51
|
Andersen JL, He GX, Kakarla P, K C R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1487-547. [PMID: 25635914 PMCID: PMC4344678 DOI: 10.3390/ijerph120201487] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Collapse
Affiliation(s)
- Jody L Andersen
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Gui-Xin He
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ranjana K C
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Wazir Singh Lakra
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Thuy Tran
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
52
|
Bubonja-Sonje M, Matovina M, Skrobonja I, Bedenic B, Abram M. Mechanisms of Carbapenem Resistance in Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa from a Croatian Hospital. Microb Drug Resist 2015; 21:261-9. [PMID: 25565041 DOI: 10.1089/mdr.2014.0172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, one of the leading causes of nosocomial infections such as pneumonia, urinary tract infections, and bacteraemia. The bacterial resistance to structurally unrelated antibiotics and its spread within hospitals limits the efficient antimicrobial options and patients' outcome. Carbapenems are important agents for the therapy of infections due to multidrug-resistant (MDR) P. aeruginosa; hence, the development of carbapenem resistance severely hampers effective therapeutic options. The aim of this investigation was to examine mechanisms of carbapenem resistance and genomic diversity in carbapenem-resistant MDR strains of P. aeruginosa, which caused an outbreak among patients in Clinical Hospital Rijeka. Most of the isolates showed decreased expression of porin that is important for the entry of carbapenems (oprD). Overexpression of MexAB-OprM, MexCD-OprJ, and MexEF-OprN efflux systems was observed in many of the isolates. Production of metallo-β-lactamases was not detected. Typing by pulsed-field gel electrophoresis discriminated the isolates into five clusters. The clonal distribution of the strains was related to the location of hospital departments where the isolates were collected, which implies that most of the infections were caused by spread of the epidemic strains within the hospital.
Collapse
Affiliation(s)
- Marina Bubonja-Sonje
- 1Department of Microbiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,2Department of Clinical Microbiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Mihaela Matovina
- 1Department of Microbiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ivana Skrobonja
- 2Department of Clinical Microbiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Branka Bedenic
- 3Department of Microbiology, School of Medicine, University of Zagreb, Zagreb, Croatia.,4Clinical Department for Clinical and Molecular Microbiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Maja Abram
- 1Department of Microbiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,2Department of Clinical Microbiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| |
Collapse
|
53
|
D'Agata EMC. Rapidly Rising Prevalence of Nosocomial Multidrug-Resistant, Gram-Negative Bacilli: A 9-Year Surveillance Study. Infect Control Hosp Epidemiol 2015; 25:842-6. [PMID: 15518026 DOI: 10.1086/502306] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractObjective:To examine and quantify the temporal trends of nosocomial multidrug-resistant, gram-negative bacilli.Design:A 9-year surveillance study was conducted. Multidrug resistance was defined as resistance to 3 or more antimicrobial classes.Setting:Tertiary-care institution.Results:From 1994 to 2002, multidrug-resistant, gram-negative bacilli increased from 1% to 16% for multidrug-resistantPseudomonas aeruginosa,4% to 13% for multidrug-resistantEnterobacterspecies, 0.5% to 17% for multidrug-resistantKlebsiellaspecies, 0% to 9% for multidrug-resistantProteusspecies, and 0.2% to 4% for multidrug-resistantEscherichia coli(P≤ .05). The most common pattern of multidrug resistance was co-resistance to quinolones, third-generation cephalosporins, and aminoglycosides.Conclusion:The rapid rise of multidrug-resistant, gram-negative bacilli may warrant infection control programs to include these pathogens in strategies aimed at limiting the emergence and spread of antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Erika M C D'Agata
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
54
|
Pujol M, Delgado O, Puigventós F, Corzo JE, Cercenado E, Martínez JA. Evaluation of new antimicrobials for the hospital formulary. Policies restricting antibiotic use in hospitals. Enferm Infecc Microbiol Clin 2014; 31 Suppl 4:45-50. [PMID: 24129289 DOI: 10.1016/s0213-005x(13)70132-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Spain, the inclusion of new antibiotics in hospital formularies is performed by the Infection Policy Committee or the Pharmacy and Therapeutic Committee, although now the decision is moving to a regional level. Criteria for the evaluation of new drugs include efficacy, safety and cost. For antimicrobial drugs evaluation it is necessary to consider local sensibility and impact in bacterial resistance to determinate the therapeutic positioning. There is compelling evidence that the use of antibiotics is associated with increasing bacterial resistance, and a great number of antibiotics are used incorrectly. In order to decrease the inappropriate use of antibiotics, several approaches have been proposed. Limiting the use of antimicrobials through formulary restrictions, often aimed at drugs with a specific resistance profile, shows benefits in improving antimicrobial susceptibilities and decreasing colonization by drug-resistant organisms. However, the restriction of one agent may result in the increased utilization of other agents. By using antibiotic cycling, the amount of antibiotics is maintained below the threshold where bacterial resistance develops, thus preserving highly efficient antibiotics. Unfortunately, cumulative evidence to date suggests that antibiotic cycling has limited efficacy in preventing antibiotic resistance. Finally, although there is still little clinical evidence available on antibiotic heterogeneity, the use of most of the existing antimicrobial classes could limit the emergence of resistance. This review summarizes information regarding antibiotic evaluation and available restrictive strategies to limit the use of antibiotics at hospitals with the aim of curtailing increasing antibiotic resistance.
Collapse
Affiliation(s)
- Miquel Pujol
- Servicio de Enfermedades Infecciosas, Hospital Universitario de Bellvitge, IDIBELL, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
55
|
Smaldone G, Marrone R, Cappiello S, Martin GA, Oliva G, Cortesi ML, Anastasio A. Occurrence of antibiotic resistance in bacteria isolated from seawater organisms caught in Campania Region: preliminary study. BMC Vet Res 2014; 10:161. [PMID: 25027759 PMCID: PMC4112976 DOI: 10.1186/1746-6148-10-161] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022] Open
Abstract
Background Environmental contamination by pharmaceuticals is a public health concern: drugs administered to humans and animals are excreted with urine or faeces and attend the sewage treatment. The main consequences of use and abuse of antibiotics is the development and diffusion of antibiotic resistance that has become a serious global problem. Aim of the study is to evaluate the presence of antimicrobial residues and to assess the antimicrobial resistance in bacteria species isolated from different wild caught seawater fish and fishery products. Results Three antibiotic substances (Oxytetracicline, Sulfamethoxazole and Trimethoprim) were detected (by screening and confirmatory methods) in Octopus vulgaris, Sepia officinalis and Thais haemastoma. All Vibrio strains isolated from fish were resistant to Vancomycin (VA) and Penicillin (P). In Vibrio alginolyticus, isolated in Octopus vulgaris, a resistance against 9 antibiotics was noted. Conclusions Wild caught seawater fish collected in Gulf of Salerno (Campania Region), especially in marine areas including mouths of streams, were contaminated with antibiotic-resistant bacteria strains and that they might play an important role in the spread of antibiotic-resistance.
Collapse
Affiliation(s)
| | - Raffaele Marrone
- Departement of Veterinary Medicine and Animal Production, University of Naples "Federico II", via F, Delpino 1, 80137 Naples, NA, Italy.
| | | | | | | | | | | |
Collapse
|
56
|
Pobolelova YI, Ulyashova MM, Rubtsova MY, Egorov AM. Multiplex PCR for joint amplification of carbapenemase genes of molecular classes A, B, and D. BIOCHEMISTRY. BIOKHIMIIA 2014; 79:566-70. [PMID: 25100015 DOI: 10.1134/s0006297914060108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here we present a method for joint amplification of genes of carbapenemases of molecular classes A, B, and D for hybridization analysis on DNA microarrays. Using new-generation DNA polymerase KAPA2G Fast (KAPA Biosystems, USA) together with optimization of the conditions for the multiplex PCR with 20 primer pairs allowed us to carry out joint amplification of full-length genes of seven different types of carbapenemases (KPC, VIM, IMP, SPM, SIM, GIM, and OXA) with simultaneous inclusion of biotin as a label. Yield of the labeled PCR product sufficient for further analysis by microarray hybridization was achieved 40 min after the start of the reaction. This reduced the total duration of DNA identification techniques, including sample preparation stage, to 4 h. The method for gene identification by DNA microarrays with the improved stage of amplification of specific carbapenemase genes was tested with clinical strains of gram-negative bacteria Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacteriaceae spp. with different sensitivity towards carbapenems according to phenotyping tests. All clinical strains of A. baumannii resistant to carbapenems were found to have genes of OXA-type carbapenemases (subtypes OXA-51, OXA-23, OXA-40, and OXA-58), and clinical strains of P. aeruginosa resistant to carbapenems were found to possess the gene of VIM-type metallo-beta-lactamase (subtype VIM-2). When testing clinical strains sensitive to carbapenems, carbapenemase genes were not detected. Thus, the method of identifying carbapenemase genes on DNA microarrays is characterized by high accuracy and can be used in clinical microbiology laboratories for express diagnostics of resistance to carbapenems.
