwide. Herein, we describe the evolution of ceftazidime–avibactam (CZA) resistance by sequencing clinical isolates from a patient with CRKP infection undergoing CZA treatment. Patients and Methods In this study, six CRKP strains were isolated from sputum and blood samples of a patient with CRKP infection after intracerebral hemorrhage. Two strains were selected for whole-genome analysis. Results Drug susceptibility testing showed that the MIC of CZA for CRKP strains isolated after 6 days of CZA treatment was 64-fold higher than that for three CRKP strains isolated before CZA treatment (4 vs >256 μg/mL), whereas the MIC of imipenem and meropenem was 128-fold (>32 vs 0.25 μg/mL) and 16-fold (> 32 vs 2 μg/mL) lower relatively, respectively. Multilocus sequence typing showed that all six CRKP strains isolated from the patient were ST11 and pulsed-field gel electrophoresis confirmed that they were of the same clone. Two strains were selected for whole-genome analysis. The aspartic acid residue at position 179 in the Ω loop was replaced by a tyrosine residue in the resistant strain, and the plasmid carried a blaKPC-2 to blaKPC-33 mutation. The results of the modified carbapenem inactivation method and the carbapenemase inhibitor enhancement and colloidal gold enzyme immunochromatographic assays for blaKPC-33 were negative. Conclusion This is the first report from Henan to show that treatment with CZA for 6 days can cause mutations and change the phenotype from CZA sensitive to resistant. Therefore, routine testing for drug susceptibility and carbapenemase phenotypes should be conducted during treatment with CZA, and genotype determination is essential.
Collapse
Affiliation(s)
- Debao Li
- Department of Clinical Laboratory, Jiaozuo People's Hospital, Jiaozuo, Henan, People's Republic of China
| | - Keyang Li
- Department of Clinical Pharmacy, Jiaozuo People's Hospital, Jiaozuo, Henan, People's Republic of China
| | - Hongliang Dong
- Department of Clinical Pharmacy, Jiaozuo People's Hospital, Jiaozuo, Henan, People's Republic of China
| | - Dongmei Ren
- Department of Clinical Laboratory, Jiaozuo People's Hospital, Jiaozuo, Henan, People's Republic of China
| | - Dandan Gong
- Department of Clinical Pharmacy, Jiaozuo People's Hospital, Jiaozuo, Henan, People's Republic of China
| | - Fuguo Jiang
- Department of Clinical Laboratory, Jiaozuo People's Hospital, Jiaozuo, Henan, People's Republic of China
| | - Chunhua Shi
- Department of Clinical Laboratory, Jiaozuo People's Hospital, Jiaozuo, Henan, People's Republic of China
| | - Junmin Li
- Department of Clinical Laboratory, Jiaozuo People's Hospital, Jiaozuo, Henan, People's Republic of China
| | - Qi Zhang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Wenjuan Yan
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Yi Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
80
|
Hsu JY, Chuang YC, Wang JT, Chen YC, Hsieh SM. Healthcare-associated carbapenem-resistant Klebsiella pneumoniae bloodstream infections: Risk factors, mortality, and antimicrobial susceptibility, 2017-2019. J Formos Med Assoc 2021; 120:1994-2002. [PMID: 33962811 DOI: 10.1016/j.jfma.2021.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In Taiwan, carbapenem-resistant Klebsiella pneumoniae (CRKP) now became a leading cause of difficult-to-treat healthcare-associated infection, for which there are a lack of recent hospital epidemiological studies on risk factors, mortality, and antimicrobial susceptibility. METHODS We prospectively enrolled patients with healthcare-associated CRKP monomicrobial bloodstream infection (mBSI) and matched patients with carbapenem susceptible K. pneumoniae (CSKP) mBSI at National Taiwan University Hospital (Taipei, Taiwan) from October 2017 through December 2019 in a 1:2 ratio. Multivariable logistic regression and Kaplan-Meier analyses were applied to identify factors associated with CRKP mBSI and to compare the 14-day survival curves, respectively. We detected the presence of blaKPC and blaNDM gene among the included CRKP strains, and performed antimicrobial susceptibility testing (including susceptibility to colistin, aminoglycoside, tigecycline, and ceftazidime/avibactam). RESULTS A total of 36 CRKP cases and 72 CSKP controls were enrolled. Patients with CRKP mBSI were more likely to have liver cirrhosis (adjusted odds ratio [aOR], 5.61; P = 0.024), length of hospital stay over the previous 14 days (aOR, 1.23; P = 0.001) and prior use of carbapenems in the previous 14 days (aOR, 6.07; P = 0.004) than patients with CSKP mBSI. The 14-day survival was significantly worse for patients with CRKP mBSI than those with CSKP mBSI (all CRKP cases: 50.0% vs. 87.5%; P < 0.001; CRKP cases treated with colistin as an appropriate backbone antibiotic: 58.3% vs. 87.5%; P = 0.007). Compared with the CSKP isolates, CRKP isolates were significantly less susceptible to colistin, amikacin, and tigecycline. Of the 36 CRKP isolates, none harbor blaNDM gene and 35 (97%) had low minimum inhibitory concentrations (≤8/4 μg/ml) of ceftazidime/avibactam by the E test method. CONCLUSION Prior exposure to carbapenems, longer hospital stay, and the presence of liver cirrhosis predicted CRKP instead of CSKP mBSI. Even with colistin therapy, CRKP mBSIs was still associated with a very high risk of mortality within 14 days. Ceftazidime/avibactam is a potentially useful therapeutic choice for cases caused by in vitro susceptible CRKP strains.
