51
|
Palacio-Bielsa A, Cubero J, Cambra MA, Collados R, Berruete IM, López MM. Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species. Appl Environ Microbiol 2011; 77:89-97. [PMID: 21037298 PMCID: PMC3019718 DOI: 10.1128/aem.01593-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/21/2010] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruit, is considered a quarantine organism by the European Union and the European and Mediterranean Plant Protection Organization (EPPO). The bacterium can undergo an epiphytic phase and/or be latent and can be transmitted by plant material, but currently, only visual inspections are used to certify plants as being X. arboricola pv. pruni free. A novel and highly sensitive real-time TaqMan PCR detection protocol was designed based on a sequence of a gene for a putative protein related to an ABC transporter ATP-binding system in X. arboricola pv. pruni. Pathogen detection can be completed within a few hours with a sensitivity of 10(2) CFU ml(-1), thus surpassing the sensitivity of the existing conventional PCR. Specificity was assessed for X. arboricola pv. pruni strains from different origins as well as for closely related Xanthomonas species, non-Xanthomonas species, saprophytic bacteria, and healthy Prunus samples. The efficiency of the developed protocol was evaluated with field samples of 14 Prunus species and rootstocks. For symptomatic leaf samples, the protocol was very efficient even when washed tissues of the leaves were directly amplified without any previous DNA extraction. For samples of 117 asymptomatic leaves and 285 buds, the protocol was more efficient after a simple DNA extraction, and X. arboricola pv. pruni was detected in 9.4% and 9.1% of the 402 samples analyzed, respectively, demonstrating its frequent epiphytic or endophytic phase. This newly developed real-time PCR protocol can be used as a quantitative assay, offers a reliable and sensitive test for X. arboricola pv. pruni, and is suitable as a screening test for symptomatic as well as asymptomatic plant material.
Collapse
Affiliation(s)
- Ana Palacio-Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
52
|
Ordax M, Marco-Noales E, López MM, Biosca EG. Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies. Res Microbiol 2010; 161:549-55. [DOI: 10.1016/j.resmic.2010.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/30/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
53
|
Palmieri ACB, do Amaral AM, Homem RA, Machado MA. Differential expression of pathogenicity- and virulence-related genes of Xanthomonas axonopodis pv. citri under copper stress. Genet Mol Biol 2010; 33:348-53. [PMID: 21637493 PMCID: PMC3036875 DOI: 10.1590/s1415-47572010005000030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 10/14/2009] [Indexed: 11/21/2022] Open
Abstract
In this study, we used real-time quantitative PCR (RT-qPCR) to evaluate the expression of 32 genes of Xanthomonas axonopodis pv. citri related to pathogenicity and virulence that are also involved in copper detoxification. Nearly all of the genes were up-regulated, including copA and copB. Two genes homologous to members of the type II secretion system (xcsH and xcsC) and two involved in the degradation of plant cell wall components (pglA and pel) were the most expressed in response to an elevated copper concentration. The type II secretion system (xcs operon) and a few homologues of proteins putatively secreted by this system showed enhanced expression when the bacteria were exposed to a high concentration of copper sulfate. The enhanced expression of the genes of secretion II system during copper stress suggests that this pathway may have an important role in the adaptative response of X. axonopodis pv. citri to toxic compounds. These findings highlight the potential role of these genes in attenuating the toxicity of certain metals and could represent an important means of bacterial resistance against chemicals used to control diseases.
Collapse
|
54
|
Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.07.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
55
|
Thomas P, Soly TA. Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. MICROBIAL ECOLOGY 2009; 58:952-64. [PMID: 19633807 DOI: 10.1007/s00248-009-9559-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 06/20/2009] [Indexed: 05/02/2023]
Abstract
A cultivation-based assessment of endophytic bacteria present in deep-seated shoot tips of banana suckers was made with a view to generate information on the associated organisms, potential endophytic contaminants in tissue-cultured bananas and to assess if the endophytes shared a beneficial relationship with the host. Plating the tissue homogenate from the central core of suckers showed colony growth on nutrient agar from just 75% and 42% of the 12 stocks during May and November, respectively (average 58%; 6 x 10(3) colony-forming units per gram), yielding diverse organisms belonging to firmicutes (Bacillus, Brevibacillus, Paenibacillus, Virgibacillus, Staphylococcus spp.), actinobacteria (Cellulomonas, Micrococcus, Corynebacterium, Kocuria spp.), alpha-proteobacteria (Paracoccus sp.), and gamma-proteobacteria (Pseudomonas, Acinetobacter spp.). Each shoot tip showed one to three different organisms and no specific organism appeared common to different sucker tips. Tissue homogenate from shoot tips including the ones that did not yield culturable bacteria displayed abundant bacterial cells during microscopic examination suggesting that a high proportion of cells were in viable-but-nonculturable state, or their cultivation requirements were not met. Direct application of cultivation-independent approach to study endophytic bacterial community using bacterial 16S ribosomal RNA universal primers resulted in high interference from chloroplast and mitochondrial genome sequences. Dislodging the bacterial cells from shoot tips that did not show cultivable bacteria and incubating the tissue crush in dilute-nutrient broth led to the activation of four organisms (Klebsiella, Agrobacterium, Pseudacidovorax spp., and an unidentified isolate). The endophytic organisms in general showed better growth at 30-37 degrees C compared with 25 degrees C, and the growth of endophytes as well as pathogenic Erwinia carotovora were promoted with the supply of host tissue extract (HTE) while that of the isolates from nonplant sources were inhibited or unaffected by HTE, suggesting an affinity or dependence of the endophytes on the host and the prospect of an HTE-based assay for discriminating the nonendophytes from endophytes.