Collapse
Affiliation(s)
- Yu I Pobolelova
- Lomonosov Moscow State University, Chemical Faculty, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
57
|
Sacha P, Wieczorek P, Ojdana D, Hauschild T, Milewski R, Czaban S, Poniatowski B, Tryniszewska E. Expression of MexAB-OprM efflux pump system and susceptibility to antibiotics of different Pseudomonas aeruginosa clones isolated from patients hospitalized in two intensive care units at University Hospital in Bialystok (northeastern Poland) between Janu. APMIS 2014; 122:931-40. [DOI: 10.1111/apm.12236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/26/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Paweł Sacha
- Department of Microbiological Diagnostics and Infectious Immunology; Faculty of Pharmacy; Medical University; Bialystok
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology; Faculty of Pharmacy; Medical University; Bialystok
| | - Dominika Ojdana
- Department of Microbiological Diagnostics and Infectious Immunology; Faculty of Pharmacy; Medical University; Bialystok
| | - Tomasz Hauschild
- Department of Microbiology; Faculty of Biology and Chemistry; University of Bialystok; Bialystok
| | - Robert Milewski
- Department of Statistics and Medical Informatics; Faculty of Health Sciences; Medical University; Bialystok
| | - Sławomir Czaban
- Department of Anaesthesiology and Intensive Therapy; Faculty of Health Sciences; Medical University; Bialystok
| | - Bogusław Poniatowski
- Hospital Emergency Department with Intensive Care Subdivision; University Hospital; Bialystok
| | - Elżbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology; Faculty of Pharmacy; Medical University; Bialystok
- Department of Microbiological Diagnostics and Infectious Immunology; University Hospital; Bialystok Poland
| |
Collapse
|
58
|
Abstract
Proteins within a cell are localized into specific cellular compartments, allowing compartmentalization of distinct tasks. If we consider lipid bilayers as compartments, then gram-negative bacteria such as Pseudomonas aeruginosa can target proteins to five distinct locations: the cytoplasm, the inner membrane, the periplasm, the outer membrane, and the extracellular environment. In this chapter, we describe how the different compartments can be selectively isolated by a combination of centrifugation and disruption techniques. Fractionation of the cells into subcellular compartments enables protein enrichment and is essential to accurately determine the localization of specific proteins, which is the first step towards understanding the function of a protein in the cell.
Collapse
Affiliation(s)
- Bérengère Ize
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255 - CNRS - Aix Marseille Université, IMM 31, Ch. J. Aiguier, 13402, Marseille, CEDEX 20, France,
| | | | | |
Collapse
|
59
|
The pharmaco -, population and evolutionary dynamics of multi-drug therapy: experiments with S. aureus and E. coli and computer simulations. PLoS Pathog 2013; 9:e1003300. [PMID: 23593006 PMCID: PMC3617031 DOI: 10.1371/journal.ppat.1003300] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/25/2013] [Indexed: 12/03/2022] Open
Abstract
There are both pharmacodynamic and evolutionary reasons to use multiple rather than single antibiotics to treat bacterial infections; in combination antibiotics can be more effective in killing target bacteria as well as in preventing the emergence of resistance. Nevertheless, with few exceptions like tuberculosis, combination therapy is rarely used for bacterial infections. One reason for this is a relative dearth of the pharmaco-, population- and evolutionary dynamic information needed for the rational design of multi-drug treatment protocols. Here, we use in vitro pharmacodynamic experiments, mathematical models and computer simulations to explore the relative efficacies of different two-drug regimens in clearing bacterial infections and the conditions under which multi-drug therapy will prevent the ascent of resistance. We estimate the parameters and explore the fit of Hill functions to compare the pharmacodynamics of antibiotics of four different classes individually and in pairs during cidal experiments with pathogenic strains of Staphylococcus aureus and Escherichia coli. We also consider the relative efficacy of these antibiotics and antibiotic pairs in reducing the level of phenotypically resistant but genetically susceptible, persister, subpopulations. Our results provide compelling support for the proposition that the nature and form of the interactions between drugs of different classes, synergy, antagonism, suppression and additivity, has to be determined empirically and cannot be inferred from what is known about the pharmacodynamics or mode of action of these drugs individually. Monte Carlo simulations of within-host treatment incorporating these pharmacodynamic results and clinically relevant refuge subpopulations of bacteria indicate that: (i) the form of drug-drug interactions can profoundly affect the rate at which infections are cleared, (ii) two-drug therapy can prevent treatment failure even when bacteria resistant to single drugs are present at the onset of therapy, and (iii) this evolutionary virtue of two-drug therapy is manifest even when the antibiotics suppress each other's activity. In this study, we combine pharmacodynamic experiments using pathogenic strains of E. coli and S. aureus with mathematical and computer simulation models to explore the relative efficacies of two-drug antibiotic combinations in clearing infections and preventing the emergence of resistance. We develop a pharmacodynamic method that provides a convenient way to determine whether drug combinations will interact synergistically, antagonistically, additively or suppressively. We find that it is not possible to predict the nature and form of drug interactions based on what is known about the mode of action of individual drugs, thus illustrating the necessity of assessing the efficacy of drug combinations empirically. Our simulations of the within-host population and evolutionary dynamics of bacteria undergoing multi-drug treatment indicate that the form of the interaction between drugs observed experimentally can substantially affect the rate of clearance of the infection. On the other hand, the form of these interactions plays a minimal role in the emergence of resistance. Even when antibiotics are suppressive, two-drug therapy can prevent the ascent of bacteria resistant to single drugs that are present at the start of therapy and/or generated during the course of the infection.
Collapse
|
60
|
Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 2013; 25:661-81. [PMID: 23034325 DOI: 10.1128/cmr.00043-12] [Citation(s) in RCA: 576] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The substantial use of antibiotics in the clinic, combined with a dearth of new antibiotic classes, has led to a gradual increase in the resistance of bacterial pathogens to these compounds. Among the various mechanisms by which bacteria endure the action of antibiotics, those affecting influx and efflux are of particular importance, as they limit the interaction of the drug with its intracellular targets and, consequently, its deleterious effects on the cell. This review evaluates the impact of porins and efflux pumps on two major types of resistance, namely, mutational and adaptive types of resistance, both of which are regarded as key phenomena in the global rise of antibiotic resistance among pathogenic microorganisms. In particular, we explain how adaptive and mutational events can dramatically influence the outcome of antibiotic therapy by altering the mechanisms of influx and efflux of antibiotics. The identification of porins and pumps as major resistance markers has opened new possibilities for the development of novel therapeutic strategies directed specifically against these mechanisms.