Collapse
Affiliation(s)
- Jen-Yu Hsu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Szu-Min Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
81
|
Xu E, Pérez-Torres D, Fragkou PC, Zahar JR, Koulenti D. Nosocomial Pneumonia in the Era of Multidrug-Resistance: Updates in Diagnosis and Management. Microorganisms 2021; 9:534. [PMID: 33807623 PMCID: PMC8001201 DOI: 10.3390/microorganisms9030534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Nosocomial pneumonia (NP), including hospital-acquired pneumonia in non-intubated patients and ventilator-associated pneumonia, is one of the most frequent hospital-acquired infections, especially in the intensive care unit. NP has a significant impact on morbidity, mortality and health care costs, especially when the implicated pathogens are multidrug-resistant ones. This narrative review aims to critically review what is new in the field of NP, specifically, diagnosis and antibiotic treatment. Regarding novel imaging modalities, the current role of lung ultrasound and low radiation computed tomography are discussed, while regarding etiological diagnosis, recent developments in rapid microbiological confirmation, such as syndromic rapid multiplex Polymerase Chain Reaction panels are presented and compared with conventional cultures. Additionally, the volatile compounds/electronic nose, a promising diagnostic tool for the future is briefly presented. With respect to NP management, antibiotics approved for the indication of NP during the last decade are discussed, namely, ceftobiprole medocaril, telavancin, ceftolozane/tazobactam, ceftazidime/avibactam, and meropenem/vaborbactam.
Collapse
Affiliation(s)
- Elena Xu
- Burns, Trauma and Critical Care Research Centre, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia;
| | - David Pérez-Torres
- Servicio de Medicina Intensiva, Hospital Universitario Río Hortega, 47012 Valladolid, Spain;
| | - Paraskevi C. Fragkou
- Fourth Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece;
| | - Jean-Ralph Zahar
- Microbiology Department, Infection Control Unit, Hospital Avicenne, 93000 Bobigny, France;
| | - Despoina Koulenti
- Burns, Trauma and Critical Care Research Centre, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia;
- Second Critical Care Department, Attikon University Hospital, 12462 Athens, Greece
| |
Collapse
|
82
|
Hansen GT. Continuous Evolution: Perspective on the Epidemiology of Carbapenemase Resistance Among Enterobacterales and Other Gram-Negative Bacteria. Infect Dis Ther 2021; 10:75-92. [PMID: 33492641 PMCID: PMC7954928 DOI: 10.1007/s40121-020-00395-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
The global emergence of carbapenemase-producing bacteria capable of hydrolyzing the once effective carbapenem antibiotics is considered a contemporary public health concern. Carbapenemase enzymes, once constrained to isolates of Klebsiella pneumoniae, are now routinely reported in different bacteria within the Enterobacterales order of bacteria, creating the acronym CRE which now defines Carbapenem-Resistant Enterobacterales. CRE harboring different types of enzymes, including the most prevalent types KPC, VIM, IMP, NDM, and OXA-48, are now routinely reported and more importantly, are now frequently present in many infections world-wide. Defining and updating the contemporary epidemiology of both the US and global burden of carbapenem-resistant infections is now more important than ever. This review describes the global distribution and continued evolution of carbapenemases which continue to spread at alarming rates. Informed understanding of the current epidemiology of CRE, coupled with advances in antibiotic options, and the use rapid diagnostics offers the potential for rapid identification and management of carbapenem-resistant infections.
Collapse
Affiliation(s)
- Glen T Hansen
- Department of Pathology and Laboratory Medicine, Hennepin County Medical Center, Minneapolis, MN, USA.
- Department of Pathology and Laboratory Medicine, University of Minnesota, School of Medicine, Minneapolis, MN, USA.
- Department of Medicine, Infectious Disease, University of Minnesota, School of Medicine, Minneapolis, MN, USA.
| |
Collapse
|
83
|
Tumbarello M, Raffaelli F, Giannella M, Mantengoli E, Mularoni A, Venditti M, De Rosa FG, Sarmati L, Bassetti M, Brindicci G, Rossi M, Luzzati R, Grossi PA, Corona A, Capone A, Falcone M, Mussini C, Trecarichi EM, Cascio A, Guffanti E, Russo A, De Pascale G, Tascini C, Gentile I, Losito AR, Bussini L, Conti G, Ceccarelli G, Corcione S, Compagno M, Giacobbe DR, Saracino A, Fantoni M, Antinori S, Peghin M, Bonfanti P, Oliva A, De Gasperi A, Tiseo G, Rovelli C, Meschiari M, Shbaklo N, Spanu T, Cauda R, Viale P. Ceftazidime-avibactam use for KPC-Kp infections: a retrospective observational multicenter study. Clin Infect Dis 2021; 73:1664-1676. [PMID: 33618353 DOI: 10.1093/cid/ciab176] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A growing body of observational evidence supports the value of ceftazidime-avibactam (CAZ-AVI) in managing infections caused by carbapenem-resistant Enterobacteriaceae (CRE). METHODS We retrospectively analyzed observational data on the use and outcomes of CAZ-AVI therapy for infections caused by KPC-producing K. pneumoniae (KPC-Kp) strains. Multivariate regression analysis was used to identify variables independently associated with 30-day mortality. Results were adjusted for propensity score for receipt of CAZ-AVI combination regimens vs. CAZ-AVI monotherapy. RESULTS The cohort comprised 577 adults with bloodstream infections (BSIs) (n=391) or non-bacteremic infections (nBSIs) involving mainly the urinary tract, lower respiratory tract, intra-abdominal structures. All received treatment with CAZ-AVI alone (n=165) or with one or more other active antimicrobials (n=412). The all-cause mortality rate 30 days after infection onset was 25% (146/577). There was no statistically significant difference in mortality between patients managed with CAZ-AVI alone and those treated with combination regimens (26.1% vs. 25.0%, P=0.79). In multivariate analysis, mortality was positively associated with the presence at infection onset of septic shock (P=0.002), neutropenia (P <0.001), or an INCREMENT score >8 (P=0.01); with LRTI (P=0.04); and with CAZ-AVI dose adjustment for renal function (P=0.01). Mortality was negatively associated with CAZ-AVI administration by prolonged infusion (P=0.006). All associations remained significant after propensity score adjustment. CONCLUSIONS CAZ-AVI is an important option for treating serious KPC-Kp infections, even when used alone. Further study is needed to explore the drug's seemingly more limited efficacy in LRTIs and the potential survival benefits of prolonging CAZ-AVI infusions to 3 hours or more.
