51
|
The TetR-type MfsR protein of the integrative and conjugative element (ICE) ICEclc controls both a putative efflux system and initiation of ICE transfer. J Bacteriol 2014; 196:3971-9. [PMID: 25182498 DOI: 10.1128/jb.02129-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Integrative and conjugating elements (ICE) are self-transferable DNAs widely present in bacterial genomes, which often carry a variety of auxiliary genes of potential adaptive benefit. One of the model ICE is ICEclc, an element originally found in Pseudomonas knackmussii B13 and known for its propensity to provide its host with the capacity to metabolize chlorocatechols and 2-aminophenol. In this work, we studied the mechanism and target of regulation of MfsR, a TetR-type repressor previously found to exert global control on ICEclc horizontal transfer. By using a combination of ICEclc mutant and transcriptome analysis, gene reporter fusions, and DNA binding assays, we found that MfsR is a repressor of both its own expression and that of a gene cluster putatively coding for a major facilitator superfamily efflux system on ICEclc (named mfsABC). Phylogenetic analysis suggests that mfsR was originally located immediately adjacent to the efflux pump genes but became displaced from its original cis target DNA by a gene insertion. This resulted in divergence of the original bidirectional promoters into two separated individual regulatory units. Deletion of mfsABC did not result in a strong phenotype, and despite screening a large number of compounds and conditions, we were unable to define the precise current function or target of the putative efflux pump. Our data reconstruct how the separation of an ancestor mfsR-mfsABC system led to global control of ICEclc transfer by MfsR.
Collapse
|
52
|
Vega LM, Alvarez PJ, McLean RJC. Bacterial signaling ecology and potential applications during aquatic biofilm construction. MICROBIAL ECOLOGY 2014; 68:24-34. [PMID: 24276538 DOI: 10.1007/s00248-013-0321-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
In their natural environment, bacteria and other microorganisms typically grow as surface-adherent biofilm communities. Cell signal processes, including quorum signaling, are now recognized as being intimately involved in the development and function of biofilms. In contrast to their planktonic (unattached) counterparts, bacteria within biofilms are notoriously resistant to many traditional antimicrobial agents and so represent a major challenge in industry and medicine. Although biofilms impact many human activities, they actually represent an ancient mode of bacterial growth as shown in the fossil record. Consequently, many aquatic organisms have evolved strategies involving signal manipulation to control or co-exist with biofilms. Here, we review the chemical ecology of biofilms and propose mechanisms whereby signal manipulation can be used to promote or control biofilms.
Collapse
Affiliation(s)
- Leticia M Vega
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | | | | |
Collapse
|
53
|
|
54
|
Van Meervenne E, De Weirdt R, Van Coillie E, Devlieghere F, Herman L, Boon N. Biofilm models for the food industry: hot spots for plasmid transfer? Pathog Dis 2014; 70:332-8. [PMID: 24436212 DOI: 10.1111/2049-632x.12134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/26/2022] Open
Abstract
Biofilms represent a substantial problem in the food industry, with food spoilage, equipment failure, and public health aspects to consider. Besides, biofilms may be a hot spot for plasmid transfer, by which antibiotic resistance can be disseminated to potential foodborne pathogens. This study investigated biomass and plasmid transfer in dual-species (Pseudomonas putida and Escherichia coli) biofilm models relevant to the food industry. Two different configurations (flow-through and drip-flow) and two different inoculation procedures (donor-recipient and recipient-donor) were tested. The drip-flow configuration integrated stainless steel coupons in the setup while the flow-through configuration included a glass flow cell and silicone tubing. The highest biomass density [10 log (cells cm-²)] was obtained in the silicone tubing when first the recipient strain was inoculated. High plasmid transfer ratios, up to 1/10 (transconjugants/total bacteria), were found. Depending on the order of inoculation, a difference in transfer efficiency between the biofilm models could be found. The ease by which the multiresistance plasmid was transferred highlights the importance of biofilms in the food industry as hot spots for the acquisition of multiresistance plasmids. This can impede the treatment of foodborne illnesses if pathogens acquire this multiresistance in or from the biofilm.
Collapse
Affiliation(s)
- Eva Van Meervenne
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Gent, Belgium; Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium; Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, Gent, Belgium
| | | | | | | | | | | |
Collapse
|
55
|
Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ. Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 2014; 22:84-91. [PMID: 24440178 DOI: 10.1016/j.tim.2013.12.004] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/02/2013] [Accepted: 12/11/2013] [Indexed: 01/25/2023]
Abstract
The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these synergistic effects are to some extent characterized at the molecular and evolutionary levels, and further exploration is now possible due to the enhanced resolution and higher throughput of available techniques.
Collapse
Affiliation(s)
- Mette Burmølle
- Section of Microbiology, Universitetsparken 15, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Dawei Ren
- Section of Microbiology, Universitetsparken 15, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Thomas Bjarnsholt
- Department of International Health, Immunology, and Microbiology, Costerton Biofilm Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Juliane Mariesvej 22, Rigshospitalet, 2100 Copenhagen Ø, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Universitetsparken 15, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
56
|
Neu TR, Lawrence JR. Investigation of microbial biofilm structure by laser scanning microscopy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 146:1-51. [PMID: 24840778 DOI: 10.1007/10_2014_272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microbial bioaggregates and biofilms are hydrated three-dimensional structures of cells and extracellular polymeric substances (EPS). Microbial communities associated with interfaces and the samples thereof may come from natural, technical, and medical habitats. For imaging such complex microbial communities confocal laser scanning microscopy (CLSM) is the method of choice. CLSM allows flexible mounting and noninvasive three-dimensional sectioning of hydrated, living, as well as fixed samples. For this purpose a broad range of objective lenses is available having different working distance and resolution. By means of CLSM the signals detected may originate from reflection, autofluorescence, reporter genes/fluorescence proteins, fluorochromes binding to specific targets, or other probes conjugated with fluorochromes. Recorded datasets can be used not only for visualization but also for semiquantitative analysis. As a result CLSM represents a very useful tool for imaging of microbiological samples in combination with other analytical techniques.
Collapse
Affiliation(s)
- Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brueckstrasse 3a, 39114, Magdeburg, Germany,
| | | |
Collapse
|
57
|
McLean RJC, Kakirde KS. Enhancing metagenomics investigations of microbial interactions with biofilm technology. Int J Mol Sci 2013; 14:22246-57. [PMID: 24284397 PMCID: PMC3856063 DOI: 10.3390/ijms141122246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/16/2022] Open
Abstract
Investigations of microbial ecology and diversity have been greatly enhanced by the application of culture-independent techniques. One such approach, metagenomics, involves sample collections from soil, water, and other environments. Extracted nucleic acids from bulk environmental samples are sequenced and analyzed, which allows microbial interactions to be inferred on the basis of bioinformatics calculations. In most environments, microbial interactions occur predominately in surface-adherent, biofilm communities. In this review, we address metagenomics sampling and biofilm biology, and propose an experimental strategy whereby the resolving power of metagenomics can be enhanced by incorporating a biofilm-enrichment step during sample acquisition.