Collapse
|
61
|
gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon. J Infect Chemother 2013; 19:77-81. [DOI: 10.1007/s10156-012-0455-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/04/2012] [Indexed: 01/07/2023]
|
62
|
Beta-lactams resistance and presence of class 1 integron in Pseudomonas spp. isolated from untreated hospital effluents in Brazil. Antonie van Leeuwenhoek 2012; 102:73-81. [DOI: 10.1007/s10482-012-9714-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
63
|
Starr LM, Fruci M, Poole K. Pentachlorophenol induction of the Pseudomonas aeruginosa mexAB-oprM efflux operon: involvement of repressors NalC and MexR and the antirepressor ArmR. PLoS One 2012; 7:e32684. [PMID: 22393435 PMCID: PMC3290565 DOI: 10.1371/journal.pone.0032684] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/29/2012] [Indexed: 11/24/2022] Open
Abstract
Pentachlorophenol (PCP) induced expression of the NalC repressor-regulated PA3720-armR operon and the MexR repressor-controlled mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. PCP's induction of PA3720-armR resulted from its direct modulation of NalC, the repressor's binding to PA3720-armR promoter-containing DNA as seen in electromobility shift assays (EMSAs) being obviated in the presence of this agent. The NalC binding site was localized to an inverted repeat (IR) sequence upstream of PA3720-armR and overlapping a promoter region whose transcription start site was mapped. While modulation of MexR by the ArmR anti-repressor explains the upregulation of mexAB-oprM in nalC mutants hyperexpressing PA3720-armR, the induction of mexAB-oprM expression by PCP is not wholly explainable by PCP induction of PA3720-armR and subsequent ArmR modulation of MexR, inasmuch as armR deletion mutants still showed PCP-inducible mexAB-oprM expression. PCP failed, however, to induce mexAB-oprM in a mexR deletion strain, indicating that MexR was required for this, although PCP did not modulate MexR binding to mexAB-oprM promoter-containing DNA in vitro. One possibility is that MexR responds to PCP-generated in vivo effector molecules in controlling mexAB-oprM expression in response to PCP. PCP is an unlikely effector and substrate for NalC and MexAB-OprM - its impact on NalC binding to the PA3720-armR promoter DNA occurred only at high µM levels - suggesting that it mimics an intended phenolic effector/substrate(s). In this regard, plants are an abundant source of phenolic antimicrobial compounds and, so, MexAB-OprM may function to protect P. aeruginosa from plant antimicrobials that it encounters in nature.
Collapse
Affiliation(s)
- Lisa M. Starr
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Michael Fruci
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
64
|
Marchetti ML, Errecalde J, Mestorino N. Effect of 1-(1-naphthylmethyl)-piperazine on antimicrobial agent susceptibility in multidrug-resistant isogenic and veterinary Escherichia coli field strains. J Med Microbiol 2012; 61:786-792. [PMID: 22345599 DOI: 10.1099/jmm.0.040204-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to evaluate the interaction of the efflux pump inhibitor 1-(1-naphthylmethyl)-piperazine (NMP) when combined with different families of antimicrobial agents against isogenic strains and multidrug-resistant (MDR) Escherichia coli field strains isolated from animals. Laboratory isogenic strains of E. coli with different levels of expression of efflux pumps were used as quality controls. Ten MDR E. coli strains were collected from healthy animals in a cross-sectional study in four commercial dairy farms. The MICs of florfenicol, ciprofloxacin, tetracycline and ampicillin were determined by a serial microdilution method in Luria-Bertani broth in the presence or absence of NMP. NMP used with ampicillin exerted no effect on the isogenic or field strains. In most of the field MDRE. coli strains and in an acrAB-overexpressing (AG112) isogenic strain, the MICs of florfenicol, ciprofloxacin and tetracycline decreased at least fourfold when the antimicrobial was combined with the highest NMP concentrations. In the wild-type strain (AG100), there were no decreases of more than twice the MIC, whilst in strain AG100A, an efflux pump-deficient strain, the MIC did not change, regardless of the concentration of NMP used with these three antimicrobials. Thus, ampicillin was not affected by the efflux pump mechanism, whereas ciprofloxacin, tetracycline and florfenicol were shown to be substrates of efflux pumps, with a consequent significant reduction in MICs. Resistance could not be completely reversed in the E. coli field strains by NMP, probably because other resistance mechanisms were also present. However, in strain AG112, the MIC results demonstrated that NMP expressed an important synergistic activity with florfenicol. The reduction in florfenicol MIC value was sufficient to reverse antimicrobial resistance completely for AG112.
Collapse
Affiliation(s)
- M L Marchetti
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina.,Department of Pharmacology, Facultad de Ciencias Veterrinarias, Universidad Nacional de La Plata, 60 y 118 CC 296, 1900 La Plata, Buenos Aires, Argentina
| | - J Errecalde
- Department of Pharmacology, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Buenos Aires, Argentina.,Department of Pharmacology, Facultad de Ciencias Veterrinarias, Universidad Nacional de La Plata, 60 y 118 CC 296, 1900 La Plata, Buenos Aires, Argentina
| | - N Mestorino
- Department of Pharmacology, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Buenos Aires, Argentina.,Department of Pharmacology, Facultad de Ciencias Veterrinarias, Universidad Nacional de La Plata, 60 y 118 CC 296, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
65
|
Esquisabel AC, Rodríguez M, Campo-Sosa A, Rodríguez C, Martínez-Martínez L. Mechanisms of resistance in clinical isolates of Pseudomonas aeruginosa less susceptible to cefepime than to ceftazidime. Clin Microbiol Infect 2011; 17:1817-22. [DOI: 10.1111/j.1469-0691.2011.03530.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
66
|
Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55:4943-60. [PMID: 21859938 PMCID: PMC3195018 DOI: 10.1128/aac.00296-11] [Citation(s) in RCA: 943] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this review, we summarize the current "state of the art" of carbapenem antibiotics and their role in our antimicrobial armamentarium. Among the β-lactams currently available, carbapenems are unique because they are relatively resistant to hydrolysis by most β-lactamases, in some cases act as "slow substrates" or inhibitors of β-lactamases, and still target penicillin binding proteins. This "value-added feature" of inhibiting β-lactamases serves as a major rationale for expansion of this class of β-lactams. We describe the initial discovery and development of the carbapenem family of β-lactams. Of the early carbapenems evaluated, thienamycin demonstrated the greatest antimicrobial activity and became the parent compound for all subsequent carbapenems. To date, more than 80 compounds with mostly improved antimicrobial properties, compared to those of thienamycin, are described in the literature. We also highlight important features of the carbapenems that are presently in clinical use: imipenem-cilastatin, meropenem, ertapenem, doripenem, panipenem-betamipron, and biapenem. In closing, we emphasize some major challenges and urge the medicinal chemist to continue development of these versatile and potent compounds, as they have served us well for more than 3 decades.
Collapse
Affiliation(s)
- Krisztina M. Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Departments of Medicine
| | - Andrea Endimiani
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Institute for Infectious Diseases, University of Bern 3010, Bern, Switzerland
- Departments of Medicine
| | | | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Departments of Medicine
- Pharmacology
- Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
67
|
Nikaido H, Pagès JM. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 2011; 36:340-63. [PMID: 21707670 DOI: 10.1111/j.1574-6976.2011.00290.x] [Citation(s) in RCA: 516] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
68
|
Rotschafer JC, Ullman MA, Sullivan CJ. Optimal use of fluoroquinolones in the intensive care unit setting. Crit Care Clin 2011; 27:95-106. [PMID: 21144988 DOI: 10.1016/j.ccc.2010.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluoroquinolones have become a staple antimicrobial in a variety of settings for a wide spectrum of infectious diseases. Although fluoroquinolones have been associated with a broad spectrum of adverse events, the side effect profile is generally acceptable. Their use in the intensive care unit as empiric therapy is becoming compromised due to the development of multiple drug resistant gram negative pathogens and collateral damage with C difficile & MRSA. Fluoroquinolones should be used along with another antibiotic of different chemical structure, mechanism of action, and pharmacodynamic profile to ensure adequate initial antimicrobial coverage and maximize the likelihood of a favorable clinical and microbiologic response.
Collapse
Affiliation(s)
- John C Rotschafer
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, WDH 7-189, 308 Harvard Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
69
|
Abstract
In recent studies of human bacterial pathogens, oxidation sensing and regulation have been shown to impact very diverse pathways that extend beyond inducing antioxidant genes in the bacteria. In fact, some redox-sensitive regulatory proteins act as major regulators of bacteria's adaptability to oxidative stress, an ability that originates from immune host response as well as antibiotic stress. Such proteins play particularly important roles in pathogenic bacteria S. aureus, P. aeruginosa, and M. tuberculosis in part because reactive oxygen species and reactive nitrogen species present significant challenges for pathogens during infection. Herein, we review recent progress toward the identification and understanding of oxidation sensing and regulation in human pathogens. The newly identified redox switches in pathogens are a focus of this review. We will cover several reactive oxygen species-sensing global regulators in both gram-positive and gram-negative pathogenic bacteria in detail. The following discussion of the mechanisms that these proteins employ to sense redox signals through covalent modification of redox active amino acid residues or associated metalloprotein centers will provide further understanding of bacteria pathogenesis, antibiotic resistance, and host-pathogen interaction.
