51
|
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction. Biochem J 2017; 474:3935-3950. [PMID: 29146872 PMCID: PMC5688466 DOI: 10.1042/bcj20170377] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022]
Abstract
What does it take to convert a living organism into a truly productive biofactory? Apart from optimizing biosynthesis pathways as standalone units, a successful bioengineering approach must bend the endogenous metabolic network of the host, and especially its central metabolism, to support the bioproduction process. In practice, this usually involves three complementary strategies which include tuning-down or abolishing competing metabolic pathways, increasing the availability of precursors of the desired biosynthesis pathway, and ensuring high availability of energetic resources such as ATP and NADPH. In this review, we explore these strategies, focusing on key metabolic pathways and processes, such as glycolysis, anaplerosis, the TCA (tricarboxylic acid) cycle, and NADPH production. We show that only a holistic approach for bioengineering — considering the metabolic network of the host organism as a whole, rather than focusing on the production pathway alone — can truly mold microorganisms into efficient biofactories.
Collapse
|
52
|
Lange A, Becker J, Schulze D, Cahoreau E, Portais JC, Haefner S, Schröder H, Krawczyk J, Zelder O, Wittmann C. Bio-based succinate from sucrose: High-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens. Metab Eng 2017; 44:198-212. [PMID: 29037780 DOI: 10.1016/j.ymben.2017.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/10/2017] [Accepted: 10/04/2017] [Indexed: 01/12/2023]
Abstract
Succinic acid is a platform chemical of recognized industrial value and accordingly faces a continuous challenge to enable manufacturing from most attractive raw materials. It is mainly produced from glucose, using microbial fermentation. Here, we explore and optimize succinate production from sucrose, a globally applied substrate in biotechnology, using the rumen bacterium Basfia succiniciproducens DD1. As basis of the strain optimization, the yet unknown sucrose metabolism of the microbe was studied, using 13C metabolic flux analyses. When grown in batch culture on sucrose, the bacterium exhibited a high succinate yield of 1molmol-1 and a by-product spectrum, which did not match the expected PTS-mediated sucrose catabolism. This led to the discovery of a fructokinase, involved in sucrose catabolism. The flux approach unraveled that the fructokinase and the fructose PTS both contribute to phosphorylation of the fructose part of sucrose. The contribution of the fructokinase reduces the undesired loss of the succinate precursor PEP into pyruvate and into pyruvate-derived by-products and enables increased succinate production, exclusively via the reductive TCA cycle branch. These findings were used to design superior producers. Mutants, which (i) overexpress the beneficial fructokinase, (II) lack the competing fructose PTS, and (iii) combine both traits, produce significantly more succinate. In a fed-batch process, B. succiniciproducens ΔfruA achieved a titer of 71gL-1 succinate and a yield of 2.5molmol-1 from sucrose.
Collapse
Affiliation(s)
- Anna Lange
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Dennis Schulze
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Edern Cahoreau
- Université de Toulouse, INSA, UPS, INP, Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France; CNRS, UMR5504, Toulouse, France
| | - Jean-Charles Portais
- Université de Toulouse, INSA, UPS, INP, Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France; CNRS, UMR5504, Toulouse, France
| | - Stefan Haefner
- BASF SE, Fine Chemicals and Biotechnology, Ludwigshafen, Germany
| | - Hartwig Schröder
- BASF SE, Fine Chemicals and Biotechnology, Ludwigshafen, Germany
| | - Joanna Krawczyk
- BASF SE, Fine Chemicals and Biotechnology, Ludwigshafen, Germany
| | - Oskar Zelder
- BASF SE, Fine Chemicals and Biotechnology, Ludwigshafen, Germany
| | | |
Collapse
|
53
|
Ahn JH, Bang J, Kim WJ, Lee SY. Formic acid as a secondary substrate for succinic acid production by metabolically engineered Mannheimia succiniciproducens. Biotechnol Bioeng 2017; 114:2837-2847. [PMID: 28926680 DOI: 10.1002/bit.26435] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/28/2017] [Accepted: 08/21/2017] [Indexed: 02/04/2023]
Abstract
There has been much effort exerted to reduce one carbon (C1) gas emission to address climate change. As one promising way to more conveniently utilize C1 gas, several technologies have been developed to convert C1 gas into useful chemicals such as formic acid (FA). In this study, systems metabolic engineering was utilized to engineer Mannheimia succiniciproducens to efficiently utilize FA. 13 C isotope analysis of M. succiniciproducens showed that FA could be utilized through formate dehydrogenase (FDH) reaction and/or the reverse reaction of pyruvate formate lyase (PFL). However, the naturally favored forward reaction of PFL was found to lower the SA yield from FA. In addition, FA assimilation via FDH was found to be more efficient than the reverse reaction of PFL. Thus, the M. succiniciproducens LPK7 strain, which lacks in pfl, ldh, pta, and ack genes, was selected as a base strain. In silico metabolic analysis confirmed that utilization of FA would be beneficial for the enhanced production of SA and suggested FDH as an amplification target. To find a suitable FDH, four different FDHs from M. succiniciproducens, Methylobacterium extorquens, and Candida boidinii were amplified in LPK7 strain to enhance FA assimilation. High-inoculum density cultivation using 13 C labeled sodium formate was performed to evaluate FA assimilation efficiency. Fed-batch fermentations of the LPK7 (pMS3-fdh2 meq) strain was carried out using glucose, sucrose, or glycerol as a primary carbon source and FA as a secondary carbon source. As a result, this strain produced 76.11 g/L SA with the yield and productivity of 1.28 mol/mol and 4.08 g/L/h, respectively, using sucrose and FA as dual carbon sources. The strategy employed here will be similarly applicable in developing microorganisms to utilize FA and to produce valuable chemicals and materials from FA.