Collapse
Affiliation(s)
- Robert J C McLean
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | | |
Collapse
|
58
|
Single-cell analyses revealed transfer ranges of IncP-1, IncP-7, and IncP-9 plasmids in a soil bacterial community. Appl Environ Microbiol 2013; 80:138-45. [PMID: 24141122 DOI: 10.1128/aem.02571-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conjugative transfer ranges of three different plasmids of the incompatibility groups IncP-1 (pBP136), IncP-7 (pCAR1), and IncP-9 (NAH7) were investigated in soil bacterial communities by culture-dependent and culture-independent methods. Pseudomonas putida, a donor of each plasmid, was mated with soil bacteria, and green fluorescent protein (GFP), encoded on the plasmid, was used as a reporter protein for successful transfer. GFP-expressing transconjugants were detected and separated at the single-cell level by flow cytometry. Each cell was then analyzed by PCR and sequencing of its 16S rRNA gene following either whole-genome amplification or cultivation. A large number of bacteria within the phylum Proteobacteria was identified as transconjugants for pBP136 by both culture-dependent and culture-independent methods. Transconjugants belonging to the phyla Actinobacteria, Bacteroidetes, and Firmicutes were detected only by the culture-independent method. Members of the genus Pseudomonas (class Gammaproteobacteria) were identified as major transconjugants of pCAR1 and NAH7 by both methods, whereas Delftia species (class Betaproteobacteria) were detected only by the culture-independent method. The transconjugants represented a minority of the soil bacteria. Although pCAR1-containing Delftia strains could not be cultivated after a one-to-one filter mating assay between the donor and cultivable Delftia strains as recipients, fluorescence in situ hybridization detected pCAR1-containing Delftia cells, suggesting that Delftia was a "transient" host of pCAR1.
Collapse
|
59
|
Ma H, Katzenmeyer KN, Bryers JD. Non-invasive in situ monitoring and quantification of TOL plasmid segregational loss within Pseudomonas putida biofilms. Biotechnol Bioeng 2013; 110:2949-58. [PMID: 23633286 DOI: 10.1002/bit.24953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 11/06/2022]
Abstract
Methods for the detection of plasmid loss in natural environments have typically relied on replica plating, selective markers and PCR. However, these traditional methods have the limitations of low sensitivity, underestimation of specific cell populations, and lack of insightful data for non-homogeneous environments. We have developed a non-invasive microscopic analytical method to quantify local plasmid segregational loss from a bacterial population within a developing biofilm. The probability of plasmid segregational loss in planktonic and biofilm cultures of Pseudomonas putida carrying the TOL plasmid (pWWO::gfpmut3b) was determined directly in situ, in the absence of any applied selection pressure. Compared to suspended liquid culture, we report that the biofilm mode of growth enhances plasmid segregational loss. Results based on a biofilm-averaged analysis reveal that the probability of plasmid loss in biofilm cultures (0.016 ± 0.004) was significantly greater than that determined in planktonic cultures (0.0052 ± 0.0011). Non-invasive assessments showed that probabilities of plasmid segregational loss at different locations in a biofilm increased dramatically from 0.1% at the substratum surface to 8% at outside layers of biofilm. Results suggest that higher nutrient concentrations and subsequentially higher growth rates resulted in higher probability of plasmid segregational loss at the outer layers of the biofilm.
Collapse
Affiliation(s)
- Hongyan Ma
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195
| | | | | |
Collapse
|
60
|
Król JE, Wojtowicz AJ, Rogers LM, Heuer H, Smalla K, Krone SM, Top EM. Invasion of E. coli biofilms by antibiotic resistance plasmids. Plasmid 2013; 70:110-9. [PMID: 23558148 DOI: 10.1016/j.plasmid.2013.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/08/2013] [Accepted: 03/21/2013] [Indexed: 12/21/2022]
Abstract
In spite of the contribution of plasmids to the spread of antibiotic resistance in human pathogens, little is known about the transferability of various drug resistance plasmids in bacterial biofilms. The goal of this study was to compare the efficiency of transfer of 19 multidrug resistance plasmids into Escherichia coli recipient biofilms and determine the effects of biofilm age, biofilm-donor exposure time, and donor-to-biofilm attachment on this process. An E. coli recipient biofilm was exposed separately to 19 E. coli donors, each with a different plasmid, and transconjugants were determined by plate counting. With few exceptions, plasmids that transferred well in a liquid environment also showed the highest transferability in biofilms. The difference in transfer frequency between the most and least transferable plasmid was almost a million-fold. The 'invasibility' of the biofilm by plasmids, or the proportion of biofilm cells that acquired plasmids within a few hours, depended not only on the type of plasmid, but also on the time of biofilm exposure to the donor and on the ability of the plasmid donor to attach to the biofilm, yet not on biofilm age. The efficiency of donor strain attachment to the biofilm was not affected by the presence of plasmids. The most invasive plasmid was pHH2-227, which based on genome sequence analysis is a hybrid between IncU-like and IncW plasmids. The wide range in transferability in an E. coli biofilm among plasmids needs to be taken into account in our fight against the spread of drug resistance.
Collapse
Affiliation(s)
- Jaroslaw E Król
- Department of Biological Sciences, University of Idaho, ID 83844-3051, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Ikuma K, Holzem RM, Gunsch CK. Impacts of organic carbon availability and recipient bacteria characteristics on the potential for TOL plasmid genetic bioaugmentation in soil slurries. CHEMOSPHERE 2012; 89:158-163. [PMID: 22743182 DOI: 10.1016/j.chemosphere.2012.05.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
The effectiveness of genetic bioaugmentation relies on efficient plasmid transfer between donor and recipient cells as well as the plasmid's phenotype in the recipient cell. In the present study, the effects of varying organic carbon substrates, initial recipient-to-donor cell density ratios, and mixtures of known recipient bacterial strains on the conjugation and function of a TOL plasmid were tested in sterile soil slurry batch reactors. The presence of soil organic carbon was sufficient in ensuring TOL plasmid transconjugant occurrence (up to 2.1±0.5%) for most recipient strains in soil slurry batch mating experiments. The addition of glucose had limited effects on transconjugant occurrence; however, glucose amendment increased the specific toluene degradation rates of some Enterobacteriaceae transconjugants in soil slurry. Initial cell density ratios and mixtures of recipient strains had smaller impacts on plasmid conjugation and resulting phenotype functionality. These observations suggest that genetic bioaugmentation may be improved by minimal altering of environmental conditions.
Collapse
Affiliation(s)
- Kaoru Ikuma
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
62
|
Salaün S, La Barre S, Dos Santos-Goncalvez M, Potin P, Haras D, Bazire A. Influence of exudates of the kelp Laminaria digitata on biofilm formation of associated and exogenous bacterial epiphytes. MICROBIAL ECOLOGY 2012; 64:359-69. [PMID: 22476759 DOI: 10.1007/s00248-012-0048-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
Wild populations of brown marine algae (Phaeophyta) provide extensive surfaces to bacteria and epiphytic eukaryotes for colonization. On one hand, various strategies allow kelps prevent frond surface fouling which would retard growth by reducing photosynthesis and increasing pathogenesis. On the other hand, production and release of organic exudates of high energy value, sometimes in association with more or less selective control of settlement of epiphytic strains, allow bacteria to establish surface consortia not leading to macrofouling. Here, we present the analysis of adhesion and biofilm formation of bacterial isolates from the kelp Laminaria digitata and of characterized and referenced marine isolates. When they were grown in flow cell under standard nutrient regimes, all used bacteria, except one, were able to adhere on glass and then develop as biofilms, with different architecture. Then, we evaluated the effect of extracts from undisturbed young Laminaria thalli and from young thalli subjected to oxidative stress elicitation; this latter condition induced the production of defense molecules. We observed increasing or decreasing adhesion depending on the referenced strains, but no effects were observed against strains isolated from L. digitata. Such effects were less observed on biofilms. Our results suggested that L. digitata is able to modulate its bacterial colonization. Finally, mannitol, a regular surface active component of Laminaria exudates was tested individually, and it showed a pronounced increased on one biofilm strain. Results of these experiments are original and can be usefully linked to what we already know on the oxidative halogen metabolism peculiar to Laminaria. Hopefully, we will be able to understand more about the unique relationship that bacteria have been sharing with Laminaria for an estimated one billion years.