Collapse
Affiliation(s)
- Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Roma, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Raffaelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences - University of Bologna, Bologna, Italy
| | - Elisabetta Mantengoli
- SOD Malattie Infettive e Tropicali Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Alessandra Mularoni
- ISMETT-IRCCS Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Mario Venditti
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Roma, Italy
| | | | - Loredana Sarmati
- Clinical Infectious Diseases, Department of System Medicine, Tor Vergata University, Roma Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Gaetano Brindicci
- Operative Unit of Infectious Diseases, Hospital-University Polyclinic of Bari, Italy
| | | | - Roberto Luzzati
- Infectious Diseases Unit, University Hospital of Trieste, Trieste, Italy
| | - Paolo Antonio Grossi
- Clinica di Malattie Infettive e Tropicali, Università degli Studi dell'Insubria - ASST-Sette Laghi, Varese, Italy
| | - Alberto Corona
- SC Anestesia e Rianimazione, ASST Fatebenefratelli Sacco, Polo Universitario, Milano, Italy
| | - Alessandro Capone
- Infezioni Sistemiche ed Immunodepresso, National Institute for Infectious Disease L. Spallanzani, Roma, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Cristina Mussini
- Clinica delle Malattie Infettive, Università di Modena e Reggio Emilia, Modena, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, Infectious and Tropical Disease Unit, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Cascio
- Infectious and Tropical Diseases Unit- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Elena Guffanti
- Anestesia Rianimazione 2, ASST GOM Niguarda, Milano, Italy
| | | | - Gennaro De Pascale
- Dipartimento di Scienza dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Carlo Tascini
- Malattie Infettive ad Indirizzo neurologico Ospedale Cotugno, Napoli, Italy
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia - Sezione di Malattie Infettive - Università di Napoli "Federico II" - Napoli
| | - Angela Raffaella Losito
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Linda Bussini
- Department of Medical and Surgical Sciences - University of Bologna, Bologna, Italy
| | - Giampaolo Conti
- Dipartimento Medicina Sperimentale e Clinica Università di Firenze, Firenze, Italy
| | - Giancarlo Ceccarelli
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Roma, Italy
| | - Silvia Corcione
- Deptartment of Medical Sciences, University of Turin, Torino, Italy
| | - Mirko Compagno
- Clinical Infectious Diseases, Tor Vergata University, Roma Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Annalisa Saracino
- Operative Unit of Infectious Diseases, Hospital-University Polyclinic of Bari, Italy
| | - Massimo Fantoni
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Spinello Antinori
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco Università degli Studi di Milano Polo Universitario, Milano, Italy
| | - Maddalena Peghin
- Clinica Malattie Infettive, Dipartimento di Area Medica Università di Udine e Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Paolo Bonfanti
- UOC Malattie Infettive, Ospedale San Gerardo, Monza, Italy.,Università Milano Bicocca, Dipartimento di medicina e chirurgia, Milano, Italy
| | - Alessandra Oliva
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università Sapienza, Roma, Italy
| | | | - Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Cristina Rovelli
- Clinica di Malattie Infettive e Tropicali, Università degli Studi dell'Insubria - ASST-Sette Laghi, Varese, Italy
| | - Marianna Meschiari
- Clinica delle Malattie Infettive, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena, Italy
| | - Nour Shbaklo
- Deptartment of Medical Sciences, University of Turin, Torino, Italy
| | - Teresa Spanu
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberto Cauda
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences - University of Bologna, Bologna, Italy
| |
Collapse
|
84
|
Carbapenemase detection testing in the era of ceftazidime/avibactam-resistant KPC-producing Enterobacterales: A 2-year experience. J Glob Antimicrob Resist 2021; 24:411-414. [PMID: 33621692 DOI: 10.1016/j.jgar.2021.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the prevalence of ceftazidime/avibactam (CZA) resistance among carbapenemase-producing Enterobacterales (CPE) blood culture isolates as well as the performance of the main carbapenemase phenotypic detection methods to identify KPC variants associated with CZA resistance. METHODS Non-duplicate CPE strains isolated from blood cultures during 2018-2020 were tested for antimicrobial susceptibility. Molecular testing was used to identify carbapenemase-producers. Strains harbouring blaKPC and with a CZA minimum inhibitory concentration (MIC) ≥8 mg/L were investigated by sequencing. Subsequentially, five phenotypic carbapenemase detection methods were evaluated on these strains, namely the modified carbapenem inactivation method (mCIM), Rapidec® Carba NP, the disk diffusion synergy test, NG-Test CARBA® 5 and RESIST-5 O.O.K.N.V. RESULTS Overall, the CZA resistance rate was high (13.7%) and remained relevant (5.9%) excluding metallo-β-lactamases-producers. All isolates harbouringblaKPC mutants (n = 8) were associated with reduced carbapenem MICs and negative results by all detection methods based on revelation of enzyme activity. Lateral flow immunoassays failed to detect KPC-31 (n = 4) and KPC-33 (n = 2) but correctly identified KPC-14 (n = 2). Conversely, isolates harbouring wild-type KPC genes (n = 3) were associated with high-level CZA resistance and carbapenem resistance and tested positive by all of the evaluated methods. CONCLUSION In the era of CZA-based therapies, molecular blaKPC identification followed by a carbapenem hydrolysis-based phenotypic assay could be the most reasonable diagnostic algorithm to detect all KPC-producers and to identify mutants associated with impaired carbapenemase activity and CZA resistance.