Collapse
Affiliation(s)
- Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, Institute for the BioCentury, Yuseong-gu, Daejeon, Republic of Korea
| | - Junho Bang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, Institute for the BioCentury, Yuseong-gu, Daejeon, Republic of Korea
| | - Won Jun Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, Institute for the BioCentury, Yuseong-gu, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, Institute for the BioCentury, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
54
|
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ. Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (Reading) 2017; 163:1117-1144. [DOI: 10.1099/mic.0.000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jessica Schneider
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Frank-Jörg Vorhölter
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
55
|
Zhang Y, Jia Z, Lin J, Xu D, Fu S, Gong H. Deletingpckimproves growth and suppresses by-product formation during 1,3-propanediol fermentation byKlebsiella pneumoniae. J Appl Microbiol 2017. [DOI: 10.1111/jam.13518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yongqiang Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zongxiao Jia
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Jie Lin
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Danfeng Xu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| |
Collapse
|
56
|
Phuengjaya S, Phinkian N, Tanasupawa S, Teeradakor S. Diversity and Succinic Acid Production of Lactic Acid Bacteria Isolated from Animals, Soils and Tree Barks. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jm.2017.177.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
57
|
|
58
|
Thuy NTH, Kongkaew A, Flood A, Boontawan A. Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate. BIORESOURCE TECHNOLOGY 2017; 233:342-352. [PMID: 28285227 DOI: 10.1016/j.biortech.2017.02.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/25/2023]
Abstract
The fermentation of succinic acid from fresh cassava root using Actinobacillus succinogenes ATCC55618, and the recovery of the product using crystallization were investigated. Fresh cassava root is an ideal succinic acid feedstock due to its low price and high starch content. Saccharification was carried out using commercially available enzymes and diammonium phosphate was used as an inexpensive nitrogen source. Different fermentation modes were compared in terms of product yield and productivity. Results for fed-batch fermentations showed that a succinic acid titer of 151.44g/L, with yield and productivity of 1.51gSA/gglucose and 3.22g/L/h could be obtained. Seeded batch cooling crystallization was investigated after pre-treatment using nanofiltration. A succinic acid crystal purity of 99.35% with a relative crystallinity of 96.77% was obtained from high seeding experiments. These results indicated that fresh cassava roots could be an economically alternative feedstock for a high quality succinic acid production.
Collapse
Affiliation(s)
- Nguyen Thi Huong Thuy
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University avenue, Muang district, Nakhon Ratchasima 30000, Thailand
| | - Artit Kongkaew
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University avenue, Muang district, Nakhon Ratchasima 30000, Thailand
| | - Adrian Flood
- Department of Chemical and Biomolecular Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan District, Rayong 21210, Thailand
| | - Apichat Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University avenue, Muang district, Nakhon Ratchasima 30000, Thailand; Cassava Research Center, Suranaree University of Technology, 111 University avenue, Muang district, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
59
|
Bosma EF, Forster J, Nielsen AT. Lactobacilli and pediococci as versatile cell factories - Evaluation of strain properties and genetic tools. Biotechnol Adv 2017; 35:419-442. [PMID: 28396124 DOI: 10.1016/j.biotechadv.2017.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.
Collapse
Affiliation(s)
- Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
60
|
Adhikary J, Meistelman M, Burg A, Shamir D, Meyerstein D, Albo Y. Reductive Dehalogenation of Monobromo‐ and Tribromoacetic Acid by Sodium Borohydride Catalyzed by Gold Nanoparticles Entrapped in Sol–Gel Matrices Follows Different Pathways. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Ariela Burg
- Chemical Engineering Department Sami Shamoon College of Engineering Beer‐Sheva Israel
| | - Dror Shamir
- Chemistry Department Nuclear Research Centre Negev Beer‐Sheva Israel
| | - Dan Meyerstein
- Chemical Sciences Department Ariel University Ariel Israel
- Chemistry Department Ben‐Gurion University Beer‐Sheva Israel
| | - Yael Albo
- Chemical Engineering Department Ariel University Ariel Israel
| |
Collapse
|
61
|
Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum. Metab Eng 2017; 40:157-164. [DOI: 10.1016/j.ymben.2017.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/31/2017] [Accepted: 02/12/2017] [Indexed: 11/20/2022]
|
62
|
Kim WJ, Ahn JH, Kim HU, Kim TY, Lee SY. Metabolic engineering of Mannheimia succiniciproducens
for succinic acid production based on elementary mode analysis with clustering. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Won Jun Kim
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hyun Uk Kim
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- BioInformatics Research Center; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Tae Yong Kim
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- BioInformatics Research Center; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- BioInformatics Research Center; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- BioProcess Engineering Research Center; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| |
Collapse
|
63
|
Gregory GL, López-Vidal EM, Buchard A. Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications. Chem Commun (Camb) 2017; 53:2198-2217. [DOI: 10.1039/c6cc09578j] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article gives an overview of sugar-based polymers that can be made by ring-opening-polymerisation and their applications.
Collapse
|
64
|
Tools and Techniques for Genetic Engineering of Bio-Prospective Microorganisms. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
65
|
Kaboré AK, Olmos E, Fick M, Blanchard F, Guedon E, Delaunay S. Aerobiosis–anaerobiosis transition has a significant impact on organic acid production by Corynebacterium glutamicum. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
66
|
Application of theoretical methods to increase succinate production in engineered strains. Bioprocess Biosyst Eng 2016; 40:479-497. [PMID: 28040871 DOI: 10.1007/s00449-016-1729-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022]
Abstract
Computational methods have enabled the discovery of non-intuitive strategies to enhance the production of a variety of target molecules. In the case of succinate production, reviews covering the topic have not yet analyzed the impact and future potential that such methods may have. In this work, we review the application of computational methods to the production of succinic acid. We found that while a total of 26 theoretical studies were published between 2002 and 2016, only 10 studies reported the successful experimental implementation of any kind of theoretical knowledge. None of the experimental studies reported an exact application of the computational predictions. However, the combination of computational analysis with complementary strategies, such as directed evolution and comparative genome analysis, serves as a proof of concept and demonstrates that successful metabolic engineering can be guided by rational computational methods.