Collapse
Affiliation(s)
- Stéphanie Salaün
- Laboratoire de Biotechnologie et de Chimie Marines, Université de Bretagne-Sud, EA3884, BP 92116, 56321, Lorient, France
| | | | | | | | | | | |
Collapse
|
63
|
Nandakumar V, Chittaranjan S, Kurian VM, Doble M. Characteristics of bacterial biofilm associated with implant material in clinical practice. Polym J 2012. [DOI: 10.1038/pj.2012.130] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
64
|
Ikuma K, Gunsch CK. Genetic bioaugmentation as an effective method for in situ bioremediation: functionality of catabolic plasmids following conjugal transfers. Bioengineered 2012; 3:236-41. [PMID: 22705839 DOI: 10.4161/bioe.20551] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genetic bioaugmentation is an in situ bioremediation method that stimulates horizontal transfer of catabolic plasmids between exogenous donor cells and indigenous bacteria to increase the biodegradation potential of contaminants. A critical outcome of genetic bioaugmentation is the expression of an active catabolic phenotype upon plasmid conjugation. Using a pWW0-derivative TOL plasmid, we showed that certain genetic characteristics of the recipient bacteria, including genomic guanine-cytosine (G + C) content and phylogeny, may limit the expression of the transferred catabolic pathway. However, such genetic limitations observed in transconjugants could be overcome by the presence of an additional carbon source. Glucose and Luria-Bertani broth were shown to enhance the toluene degradation rates of transconjugants; these enhancement effects were dependent on transconjugant genomic G + C contents. Based on these observations, thorough genetic characterization of the indigenous microbial community in the contaminated environment of interest may provide a predictive tool for assessing the success of genetic bioaugmentation.
Collapse
Affiliation(s)
- Kaoru Ikuma
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
65
|
Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Appl Microbiol Biotechnol 2012; 97:317-28. [PMID: 22669634 DOI: 10.1007/s00253-012-4179-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive samples were analyzed by a cultivation-independent flow cytometry analysis and a selective plate count method to cultivate transconjugants. Increases in substrate loading altered biofilm 3-D architecture and subsequently affected the frequency of plasmid conjugation (decreases at least two times) in the absence of any antibiotic selective pressure. More importantly, donor populations in biofilms exposed to a sublethal dose of kanamycin exhibited enhanced transfer efficiency of plasmids containing the kanamycin resistance gene, up to tenfold. However, when stressed with a different antibiotic, imipenem, transfer of plasmids containing the kan(R+) gene was not enhanced. These preliminary results suggest biofilm bacteria "sense" antibiotics to which they are resistant, which enhances the spread of that resistance. Confocal scanning microscopy coupled with our non-invasive image analysis was able to estimate plasmid conjugative transfer efficiency either averaged over the entire biofilm landscape or locally with individual biofilm clusters.
Collapse
|
66
|
Ikuma K, Gunsch CK. Functionality of the TOL plasmid under varying environmental conditions following conjugal transfer. Appl Microbiol Biotechnol 2012; 97:395-408. [PMID: 22367613 DOI: 10.1007/s00253-012-3949-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/19/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Conjugation of catabolic plasmids in contaminated environments is a naturally occurring horizontal gene transfer phenomenon, which could be utilized in genetic bioaugmentation. The potentially important parameters for genetic bioaugmentation include gene regulation of transferred catabolic plasmids that may be controlled by the genetic characteristics of transconjugants as well as environmental conditions that may alter the expression of the contaminant-degrading phenotype. This study showed that both genomic guanine-cytosine contents and phylogenetic characteristics of transconjugants were important in controlling the phenotype functionality of the TOL plasmid. These genetic characteristics had no apparent impact on the stability of the TOL plasmid, which was observed to be highly variable among strains. Within the environmental conditions tested, the addition of glucose resulted in the largest enhancement of the activities of enzymes encoded by the TOL plasmid in all transconjugant strains. Glucose (1 g/L) enhanced the phenotype functionality by up to 16.4 (±2.22), 30.8 (±7.03), and 90.8 (±4.56)-fold in toluene degradation rates, catechol 2,3-dioxygenase enzymatic activities, and xylE gene expression, respectively. These results suggest that genetic limitations of the expression of horizontally acquired genes may be overcome by the presence of alternate carbon substrates. Such observations may be utilized in improving the effectiveness of genetic bioaugmentation.
Collapse
Affiliation(s)
- Kaoru Ikuma
- Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Box 90287, Durham, NC 27708-0287, USA
| | | |
Collapse
|
67
|
In situ monitoring of IncF plasmid transfer on semi-solid agar surfaces reveals a limited invasion of plasmids in recipient colonies. Plasmid 2012; 67:155-61. [PMID: 22248925 PMCID: PMC3338210 DOI: 10.1016/j.plasmid.2012.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 11/23/2022]
Abstract
Most natural conjugative IncF plasmids encode a fertility inhibition system that represses transfer gene expression in the majority of plasmid-carrying cells. The successful spread of these plasmids in clinically relevant bacteria has been suggested to be supported by a transitory derepression of transfer gene expression in newly formed transconjugants. In this study, we aimed to monitor the extent of transitory derepression during agar surface matings in situ by comparing plasmid spread of the IncF plasmid R1 and its derepressed mutant R1drd19 at low initial cell densities. A zygotic induction strategy was used to visualize the spatial distribution of fluorescent transconjugants within the heterogeneous environment. Epifluorescence and confocal microscopy revealed different transfer patterns for both plasmids, however, spread beyond the first five recipient cell layers adjacent to the donor cells was not observed. Similar results were observed for other prototypical conjugative plasmids. These results cannot rule out that transitory derepression contributes to the limited R1 plasmid invasion, but other factors like nutrient availability or spatial structure seem to limit plasmid spread.
Collapse
|
68
|
Kim TG, Yi T, Lee EH, Ryu HW, Cho KS. Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl Microbiol Biotechnol 2011; 95:1051-9. [PMID: 22134640 DOI: 10.1007/s00253-011-3728-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/14/2011] [Indexed: 11/27/2022]
Abstract
A mixed methane-oxidizing biofilm was characterized, concurrently using a number of advanced techniques. Community analysis results by microarray exhibited that type II members dominated the methanotrophic community, in which Methylocystis was most abundant, followed by Methylosinus. Observation results by fluorescent in situ hybridization and confocal microscopy showed multiple biofilm colonies that were irregular, bell-shaped, with mean thickness of approximately 20 μm. Image analysis results indicated that the relative abundance of methanotrophs peaked at a depth of about 5 μm. Although the biofilm colonies differed in size, methanotrophs accounted for 4-9%. Gaussian and linear regression results between the biofilm volumes and types I (r (2) = 0.86) and II volumes (r (2) = 0.92), respectively, revealed that type I members played a role in the growth of the biofilm but only below a threshold volume, whereas type II members supported the overall growth. Geostatistical analyses results revealed concentration of types I and II methanotrophic individuals with decreasing depth, and randomness between the spatial locations and population levels. Collectively, the methane-oxidizing biofilm was a highly organized system with methanotrophs and their cohabitants.
Collapse
Affiliation(s)
- Tae Gwan Kim
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
69
|
Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between Gram-positive and Gram-negative bacteria. Appl Environ Microbiol 2011; 78:895-9. [PMID: 22138997 DOI: 10.1128/aem.05578-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On the basis of pIP501, a green fluorescent protein (GFP)-tagged monitoring tool was constructed for quantifying plasmid mobilization among Gram-positive bacteria and between Gram-positive Enterococcus faecalis and Gram-negative Escherichia coli. Furthermore, retromobilization of the GFP-tagged monitoring tool was shown from E. faecalis OG1X into the clinical isolate E. faecalis T9.