Collapse
Affiliation(s)
- Peng R Chen
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | | | | |
Collapse
|
70
|
Antimicrobial activity of different Lactobacillus species against multi- drug resistant clinical isolates of Pseudomonas aeruginosa. IRANIAN JOURNAL OF MICROBIOLOGY 2011; 3:21-5. [PMID: 22347578 PMCID: PMC3279796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lactobacilli are the well known friendly bacteria for their probiotic activities against pathogens. The inhibitory activity of different strains of lactobacilli either obtained as commercial products or isolated from human feces was investigated against the clinical isolates of Pseudomonas aeruginosa. The isolates were selected as the most resistant strains when challenged with anti-pseudomonal antibiotics already in clinical practice. MATERIALS AND METHODS Both the plate spot test as well as the agar cup method were used for screening of Lactobacillus strains against Pseudomonas aeruginosa. RESULTS A Lactobacillus acidophilus strain isolated from feces of an Iranian child showed a strong anti-pseudomonal activity (90 percent after 72h incubation) against the multi-drug resistant clinical isolates while a Lactobacillus reuteri strain isolated from a commercial oral product resulted in relatively weak response and a Lactobacillus acidophilus strain isolated from a commercial vaginal product did not show any inhibitory activity. In a kinetic study the lactobacillus sensitive Pseudomonas aeruginosa showed a significant bacteriostatic activity in vitro in the presence of lactobacillus supernatants. CONCLUSION Some lactobacilli exhibit significant inhibitory activity against the multidrug resistant clinical isolates of Pseudomonas aeruginosa.
Collapse
|
71
|
Hernández A, Sánchez MB, Martínez JL. Quinolone resistance: much more than predicted. Front Microbiol 2011; 2:22. [PMID: 21687414 PMCID: PMC3109427 DOI: 10.3389/fmicb.2011.00022] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/31/2011] [Indexed: 12/31/2022] Open
Abstract
Since quinolones are synthetic antibiotics, it was predicted that mutations in target genes would be the only mechanism through which resistance could be acquired, because there will not be quinolone-resistance genes in nature. Contrary to this prediction, a variety of elements ranging from efflux pumps, target-protecting proteins, and even quinolone-modifying enzymes have been shown to contribute to quinolone resistance. The finding of some of these elements in plasmids indicates that quinolone resistance can be transferable. As a result, there has been a developing interest on the reservoirs for quinolone-resistance genes and on the potential risks associated with the use of these antibiotics in non-clinical environments. As a matter of fact, plasmid-encoded, quinolone-resistance qnr genes originated in the chromosome of aquatic bacteria. Thus the use of quinolones in fish-farming might constitute a risk for the emergence of resistance. Failure to predict the development of quinolone resistance reinforces the need of taking into consideration the wide plasticity of biological systems for future predictions. This plasticity allows pathogens to deal with toxic compounds, including those with a synthetic origin as quinolones.
Collapse
Affiliation(s)
- Alvaro Hernández
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CSIC, Madrid, Spain
| | | | | |
Collapse
|
72
|
Pagedar A, Singh J, Batish VK. Efflux mediated adaptive and cross resistance to ciprofloxacin and benzalkonium chloride in Pseudomonas aeruginosa of dairy origin. J Basic Microbiol 2011; 51:289-95. [DOI: 10.1002/jobm.201000292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/16/2010] [Indexed: 11/09/2022]
|
73
|
Wang H, Meng J, Jia M, Ma X, He G, Yu J, Wang R, Bai H, Hou Z, Luo X. oprM as a new target for reversion of multidrug resistance in Pseudomonas aeruginosa by antisense phosphorothioate oligodeoxynucleotides. ACTA ACUST UNITED AC 2010; 60:275-82. [PMID: 20955466 DOI: 10.1111/j.1574-695x.2010.00742.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug-resistant Pseudomonas aeruginosa (MDR-PA) is one of the leading Gram-negative organisms associated with nosocomial infections. The increasing frequency of MDR-PA has represented a huge challenge in conventional antibacterial therapy. The loss of effectiveness of commonly used antibiotics calls for the immediate need to develop an alternative strategy for combating MDR-PA infections. The multiantibiotic resistance of MDR-PA is largely attributable to the production of multidrug efflux pumps, MexAB-OprM. OprM forms the antibiotic-ejecting duct and plays a crucial role in exporting incoming chemotherapeutic agents across the membranes. Disruption of the OprM expression may inhibit the function of multidrug efflux pumps and lead to restoration of MDR-PA susceptibility to antibiotics. In this study, we developed a novel anion liposome for encapsulating and delivering specific anti-oprM phosphorothioate oligodeoxynucleotide (PS-ODN617) and polycation polyethylenimine (PEI) complexes. The additions of the encapsulated anti-oprM PS-ODN617/PEI to MDR-PA isolates caused a significant reduction of oprM expression and inhibition of MDR-PA growth in the presence of piperacillin in a concentration-dependent manner. The encapsulated PS-ODN617 treatment also reduced minimal inhibitory concentrations of five most commonly used antibiotics to the sensitive margin values on MDR-PA clinical isolates, respectively. The results of present study firstly indicate that PS-ODN targeted to oprM can significantly restore the susceptibility of MDR-PA to existing antibiotics, which appears to be a novel strategy for treating MDR-PA infections.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Andrésen C, Jalal S, Aili D, Wang Y, Islam S, Jarl A, Liedberg B, Wretlind B, Mårtensson LG, Sunnerhagen M. Critical biophysical properties in the Pseudomonas aeruginosa efflux gene regulator MexR are targeted by mutations conferring multidrug resistance. Protein Sci 2010; 19:680-92. [PMID: 20095047 DOI: 10.1002/pro.343] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The self-assembling MexA-MexB-OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR-wt as well as a selected set of MDR single mutants distant from the proposed DNA-binding helix. Although DNA affinity and MexA-MexB-OprM repression were both drastically impaired in the selected MexR-MDR mutants, MexR-wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR-MDR mutants, secondary structure content and oligomerization properties were very similar to MexR-wt despite their lack of DNA binding. Despite this, the MexR-MDR mutants showed highly varying stabilities compared with MexR-wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA-binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR-wt in both free and DNA-bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations-stability, domain interactions, and internal hydrophobic surfaces-are also critical for the regulation of MexR DNA binding.
Collapse
Affiliation(s)
- Cecilia Andrésen
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ulyashova М, Khalilova Y, Rubtsova М, Edelstein М, Alexandrova I, Egorov А. Oligonucleotide microarray for the identification of carbapenemase genes of molecular classes a, B, and d. Acta Naturae 2010; 2:101-9. [PMID: 22649657 PMCID: PMC3347561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This work is a report on the development of a method of hybridization analysis on DNA microarrays for the simultaneous identification and typing of carbapenemase-encoding genes. These enzymes are produced by the microorganisms that are responsible for causing infectious diseases. The method involves several steps, including DNA extraction from clinical samples and amplification of carbapenemase genes by multiplex PCR with simultaneous labelling by biotin. Following that, hybridization of the labeled PCR products with oligonucleotide probes immobilized on the surface of a nitrocellulose-based DNA microarray occurs. The biotin molecules attached to the DNA duplexes are detected by using conjugates of streptavidin-horseradish peroxidase, which is then quantified by colorimetric detection of the enzyme. We have designed the required oligonucleotide probes and optimized the conditions of the membrane microarray-based hybridization analysis. Our method allows to identify 7 types of carbapenemase genes belonging to the molecular classes A, B, and D, and it also allows additional typing into genetic subgroups. The microarrays have been tested with the control strains producing the carbapenemase genes which have been characterized by sequencing. The developed method of hybridization analysis was employed to investigate clinical strains ofPseudomonasspp. andAcinetobacterspp., which produce carbapenemases of different classes based on phenotypic testing. All strains ofAcinetobacter baumaniiresistant to carbapenems were producers of two carbapenemase OXA-type genes (OXA-51, in combination with OXA-23 (1 strain), OXA-40 (5 strains), or OXA-58 (4 strains)). The metallo-β-lactamase VIM-2 type gene was detected in allPseudomonas aeruginosastrains resistant to carbapenems. Testing of carbapenem-sensitive strains did not detect any carbapenemase genes. The microarray method for the identification of carbapenemase genes is very accurate and highly productive. It can be employed in clinical microbiological laboratories for the identification and study of carbapenemase epidemiology.