Collapse
|
67
|
Tomita Y, Yoshioka K, Iijima H, Nakashima A, Iwata O, Suzuki K, Hasunuma T, Kondo A, Hirai MY, Osanai T. Succinate and Lactate Production from Euglena gracilis during Dark, Anaerobic Conditions. Front Microbiol 2016; 7:2050. [PMID: 28066371 PMCID: PMC5174102 DOI: 10.3389/fmicb.2016.02050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Euglena gracilis is a eukaryotic, unicellular phytoflagellate that has been widely studied in basic science and applied science. Under dark, anaerobic conditions, the cells of E. gracilis produce a wax ester that can be converted into biofuel. Here, we demonstrate that under dark, anaerobic conditions, E. gracilis excretes organic acids, such as succinate and lactate, which are bulk chemicals used in the production of bioplastics. The levels of succinate were altered by changes in the medium and temperature during dark, anaerobic incubation. Succinate production was enhanced when cells were incubated in CM medium in the presence of NaHCO3. Excretion of lactate was minimal in the absence of external carbon sources, but lactate was produced in the presence of glucose during dark, anaerobic incubation. E. gracilis predominantly produced L-lactate; however, the percentage of D-lactate increased to 28.4% in CM medium at 30°C. Finally, we used a commercial strain of E. gracilis for succinate production and found that nitrogen-starved cells, incubated under dark, anaerobic conditions, produced 869.6 mg/L succinate over a 3-day incubation period, which was 70-fold higher than the amount produced by nitrogen-replete cells. This is the first study to demonstrate organic acid excretion by E. gracilis cells and to reveal novel aspects of primary carbon metabolism in this organism.
Collapse
Affiliation(s)
- Yuko Tomita
- School of Agriculture, Meiji University Kawasaki, Japan
| | | | - Hiroko Iijima
- School of Agriculture, Meiji University Kawasaki, Japan
| | | | | | | | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University Kobe, Japan
| | | | - Takashi Osanai
- School of Agriculture, Meiji UniversityKawasaki, Japan; RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
68
|
Enhanced succinic acid production under acidic conditions by introduction of glutamate decarboxylase system in E. coli AFP111. Bioprocess Biosyst Eng 2016; 40:549-557. [PMID: 27987090 DOI: 10.1007/s00449-016-1720-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/02/2016] [Indexed: 01/02/2023]
Abstract
Biological synthesis of succinic acid at low pH values was favored since it not only decreased investment cost but also simplified downstream purification process. In this study, the feasibility of using glutamate decarboxylase system to improve succinic acid production of Escherichia coli AFP111, a succinate-producing candidate with mutations in pfl, ldhA, and ptsG, under acidic conditions was investigated. By overexpressing gadBC operon in AFP111, a recombinant named as BA201 (AFP111/pMD19T-gadBC) was constructed. Fermentation at pH 5.6 showed that 30 g L-1 glucose was consumed and 26.58 g L-1 succinic acid was produced by BA201, which was 1.22- and 1.32-fold higher than that by the control BA200 (AFP111/pMD19T) containing the empty vector. Analysis of intracellular enzymes activities and ATP concentrations revealed that the activities of key enzymes involved in glucose uptake and products synthesis and intracellular ATP levels were all increased after overexpression of gadBC which were benefit for cell metabolism under weak acidic conditions. To further improve the succinic acid titer by recombinant BA201 at pH 5.6, the extracellular glutamate concentration was optimized and the final succinic acid titer increased 20.4% to 32.01 g L-1. Besides, the fermentation time was prolonged by repetitive fermentation and additional 15.78 g L-1 succinic acid was produced by recovering cells into fresh medium. The results here demonstrated a potential strategy of overexpressing gadBC for increased succinic acid production of E. coli AFP111 under weak acidic conditions.
Collapse
|
69
|
Affiliation(s)
- Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury; KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Yu-Sin Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury; KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury; KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
70
|
Lee JW, Yi J, Kim TY, Choi S, Ahn JH, Song H, Lee MH, Lee SY. Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metab Eng 2016; 38:409-417. [PMID: 27746096 DOI: 10.1016/j.ymben.2016.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/18/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Succinic acid (SA) is a four carbon dicarboxylic acid of great industrial interest that can be produced by microbial fermentation. Here we report development of a high-yield homo-SA producing Mannheimia succiniciproducens strain by metabolic engineering. The PALFK strain (ldhA-, pta-, ackA-, fruA-) was developed based on optimization of carbon flux towards SA production while minimizing byproducts formation through the integrated application of in silico genome-scale metabolic flux analysis, omics analyses, and reconstruction of central carbon metabolism. Based on in silico simulation, utilization of sucrose would enhance the SA production and cell growth rates, while consumption of glycerol would reduce the byproduct formation rates. Thus, sucrose and glycerol were selected as dual carbon sources to improve the SA yield and productivity, while deregulation of catabolite-repression was also performed in engineered M. succiniciproducens. Fed-batch fermentations of PALFK with low- and medium-density (OD600 of 0.4 and 9.0, respectively) inocula produced 69.2 and 78.4g/L of homo-SA with yields of 1.56 and 1.64mol/mol glucose equivalent and overall volumetric SA productivities of 2.50 and 6.02g/L/h, respectively, using sucrose and glycerol as dual carbon sources. The SA productivity could be further increased to 38.6g/L/h by employing a membrane cell recycle bioreactor system. The systems metabolic engineering strategies employed here for achieving homo-SA production with the highest overall performance indices reported to date will be generally applicable for developing superior industrial microorganisms and competitive processes for the bio-based production of other chemicals as well.