Collapse
|
70
|
Merkey BV, Lardon LA, Seoane JM, Kreft JU, Smets BF. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual-based modelling study. Environ Microbiol 2011; 13:2435-52. [DOI: 10.1111/j.1462-2920.2011.02535.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
71
|
Shintani M, Takahashi Y, Yamane H, Nojiri H. The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. Microbes Environ 2011; 25:253-65. [PMID: 21576880 DOI: 10.1264/jsme2.me10155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past few decades, degradative plasmids have been isolated from bacteria capable of degrading a variety of both natural and man-made compounds. Degradative plasmids belonging to three incompatibility (Inc) groups in Pseudomonas (IncP-1, P-7, and P-9) have been well studied in terms of their replication, maintenance, and capacity for conjugative transfer. The host ranges of these plasmids are determined by replication or conjugative transfer systems. The host range of IncP-1 is broad, that of IncP-9 is intermediate, and that of IncP-7 is narrow. To understand the behavior of these plasmids and their hosts in various environments, the survivability of inocula, stability or transferability, and efficiency of biodegradation in environments and microcosms have been monitored. The biodegradation and plasmid transfer in various environments have been observed for all three groups, although the kinds of transconjugants differed with the Inc groups. In some cases, the deletion and amplification of catabolic genes acted to reduce the production of toxic catabolic intermediates, or to increase the activity on a particular catabolic pathway. The combination of degradative genes, the plasmid backbone of each Inc group, and the host of the plasmids is key to the degraders adapting to various hosts or to heterogeneous environments.
Collapse
Affiliation(s)
- Masaki Shintani
- Bioresource Center, Japan Collection of Microorganisms (BRC-JCM), Riken, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | | | | | |
Collapse
|
72
|
Daims H, Wagner M. In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs. Methods Enzymol 2011; 496:185-215. [PMID: 21514465 DOI: 10.1016/b978-0-12-386489-5.00008-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The spatial localization patterns of microorganisms in multispecies biofilms reflect numerous phenomena that influence sessile microbial life, such as substrate concentration gradients within the biofilm and biological interactions with other biofilm populations. Quantitative and population-specific in situ analyses of spatial patterns have a high potential to provide novel insights into the biology of biofilm organisms, including yet uncultured microbes, but such approaches have been developed and used in a few studies only. Here, we outline digital image analysis methods to quantify the coaggregation, mutual avoidance, or random distribution of microbial populations in biofilm and flocs. A protocol is provided for fluorescence in situ hybridization with rRNA-targeted probes, which preserves the three-dimensional biofilm architecture for confocal microscopy and image analysis, and the combined use of these approaches is demonstrated by spatial analyses of nitrifying bacteria in complex biofilm samples.
Collapse
Affiliation(s)
- Holger Daims
- Department of Microbial Ecology, Ecology Center, University of Vienna, Vienna, Austria
| | | |
Collapse
|
73
|
Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Appl Environ Microbiol 2011; 77:5079-88. [PMID: 21642400 DOI: 10.1128/aem.00090-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although biofilms represent a common bacterial lifestyle in clinically and environmentally important habitats, there is scant information on the extent of gene transfer in these spatially structured populations. The objective of this study was to gain insight into factors that affect transfer of the promiscuous multidrug resistance plasmid pB10 in Escherichia coli biofilms. Biofilms were grown in different experimental settings, and plasmid transfer was monitored using laser scanning confocal microscopy and plate counting. In closed flow cells, plasmid transfer in surface-attached submerged biofilms was negligible. In contrast, a high plasmid transfer efficiency was observed in a biofilm floating at the air-liquid interface in an open flow cell with low flow rates. A vertical flow cell and a batch culture biofilm reactor were then used to detect plasmid transfer at different depths away from the air-liquid interface. Extensive plasmid transfer occurred only in a narrow zone near that interface. The much lower transfer frequencies in the lower zones coincided with rapidly decreasing oxygen concentrations. However, when an E. coli csrA mutant was used as the recipient, a thick biofilm was obtained at all depths, and plasmid transfer occurred at similar frequencies throughout. These results and data from separate aerobic and anaerobic matings suggest that oxygen can affect IncP-1 plasmid transfer efficiency, not only directly but also indirectly, through influencing population densities and therefore colocalization of donors and recipients. In conclusion, the air-liquid interface can be a hot spot for plasmid-mediated gene transfer due to high densities of juxtaposed donor and recipient cells.
Collapse
|
74
|
Simões LC, Lemos M, Pereira AM, Abreu AC, Saavedra MJ, Simões M. Persister cells in a biofilm treated with a biocide. BIOFOULING 2011; 27:403-11. [PMID: 21547756 DOI: 10.1080/08927014.2011.579599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This study investigated the physiology and behaviour following treatment with ortho-phthalaldehyde (OPA), of Pseudomonas fluorescens in both the planktonic and sessile states. Steady-state biofilms and planktonic cells were collected from a bioreactor and their extracellular polymeric substances (EPS) were extracted using a method that did not destroy the cells. Cell structure and physiology after EPS extraction were compared in terms of respiratory activity, morphology, cell protein and polysaccharide content, and expression of the outer membrane proteins (OMP). Significant differences were found between the physiological parameters analysed. Planktonic cells were more metabolically active, and contained greater amounts of proteins and polysaccharides than biofilm cells. Moreover, biofilm formation promoted the expression of distinct OMP. Additional experiments were performed with cells after EPS extraction in order to compare the susceptibility of planktonic and biofilm cells to OPA. Cells were completely inactivated after exposure to the biocide (minimum bactericidal concentration, MBC = 0.55 ± 0.20 mM for planktonic cells; MBC = 1.7 ± 0.30 mM for biofilm cells). After treatment, the potential of inactivated cells to recover from antimicrobial exposure was evaluated over time. Planktonic cells remained inactive over 48 h while cells from biofilms recovered 24 h after exposure to OPA, and the number of viable and culturable cells increased over time. The MBC of the recovered biofilm cells after a second exposure to OPA was 0.58 ± 0.40 mM, a concentration similar to the MBC of planktonic cells. This study demonstrates that persister cells may survive in biocide-treated biofilms, even in the absence of EPS.
Collapse
Affiliation(s)
- Lúcia C Simões
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Portugal
| | | | | | | | | | | |
Collapse
|
75
|
Jung C, Crocker F, Eberly J, Indest K. Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria. J Appl Microbiol 2011; 110:1449-59. [DOI: 10.1111/j.1365-2672.2011.04995.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
76
|
Assessment of bacterial antibiotic resistance transfer in the gut. Int J Microbiol 2011; 2011:312956. [PMID: 21318188 PMCID: PMC3034945 DOI: 10.1155/2011/312956] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 11/21/2010] [Accepted: 12/09/2010] [Indexed: 12/21/2022] Open
Abstract
We assessed horizontal gene transfer between bacteria in the gastrointestinal (GI) tract. During the last decades, the emergence of antibiotic resistant strains and treatment failures of bacterial infections have increased the public awareness of antibiotic usage. The use of broad spectrum antibiotics creates a selective pressure on the bacterial flora, thus increasing the emergence of multiresistant bacteria, which results in a vicious circle of treatments and emergence of new antibiotic resistant bacteria. The human gastrointestinal tract is a massive reservoir of bacteria with a potential for both receiving and transferring antibiotic resistance genes. The increased use of fermented food products and probiotics, as food supplements and health promoting products containing massive amounts of bacteria acting as either donors and/or recipients of antibiotic resistance genes in the human GI tract, also contributes to the emergence of antibiotic resistant strains. This paper deals with the assessment of antibiotic resistance gene transfer occurring in the gut.