Collapse
Affiliation(s)
| | | | - М.Yu. Rubtsova
- Chemistry Faculty, Lomonosov Moscow State University
- ZAO ‘NPP IMMUNOTEK’, (NPP IMMUNOTECH, JSC)
| | - М.V. Edelstein
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical Academy
| | - I.А. Alexandrova
- Burdenko Institute of Neurosurgery, Russian Academy of Medical Sciences
| | - А.М. Egorov
- Chemistry Faculty, Lomonosov Moscow State University
| |
Collapse
|
76
|
Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med Chem 2010; 2:1005-35. [DOI: 10.4155/fmc.10.185] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Small molecules that can attenuate bacterial toxin production or biofilm formation have the potential to solve the bacteria resistance problem. Although several molecules, which inhibit bacterial cell-to-cell communication (quorum sensing), biofilm formation and toxin production, have been discovered, there is a paucity of US FDA-approved drugs that target these processes. Here, we review the current understanding of quorum sensing in important pathogens such as Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus and provide examples of experimental molecules that can inhibit both known and unknown targets in bacterial virulence factor production and biofilm formation. Structural data for protein targets that are involved in both quorum sensing and cyclic diguanylic acid signaling are needed to aid the development of molecules with drug-like properties in order to target bacterial virulence factors production and biofilm formation.
Collapse
|
77
|
Adwan G, Abu-Shanab B, Adwan K. Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug–resistant Pseudomonas aeruginosa strains. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60064-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
78
|
López-Dupla M, Martínez JA, Vidal F, Almela M, Soriano A, Marco F, López J, Olona M, Mensa J. Previous ciprofloxacin exposure is associated with resistance to beta-lactam antibiotics in subsequent Pseudomonas aeruginosa bacteremic isolates. Am J Infect Control 2009; 37:753-8. [PMID: 19487049 DOI: 10.1016/j.ajic.2009.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 01/28/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa cross-resistance to ceftazidime, imipenem, meropenem, piperacillin, and fluoroquinoles has been shown in experimental studies, but information regarding its impact in the clinical setting is scarce and inconsistent. The aim of this study was to assess whether previous exposure to ciprofloxacin influences on the sensitivity of those antibiotics in subsequent P aeruginosa bacteremic isolates. METHODS Patients with P aeruginosa bacteremia were recorded from a blood culture surveillance program (1997-2007). Demographic characteristics, underlying diseases, setting of the infection, source of infection, previous antibiotic exposure, and antibiotic sensitivity were analyzed. RESULTS We studied 572 cases of P aeruginosa bacteremia. There were 327 men (57.2%), and the mean age was 61.2 +/- 18 years. The bacteremia was nosocomial in 62.4% of episodes. Resistance rates of P aeruginosa isolates were 15.5% for ceftazidime, 16.7% for imipenem, 11.2% for meropenem, 12.3% for piperacillin-tazobactam, and 23.1% for ciprofloxacin. Exposure to ciprofloxacin during the previous 30 days was an independent predictor of resistance to ceftazidime (odds ratio [OR], 3; 95% confidence interval [CI]: 1.7-5.3; P < .001), imipenem (OR, 2; 95% CI: 1.1-3.7; P = .02), meropenem (OR, 2.7; 95% CI: 1.4-5.3; P = .004), piperacillin-tazobactam (OR, 2.4; 95% CI: 1.3-4.7; P = .007), ciprofloxacin (OR, 2.9; 95% CI: 1.7-4.9; P < .001), and multidrug resistance (OR, 2.5; 95% CI: 1.2-5.2; P = .02). CONCLUSION P aeruginosa bacteremic isolates from patients who have been exposed to ciprofloxacin during the 30 days prior to the development of bacteremia have an increased risk of being resistant to ceftazidime, imipenem, meropenem, piperacillin-tazobactam, or ciprofloxacin and to have multidrug resistance.
Collapse
|
79
|
Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Antimicrob Agents Chemother 2009; 53:4673-7. [PMID: 19687245 DOI: 10.1128/aac.00853-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloramphenicol, florfenicol, and thiamphenicol are used as antibacterial drugs in clinical and veterinary medicine. Two efflux pumps of the major facilitator superfamily encoded by the cmlR1 and cmlR2 genes mediate resistance to these antibiotics in Streptomyces coelicolor, a close relative of Mycobacterium tuberculosis. The transcription of both genes was observed by reverse transcription-PCR. Disruption of cmlR1 decreased the chloramphenicol MIC 1.6-fold, while disruption of cmlR2 lowered the MIC 16-fold. The chloramphenicol MIC of wild-type S. coelicolor decreased fourfold and eightfold in the presence of reserpine and Phe-Arg-beta-naphthylamide, respectively. These compounds are known to potentiate the activity of some antibacterial drugs via efflux pump inhibition. While reserpine is known to potentiate drug activity against gram-positive bacteria, this is the first time that Phe-Arg-beta-naphthylamide has been shown to potentiate drug activity against a gram-positive bacterium.
Collapse
|
80
|
Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol 2009; 58:1133-1148. [PMID: 19528173 DOI: 10.1099/jmm.0.009142-0] [Citation(s) in RCA: 443] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is one of the leading nosocomial pathogens worldwide. Nosocomial infections caused by this organism are often hard to treat because of both the intrinsic resistance of the species (it has constitutive expression of AmpC beta-lactamase and efflux pumps, combined with a low permeability of the outer membrane), and its remarkable ability to acquire further resistance mechanisms to multiple groups of antimicrobial agents, including beta-lactams, aminoglycosides and fluoroquinolones. P. aeruginosa represents a phenomenon of bacterial resistance, since practically all known mechanisms of antimicrobial resistance can be seen in it: derepression of chromosomal AmpC cephalosporinase; production of plasmid or integron-mediated beta-lactamases from different molecular classes (carbenicillinases and extended-spectrum beta-lactamases belonging to class A, class D oxacillinases and class B carbapenem-hydrolysing enzymes); diminished outer membrane permeability (loss of OprD proteins); overexpression of active efflux systems with wide substrate profiles; synthesis of aminoglycoside-modifying enzymes (phosphoryltransferases, acetyltransferases and adenylyltransferases); and structural alterations of topoisomerases II and IV determining quinolone resistance. Worryingly, these mechanisms are often present simultaneously, thereby conferring multiresistant phenotypes. This review describes the known resistance mechanisms in P. aeruginosa to the most frequently administrated antipseudomonal antibiotics: beta-lactams, aminoglycosides and fluoroquinolones.
Collapse
Affiliation(s)
- Tanya Strateva
- Department of Microbiology, Medical University of Sofia, 2 Zdrave Street, 1431 Sofia, Bulgaria
| | - Daniel Yordanov
- Department of Microbiology, Medical University of Sofia, 2 Zdrave Street, 1431 Sofia, Bulgaria
| |
Collapse
|
81
|
Effect of MexXY overexpression on ceftobiprole susceptibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53:2785-90. [PMID: 19433554 DOI: 10.1128/aac.00018-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceftobiprole, an anti-methicillin-resistant Staphylococcus aureus broad-spectrum cephalosporin, has activity (MIC for 50% of strains tested, < or =4 microg/ml) against many Pseudomonas aeruginosa strains. A common mechanism of P. aeruginosa resistance to beta-lactams, including cefepime and ceftazidime, is efflux via increased expression of Mex pumps, especially MexAB. MexXY has differential substrate specificity, recognizing cefepime but not ceftazidime. In ceftobiprole clinical studies, paired isolates of P. aeruginosa from four subjects demonstrated ceftobiprole MICs of 2 to 4 microg/ml at baseline but 16 microg/ml posttreatment, unrelated to beta-lactamase levels. Within each pair, the level of mexXY RNA, but not mexAB, mexCD, and mexEF, increased by an average of 50-fold from baseline to posttreatment isolates. Sequencing of the negative regulatory gene mexZ indicated that each posttreatment isolate contained a mutation not present at baseline. mexXY expression as a primary ceftobiprole and cefepime resistance mechanism was further examined in isogenic pairs by using cloned mexXY and mexZ. Expression of cloned mexXY in strain PAO1 or in a baseline isolate increased the ceftobiprole MIC to that for the posttreatment isolate. In contrast, in posttreatment isolates, lowering mexXY expression via introduction of cloned mexZ decreased the ceftobiprole MIC to that for the baseline isolates. Similar changes were observed for cefepime. A spontaneous mutant selectively overexpressing mexXY displayed a fourfold elevation in its ceftobiprole MIC, while overexpression of mexAB, -CD, and -EF had a minimal effect. These data indicate that ceftobiprole, like cefepime, is an atypical beta-lactam that is a substrate for the MexXY efflux pump in P. aeruginosa.