Collapse
Affiliation(s)
- Jeong Wook Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jongho Yi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae Yong Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sol Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyohak Song
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Moon-Hee Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
71
|
Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli. Metab Eng 2016; 38:264-273. [PMID: 27663752 DOI: 10.1016/j.ymben.2016.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/17/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023]
Abstract
To address climate change and environmental problems, it is becoming increasingly important to establish biorefineries for the production of chemicals from renewable non-food biomass. Here we report the development of Escherichia coli strains capable of overproducing a four-carbon platform chemical 4-hybroxybutyric acid (4-HB). Because 4-HB production is significantly affected by aeration level, genome-scale metabolic model-based engineering strategies were designed under aerobic and microaerobic conditions with emphasis on oxidative/reductive TCA branches and glyoxylate shunt. Several different metabolic engineering strategies were employed to develop strains suitable for fermentation both under aerobic and microaerobic conditions. It was found that microaerobic condition was more efficient than aerobic condition in achieving higher titer and productivity of 4-HB. The final engineered strain produced 103.4g/L of 4-HB by microaerobic fed-batch fermentation using glycerol. The aeration-dependent optimization strategy of TCA cycle will be useful for developing microbial strains producing other reduced derivative chemicals of TCA cycle intermediates.
Collapse
|
72
|
Choi KR, Lee SY. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnol Adv 2016; 34:1180-1209. [PMID: 27566508 DOI: 10.1016/j.biotechadv.2016.08.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now revolutionizing biotechnology as well as biology. Diverse technologies have been derived from CRISPR/Cas systems in bacteria, yet the applications unfortunately have not been actively employed in bacteria as extensively as in eukaryotic organisms. A recent trend of engineering less explored strains in industrial microbiology-metabolic engineering, synthetic biology, and other related disciplines-is demanding facile yet robust tools, and various CRISPR technologies have potential to cater to the demands. Here, we briefly review the science in CRISPR/Cas systems and the milestone inventions that enabled numerous CRISPR technologies. Next, we describe CRISPR/Cas-derived technologies for bacterial strain development, including genome editing and gene expression regulation applications. Then, other CRISPR technologies possessing great potential for industrial applications are described, including typing and tracking of bacterial strains, virome identification, vaccination of bacteria, and advanced antimicrobial approaches. For each application, we note our suggestions for additional improvements as well. In the same context, replication of CRISPR/Cas-based chromosome imaging technologies developed originally in eukaryotic systems is introduced with its potential impact on studying bacterial chromosomal dynamics. Also, the current patent status of CRISPR technologies is reviewed. Finally, we provide some insights to the future of CRISPR technologies for bacterial systems by proposing complementary techniques to be developed for the use of CRISPR technologies in even wider range of applications.
Collapse
Affiliation(s)
- Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea.
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea; BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm 2970, Denmark.
| |
Collapse
|
73
|
Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Microb Cell Fact 2016; 15:141. [PMID: 27520031 PMCID: PMC4983090 DOI: 10.1186/s12934-016-0536-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/02/2016] [Indexed: 12/03/2022] Open
Abstract
Background Succinate has been identified by the U.S. Department of Energy as one of the top 12 building block chemicals, which can be used as a specialty chemical in the agricultural, food, and pharmaceutical industries. Escherichia coli are now one of the most important succinate producing candidates. However, the stoichiometric maximum succinate yield under anaerobic conditions through the reductive branch of the TCA cycle is restricted by NADH supply in E. coli. Results In the present work, we report a rational approach to increase succinate yield by regulating NADH supply via pentose phosphate (PP) pathway and enhancing flux towards succinate. The deregulated genes zwf243 (encoding glucose-6-phosphate dehydrogenase) and gnd361 (encoding 6-phosphogluconate dehydrogenase) involved in NADPH generation from Corynebacterium glutamicum were firstly introduced into E. coli for succinate production. Co-expression of beneficial mutated dehydrogenases, which removed feedback inhibition in the oxidative part of the PP pathway, increased succinate yield from 1.01 to 1.16 mol/mol glucose. Three critical genes, pgl (encoding 6-phosphogluconolactonase), tktA (encoding transketolase) and talB (encoding transaldolase) were then overexpressed to redirect more carbon flux towards PP pathway and further improved succinate yield to 1.21 mol/mol glucose. Furthermore, introducing Actinobacillus succinogenes pepck (encoding phosphoenolpyruvate carboxykinase) together with overexpressing sthA (encoding soluble transhydrogenase), further increased succinate yield to 1.31 mol/mol glucose. In addition, removing byproduct formation through inactivating acetate formation genes ackA-pta and heterogenously expressing pyc (encoding pyruvate carboxylase) from C. glutamicum led to improved succinate yield to 1.4 mol/mol glucose. Finally, synchronously overexpressing dcuB and dcuC encoding succinate exporters enhanced succinate yield to 1.54 mol/mol glucose, representing 52 % increase relative to the parent strain and amounting to 90 % of the strain-specific stoichiometric maximum (1.714 mol/mol glucose). Conclusions It’s the first time to rationally regulate pentose phosphate pathway to improve NADH supply for succinate synthesis in E. coli. 90 % of stoichiometric maximum succinate yield was achieved by combining further flux increase towards succinate and engineering its export. Regulation of NADH supply via PP pathway is therefore recommended for the production of products that are NADH-demanding in E. coli. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0536-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiao Meng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Baiyun Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Dingyu Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.
| | - Xueming Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
74
|
Pateraki C, Patsalou M, Vlysidis A, Kopsahelis N, Webb C, Koutinas AA, Koutinas M. Actinobacillus succinogenes : Advances on succinic acid production and prospects for development of integrated biorefineries. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Engineered biosynthesis of biodegradable polymers. ACTA ACUST UNITED AC 2016; 43:1037-58. [DOI: 10.1007/s10295-016-1785-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Abstract
Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.