Collapse
|
77
|
Plasmid load adversely affects growth and gluconic acid secretion ability of mineral phosphate-solubilizing rhizospheric bacterium Enterobacter asburiae PSI3 under P limited conditions. Microbiol Res 2011; 166:36-46. [DOI: 10.1016/j.micres.2010.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 12/30/2009] [Accepted: 01/23/2010] [Indexed: 11/22/2022]
|
78
|
Seoane J, Yankelevich T, Dechesne A, Merkey B, Sternberg C, Smets BF. An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiol Ecol 2010; 75:17-27. [PMID: 21091520 DOI: 10.1111/j.1574-6941.2010.00994.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We present an individual-based experimental framework to identify and estimate the main parameters governing bacterial conjugation at the individual cell scale. From this analysis, we have established that transient periods of unregulated plasmid transfer within newly formed transconjugant cells, together with contact mechanics arising from cellular growth and division, are the two main processes determining the emergent inability of the pWW0 TOL plasmid to fully invade spatially structured Pseudomonas putida populations. We have also shown that pWW0 conjugation occurs mainly at advanced stages of the growth cycle and that nongrowing cells, even when exposed to high nutrient concentrations, do not display conjugal activity. These results do not support previous hypotheses relating conjugation decay in the deeper cell layers of bacterial biofilms to nutrient depletion and low physiological activity. We observe, however, that transient periods of elevated plasmid transfer in newly formed transconjugant cells are offset by unfavorable cell-to-cell contact mechanics, which ultimately precludes the pWWO TOL plasmid from fully invading tightly packed multicellular P. putida populations such as microcolonies and biofilms.
Collapse
Affiliation(s)
- Jose Seoane
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
79
|
Ikuma K, Gunsch C. Effect of carbon source addition on toluene biodegradation by an Escherichia coli DH5alpha transconjugant harboring the TOL plasmid. Biotechnol Bioeng 2010; 107:269-77. [PMID: 20506384 DOI: 10.1002/bit.22808] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Horizontal gene transfer (HGT) of plasmids is a naturally occurring phenomenon which could be manipulated for bioremediation applications. Specifically, HGT may prove useful to enhance bioremediation through genetic bioaugmentation. However, because the transfer of a plasmid between donor and recipient cells does not always result in useful functional phenotypes, the conditions under which HGT events result in enhanced degradative capabilities must first be elucidated. The objective of this study was to determine if the addition of alternate carbon substrates could improve toluene degradation in Escherichia coli DH5alpha transconjugants. The addition of glucose (0.5-5 g/L) and Luria-Bertani (LB) broth (10-100%) resulted in enhanced toluene degradation. On average, the toluene degradation rate increased 14.1 (+/-2.1)-fold in the presence of glucose while the maximum increase was 18.4 (+/-1.7)-fold in the presence of 25% LB broth. Gene expression of xyl genes was upregulated in the presence of glucose but not LB broth, which implies different inducing mechanisms by the two types of alternate carbon source. The increased toluene degradation by the addition of glucose or LB broth was persistent over the short-term, suggesting the pulse amendment of an alternative carbon source may be helpful in bioremediation. While the effects of recipient genome GC content and other conditions must still be examined, our results suggest that changes in environmental conditions such as alternate substrate availability may significantly improve the functionality of the transferred phenotypes in HGT and therefore may be an important parameter for genetic bioaugmentation optimization.
Collapse
Affiliation(s)
- Kaoru Ikuma
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
80
|
McLamore ES, Zhang W, Porterfield DM, Banks MK. Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7050-7057. [PMID: 20735036 DOI: 10.1021/es1012356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bioreactors containing sessile bacteria (biofilms) grown on hollow fiber membranes have been used for treatment of many wastestreams. Real time operational control of bioreactor performance requires detailed knowledge of the relationship between bulk liquid water quality and physiological transport at the biofilm-liquid interface. Although large data sets exist describing membrane-aerated bioreactor effluent quality, very little real time data is available characterizing boundary layer transport under physiological conditions. A noninvasive, microsensor technique was used to quantify real time (≈1.5 s) changes in oxygen and proton flux for mature Nitrosomonas europaea and Pseudomonas aeruginosa biofilms in membrane-aerated bioreactors following exposure to environmental toxins. Stress response was characterized during exposure to toxins with known mode of action (chlorocarbonyl cyanide phenyl-hydrazone and potassium cyanide), and four environmental toxins (rotenone, 2,4-dinitrophenol, cadmium chloride, and pentachlorophenol). Exposure to sublethal concentrations of all environmental toxins caused significant increases in O(2) and/or H(+) flux (depending on the mode of action). These real time microscale signatures (i.e., fingerprints) of O(2) and H(+) flux can be coupled with bulk liquid analysis to improve our understanding of physiology in counter-diffusion biofilms found within membrane aerated bioreactors; leading to enhanced monitoring/modeling strategies for bioreactor control.
Collapse
Affiliation(s)
- E S McLamore
- Physiological Sensing Facility, Purdue University, 1203 West State Street, West Lafayette, Indiana 47907-2057, USA.
| | | | | | | |
Collapse
|
81
|
Construction of self-transmissible green fluorescent protein-based biosensor plasmids and their use for identification of N-acyl homoserine-producing bacteria in lake sediments. Appl Environ Microbiol 2010; 76:6119-27. [PMID: 20675456 DOI: 10.1128/aem.00677-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria utilize quorum sensing (QS) systems to communicate with each other by means of the production, release, and response to signal molecules. N-Acyl homoserine lactone (AHL)-based QS systems are particularly widespread among the Proteobacteria, in which they regulate various functions. It has become evident that AHLs can also serve as signals for interspecies communication. However, knowledge on the impact of AHLs for the ecology of bacteria in their natural habitat is scarce, due mainly to the lack of tools that allow the study of QS in bacterial communities in situ. Here, we describe the construction of self-mobilizable green fluorescent protein (GFP)-based AHL sensors that utilize the conjugation and replication properties of the broad-host-range plasmid RP4. We show that these novel AHL sensor plasmids can be easily transferred to different bacterial species by biparental mating and that they give rise to green fluorescent cells in case the recipient is an AHL producer. We also demonstrate that these sensor plasmids are capable of self-spreading within mixed biofilms and are a suitable tool for the identification of AHL-producing bacteria in lake sediment.
Collapse
|
82
|
Musovic S, Dechesne A, Sørensen J, Smets BF. Novel assay to assess permissiveness of a soil microbial community toward receipt of mobile genetic elements. Appl Environ Microbiol 2010; 76:4813-8. [PMID: 20511430 PMCID: PMC2901734 DOI: 10.1128/aem.02713-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 05/18/2010] [Indexed: 11/20/2022] Open
Abstract
There is a wealth of evidence indicating that mobile genetic elements can spread in natural microbial communities. However, little is known regarding the fraction of the community that actually engages in this behavior. Here we report on a new approach to quantify the fraction of a bacterial community that is able to receive and maintain an exogenous conjugal plasmid termed community permissiveness. Conjugal transfer of a broad-host-range plasmid labeled with a zygotically inducible green fluorescent protein (RP4::gfp) from a donor strain (Pseudomonas putida) to a soil bacterial suspension was examined. The mixture of cells was incubated on membrane filters supported by different solid media. Plasmid transfer was scored by in situ visualization of green fluorescent transconjugant microcolonies, and host range was determined by traditional plating or microcolony isolation by using a micromanipulator. Among the conditions tested, the highest plasmid transfer incidence (approximately 1 transfer per 10(4) soil bacteria) was measured after 48 h of incubation on either a 10% soil extract or a 10-fold diluted R2A medium. Stereomicroscopy combined with image analysis allowed easy examination and enumeration of green fluorescent microcolonies. In all experiments, however, stereomicroscopy consistently underestimated the number of conjugation events (approximately 10-fold) in comparison to confocal laser scanning microscopy. The plasmid host range was broad and included bacteria belonging to the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria classes of proteobacteria. The isolation of transconjugant microcolonies by micromanipulation greatly extended the estimated plasmid host range among soil bacteria. The new approach can be applied to examine the permissiveness of various communities toward receipt of different mobile elements.