Collapse
|
85
|
Boattini M, Bianco G, Iannaccone M, Ghibaudo D, Almeida A, Cavallo R, Costa C. Fast-track identification of CTX-M-extended-spectrum-β-lactamase- and carbapenemase-producing Enterobacterales in bloodstream infections: implications on the likelihood of deduction of antibiotic susceptibility in emergency and internal medicine departments. Eur J Clin Microbiol Infect Dis 2021; 40:1495-1501. [PMID: 33598829 PMCID: PMC8205909 DOI: 10.1007/s10096-021-04192-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
This study aims at presenting a reliable fast-track diagnostics for the detection of CTX-M ESBL- (CTX-M-p) and carbapenemase-producers (CA-p) directly from blood cultures (BCs) of patients with Enterobacterales (EB) bloodstream infections (BSIs) admitted in emergency and internal medicine departments and its contribution in estimation of in vitro antibiotic susceptibility. A fast-track workflow including MALDI-TOF species identification and two lateral flow immunochromatographic assays for the detection of CTX-M-p and CA-p directly from BCs was performed in parallel with conventional routine, and results were compared. A total of 236 BCs of patients suffering from EB BSI were included. Accuracy of the fast-track workflow ranged from 99.6 to 100%. Among E. coli isolates, CTX-M-p (20.5%) were susceptible to ceftolozane-tazobactam (C/T, 97%), ceftazidime-avibactam (CZA, 100%), and piperacillin-tazobactam (TZP, 84.8%), whereas CTX-M-and-main-carbapenemases-non-producer (CTX-M-CA-np, 79.5%) isolates were susceptible to all the antibiotics tested. Among K. pneumoniae isolates, CTX-M-p (23.3%) were poorly susceptible to TZP (40%) but widely susceptible to C/T (90%), CZA (100%), and amikacin (90%), whereas CTX-M-CA-np (55.8%) were also susceptible to cefepime. CA-p K. pneumoniae (20.9%) were susceptible to CZA (88.9%). All the species other than E. coli and K. pneumoniae were CTX-M-CA-np and were widely susceptible to the antibiotics tested except for isolates of the inducible and derepressed AmpC- or AmpC/ESBL-p species. Rapid identification of species and phenotype together with knowledge of local epidemiology may be crucial to determine the likelihood of deduction of in vitro antibiotic susceptibility on the same day of positive BC processing.
Collapse
Affiliation(s)
- Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy.
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Marco Iannaccone
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Davide Ghibaudo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - André Almeida
- Department of Internal Medicine 4, Hospital de Santa Marta, Central Lisbon Hospital Centre, Lisbon, Portugal.,NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
86
|
van Asten SAV, Boattini M, Kraakman MEM, Bianco G, Iannaccone M, Costa C, Cavallo R, Bernards AT. Ceftazidime-avibactam resistance and restoration of carbapenem susceptibility in KPC-producing Klebsiella pneumoniae infections: A case series. J Infect Chemother 2021; 27:778-780. [PMID: 33558042 DOI: 10.1016/j.jiac.2021.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Since the introduction of the β-lactam/β-lactamase inhibitor ceftazidime-avibactam (CZA), rapid evolution of resistance has been reported in different KPC-producing Klebsiella pneumoniae isolates. In this multicenter retrospective study, we describe the emergence of CZA resistance and evaluate the mutations that might be responsible for the restoration of carbapenem susceptibility. METHODS During a study period of 18 months, KPC-producing K. pneumoniae isolates of five hospitalized patients were collected with phenotypic development of CZA resistance. RESULTS In vitro restoration of carbapenem susceptibility during treatment was observed in 3 isolates. Whole genome sequencing of these isolates showed a D179Y mutation in the KPC gene of 2 variants and a KPC-2 with a Δ242-GT-243 deletion (KPC-14). Two KPC-3 variants showed CZA resistance with sustained carbapenemase activity without genomic adaptations in the KPC gene. CONCLUSIONS This study confirms the emergence of CZA resistance in KPC K. pneumoniae. The role of carbapenems in treating patients with these variants is unclear and combination therapies warrant further investigation.