Collapse
|
76
|
Olajuyin AM, Yang M, Liu Y, Mu T, Tian J, Adaramoye OA, Xing J. Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2016; 214:653-659. [PMID: 27203224 DOI: 10.1016/j.biortech.2016.04.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
Succinic acid, a C4 dicarboxylic acid is used in many fields such as food, agriculture, pharmaceutical and polymer industries. In this study, microbial production of succinic acid from Palmaria palmata was investigated for the first time. In engineered Escherichia coli KLPPP, lactate dehydrogenase, pyruvate formate lyase, phosphotransacetylase-acetate kinase and pyruvate oxidase genes were deleted while phosphoenolpyruvate carboxykinase was overexpressed. The recombinant exhibited higher molar yield of succinic acid on galactose (1.20±0.02mol/mol) than glucose (0.48±0.03mol/mol). The concentration and molar yield of succinic acid were 22.40±0.12g/L and 1.13±0.02mol/mol total sugar respectively after 72h dual phase fermentation from P. palmata hydrolysate which composed of glucose (12.57±0.17g/L) and galactose (18.03±0.10g/L). The results demonstrate that P. palmata red macroalgae biomass represents a novel and an economically alternative feedstock for biochemicals production.
Collapse
Affiliation(s)
- Ayobami Matthew Olajuyin
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maohua Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yilan Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingzhen Mu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangnan Tian
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jianmin Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
77
|
Choi S, Song H, Lim SW, Kim TY, Ahn JH, Lee JW, Lee MH, Lee SY. Highly selective production of succinic acid by metabolically engineeredMannheimia succiniciproducensand its efficient purification. Biotechnol Bioeng 2016; 113:2168-77. [DOI: 10.1002/bit.25988] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/09/2016] [Accepted: 04/06/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Sol Choi
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; KAIST; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Hyohak Song
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; KAIST; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Sung Won Lim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; KAIST; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Tae Yong Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; KAIST; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jung Ho Ahn
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; KAIST; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; KAIST; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Moon-Hee Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; KAIST; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; KAIST; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
78
|
Ahn JH, Jang YS, Lee SY. Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 2016; 42:54-66. [PMID: 26990278 DOI: 10.1016/j.copbio.2016.02.034] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
Abstract
Succinic acid (SA) has been recognized as one of the most important bio-based building block chemicals due to its numerous potential applications. For the economical bio-based production of SA, extensive research works have been performed on developing microbial strains by metabolic engineering as well as fermentation and downstream processes. Here we review metabolic engineering strategies applied for bio-based production of SA using representative microorganisms, including Saccharomyces cerevisiae, Pichia kudriavzevii, Escherichia coli, Mannheimia succiniciproducens, Basfia succiniciproducens, Actinobacillus succinogenes, and Corynebacterium glutamicum. In particular, strategies employed for developing engineered strains of these microorganisms leading to the best performance indices (titer, yield, and productivity) are showcased based on the published papers as well as patents. Those processes currently under commercialization are also analyzed and future perspectives are provided.
Collapse
Affiliation(s)
- Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yu-Sin Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
79
|
Latham EA, Anderson RC, Pinchak WE, Nisbet DJ. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds. Front Microbiol 2016; 7:228. [PMID: 26973609 PMCID: PMC4777734 DOI: 10.3389/fmicb.2016.00228] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/12/2016] [Indexed: 11/13/2022] Open
Abstract
Nitrate and certain short chain nitrocompounds and nitro-oxy compounds are being investigated as dietary supplements to reduce economic and environmental costs associated with ruminal methane emissions. Thermodynamically, nitrate is a preferred electron acceptor in the rumen that consumes electrons at the expense of methanogenesis during dissimilatory reduction to an intermediate, nitrite, which is primarily reduced to ammonia although small quantities of nitrous oxide may also be produced. Short chain nitrocompounds act as direct inhibitors of methanogenic bacteria although certain of these compounds may also consume electrons at the expense of methanogenesis and are effective inhibitors of important foodborne pathogens. Microbial and nutritional consequences of incorporating nitrate into ruminant diets typically results in increased acetate production. Unlike most other methane-inhibiting supplements, nitrate decreases or has no effect on propionate production. The type of nitrate salt added influences rates of nitrate reduction, rates of nitrite accumulation and efficacy of methane reduction, with sodium and potassium salts being more potent than calcium nitrate salts. Digestive consequences of adding nitrocompounds to ruminant diets are more variable and may in some cases increase propionate production. Concerns about the toxicity of nitrate's intermediate product, nitrite, to ruminants necessitate management, as animal poisoning may occur via methemoglobinemia. Certain of the naturally occurring nitrocompounds, such as 3-nitro-1-propionate or 3-nitro-1-propanol also cause poisoning but via inhibition of succinate dehydrogenase. Typical risk management procedures to avoid nitrite toxicity involve gradually adapting the animals to higher concentrations of nitrate and nitrite, which could possibly be used with the nitrocompounds as well. A number of organisms responsible for nitrate metabolism in the rumen have been characterized. To date a single rumen bacterium is identified as contributing appreciably to nitrocompound metabolism. Appropriate doses of the nitrocompounds and nitrate, singly or in combination with probiotic bacteria selected for nitrite and nitrocompound detoxification activity promise to alleviate risks of toxicity. Further studies are needed to more clearly define benefits and risk of these technologies to make them saleable for livestock producers.