Collapse
Affiliation(s)
- Sanin Musovic
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, DK-2800 Kongens Lyngby, Denmark, Section of Genetics and Microbiology, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, DK-2800 Kongens Lyngby, Denmark, Section of Genetics and Microbiology, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jan Sørensen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, DK-2800 Kongens Lyngby, Denmark, Section of Genetics and Microbiology, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Barth F. Smets
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, DK-2800 Kongens Lyngby, Denmark, Section of Genetics and Microbiology, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
83
|
Morse TO, Morey SJ, Gunsch CK. Microbial inactivation of Pseudomonas putida and Pichia pastoris using gene silencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:3293-3297. [PMID: 20364871 DOI: 10.1021/es901404a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Antisense deoxyoligonucleotide (ASO) gene silencing was investigated as a potential disinfection tool for industrial and drinking water treatment application. ASOs bind with their reverse complementary mRNA transcripts thereby blocking protein translation. While ASO silencing has mainly been studied in medicine, it may be useful for modulating gene expression and inactivating microorganisms in environmental applications. In this proof of concept work, gene targets were sh ble (zeocin resistance) and todE (catechol-2,3-dioxygenase) in Pichia pastoris and npt (kanamycin resistance) in Pseudomonas putida. A maximum 0.5-fold decrease in P. pastoris cell numbers was obtained following a 120 min incubation with single-stranded DNA (ssDNA) concentrations ranging from 0.2 to 200 nM as compared to the no ssDNA control. In P. putida, a maximum 5.2-fold decrease was obtained after 90 min with 400 nM ssDNA. While the silencing efficiencies varied for the 25 targets tested, these results suggest that protein activity as well as microbial growth can be altered using ASO gene silencing-based tools. If successful, this technology has the potential to eliminate some of the environmental and health issues associated with the use of strong chemical biocides. However, prior to its dissemination, more research is needed to increase silencing efficiency and develop effective delivery methods.
Collapse
Affiliation(s)
- Thomas O Morse
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
84
|
Hannan S, Ready D, Jasni AS, Rogers M, Pratten J, Roberts AP. Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. ACTA ACUST UNITED AC 2010; 59:345-9. [PMID: 20337719 DOI: 10.1111/j.1574-695x.2010.00661.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate that live donor Veillonella dispar cells can transfer the conjugative transposon Tn916 to four different Streptococcus spp. recipients in a multispecies oral consortium growing as a biofilm in a constant depth film fermentor. Additionally, we demonstrate that purified V. dispar DNA can transform Streptococcus mitis to tetracycline resistance in this experimental system. These data show that transfer of conjugative transposon-encoded antibiotic resistance can occur by transformation in addition to conjugation in biofilms.
Collapse
Affiliation(s)
- Saad Hannan
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
85
|
Bathe S, Hausner M. Plasmid-mediated bioaugmentation of wastewater microbial communities in a laboratory-scale bioreactor. Methods Mol Biol 2010; 599:185-200. [PMID: 19882287 DOI: 10.1007/978-1-60761-439-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Xenobiotic degradation during biological wastewater treatment can be established or enhanced by bioaugmentation - the addition of biological agents carrying biodegradation genes required to perform the task. Whereas the addition of microbial cells carrying chromosomally encoded catabolic genes can be impaired by limited survival of the added microorganisms, the addition of donor organisms carrying a transmissible catabolic plasmid is a promising alternative. This plasmid can spread within the indigenous microbial community of the system, circumventing the need for extended survival of the introduced bacterial strain. Here we discuss how the catabolic plasmid pNB2 can be evaluated towards its potential to facilitate the degradation of a xenobiotic compound, 3-chloroaniline, and demonstrate the applicability of this plasmid to accomplish 3-chloroaniline degradation in a bioreactor setting after in situ transfer to suitable recipient strains.
Collapse
Affiliation(s)
- Stephan Bathe
- Institut für Ingenieurbiologie und Biotechnologie des Abwassers, Universität Karlsruhe, Karlsruhe, Germany
| | | |
Collapse
|
86
|
Licht TR, Struve C, Christensen BB, Poulsen RL, Molin S, Krogfelt KA. Evidence of increased spread and establishment of plasmid RP4 in the intestine under sub-inhibitory tetracycline concentrations. FEMS Microbiol Ecol 2009; 44:217-23. [PMID: 19719638 DOI: 10.1016/s0168-6496(03)00016-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The consequences of using anti-microbial agents in a complex ecosystem like the animal intestine can be difficult to predict. We have looked at effects of modulations in growth of competing intestinal bacteria on transfer and establishment of new genetic elements in the intestinal microflora. For this purpose, we used tetracycline, which gradually reduces the growth rate of tetracycline-sensitive bacteria, as the concentration of this drug is increased. The effect of tetracycline on transfer and establishment of the plasmid RP4, which encodes resistance to this drug, in populations of Escherichia coli BJ4 colonizing the intestine was investigated. A tetracycline-sensitive E. coli BJ4 strain was allowed to establish in the gastrointestinal tract of mice, where after an isogenic E. coli BJ4 carrying RP4 was given to the mice per os. Tetracycline in the drinking water given to the animals was kept in concentrations that allowed the sensitive recipient strain to colonize the gut. A given 'window' between the highest and the lowest antibiotic doses tested was shown to be optimal for the establishment of transconjugants in the intestine. These observations are important for the evaluation of the effect of a given drug on the intestinal ecosystem. A reduced potential for growth of a given bacterial species, caused by the presence of sub-inhibitory concentrations of a bacteriostatic antibiotic, will facilitate establishment of competing (i.e. closely related) organisms, which have acquired resistance genes and therefore grow well in the presence of the drug.
Collapse
Affiliation(s)
- Tine Rask Licht
- Department of Gastrointestinal Infections, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | | | | | | | | | | |
Collapse
|
87
|
Ragan MA, Beiko RG. Lateral genetic transfer: open issues. Philos Trans R Soc Lond B Biol Sci 2009; 364:2241-51. [PMID: 19571244 DOI: 10.1098/rstb.2009.0031] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lateral genetic transfer (LGT) is an important adaptive force in evolution, contributing to metabolic, physiological and ecological innovation in most prokaryotes and some eukaryotes. Genomic sequences and other data have begun to illuminate the processes, mechanisms, quantitative extent and impact of LGT in diverse organisms, populations, taxa and environments; deep questions are being posed, and the provisional answers sometimes challenge existing paradigms. At the same time, there is an enhanced appreciation of the imperfections, biases and blind spots in the data and in analytical approaches. Here we identify and consider significant open questions concerning the role of LGT in genome evolution.
Collapse
Affiliation(s)
- Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
88
|
Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm. Appl Environ Microbiol 2009; 75:6783-91. [PMID: 19717626 DOI: 10.1128/aem.00974-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A conjugative plasmid from the catheter-associated urinary tract infection strain Escherichia coli MS2027 was sequenced and annotated. This 42,644-bp plasmid, designated pMAS2027, contains 58 putative genes and is most closely related to plasmids belonging to incompatibility group X (IncX1). Plasmid pMAS2027 encodes two important virulence factors: type 3 fimbriae and a type IV secretion (T4S) system. Type 3 fimbriae, recently found to be functionally expressed in E. coli, played an important role in biofilm formation. Biofilm formation by E. coli MS2027 was specifically due to expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027 and enabled a non-biofilm-forming strain to grow as part of a mixed biofilm following acquisition of this plasmid. Thus, the importance of conjugation as a mechanism to spread biofilm determinants was demonstrated. Conjugation may represent an important mechanism by which type 3 fimbria genes are transferred among the Enterobacteriaceae that cause device-related infections in nosocomial settings.