Collapse
Affiliation(s)
- S A V van Asten
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - M Boattini
- Microbiology and Virology Unit, University Hospital Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - M E M Kraakman
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - G Bianco
- Microbiology and Virology Unit, University Hospital Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - M Iannaccone
- Microbiology and Virology Unit, University Hospital Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - C Costa
- Microbiology and Virology Unit, University Hospital Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - R Cavallo
- Microbiology and Virology Unit, University Hospital Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - A T Bernards
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
87
|
Hernández-García M, Sánchez-López J, Martínez-García L, Becerra-Aparicio F, Morosini MI, Ruiz-Garbajosa P, Cantón R. Emergence of the New KPC-49 Variant Conferring an ESBL Phenotype with Resistance to Ceftazidime-Avibactam in the ST131-H30R1 Escherichia coli High-Risk Clone. Pathogens 2021; 10:pathogens10010067. [PMID: 33466574 PMCID: PMC7828710 DOI: 10.3390/pathogens10010067] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
We report the emergence of an isolate belonging to the sequence type (ST)131-Escherichia coli high-risk clone with ceftazidime-avibactam resistance recovered from a patient with bacteremia in 2019. Antimicrobial susceptibility was determined and whole genome sequencing (Illumina-NovaSeq6000) and cloning experiments were performed to investigate its resistance phenotype. A KPC-3-producing E. coli isolate susceptible to ceftazidime-avibactam (MIC = 0.5/4 mg/L) and with non-wild type MIC of meropenem (8 mg/L) was detected in a blood culture performed at hospital admission. Following 10-days of standard ceftazidime-avibactam dose treatment, a second KPC-producing E. coli isolate with a phenotype resembling an extended-spectrum β-lactamase (ESBL) producer (meropenem 0.5 mg/L, piperacillin-tazobactam 16/8 mg/L) but resistant to ceftazidime-avibactam (16/4 mg/L) was recovered. Both E. coli isolates belonged to ST131, serotype O25:H4 and sublineage H30R1. Genomics analysis showed a core genome of 5,203,887 base pair with an evolutionary distance of 6 single nucleotide polymorphisms. A high content of resistance and virulence genes was detected in both isolates. The novel KPC-49 variant, an Arg-163-Ser mutant of blaKPC-3, was detected in the isolate with resistance to ceftazidime-avibactam. Cloning experiments revealed that blaKPC-49 gene increases ceftazidime-avibactam MIC and decreases carbapenem MICs when using a porin deficient Klebsiella pneumoniae strain as a host. Both blaKPC-3 and blaKPC-49 genes were located on the transposon Tn4401a as a part of an IncF [F1:A2:B20] plasmid. The emergence of novel blaKPC genes conferring decreased susceptibility to ceftazidime-avibactam and resembling ESBL production in the epidemic ST131-H30R1-E. coli high-risk clone presents a new challenge in clinical practice.
Collapse
Affiliation(s)
- Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| | - Javier Sánchez-López
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| | - Laura Martínez-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| | - Federico Becerra-Aparicio
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| | - María Isabel Morosini
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
- Correspondence:
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| |
Collapse
|
88
|
Shapiro AB, Moussa SH, Carter NM, Gao N, Miller AA. Ceftazidime-Avibactam Resistance Mutations V240G, D179Y, and D179Y/T243M in KPC-3 β-Lactamase Do Not Alter Cefpodoxime-ETX1317 Susceptibility. ACS Infect Dis 2021; 7:79-87. [PMID: 33291867 DOI: 10.1021/acsinfecdis.0c00575] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in KPC-2 and KPC-3 β-lactamase can confer resistance to the β-lactam/β-lactamase inhibitor antibacterial intravenous drug combination ceftazidime-avibactam, introduced in 2015. Avibactam was the first of the diazabicyclooctane class of non-β-lactam β-lactamase inhibitors to be approved for clinical use. The orally bioavailable prodrug ETX0282 of the diazabicyclooctane β-lactamase inhibitor ETX1317 is in clinical development in combination with the oral β-lactam prodrug cefpodoxime proxetil for use against complicated urinary tract infections. We investigated the effects of 3 ceftazidime-avibactam resistance mutations in KPC-3 (V240G, D179Y, and D179Y/T243M) on the ability of ETX1317 to overcome KPC-3-induced cefpodoxime resistance. Isogenic Escherichia coli strains, each expressing the wild-type or a mutant KPC-3 at similar levels, retained susceptibility to cefpodoxime-ETX1317 (1:2) with essentially identical minimal inhibitory concentrations of 0.125-0.25 μg/mL cefpodoxime. The KPC-3 mutations had little or no effect on the kinact/Ki values for inhibition by each of 3 diazabicyclooctanes: avibactam, durlobactam (ETX2514), and ETX1317. The KM values for hydrolysis of cefpodoxime were similar for all 4 variants, but the kcat values of the D179Y and D179Y/T243M variants were much lower than those of the wild-type and V240G mutant enzymes. All 4 KPC-3 variants formed stable, reversibly covalent complexes with ETX1317, but dissociation of ETX1317 was much slower from the D179Y and D179Y/T243M mutants than from the wild-type and V240G mutant enzymes. Thus, the KPC-3 variants examined here that cause resistance to ceftazidime-avibactam do not cause resistance to cefpodoxime-ETX1317.