Collapse
Affiliation(s)
- Elizabeth A. Latham
- Department of Animal Science, Texas A&M UniversityCollege Station, TX, USA
- Texas A&M AgriLife ResearchVernon, TX, USA
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture, Agricultural Research ServiceCollege Station, TX, USA
| | | | - David J. Nisbet
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture, Agricultural Research ServiceCollege Station, TX, USA
| |
Collapse
|
80
|
Wang J, Lin M, Xu M, Yang ST. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:323-361. [DOI: 10.1007/10_2015_5009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
81
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
82
|
Salvachúa D, Mohagheghi A, Smith H, Bradfield MFA, Nicol W, Black BA, Biddy MJ, Dowe N, Beckham GT. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:28. [PMID: 26839591 PMCID: PMC4736274 DOI: 10.1186/s13068-016-0425-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/05/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. However, SA production from biomass-derived hydrolysates has not yet been fully explored or developed. RESULTS Here, we employ Actinobacillus succinogenes 130Z to produce succinate in batch fermentations from various substrates including (1) pure sugars to quantify substrate inhibition, (2) from mock hydrolysates similar to those from DAP containing single putative inhibitors, and (3) using the hydrolysate derived from two pilot-scale pretreatments: first, a mild alkaline wash (deacetylation) followed by DAP, and secondly a single DAP step, both with corn stover. These latter streams are both rich in xylose and contain different levels of inhibitors such as acetate, sugar dehydration products (furfural, 5-hydroxymethylfurfural), and lignin-derived products (ferulate, p-coumarate). In batch fermentations, we quantify succinate and co-product (acetate and formate) titers as well as succinate yields and productivities. We demonstrate yields of 0.74 g succinate/g sugars and 42.8 g/L succinate from deacetylated DAP hydrolysate, achieving maximum productivities of up to 1.27 g/L-h. Moreover, A. succinogenes is shown to detoxify furfural via reduction to furfuryl alcohol, although an initial lag in succinate production is observed when furans are present. Acetate seems to be the main inhibitor for this bacterium present in biomass hydrolysates. CONCLUSION Overall, these results demonstrate that biomass-derived, xylose-enriched hydrolysates result in similar yields and titers but lower productivities compared to clean sugar streams, which can likely be improved via fermentation process developments and metabolic engineering. Overall, this study comprehensively examines the behavior of A. succinogenes on xylose-enriched hydrolysates on an industrially relevant, lignocellulosic feedstock, which will pave the way for future work toward eventual SA production in an integrated biorefinery.
Collapse
Affiliation(s)
- Davinia Salvachúa
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Ali Mohagheghi
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Holly Smith
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | | | - Willie Nicol
- />Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa
| | - Brenna A. Black
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Mary J. Biddy
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Nancy Dowe
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Gregg T. Beckham
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| |
Collapse
|
83
|
Chung H, Yang JE, Ha JY, Chae TU, Shin JH, Gustavsson M, Lee SY. Bio-based production of monomers and polymers by metabolically engineered microorganisms. Curr Opin Biotechnol 2015; 36:73-84. [DOI: 10.1016/j.copbio.2015.07.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
|
84
|
Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv 2015; 33:1455-66. [DOI: 10.1016/j.biotechadv.2014.11.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/23/2014] [Accepted: 11/09/2014] [Indexed: 11/22/2022]
|
85
|
Yin X, Li J, Shin HD, Du G, Liu L, Chen J. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects. Biotechnol Adv 2015; 33:830-41. [DOI: 10.1016/j.biotechadv.2015.04.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 01/15/2023]
|
86
|
Systems strategies for developing industrial microbial strains. Nat Biotechnol 2015; 33:1061-72. [DOI: 10.1038/nbt.3365] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/23/2015] [Indexed: 12/11/2022]
|
87
|
Osanai T, Shirai T, Iijima H, Nakaya Y, Okamoto M, Kondo A, Hirai MY. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium. Front Microbiol 2015; 6:1064. [PMID: 26500619 PMCID: PMC4594341 DOI: 10.3389/fmicb.2015.01064] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/15/2015] [Indexed: 11/13/2022] Open
Abstract
Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique.
Collapse
Affiliation(s)
- Takashi Osanai
- RIKEN Center for Sustainable Resource Science Yokohama, Japan ; Department of Agricultural Chemistry, School of Agriculture, Meiji University Kawasaki, Japan
| | | | - Hiroko Iijima
- RIKEN Center for Sustainable Resource Science Yokohama, Japan ; Department of Agricultural Chemistry, School of Agriculture, Meiji University Kawasaki, Japan
| | - Yuka Nakaya
- RIKEN Center for Sustainable Resource Science Yokohama, Japan ; Biomass Engineering Program, RIKEN Yokohama, Japan
| | - Mami Okamoto
- Biomass Engineering Program, RIKEN Yokohama, Japan
| | - Akihiko Kondo
- Biomass Engineering Program, RIKEN Yokohama, Japan ; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University Kobe, Japan
| | - Masami Y Hirai
- RIKEN Center for Sustainable Resource Science Yokohama, Japan
| |
Collapse
|
88
|
Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid. Appl Microbiol Biotechnol 2015; 99:8455-64. [DOI: 10.1007/s00253-015-6816-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 11/26/2022]
|
89
|
Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes. Microb Cell Fact 2015; 14:80. [PMID: 26063229 PMCID: PMC4464251 DOI: 10.1186/s12934-015-0269-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Succinate is an important C4 building block chemical, and its production via fermentative processes in bacteria has many practical applications in the biotechnology field. One of the major goals of optimizing the bacterium-based succinate production process is to lower the culture pH from the current neutral conditions, as this would reduce total production costs. In our previous studies, we selected Enterobacter aerogenes, a rapid glucose assimilator at pH 5.0, in order to construct a metabolically engineered strain that could produce succinate under weakly acidic conditions. This engineered strain produced succinate from glucose with a 72.7% (g/g) yield at pH 5.7, with a volumetric productivity of 0.23 g/L/h. Although this demonstrates proof-of-concept that bacterium-based succinate fermentation can be improved under weakly acidic conditions, several parameters still required further optimization. Results In this study, we genetically modified an E. aerogenes strain previously developed in our laboratory in order to increase the production of ATP during succinate synthesis, as we inferred that this would positively impact succinate biosynthesis. This led to the development of the ES08ΔptsG strain, which contains the following modifications: chromosomally expressed Actinobacillus succinogenes phosphoenolpyruvate carboxykinase, enhanced fumarate reductase, inactivated pyruvate formate lyase, pyruvate oxidase, and glucose-phosphotransferase permease (enzyme IIBCGlc). This strain produced 55.4 g/L succinate from glucose, with 1.8 g/L acetate as the major byproduct at pH 5.7 and anaerobic conditions. The succinate yield and volumetric productivity of this strain were 86.8% and 0.92 g/L/h, respectively. Conclusions Focusing on increasing net ATP production during succinate synthesis leads to increased succinate yield and volumetric productivity in E. aerogenes. We propose that the metabolically engineered E. aerogenes ES08ΔptsG strain, which effectively produces succinate under weakly acidic and anaerobic conditions, has potential utility for economical succinate production.