Collapse
|
82
|
Boutoille D, Jacqueline C, Le Mabecque V, Potel G, Caillon J. In vivo impact of the MexAB-OprM efflux system on β-lactam efficacy in an experimental model of Pseudomonas aeruginosa infection. Int J Antimicrob Agents 2009; 33:417-20. [DOI: 10.1016/j.ijantimicag.2008.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/24/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
|
83
|
Takatsuka Y, Nikaido H. Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism. J Bacteriol 2009; 191:1729-37. [PMID: 19060146 PMCID: PMC2648379 DOI: 10.1128/jb.01441-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 11/26/2008] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli AcrB is a proton motive force-dependent multidrug efflux transporter that recognizes multiple toxic chemicals having diverse structures. Recent crystallographic studies of the asymmetric trimer of AcrB suggest that each protomer in the trimeric assembly goes through a cycle of conformational changes during drug export (functional rotation hypothesis). In this study, we devised a way to test this hypothesis by creating a giant gene in which three acrB sequences were connected together through short linker sequences. The "linked-trimer" AcrB was expressed well in the inner membrane fraction of DeltaacrB DeltarecA strains, as a large protein of approximately 300 kDa which migrated at the same rate as the wild-type AcrB trimer in native polyacrylamide gel electrophoresis. The strain expressing the linked-trimer AcrB showed resistance to some toxic compounds that was sometimes even higher than that of the cells expressing the monomeric AcrB, indicating that the linked trimer functions well in intact cells. When we inactivated only one of the three protomeric units in the linked trimer, either with mutations in the salt bridge/H-bonding network (proton relay network) in the transmembrane domain or by disulfide cross-linking of the external cleft in the periplasmic domain, the entire trimeric complex was inactivated. However, some residual activity was seen, presumably as a result of random recombination of monomeric fragments (produced by protease cleavage or by transcriptional/translational truncation). These observations provide strong biochemical evidence for the functionally rotating mechanism of AcrB pump action. The linked trimer will be useful for further biochemical studies of mechanisms of transport in the future.
Collapse
Affiliation(s)
- Yumiko Takatsuka
- Department of Molecular and Cell Biology, 426 Barker Hall, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
84
|
Martínez JA, Delgado E, Martí S, Marco F, Vila J, Mensa J, Torres A, Codina C, Trilla A, Soriano A, Alquezar A, Castro P, Nicolás JM. Influence of antipseudomonal agents on Pseudomonas aeruginosa colonization and acquisition of resistance in critically ill medical patients. Intensive Care Med 2009; 35:439-47. [PMID: 18936910 DOI: 10.1007/s00134-008-1326-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To assess the role of antipseudomonal agents on Pseudomonas aeruginosa colonization and acquisition of resistance. DESIGN Prospective cohort study. SETTING Two medical intensive care units. PATIENTS AND PARTICIPANTS 346 patients admitted for >or= 48 h. INTERVENTION Analysis of data from an 8-month study comparing a mixing versus a cycling strategy of antibiotic use. MEASUREMENTS AND RESULTS Surveillance cultures from nares, pharynx, rectum, and respiratory secretions were obtained thrice weekly. Acquisition of resistance was defined as the isolation, after 48 h of ICU stay, of an isolate resistant to a given antibiotic if culture of admission samples were either negative or positive for a susceptible isolate. Emergence of resistance refers to the conversion of a defined pulsotype from susceptible to non-susceptible. Forty-four (13%) patients acquired 52 strains of P. aeruginosa. Administration of piperacillin-tazobactam for >or= 3 days (OR 2.6, 95% CI 1.09-6.27) and use of amikacin for >or= 3 days (OR 2.6, 95% CI 1.04-6.7) were positively associated with acquisition of P. aeruginosa, whereas use of quinolones (OR 0.27, 95% CI 0.1-0.7) and antipseudomonal cephalosporins (OR 0.27, 95% CI 0.08-0.9) was protective. Exposure to quinolones and cephalosporins was not associated with the acquisition of resistance, whereas it was linked with usage of all other agents. Neither quinolones nor cephalosporins were a major determinant on the emergence of resistance to themselves, as resistance to these antibiotics developed at a similar frequency in non-exposed patients. CONCLUSIONS In critically ill patients, quinolones and antipseudomonal cephalosporins may prevent the acquisition of P. aeruginosa and may have a negligible influence on the acquisition and emergence of resistance.
Collapse
Affiliation(s)
- José A Martínez
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| |
Collapse
|
86
|
Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martínez-Solano L, Sánchez MB. A global view of antibiotic resistance. FEMS Microbiol Rev 2009; 33:44-65. [DOI: 10.1111/j.1574-6976.2008.00142.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
87
|
Hammami S, Ghozzi R, Burghoffer B, Arlet G, Redjeb S. Mechanisms of carbapenem resistance in non-metallo-beta-lactamase-producing clinical isolates of Pseudomonas aeruginosa from a Tunisian hospital. ACTA ACUST UNITED AC 2008; 57:530-5. [PMID: 18977099 DOI: 10.1016/j.patbio.2008.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/18/2008] [Indexed: 11/26/2022]
Abstract
AIM OF THE STUDY An increasing rate of imipenem-resistant Pseudomonas aeruginosa infections has become an important clinical problem in our hospital. The aim of this study is to determine the mechanisms involved in carbapenem resistance. MATERIALS AND METHODS Ten strains have been randomly selected among 144 clinical isolates of carbapenem-resistant non-metallo-beta-lactamase (MBL)-producing P. aeruginosa. A phenotypic and genotypic study was performed using serotyping, antimicrobial susceptibility, detection of MBL and clonality. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used for the expression of the genes oprD, mexA and mexE and by western blot for the expression of OprM. Sequencing of oprD gene was performed. RESULTS Five genotypes have been determined by arbitrary primer polymerase chain reaction and seven strains were selected to study the mechanisms involved. The predominant serotype was O12. All isolates exhibited high minimum inhibitory concentration (MICs) to both imipenem and meropenem (MIC ranged from 16 to more than 32 microg/ml) and did not harbor genes encoding MBL as confirmed by PCR. RT-PCR showed a decline in oprD expression with increased expression of mexA compared to PAO1 wild type strain. None of the isolates overexpressed mexE. Western blot analysis of outer membrane showed overproduction of OprM in all isolates. CONCLUSION Resistance to both imipenem and meropenem of clinical isolates of P. aeruginosa was due to two combined mechanisms: decreased transcription of oprD gene and overproduction of the MexAB-OprM efflux system.
Collapse
Affiliation(s)
- S Hammami
- Laboratoire de recherche résistance aux antimicrobiens, département de microbiologie, faculté de medicine, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
88
|
The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci U S A 2008; 105:13586-91. [PMID: 18757728 DOI: 10.1073/pnas.0803391105] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MexR is a MarR family protein that negatively regulates multidrug efflux systems in the human pathogen Pseudomonas aeruginosa. The mechanism of MexR-regulated antibiotic resistance has never been elucidated in the past. We present here that two Cys residues in MexR are redox-active. They form intermonomer disulfide bonds in MexR dimer with a redox potential of -155 mV. This MexR oxidation leads to its dissociation from promoter DNA, derepression of the mexAB-oprM drug efflux operon, and increased antibiotic resistance of P. aeruginosa. We show computationally that the formation of disulfide bonds is consistent with a conformation change that prevents the oxidized MexR from binding to DNA. Collectively, the results reveal that MexR is a redox regulator that senses peroxide stress to mediate antibiotic resistance in P. aeruginosa.