Collapse
Affiliation(s)
- Adam B Shapiro
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - Samir H Moussa
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - Nicole M Carter
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - Ning Gao
- Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Alita A Miller
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| |
Collapse
|
89
|
Tooke CL, Hinchliffe P, Bonomo RA, Schofield CJ, Mulholland AJ, Spencer J. Natural variants modify Klebsiella pneumoniae carbapenemase (KPC) acyl-enzyme conformational dynamics to extend antibiotic resistance. J Biol Chem 2021; 296:100126. [PMID: 33257320 PMCID: PMC7949053 DOI: 10.1074/jbc.ra120.016461] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Class A serine β-lactamases (SBLs) are key antibiotic resistance determinants in Gram-negative bacteria. SBLs neutralize β-lactams via a hydrolytically labile covalent acyl-enzyme intermediate. Klebsiella pneumoniae carbapenemase (KPC) is a widespread SBL that hydrolyzes carbapenems, the most potent β-lactams; known KPC variants differ in turnover of expanded-spectrum oxyimino-cephalosporins (ESOCs), for example, cefotaxime and ceftazidime. Here, we compare ESOC hydrolysis by the parent enzyme KPC-2 and its clinically observed double variant (P104R/V240G) KPC-4. Kinetic analyses show that KPC-2 hydrolyzes cefotaxime more efficiently than the bulkier ceftazidime, with improved ESOC turnover by KPC-4 resulting from enhanced turnover (kcat), rather than altered KM values. High-resolution crystal structures of ESOC acyl-enzyme complexes with deacylation-deficient (E166Q) KPC-2 and KPC-4 mutants show that ceftazidime acylation causes rearrangement of three loops; the Ω, 240, and 270 loops, which border the active site. However, these rearrangements are less pronounced in the KPC-4 than the KPC-2 ceftazidime acyl-enzyme and are not observed in the KPC-2:cefotaxime acyl-enzyme. Molecular dynamics simulations of KPC:ceftazidime acyl-enyzmes reveal that the deacylation general base E166, located on the Ω loop, adopts two distinct conformations in KPC-2, either pointing "in" or "out" of the active site; with only the "in" form compatible with deacylation. The "out" conformation was not sampled in the KPC-4 acyl-enzyme, indicating that efficient ESOC breakdown is dependent upon the ordering and conformation of the KPC Ω loop. The results explain how point mutations expand the activity spectrum of the clinically important KPC SBLs to include ESOCs through their effects on the conformational dynamics of the acyl-enzyme intermediate.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, Ohio, USA
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
90
|
KPC-53, a KPC-3 Variant of Clinical Origin Associated with Reduced Susceptibility to Ceftazidime-Avibactam. Antimicrob Agents Chemother 2020; 65:AAC.01429-20. [PMID: 33106265 DOI: 10.1128/aac.01429-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
This study reports on the characterization of a Klebsiella pneumoniae clinical isolate showing high-level resistance to ceftazidime-avibactam associated with the production of KPC-53, a KPC-3 variant exhibiting a Leu167Glu168 duplication in the Ω-loop and a loss of carbapenemase activity. Whole-genome sequencing (WGS) revealed the presence of two copies of bla KPC-53, located on a pKpQIL-like plasmid and on a plasmid prophage of the Siphoviridae family, respectively. The present findings provide new insights into the mechanisms of resistance to ceftazidime-avibactam.
Collapse
|
91
|
Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev 2020; 34:e00115-20. [PMID: 33177185 PMCID: PMC7667665 DOI: 10.1128/cmr.00115-20] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel β-lactam-β-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum β-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D β-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-β-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).
Collapse
Affiliation(s)
- Dafna Yahav
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Christian G Giske
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Alise Grāmatniece
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Pauls Stradins University Hospital, University of Latvia, Riga, Latvia
| | - Henrietta Abodakpi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Leonard Leibovici
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
- Medicine E, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| |
Collapse
|
92
|
New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams. Int J Mol Sci 2020; 21:ijms21239308. [PMID: 33291334 PMCID: PMC7731173 DOI: 10.3390/ijms21239308] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
Carbapenem resistance is a major global health problem that seriously compromises the treatment of infections caused by nosocomial pathogens. Resistance to carbapenems mainly occurs via the production of carbapenemases, such as VIM, IMP, NDM, KPC and OXA, among others. Preclinical and clinical trials are currently underway to test a new generation of promising inhibitors, together with the recently approved avibactam, relebactam and vaborbactam. This review summarizes the main, most promising carbapenemase inhibitors synthesized to date, as well as their spectrum of activity and current stage of development. We particularly focus on β-lactam/β-lactamase inhibitor combinations that could potentially be used to treat infections caused by carbapenemase-producer pathogens of critical priority. The emergence of these new combinations represents a step forward in the fight against antimicrobial resistance, especially in regard to metallo-β-lactamases and carbapenem-hydrolysing class D β-lactamases, not currently inhibited by any clinically approved inhibitor.