Collapse
|
90
|
Hernández N, Williams RC, Cochran EW. The battle for the "green" polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement. Org Biomol Chem 2015; 12:2834-49. [PMID: 24687118 DOI: 10.1039/c3ob42339e] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biopolymers have been used throughout history; however, in the last two centuries they have seen a decrease in their utilization as the proliferation of inexpensive and mass-produced materials from petrochemical feedstocks quickly became better-suited to meeting society's needs. In recent years, high petroleum prices and the concern of society to adopt greener and cleaner products has led to an increased interest in biorenewable polymers and the use of sustainable technologies to produce them. Industrial and academic researchers alike have targeted several routes for producing these renewable materials. In this perspective, we compare and contrast two distinct approaches to the economical realization of these materials. One mentality that has emerged we term "bioreplacement", in which the fields of synthetic biology and catalysis collaborate to coax petrochemical monomers from sugars and lignocellulosic feedstocks that can subsequently be used in precisely the same ways to produce precisely the same polymers as we know today. For example, the metabolic engineering of bacteria is currently being explored as a viable route to common monomers such as butadiene, isoprene, styrene, acrylic acid, and sebacic acid, amongst others. Another motif that has recently gained traction may be referred to as the "bioadvantage" strategy, where the multifunctional "monomers" given to us by nature are combined in novel ways using novel chemistries to yield new polymers with new properties; for these materials to compete with their petroleum-based counterparts, they must add some advantage, for example less cost. For instance, acrylated epoxidized soybean oil readily undergoes polymerization to thermosets and recently, thermoplastic rubbers. Additionally, many plants produce pre-polymeric or polymeric materials that require little or no post modification to extract and make use of these compounds.
Collapse
Affiliation(s)
- Nacú Hernández
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
91
|
Jantama K, Polyiam P, Khunnonkwao P, Chan S, Sangproo M, Khor K, Jantama SS, Kanchanatawee S. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab Eng 2015; 30:16-26. [PMID: 25895450 DOI: 10.1016/j.ymben.2015.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/18/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed.
Collapse
Affiliation(s)
- Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand.
| | - Pattharasedthi Polyiam
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| | - Panwana Khunnonkwao
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| | - Sitha Chan
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| | - Maytawadee Sangproo
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| | - Kirin Khor
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| | - Sunthorn Kanchanatawee
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| |
Collapse
|
92
|
Sun J, Alper HS. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. ACTA ACUST UNITED AC 2015; 42:423-36. [DOI: 10.1007/s10295-014-1539-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022]
Abstract
Abstract
A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5–50 g/L), and lab-scale (0–5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.
Collapse
Affiliation(s)
- Jie Sun
- grid.89336.37 0000000419369924 McKetta Department of Chemical Engineering The University of Texas at Austin 200 E Dean Keeton St. Stop C0400 78712 Austin TX USA
| | - Hal S Alper
- grid.89336.37 0000000419369924 McKetta Department of Chemical Engineering The University of Texas at Austin 200 E Dean Keeton St. Stop C0400 78712 Austin TX USA
- grid.89336.37 0000000419369924 Institute for Cellular and Molecular Biology The University of Texas at Austin 2500 Speedway Avenue 78712 Austin TX USA
| |
Collapse
|
93
|
Choi S, Song CW, Shin JH, Lee SY. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 2015; 28:223-239. [PMID: 25576747 DOI: 10.1016/j.ymben.2014.12.007] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 12/27/2014] [Accepted: 12/29/2014] [Indexed: 01/11/2023]
Abstract
Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples.
Collapse
Affiliation(s)
- Sol Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 305-701, Republic of Korea
| | - Chan Woo Song
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 305-701, Republic of Korea; BioInformatics Research Center, KAIST, Daejeon 305-701, Republic of Korea; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Hørsholm, Denmark.
| |
Collapse
|
94
|
Li Q, Xing J. Microbial Succinic Acid Production Using Different Bacteria Species. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
95
|
Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes. Appl Environ Microbiol 2014; 81:929-37. [PMID: 25416770 DOI: 10.1128/aem.03213-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production.
Collapse
|
96
|
Yun S, Lee EG, Kim SY, Shin JM, Jung WS, Oh DB, Lee SY, Kwon O. The CpxRA two-component system is involved in the maintenance of the integrity of the cell envelope in the rumen bacterium Mannheimia succiniciproducens. Curr Microbiol 2014; 70:103-9. [PMID: 25231942 DOI: 10.1007/s00284-014-0686-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/29/2014] [Indexed: 11/28/2022]
Abstract
In this study, we characterized the CpxRA two-component signal transduction system of the rumen bacterium Mannheimia succiniciproducens. The truncated form of the CpxA sensor kinase protein without its transmembrane domain was able to autophosphorylate and transphosphorylate the CpxR response regulator protein in vitro. We identified 152 putative target genes for the Cpx system in M. succiniciproducens, which were differentially expressed by more than twofold upon overexpression of the CpxR protein. Genes of a putative 16-gene operon related to the cell wall and lipopolysaccharide biosynthesis were induced strongly upon CpxR overexpression. The promoter region of the first gene of this operon, wecC encoding UDP-N-acetyl-D-mannosaminuronate dehydrogenase, was analyzed and found to contain a sequence homologous to the CpxR box of Escherichia coli. An electrophoretic mobility shift assay showed that the phosphorylated CpxR proteins were able to bind specifically to PCR-amplified DNA fragments containing the promoter sequence of wecC. Furthermore, a cpxR-disrupted mutant strain exhibited increased envelope permeability compared with a wild-type strain. These results suggest that the Cpx system of M. succiniciproducens is involved in the maintenance of the integrity of the cell envelope.