Collapse
|
89
|
Intra- and interspecies conjugal transfer of Tn916-like elements from Lactococcus lactis in vitro and in vivo. Appl Environ Microbiol 2009; 75:6352-60. [PMID: 19666731 DOI: 10.1128/aem.00470-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetracycline-resistant Lactococcus lactis strains originally isolated from Polish raw milk were analyzed for the ability to transfer their antibiotic resistance genes in vitro, using filter mating experiments, and in vivo, using germfree rats. Four of six analyzed L. lactis isolates were able to transfer tetracycline resistance determinants in vitro to L. lactis Bu2-60, at frequencies ranging from 10(-5) to 10(-7) transconjugants per recipient. Three of these four strains could also transfer resistance in vitro to Enterococcus faecalis JH2-2, whereas no transfer to Bacillus subtilis YBE01, Pseudomonas putida KT2442, Agrobacterium tumefaciens UBAPF2, or Escherichia coli JE2571 was observed. Rats were initially inoculated with the recipient E. faecalis strain JH2-2, and after a week, the L. lactis IBB477 and IBB487 donor strains were introduced. The first transconjugants were detected in fecal samples 3 days after introduction of the donors. A subtherapeutic concentration of tetracycline did not have any significant effect on the number of transconjugants, but transconjugants were observed earlier in animals dosed with this antibiotic. Molecular analysis of in vivo transconjugants containing the tet(M) gene showed that this gene was identical to tet(M) localized on the conjugative transposon Tn916. Primer-specific PCR confirmed that the Tn916 transposon was complete in all analyzed transconjugants and donors. This is the first study showing in vivo transfer of a Tn916-like antibiotic resistance transposon from L. lactis to E. faecalis. These data suggest that in certain cases food lactococci might be involved in the spread of antibiotic resistance genes to other lactic acid bacteria.
Collapse
|
90
|
Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 2009; 83:1-18. [PMID: 19300995 DOI: 10.1007/s00253-009-1940-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 01/09/2023]
Abstract
Biofilm technology has been extensively applied to wastewater treatment, but its potential application in biofuel production has not been explored. Current technologies of converting lignocellulose materials to biofuel are hampered by costly processing steps in pretreatment, saccharification, and product recovery. Biofilms may have a potential to improve efficiency of these processes. Advantages of biofilms include concentration of cell-associated hydrolytic enzymes at the biofilm-substrate interface to increase reaction rates, a layered microbial structure in which multiple species may sequentially convert complex substrates and coferment hexose and pentose as hydrolysates diffuse outward, and the possibility of fungal-bacterial symbioses that allow simultaneous delignification and saccharification. More importantly, the confined microenvironment within a biofilm selectively rewards cells with better phenotypes conferred from intercellular gene or signal exchange, a process which is absent in suspended cultures. The immobilized property of biofilm, especially when affixed to a membrane, simplifies the separation of biofuel from its producer and promotes retention of biomass for continued reaction in the fermenter. Highly consolidated bioprocessing, including delignification, saccharification, fermentation, and separation in a single reactor, may be possible through the application of biofilm technology. To date, solid-state fermentation is the only biofuel process to which the advantages of biofilms have been applied, even though it has received limited attention and improvements. The transfer of biofilm technology from environmental engineering has the potential to spur great innovations in the optimization of biofuel production.
Collapse
|
91
|
Venkata Mohan S, Falkentoft C, Venkata Nancharaiah Y, Sturm BSM, Wattiau P, Wilderer PA, Wuertz S, Hausner M. Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. BIORESOURCE TECHNOLOGY 2009; 100:1746-53. [PMID: 19010662 DOI: 10.1016/j.biortech.2008.09.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 09/18/2008] [Accepted: 09/22/2008] [Indexed: 05/27/2023]
Abstract
The aim of this study was to investigate the effectiveness of bioaugmentation and transfer of plasmid pWWO (TOL plasmid) to mixed microbial populations in pilot and laboratory scale sequencing batch biofilm reactors (SBBRs) treating synthetic wastewater containing benzyl alcohol (BA) as a model xenobiotic. The plasmid donor was a Pseudomonas putida strain chromosomally tagged with the gene for the red fluorescent protein carrying a green fluorescent protein labeled TOL plasmid, which confers degradation capacity for several compounds including toluene and BA. In the pilot scale SBBR donor cells were disappeared 84 h after inoculation while transconjugants were not detected at all. In contrast, both donor and transconjugant cells were detected in the laboratory scale reactor where the ratio of transconjugants to donors fluctuated between 1.9 x 10(-1) and 8.9 x 10(-1) during an experimental period of 32 days. BA degradation rate was enhanced after donor inoculation from 0.98 mg BA/min prior to inoculation to 1.9 mg BA/min on the seventeenth day of operation. Survival of a bioaugmented strain, conjugative plasmid transfer and enhanced BA degradation was demonstrated in the laboratory scale SBBR but not in the pilot scale SBBR.
Collapse
Affiliation(s)
- S Venkata Mohan
- Institute of Water Quality Control and Waste Management, Technical University of Munich, Am Coulombwall, Garching, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Singh J, Khalichi P, Cvitkovitch DG, Santerre JP. Composite resin degradation products from BisGMA monomer modulate the expression of genes associated with biofilm formation and other virulence factors inStreptococcus mutans. J Biomed Mater Res A 2009; 88:551-60. [DOI: 10.1002/jbm.a.31879] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
93
|
Khalichi P, Singh J, Cvitkovitch DG, Santerre JP. The influence of triethylene glycol derived from dental composite resins on the regulation of Streptococcus mutans gene expression. Biomaterials 2009; 30:452-9. [DOI: 10.1016/j.biomaterials.2008.09.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/28/2008] [Indexed: 10/21/2022]
|
94
|
Geoghegan M, Andrews JS, Biggs CA, Eboigbodin KE, Elliott DR, Rolfe S, Scholes J, Ojeda JJ, Romero-González ME, Edyvean RGJ, Swanson L, Rutkaite R, Fernando R, Pen Y, Zhang Z, Banwart SA. The polymer physics and chemistry of microbial cell attachment and adhesion. Faraday Discuss 2009; 139:85-103; discussion 105-28, 419-20. [PMID: 19048992 DOI: 10.1039/b717046g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The attachment of microbial cells to solid substrata is a primary ecological strategy for the survival of species and the development of specific activity and function within communities. An hypothesis arising from a biological sciences perspective may be stated as follows: The attachment of microbes to interfaces is controlled by the macromolecular structure of the cell wall and the functional genes that are induced for its biological synthesis. Following logically from this is the view that diverse attached cell behaviour is mediated by the physical and chemical interactions of these macromolecules in the interfacial region and with other cells. This aspect can be reduced to its simplest form by treating physico-chemical interactions as colloidal forces acting between an isolated cell and a solid or pseudo solid substratum. These forces can be analysed by established methods rooted in DLVO (Derjaguin, Landau, Verwey and Overbeek) theory. Such a methodology provides little insight into what governs changes in the behaviour of the cell wall attached to surfaces, or indeed other cells. Nor does it shed any light on the expulsion of macromolecules that modify the interface such as formation of slime layers. These physical and chemical problems must be treated at the more fundamental level of the structure and behaviour of the individual components of the cell wall, for example biosurfactants and extracellular polysaccharides. This allows us to restate the above hypothesis in physical sciences terms: Cell attachment and related cell growth behaviour is mediated by macromolecular physics and chemistry in the interfacial environment. Ecological success depends on the genetic potential to favourably influence the interface through adaptation of the macromolecular structure, We present research that merges these two perspectives. This is achieved by quantifying attached cell growth for genetically diverse model organisms, building chemical models that capture the variations in interfacial structure and quantifying the resulting physical interactions. Experimental observations combine aqueous chemistry techniques with surface spectroscopy in order to elucidate the cell wall structure. Atomic force microscopy methods quantify the physical interactions between the solid substrata and key components of the cell wall such as macromolecular biosurfactants. Our current approach focuses on considering individually mycolic acids or longer chain polymers harvested from cells, as well as characterised whole cells. This approach allows us to use a multifactorial approach to address the relative impact of the individual components of the cell wall in contact with model surfaces. We then combine these components to increase complexity step-wise, while comparing with the behaviour of entire cells. Eventually, such an approach should allow us to estimate and understand the primary factors governing microbial cell adhesion. Although the work addresses the cell-mineral interface at a fundamental level, the research is driven by a range of technology needs. The initial rationale was improved prediction of contaminant degradation in natural environments (soils, sediments, aquifers) for environmental cleanup. However, this area of research addresses a wide range of biotechnology areas including improved understanding of pathogen survival (e.g., in surgical environments), better process intensification in biomanufacturing (biofilm technologies) and new product development.