Collapse
|
93
|
Qu J, Yu R, Wang Q, Feng C, Lv X. Synergistic Antibacterial Activity of Combined Antimicrobials and the Clinical Outcome of Patients With Carbapenemase-Producing Acinetobacter baumannii Infection. Front Microbiol 2020; 11:541423. [PMID: 33178144 PMCID: PMC7593402 DOI: 10.3389/fmicb.2020.541423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
This study aimed to explore the activity of combined antimicrobials in vitro, and the relationship among resistance mechanisms, antimicrobial regimens, and the clinical outcome of patients with carbapenem-resistant Acinetobacter baumannii (CRAB) infections in western China. A total of 89 CRAB strains were collected from patients with CRAB infection from January 2018 to June 2018. The checkerboard assay was used to study the combined effects in vitro. Carbapenemase-encoding genes were detected by polymerase chain reaction (PCR) or multiplex PCR technique. The clinical data of 86 patients were collected. CRAB showed high susceptibility to tigecycline (91.01% inhibition) and polymyxin (83.15% inhibition). Polymyxin plus sulbactam exhibited the highest synergistic effect at a rate of 82.35%. Production of carbapenemase (blaOXA–23) was the main resistance mechanism of CRAB to carbapenem (95.35%). Excessive expression of active efflux pump genes (adeB, adeJ, and abeM) and deletion of the CarO protein accounted for 13.95% (12/86) and 84.88% (73/86), respectively. The synergistic effect of the sulbactam-based combination was higher than that of the polymyxin B-tigecycline combination for carbapenemase-producing CRAB (P < 0.05). The clinical outcome was not affected by the resistance mechanisms (P > 0.05). Advanced age, multiple organ dysfunction syndromes (MODS), and admission to the intensive care unit (ICU) were associated with treatment failure (P < 0.05). Appropriate antibiotic therapy did not improve the clinical outcome of critically ill patients. Higher minimum inhibitory concentrations (MICs) of tigecycline were associated with treatment failure (P < 0.05). A multivariate analysis showed that ICU stay (OR = 15.123, 95% CI: 2.600–87.951, P = 0.002) and procalcitonin ≥2 ng/ml (OR = 2.636, 95% CI: 1.173–5.924, P = 0.019) were the risk factors for treatment failure. In conclusion, this study demonstrated that the sulbactam-based combination exhibited a synergistic effect in vitro. The clinical outcome of patients was not associated with resistance mechanisms. This indicates that the early control of the progression from infection to severe disease may be important.
Collapse
Affiliation(s)
- Junyan Qu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Rujia Yu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Qujue Wang
- Department of Infectious Diseases, Renshou County People's Hospital, Renshou, China
| | - Chunlu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
94
|
Hendrickx APA, Landman F, de Haan A, Borst D, Witteveen S, van Santen-Verheuvel MG, van der Heide HGJ, Schouls LM. Plasmid diversity among genetically related Klebsiella pneumoniae bla KPC-2 and bla KPC-3 isolates collected in the Dutch national surveillance. Sci Rep 2020; 10:16778. [PMID: 33033293 PMCID: PMC7546619 DOI: 10.1038/s41598-020-73440-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/10/2020] [Indexed: 12/04/2022] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae emerged as a nosocomial pathogen causing morbidity and mortality in patients. For infection prevention it is important to track the spread of K. pneumoniae and its plasmids between patients. Therefore, the major aim was to recapitulate the contents and diversity of the plasmids of genetically related K. pneumoniae strains harboring the beta-lactamase gene blaKPC-2 or blaKPC-3 to determine their dissemination in the Netherlands and the former Dutch Caribbean islands from 2014 to 2019. Next-generation sequencing was combined with long-read third-generation sequencing to reconstruct 22 plasmids. wgMLST revealed five genetic clusters comprised of K. pneumoniae blaKPC-2 isolates and four clusters consisted of blaKPC-3 isolates. KpnCluster-019 blaKPC-2 isolates were found both in the Netherlands and the Caribbean islands, while blaKPC-3 cluster isolates only in the Netherlands. Each K. pneumoniae blaKPC-2 or blaKPC-3 cluster was characterized by a distinct resistome and plasmidome. However, the large and medium plasmids contained a variety of antibiotic resistance genes, conjugation machinery, cation transport systems, transposons, toxin/antitoxins, insertion sequences and prophage-related elements. The small plasmids carried genes implicated in virulence. Thus, implementing long-read plasmid sequencing analysis for K. pneumoniae surveillance provided important insights in the transmission of a KpnCluster-019 blaKPC-2 strain between the Netherlands and the Caribbean.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Fabian Landman
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Angela de Haan
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Dyogo Borst
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Sandra Witteveen
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marga G van Santen-Verheuvel
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Han G J van der Heide
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Leo M Schouls
- Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
95
|
Voulgari E, Kotsakis SD, Giannopoulou P, Perivolioti E, Tzouvelekis LS, Miriagou V. Detection in two hospitals of transferable ceftazidime-avibactam resistance in Klebsiella pneumoniae due to a novel VEB β-lactamase variant with a Lys234Arg substitution, Greece, 2019. ACTA ACUST UNITED AC 2020; 25. [PMID: 31964461 PMCID: PMC6976883 DOI: 10.2807/1560-7917.es.2020.25.2.1900766] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two ceftazidime-avibactam (CAZ-AVI)-resistant Klebsiella pneumoniae carbapenemase (KPC)-positive K. pneumoniae strains, including one pandrug resistant, were isolated in 2019 from two Greek hospitals. The strains were sequence types (ST)s 258 and 147 and both harboured similar self-transmissible IncA/C2 plasmids encoding a novel Lys234Arg variant of the Vietnamese extended-spectrum β-lactamase (VEB)-1, not inhibited by AVI (VEB-25). Conjugal transfer of VEB-25-encoding plasmids to Escherichia coli yielded CAZ-AVI-resistant clones, supporting that VEB-25 is directly linked to the derived phenotype.