Collapse
Affiliation(s)
- Seulgi Yun
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
97
|
The production of succinic acid by yeast Yarrowia lipolytica through a two-step process. Appl Microbiol Biotechnol 2014; 98:7959-69. [PMID: 24972816 DOI: 10.1007/s00253-014-5887-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
The production of α-ketoglutaric acid by yeast Yarrowia lipolytica VKMY-2412 from ethanol and its subsequent chemical conversion to succinic acid (SA) were investigated. A highly effective and environmentally friendly process of α-ketoglutaric acid production was developed using a special pH-controlling strategy, in which the titration of the culture broth with KOH in the acid-formation phase was minimal, that allowed accumulation of only low amounts of inorganic wastes in the course of SA recovery. The culture broth filtrate containing α-ketoglutaric acid (88.7 g l(-1)) was directly employed for SA production; the amount of SA produced comprised 71.7 g l(-1) with the yield of 70% from ethanol consumed. SA was isolated from the culture broth filtrate in a crystalline form with the purity of 100%. The yield of isolated SA was as high as 72% of its amount in the culture broth filtrate. The antimicrobial and nematocidic effects of SA of microbial origin on pathogenic organisms that cause human and plant diseases were revealed for the first time.
Collapse
|
98
|
Borrero-de Acuña JM, Bielecka A, Häussler S, Schobert M, Jahn M, Wittmann C, Jahn D, Poblete-Castro I. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb Cell Fact 2014; 13:88. [PMID: 24948031 PMCID: PMC4077159 DOI: 10.1186/1475-2859-13-88] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/06/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pseudomnas putida is a natural producer of medium chain length polyhydroxyalkanoates (mcl-PHA), a polymeric precursor of bioplastics. A two-fold increase of mcl-PHA production via inactivation of the glucose dehydrogenase gene gcd, limiting the metabolic flux towards side products like gluconate was achieved before. Here, we investigated the overproduction of enzymes catalyzing limiting steps of mcl-PHA precursor formation. RESULTS A genome-based in silico model for P. putida KT2440 metabolism was employed to identify potential genetic targets to be engineered for the improvement of mcl-PHA production using glucose as sole carbon source. Here, overproduction of pyruvate dehydrogenase subunit AcoA in the P. putida KT2440 wild type and the Δgcd mutant strains led to an increase of PHA production. In controlled bioreactor batch fermentations PHA production was increased by 33% in the acoA overexpressing wild type and 121% in the acoA overexpressing Δgcd strain in comparison to P. putida KT2440. Overexpression of pgl-encoding 6-phosphoglucolactonase did not influence PHA production. Transcriptome analyses of engineered PHA producing P. putida in comparison to its parental strains revealed the induction of genes encoding glucose 6-phosphate dehydrogenase and pyruvate dehydrogenase. In addition, NADPH seems to be quantitatively consumed for efficient PHA synthesis, since a direct relationship between low levels of NADPH and high concentrations of the biopolymer were observed. In contrast, intracellular levels of NADH were found increased in PHA producing organisms. CONCLUSION Production of mcl-PHAs was enhanced in P. putida when grown on glucose via overproduction of a pyruvate dehydrogenase subunit (AcoA) in combination with a deletion of the glucose dehydrogenase (gcd) gene as predicted by in silico elementary flux mode analysis.
Collapse
Affiliation(s)
| | - Agata Bielecka
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Max Schobert
- Institute of Microbiology, Technische Universität Braunschweig D-38106, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universität Braunschweig D-38106, Braunschweig, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, D-66123 Saarbrücken, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig D-38106, Braunschweig, Germany
| | - Ignacio Poblete-Castro
- Universidad Andrés Bello, Facultad de Ciencias Biológicas, Biosystems Engineering group, 8340176 Santiago, Chile
- Microbial Drugs group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| |
Collapse
|
99
|
Tamminen A, Kramer A, Labes A, Wiebe MG. Production of scopularide A in submerged culture with Scopulariopsis brevicaulis. Microb Cell Fact 2014; 13:89. [PMID: 24943257 PMCID: PMC4075624 DOI: 10.1186/1475-2859-13-89] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine organisms produce many novel compounds with useful biological activity, but are currently underexploited. Considerable research has been invested in the study of compounds from marine bacteria, and several groups have now recognised that marine fungi also produce an interesting range of compounds. During product discovery, these compounds are often produced only in non-agitated culture conditions, which are unfortunately not well suited for scaling up. A marine isolate of Scopulariopsis brevicaulis, strain LF580, produces the cyclodepsipeptide scopularide A, which has previously only been produced in non-agitated cultivation. RESULTS Scopulariopsis brevicaulis LF580 produced scopularide A when grown in batch and fed-batch submerged cultures. Scopularide A was extracted primarily from the biomass, with approximately 7% being extractable from the culture supernatant. By increasing the biomass density of the cultivations, we were able to increase the volumetric production of the cultures, but it was important to avoid nitrogen limitation. Specific production also increased with increasing biomass density, leading to improvements in volumetric production up to 29-fold, compared with previous, non-agitated cultivations. Cell densities up to 36 g L-1 were achieved in 1 to 10 L bioreactors. Production of scopularide A was optimised in complex medium, but was also possible in a completely defined medium. CONCLUSIONS Scopularide A production has been transferred from a non-agitated to a stirred tank bioreactor environment with an approximately 6-fold increase in specific and 29-fold increase in volumetric production. Production of scopularide A in stirred tank bioreactors demonstrates that marine fungal compounds can be suitable for scalable production, even with the native production organism.
Collapse
Affiliation(s)
| | | | | | - Marilyn G Wiebe
- VTT Technical Research Centre of Finland, P,O, Box 1000, FI-02044 VTT, Finland.
| |
Collapse
|
100
|
Zhu X, Tan Z, Xu H, Chen J, Tang J, Zhang X. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng 2014; 24:87-96. [PMID: 24831708 DOI: 10.1016/j.ymben.2014.05.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/12/2014] [Accepted: 05/05/2014] [Indexed: 01/29/2023]
Abstract
Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield.
Collapse
Affiliation(s)
- Xinna Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Zaigao Tan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Hongtao Xu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Jing Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China; College of Biotechnology, Tianjin University of Science & Technology, China
| | - Jinlei Tang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China.
| |
Collapse
|