Collapse
Affiliation(s)
- Mark Geoghegan
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, UK S3 7RH.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Rollet C, Gal L, Guzzo J. Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: a comparative study of adhesion and physiological characteristics in Pseudomonas aeruginosa. FEMS Microbiol Lett 2008; 290:135-42. [PMID: 19054076 DOI: 10.1111/j.1574-6968.2008.01415.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium widely investigated for its high incidence in clinical environments and its ability to form strong biofilms. During biofilm development, sessile cells acquire physiological characteristics differentiating them from planktonic cells. But after treatment with disinfectants, or to ensure survival of the species in hostile environments, biofilm cells can detach. This complicates disinfection procedures. This study aimed to physiologically characterize cells detached from a P. aeruginosa biofilm and to compare them with their sessile and planktonic counterparts. We first tested planktonic growth kinetics and capacities to form new biofilms. Then we investigated cell-surface properties. And finally, we tested in vitro susceptibility to antibiotics. The results first indicated that sessile and detached cells have similar planktonic growth kinetics and cell-surface properties, distinguishable from those of planktonic cells. Interestingly, the three populations exhibited different biofilm-forming capacities, suggesting that there is a transitional phenotype between sessile and planktonic states, at least during the first hours following cell detachment. It is important to consider this observation when developing treatments to optimize disinfection processes. Surprisingly, the three populations showed the same antibiotic susceptibility profile.
Collapse
Affiliation(s)
- Cécile Rollet
- UMR 1229 Microbiologie du Sol et de l'Environnement, Université de Bourgogne, INRA, Dijon, France
| | | | | |
Collapse
|
96
|
Porter J. Flow cytometry and environmental microbiology. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 11:Unit 11.2. [PMID: 18770789 DOI: 10.1002/0471142956.cy1102s27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This survey unit discusses many of the issues involved for flow cytometry in the field of microbiology, particularly the preparative procedures, which are far more stringent than many other procedures using larger cells. For instance, it is often necessary to filter laboratory agents multiple times to obtain the true particle-free solutions needed for flow cytometry of microbes. It is difficult enough to recognize bacteria in cell extracts from soil, sediment, or sludge given the background of same-size particles. This unit provides an excellent overview of a potentially large application area in flow cytometry and is written by one of the most respected scientists in the field.
Collapse
|
97
|
Fox RE, Zhong X, Krone SM, Top EM. Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations. ISME JOURNAL 2008; 2:1024-39. [PMID: 18528415 DOI: 10.1038/ismej.2008.53] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In spite of the importance of plasmids in bacterial adaptation, we have a poor understanding of their dynamics. It is not known if or how plasmids persist in and spread through (invade) a bacterial population when there is no selection for plasmid-encoded traits. Moreover, the differences in dynamics between spatially structured and mixed populations are poorly understood. Through a joint experimental/theoretical approach, we tested the hypothesis that self-transmissible IncP-1 plasmids can invade a bacterial population in the absence of selection when initially very rare, but only in spatially structured habitats and when nutrients are regularly replenished. Using protocols that differed in the degree of spatial structure and nutrient levels, the invasiveness of plasmid pB10 in Escherichia coli was monitored during at least 15 days, with an initial fraction of plasmid-bearing (p(+)) cells as low as 10(-7). To further explore the mechanisms underlying plasmid dynamics, we developed a spatially explicit mathematical model. When cells were grown on filters and transferred to fresh medium daily, the p(+) fraction increased to 13%, whereas almost complete invasion occurred when the population structure was disturbed daily. The plasmid was unable to invade in liquid. When carbon source levels were lower or not replenished, plasmid invasion was hampered. Simulations of the mathematical model closely matched the experimental results and produced estimates of the effects of alternative experimental parameters. This allowed us to isolate the likely mechanisms most responsible for the observations. In conclusion, spatial structure and nutrient availability can be key determinants in the invasiveness of plasmids.
Collapse
Affiliation(s)
- Randal E Fox
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | | | |
Collapse
|
98
|
Folkesson A, Haagensen JAJ, Zampaloni C, Sternberg C, Molin S. Biofilm induced tolerance towards antimicrobial peptides. PLoS One 2008; 3:e1891. [PMID: 18382672 PMCID: PMC2270907 DOI: 10.1371/journal.pone.0001891] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/23/2008] [Indexed: 11/18/2022] Open
Abstract
Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.
Collapse
Affiliation(s)
- Anders Folkesson
- Infection Microbiology Group, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
99
|
Briandet R, Lacroix-Gueu P, Renault M, Lecart S, Meylheuc T, Bidnenko E, Steenkeste K, Bellon-Fontaine MN, Fontaine-Aupart MP. Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Appl Environ Microbiol 2008; 74:2135-43. [PMID: 18245240 PMCID: PMC2292585 DOI: 10.1128/aem.02304-07] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/25/2008] [Indexed: 11/20/2022] Open
Abstract
In the natural environment, most of the phages that target bacteria are thought to exist in biofilm ecosystems. The purpose of this study was to gain a clearer understanding of the reactivity of these viral particles when they come into contact with bacteria embedded in biofilms. Experimentally, we quantified lactococcal c2 phage diffusion and reaction through model biofilms using in situ fluorescence correlation spectroscopy with two-photon excitation. Correlation curves for fluorescently labeled c2 phage in nonreacting Stenotrophomonas maltophilia biofilms indicated that extracellular polymeric substances did not provide significant resistance to phage penetration and diffusion, even though penetration and diffusion were sometimes restricted because of the noncontractile tail of the viral particle. Fluctuations in the fluorescence intensity of the labeled phage were detected throughout the thickness of biofilms formed by c2-sensitive and c2-resistant strains of Lactococcus lactis but could never be correlated with time, revealing that the phage was immobile. This finding confirmed that recognition binding receptors for the viral particles were present on the resistant bacterial cell wall. Taken together, our results suggest that biofilms may act as "active" phage reservoirs that can entrap and amplify viral particles and protect them from harsh environments.
Collapse
Affiliation(s)
- R Briandet
- UMR763 BHM INRA-AgroParisTech, 25 Avenue République, 91300 Massy, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Nancharaiah YV, Joshi HM, Hausner M, Venugopalan VP. Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. CHEMOSPHERE 2008; 71:30-35. [PMID: 18076969 DOI: 10.1016/j.chemosphere.2007.10.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/26/2007] [Accepted: 10/26/2007] [Indexed: 05/25/2023]
Abstract
This paper describes results of a successful bioaugmentation experiment on aerobic granular sludge using Pseudomonas putida KT2442 cells bearing the TOL (pWWO) plasmid. The methodology was designed to monitor incorporation of the added donor cells into pre-existent microbial granules and the subsequent plasmid transfer to the autochthonous microbial community using shake flask microcosms. Expression of reporter proteins (GFP and DsRed) allowed in situ monitoring of donor cell attachment and plasmid transfer to the recipient cells using confocal laser scanning microscopy. Concomitant with donor integration and transconjugant proliferation in the granules, a significant increase in degradation of benzyl alcohol (used as sole substrate) was observed in the augmented microcosms. In contrast, control microcosms (with non-augmented granules) did not show any noticeable increase in the degradation of the substrate. This study shows that bioaugmentation of aerobic granular sludge via donor colonization and plasmid transfer is feasible for enhanced biodegradation.
Collapse
Affiliation(s)
- Yarlagadda V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam 603 102, Tamil Nadu, India
| | | | | | | |
Collapse
|