Collapse
Affiliation(s)
- E Voulgari
- Laboratory of Bacteriology, Hellenic Pasteur Institute, Athens, Greece
| | - S D Kotsakis
- Laboratory of Bacteriology, Hellenic Pasteur Institute, Athens, Greece
| | - P Giannopoulou
- Department of Clinical Microbiology, Thriassio General Hospital, Elefsina, Greece
| | - E Perivolioti
- Department of Clinical Microbiology, Evangelismos General Hospital, Athens, Greece
| | - L S Tzouvelekis
- Department of Microbiology, Medical School, University of Athens, Athens, Greece.,Laboratory of Bacteriology, Hellenic Pasteur Institute, Athens, Greece
| | - V Miriagou
- Laboratory of Bacteriology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
96
|
Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection 2020; 48:835-851. [PMID: 32875545 PMCID: PMC7461763 DOI: 10.1007/s15010-020-01520-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
The management of carbapenem-resistant infections is often based on polymyxins, tigecycline, aminoglycosides and their combinations. However, in a recent systematic review, we found that Gram-negative bacteria (GNB) co-resistant to carbapanems, aminoglycosides, polymyxins and tigecycline (CAPT-resistant) are increasingly being reported worldwide. Clinical data to guide the treatment of CAPT-resistant GNB are scarce and based exclusively on few case reports and small case series, but seem to indicate that appropriate (in vitro active) antimicrobial regimens, including newer antibiotics and synergistic combinations, may be associated with lower mortality. In this review, we consolidate the available literature to inform clinicians dealing with CAPT-resistant GNB about treatment options by considering the mechanisms of resistance to carbapenems. In combination with rapid diagnostic methods that allow fast detection of carbapenemase production, the approach proposed in this review may guide a timely and targeted treatment of patients with infections by CAPT-resistant GNB. Specifically, we focus on the three most problematic species, namely Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Several treatment options are currently available for CAPT-resistant K. pneumonia. Newer β-lactam-β-lactamase combinations, including the combination of ceftazidime/avibactam with aztreonam against metallo-β-lactamase-producing isolates, appear to be more effective compared to combinations of older agents. Options for P. aeruginosa (especially metallo-β-lactamase-producing strains) and A. baumannii remain limited. Synergistic combination of older agents (e.g., polymyxin- or fosfomycin-based synergistic combinations) may represent a last resort option, but their use against CAPT-resistant GNB requires further study.
Collapse
|
97
|
Wang Y, Wang J, Wang R, Cai Y. Resistance to ceftazidime–avibactam and underlying mechanisms. J Glob Antimicrob Resist 2020; 22:18-27. [DOI: 10.1016/j.jgar.2019.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023] Open
|
98
|
Antonelli A, Giani T, Di Pilato V, Riccobono E, Perriello G, Mencacci A, Rossolini GM. KPC-31 expressed in a ceftazidime/avibactam-resistant Klebsiella pneumoniae is associated with relevant detection issues. J Antimicrob Chemother 2020; 74:2464-2466. [PMID: 31318973 DOI: 10.1093/jac/dkz156] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eleonora Riccobono
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gabriele Perriello
- Endocrinology and Metabolism, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Antonella Mencacci
- Medical Microbiology, Department of Medicine, University of Perugia, Perugia, Italy.,Microbiology Unit, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
99
|
Hujer AM, Long SW, Olsen RJ, Taracila MA, Rojas LJ, Musser JM, Bonomo RA. Predicting β-lactam resistance using whole genome sequencing in Klebsiella pneumoniae: the challenge of β-lactamase inhibitors. Diagn Microbiol Infect Dis 2020; 98:115149. [PMID: 32858260 DOI: 10.1016/j.diagmicrobio.2020.115149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/01/2020] [Accepted: 07/18/2020] [Indexed: 11/25/2022]
Abstract
Although multiple antimicrobial resistance (AMR) determinants can confer the same in vitro antimicrobial susceptibility testing (AST) phenotype, their differing effect on optimal therapeutic choices is uncertain. Using a large population-based collection of clinical strains spanning a 3.5-year period, we applied WGS to detect inhibitor resistant (IR), extended-spectrum β-lactamase (ESBL), and carbapenem resistant (CR) β-lactamase (bla) genes and compared the genotype to the AST phenotype in select isolates. All blaNDM-1 (9/9) and the majority of blaNDM-1/OXA-48 (3/4) containing isolates were resistant to CAZ/AVI as predicted by WGS. The combination of ATM and CAZ/AVI restored susceptibility by disk diffusion assay. Unexpectedly, clinical Kp isolates bearing blaKPC-8 (V240G) and blaKPC-14 (G242 and T243 deletion) did not test fully resistant to CAZ/AVI. Lastly, despite the complexity of the β-lactamase background, CAZ/AVI retained potency. Presumed phenotypes conferred by AMR determinants need to be tested if therapeutic decisions are being guided by their presence or absence.
Collapse
Affiliation(s)
- Andrea M Hujer
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - S Wesley Long
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Magdalena A Taracila
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - Laura J Rojas
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH; Department of Molecular Biology and Microbiology, Pharmacology, Biochemistry, and the Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH; CWRU-Cleveland VAMC, Center, for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH.
| |
Collapse
|
100
|
KPC-50 Confers Resistance to Ceftazidime-Avibactam Associated with Reduced Carbapenemase Activity. Antimicrob Agents Chemother 2020; 64:AAC.00321-20. [PMID: 32457107 DOI: 10.1128/aac.00321-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
KPC-50 is a KPC-3 variant identified from a Klebsiella pneumoniae clinical isolate recovered in Switzerland in 2019. Compared to KPC-3, KPC-50 shows (i) a three-amino-acid insertion (Glu-Ala-Val) between amino acids 276 and 277, (ii) an increased affinity to ceftazidime, (iii) a decreased sensitivity to avibactam, explaining the ceftazidime-avibactam resistance, and (iv) an association with a sharp reduction of its carbapenemase activity.
Collapse
|