Collapse
|
89
|
Sarter S, Kha Nguyen HN, Hung LT, Lazard J, Montet D. Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish. Food Control 2007. [DOI: 10.1016/j.foodcont.2006.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
90
|
Abstract
The objectives of this study were to identify the carbapenem resistance mechanisms of clinical Pseudomonas aeruginosa isolates. The strains resistant to imipenem had lost only the OprD protein, the isolates resistant to imipenem and meropenem had both loss of the OprD porin and reduced minimum inhibitory concentrations (MICs) in the presence of efflux pump inhibitors. In the isolates in which efflux had been identified (n=2) only 1 isolate had a mutation in the mexR gene corresponding to a glutamine to a stop codon change at amino acid 106. This has not been previously identified. There were no significant changes in the mexT genes. No mutations previously associated with the upregulation of the carbapenem efflux pumps in in vitro generated resistant isolates were identified in any of the clinical isolates. Therefore, the resistance mechanisms identified by development of carbapenem resistance in vitro are not sufficient to understand carbapenem resistance development in clinical isolates.
Collapse
Affiliation(s)
- F Walsh
- University of Edinburgh, United Kingdom
| | | |
Collapse
|
91
|
Robertson GT, Doyle TB, Du Q, Duncan L, Mdluli KE, Lynch AS. A Novel indole compound that inhibits Pseudomonas aeruginosa growth by targeting MreB is a substrate for MexAB-OprM. J Bacteriol 2007; 189:6870-81. [PMID: 17644596 PMCID: PMC2045200 DOI: 10.1128/jb.00805-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug efflux systems contribute to the intrinsic resistance of Pseudomonas aeruginosa to many antibiotics and biocides and hamper research focused on the discovery and development of new antimicrobial agents targeted against this important opportunistic pathogen. Using a P. aeruginosa PAO1 derivative bearing deletions of opmH, encoding an outer membrane channel for efflux substrates, and four efflux pumps belonging to the resistance nodulation/cell division class including mexAB-oprM, we identified a small-molecule indole-class compound (CBR-4830) that is inhibitory to growth of this efflux-compromised strain. Genetic studies established MexAB-OprM as the principal pump for CBR-4830 and revealed MreB, a prokaryotic actin homolog, as the proximal cellular target of CBR-4830. Additional studies establish MreB as an essential protein in P. aeruginosa, and efflux-compromised strains treated with CBR-4830 transition to coccoid shape, consistent with MreB inhibition or depletion. Resistance genetics further suggest that CBR-4830 interacts with the putative ATP-binding pocket in MreB and demonstrate significant cross-resistance with A22, a structurally unrelated compound that has been shown to promote rapid dispersion of MreB filaments in vivo. Interestingly, however, ATP-dependent polymerization of purified recombinant P. aeruginosa MreB is blocked in vitro in a dose-dependent manner by CBR-4830 but not by A22. Neither compound exhibits significant inhibitory activity against mutant forms of MreB protein that bear mutations identified in CBR-4830-resistant strains. Finally, employing the strains and reagents prepared and characterized during the course of these studies, we have begun to investigate the ability of analogues of CBR-4830 to inhibit the growth of both efflux-proficient and efflux-compromised P. aeruginosa through specific inhibition of MreB function.
Collapse
Affiliation(s)
- Gregory T Robertson
- Cumbre Pharmaceuticals, Inc., 1502 Viceroy Drive, Dallas, TX 75235-2304, USA
| | | | | | | | | | | |
Collapse
|
92
|
Nehme D, Poole K. Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study of pump mutant suppressors. J Bacteriol 2007; 189:6118-27. [PMID: 17586626 PMCID: PMC1951894 DOI: 10.1128/jb.00718-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to identify key domains of the Pseudomonas aeruginosa MexAB-OprM drug efflux system involved in component interactions, extragenic suppressors of various inactivating mutations in individual pump constituents were isolated and studied. The multidrug hypersusceptibility of P. aeruginosa expressing MexB with a mutation in a region of the protein implicated in oligomerization (G220S) was suppressed by mutations in the alpha/beta domain of MexA. MexB(G220S) showed a reduced ability to bind MexA in vivo while representative MexA suppressors (V66M and V259F) restored the MexA-MexB interaction. Interestingly, these suppressors also restored resistance in P. aeruginosa expressing OprM proteins with mutations at the proximal (periplasmic) tip of OprM that is predicted to interact with MexB, suggesting that these suppressors generally overcame defects in MexA-MexB and MexB-OprM interaction. The multidrug hypersusceptibility arising from a mutation in the helical hairpin of MexA implicated in OprM interaction (V129M) was suppressed by mutations (T198I and F439I) in the periplasmic alpha-helical barrel of OprM. Again, the MexA mutation compromised an in vivo interaction with OprM that was restored by the T198I and F439I substitutions in OprM, consistent with the hairpin domain mediating MexA binding to this region of OprM. Interestingly, these OprM suppressor mutations restored multidrug resistance in P. aeruginosa expressing MexB(G220S). Finally, the oprM(T198I) suppressor mutation enhanced the yields of all three constituents of a MexA-MexB-OprM(T198I) pump as detected in whole-cell extracts. These data highlight the importance of MexA and interactions with this adapter in promoting MexAB-OprM pump assembly and in stabilizing the pump complex.
Collapse
Affiliation(s)
- Dominic Nehme
- Department of Microbiology and Immunology, Queen's University, Botterell Hall, Room 737, Kingston K7L 3N6, Canada
| | | |
Collapse
|
93
|
Strateva T, Ouzounova-Raykova V, Markova B, Todorova A, Marteva-Proevska Y, Mitov I. Widespread detection of VEB-1-type extended-spectrum beta-lactamases among nosocomial ceftazidime-resistant Pseudomonas aeruginosa isolates in Sofia, Bulgaria. J Chemother 2007; 19:140-5. [PMID: 17434821 DOI: 10.1179/joc.2007.19.2.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A total of 132 ceftazidime-resistant clinical isolates of Pseudomonas aeruginosa were collected during 2001-2005 from 5 university hospitals in Sofia, Bulgaria to assess the current levels of antimicrobial susceptibility and to evaluate resistance mechanisms to beta-lactams. Antimicrobial susceptibilities were detected by a disk diffusion method and E-test. Polymerase chain reaction amplification and sequencing of bla(VEB-1 )and bla(PER-1 )were performed. The antibiotic resistance rates were: to piperacillin 90.2%, piperacillin/tazobactam 52.3%, ceftazidime 94.7%, cefepime 88.6%, cefpirome 98.5%, aztreonam 85.6%, imipenem 66.6%, meropenem 63.6%, amikacin 81.1%, gentamicin 84.8%, tobramycin 89.4%, netilmicin 57.6%, ciprofloxacin 83.4%. Structural genes for VEB-1 extended-spectrum beta -lactamases (ESBLs) were found in 75 (56.8%) of the isolates. PER-1 ESBLs were not detected. The VEB-1-producing strains were more resistant than VEB-1 non-producers to amikacin, gentamicin, tobramycin and ciprofloxacin ( P<0.001). VEB-1 appears to have a significant presence among ceftazidime-resistant P. aeruginosa isolates from Sofia.
Collapse
Affiliation(s)
- T Strateva
- Department of Microbiology, Medical University of Sofia, Sofia, Bulgaria.
| | | | | | | | | | | |
Collapse
|
94
|
Patzer JA, Dzierzanowska D. Increase of imipenem resistance among Pseudomonas aeruginosa isolates from a Polish paediatric hospital (1993-2002). Int J Antimicrob Agents 2006; 29:153-8. [PMID: 17157481 DOI: 10.1016/j.ijantimicag.2006.08.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 08/25/2006] [Accepted: 08/25/2006] [Indexed: 10/23/2022]
Abstract
Analysis of the in vitro activity of imipenem and 13 other antibiotics against 2485 Pseudomonas aeruginosa isolates obtained from clinical specimens from children hospitalized during 1993-2002 was performed. In 2002, the percentage of P. aeruginosa isolates susceptible to all tested antibiotics, with the exception of imipenem, increased or remained on nearly the same level as in 1993. An increase of resistance to imipenem from 4.3% to 18.3% was observed. The MIC(90) value of imipenem increased from 2mg/L to 16 mg/L. Simultaneously, a four-fold increase of the usage of carbapenems imipenem and meropenem in the hospital was noted. In 2000-2001, a high incidence of imipenem-resistant strains was observed. The imipenem-resistant P. aeruginosa strains of serotype O6 from the general surgery ward and serotype O11 from the intensive care unit were shown to be clonally related by the pulsed-field gel electrophoresis method.
Collapse
Affiliation(s)
- Jan A Patzer
- Department of Clinical Microbiology and Immunology, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland.
| | | |
Collapse
|
95
|
Morita Y, Cao L, Gould VC, Avison MB, Poole K. nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Bacteriol 2006; 188:8649-54. [PMID: 17028276 PMCID: PMC1698243 DOI: 10.1128/jb.01342-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas aeruginosa nalD gene encodes a TetR family repressor with homology to the SmeT and TtgR repressors of the smeDEF and ttgABC multidrug efflux systems of Stenotrophomonas maltophilia and Pseudomonas putida, respectively. A sequence upstream of mexAB-oprM and overlapping a second promoter for this efflux system was very similar to the SmeT and TtgR operator sequences, and NalD binding to this region was, in fact, demonstrated. Moreover, increased expression from this promoter was seen in a nalD mutant, consistent with NalD directly controlling mexAB-oprM expression from a second promoter.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
96
|
Ong CT, Tessier PR, Li C, Nightingale CH, Nicolau DP. Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis 2006; 57:153-61. [PMID: 16930925 DOI: 10.1016/j.diagmicrobio.2006.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 04/07/2006] [Accepted: 06/16/2006] [Indexed: 11/22/2022]
Abstract
To identify the optimal pharmacodynamic exposures of meropenem, imipenem, and cefepime, and the emergence of resistance in vivo for Pseudomonas aeruginosa overexpressing MexA-MexB-OprM efflux pumps, we used the murine thigh model. Mice were challenged with P. aeruginosa isolates: PAO1 (K767 wild type), K767+ (MexA-MexB-OprM efflux mutant), and DeltaK767 (knockout strain). Efficacy (Delta log colony-forming unit [CFU]) was determined at various exposures of %T > MIC at both standard (10(5) CFU/thigh) and high (10(7) CFU/thigh) inoculums. At 10(5) CFU/thigh, meropenem and imipenem produced a maximal activity against PAO1 (-2.82, -1.88) and K767+ (-2.24, -2.68) at 40%T > MIC; cefepime at 70%T > MIC produced a comparable kill (-2.74 and -2.19, respectively). Similar magnitudes of kill were observed at the 10(7) inocula. Except for DeltaK767 with cefepime, no development of resistance emerged at various %T > MIC. All agents exhibited reduced activity against DeltaK767. DeltaK767 cefepime-resistant strains were isolated up to 100%T > MIC. The overexpression of MexA-MexB-OprM efflux pumps did not result in the loss of efficacy of the antibiotics tested regardless of the amount of bacterial inocula; however, their presence also did not lead to increased selection for resistance. The effects of efflux mechanisms on beta-lactam agents in vivo warrant further research.
Collapse
Affiliation(s)
- Christine T Ong
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT 06102, USA
| | | | | | | | | |
Collapse
|
97
|
Abstract
It is well established that multidrug-resistance efflux pumps encoded by bacteria can confer clinically relevant resistance to antibiotics. It is now understood that these efflux pumps also have a physiological role(s). They can confer resistance to natural substances produced by the host, including bile, hormones and host-defence molecules. In addition, some efflux pumps of the resistance nodulation division (RND) family have been shown to have a role in the colonization and the persistence of bacteria in the host. Here, I present the accumulating evidence that multidrug-resistance efflux pumps have roles in bacterial pathogenicity and propose that these pumps therefore have greater clinical relevance than is usually attributed to them.
Collapse
Affiliation(s)
- Laura J V Piddock
- Antimicrobial Agents Research Group, Division of Immunity and Infection, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
98
|
Livermore DM, Woodford N. The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 2006; 14:413-20. [PMID: 16876996 DOI: 10.1016/j.tim.2006.07.008] [Citation(s) in RCA: 355] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/23/2006] [Accepted: 07/18/2006] [Indexed: 12/26/2022]
Abstract
Over the past 60 years, the use of successive generations of beta-lactam antibiotics has selected successive generations of beta-lactamase enzymes, each more potent than the last. Currently, rising problems include CTX-M extended-spectrum beta-lactamases (ESBLs), plasmid-mediated AmpC beta-lactamases and KPC carbapenemases in Enterobacteriaceae, while OXA- and metallo- carbapenemases are of growing importance in Acinetobacter spp. and (less so) in other non-fermenters. Escherichia coli isolates with CTX-M ESBLs are spreading multiresistance in the community and in hospitals, while carbapenemase-producing Acinetobacter spp., mostly from intensive care, are among the most multiresistant nosocomial bacteria known and are often susceptible only to polymyxins and, potentially, tigecycline. This review discusses the epidemiology and microbiology of these resistance problems, along with possible solutions.
Collapse
Affiliation(s)
- David M Livermore
- Antibiotic Resistance Monitoring and Reference Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London, NW9 5EQ, UK.
| | | |
Collapse
|
99
|
Hocquet D, Nordmann P, El Garch F, Cabanne L, Plésiat P. Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50:1347-51. [PMID: 16569851 PMCID: PMC1426951 DOI: 10.1128/aac.50.4.1347-1351.2006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cefepime (FEP) and ceftazidime (CAZ) are potent beta-lactam antibiotics with similar MICs (1 to 2 mug/ml) for wild-type strains of Pseudomonas aeruginosa. However, recent epidemiological studies have highlighted the occurrence of isolates more resistant to FEP than to CAZ (FEPr/CAZs profile). We thus investigated the mechanisms conferring such a phenotype in 38 clonally unrelated strains collected in two French teaching hospitals. Most of the bacteria (n=32; 84%) appeared to stably overexpress the mexY gene, which codes for the RND transporter of the multidrug efflux system MexXY-OprM. MexXY up-regulation was the sole FEP resistance mechanism identified (n=12) or was associated with increased levels of pump MexAB-OprM (n=5) or MexJK (n=2), synthesis of secondary beta-lactamase PSE-1 (n=10), derepression of cephalosporinase AmpC (n=1), coexpression of both OXA-35 and MexJK (n=1), or production of both PSE-1 and MexAB-OprM (n=1). Down-regulation of the mexXY operon in seven selected strains by the plasmid-borne repressor gene mexZ decreased FEP resistance from two- to eightfold, thereby demonstrating the significant contribution of MexXY-OprM to the FEPr/CAZs phenotype. The six isolates of this series that exhibited wild-type levels of the mexY gene were found to produce beta-lactamase PSE-1 (n=1), OXA-35 (n=4), or both PSE-1 and OXA-35 (n=1). Altogether, these data provide evidence that MexXY-OprM plays a major role in the development of FEP resistance among clinical strains of P. aeruginosa.
Collapse
Affiliation(s)
- Didier Hocquet
- Laboratoire de Bactériologie, Hôpital Jean Minjoz, University of Franche-Comte, Besançon cedex, France.
| | | | | | | | | |
Collapse
|
100
|
Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50:1633-41. [PMID: 16641429 PMCID: PMC1472219 DOI: 10.1128/aac.50.5.1633-1641.2006] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Carbapenems are important agents for the therapy of infections due to multidrug-resistant Pseudomonas aeruginosa; the development of carbapenem resistance hampers effective therapeutic options. To assess the mechanisms leading to resistance, 33 clinical isolates with differing degrees of carbapenem susceptibility were analyzed for the expression of the chromosomal beta-lactamase (ampC), the porin that is important for the entry of carbapenems (oprD), and the proteins involved in four efflux systems (mexA, mexC, mexE, and mexX). Real-time reverse transcriptase PCR was performed using primers and fluorescent probes for each of the target genes. The sequencing of regulatory genes (ampR, mexR, nalC, nalD, mexT, and mexZ) was also performed. Diminished expression of oprD was present in all imipenem- and meropenem-resistant isolates but was not required for ertapenem resistance. Increased expression of ampC was not observed in several isolates that were overtly resistant to carbapenems. Increased expression of several efflux systems was observed in many of the carbapenem-resistant isolates. Increased efflux activity correlated with high-level ertapenem resistance and reduced susceptibility to meropenem and aztreonam. Most isolates with increased expression of mexA had mutations affecting nalC and/or nalD. Two isolates with mutations leading to a premature stop codon in mexZ had markedly elevated mexX expressions, although mutations in mexZ were not a prerequisite for overexpression. beta-Lactam resistance in clinical isolates of P. aeruginosa is a result of the interplay between diminished production of oprD, increased activity of ampC, and several efflux systems.
Collapse
Affiliation(s)
- John Quale
- Division of Infectious Diseases, Box 77, SUNY-Downstate, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|