Collapse
Affiliation(s)
- Pious Thomas
- Division of Biotechnology, Indian Institute of Horticultural Research, Hessarghatta Lake, Bangalore, 560089, India.
| | | |
Collapse
|
56
|
Gorshkov VY, Petrova OE, Mukhametshina NE, Ageeva MV, Mulyukin AL, Gogolev YV. Formation of “Nonculturable” dormant forms of the phytopathogenic enterobacterium Erwinia carotovora. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709050099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
57
|
Lindbäck T, Rottenberg ME, Roche SM, Rørvik LM. The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Vet Res 2009; 41:8. [PMID: 19796607 PMCID: PMC2775167 DOI: 10.1051/vetres/2009056] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/30/2009] [Indexed: 11/14/2022] Open
Abstract
Media-based bacteriological testing will fail to detect non-culturable organisms and the risk of consuming viable but non-culturable (VBNC) Listeria monocytogenes is unknown. We have here studied whether L. monocytogenes obtained from seafoods, processing environment and clinical cases enter the VBNC state and assessed the virulence of the non-culturable forms of the bacteria. A number of 16 L. monocytogenes strains were starved in microcosm water at 4 °C until loss of culturability. Metabolic activity in the VBNC form was measured as ATP generation using a luciferase assay and membrane integrity was examined using the LIVE/DEAD BacLight assay. All tested L. monocytogenes strains entered the VBNC state after starvation in microcosm water. Ongoing mRNA synthesis of hly in VBNC L. monocytogenes cells re-incubated in culture medium indicated a potential virulence of these forms. Sodium pyruvate and replenishment of nutrient were used in attempts to resuscitate VBNC cells. However, VBNC L. monocytogenes were not resuscitated under these conditions. VBNC L. monocytogenes were tested for virulence in a cell plaque assay and by intraperitoneally inoculation in immunodeficient RAG1−/− mice. Inoculation of VBNC L. monocytogenes in immunodeficient mice did not cause morbidity, and plaque assay on HT-29 cells in culture indicated that the VBNC cells were avirulent. The results indicate that the risk of non-culturable L. monocytogenes in foods, when the VBNC state is induced by starvation, is negligible.
Collapse
Affiliation(s)
- Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | |
Collapse
|
58
|
del Campo R, Russi P, Mara P, Mara HÃ, Peyrou M, de León IP, Gaggero C. Xanthomonas axonopodispv.citriâenters the VBNC state after copper treatment and retains its virulence. FEMS Microbiol Lett 2009; 298:143-8. [DOI: 10.1111/j.1574-6968.2009.01709.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
59
|
Ordax M, Biosca E, Wimalajeewa S, López M, Marco-Noales E. Survival ofErwinia amylovorain mature apple fruit calyces through the viable but nonculturable (VBNC) state. J Appl Microbiol 2009; 107:106-16. [DOI: 10.1111/j.1365-2672.2009.04187.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
60
|
Pandey J, Chauhan A, Jain RK. Integrative approaches for assessing the ecological sustainability ofin situbioremediation. FEMS Microbiol Rev 2009; 33:324-75. [PMID: 19178567 DOI: 10.1111/j.1574-6976.2008.00133.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
61
|
Zhong L, Chen J, Zhang XH, Jiang YA. Entry ofVibrio cincinnatiensisinto viable but nonculturable state and its resuscitation. Lett Appl Microbiol 2009; 48:247-52. [DOI: 10.1111/j.1472-765x.2008.02522.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
62
|
KAWASAKI T, MUSGROVE M, MURATA M, TOMINAGA N, KAWAMOTO S. COMPARATIVE STUDY OF SHELL SWAB AND SHELL CRUSH METHODS FOR THE RECOVERY OF SALMONELLA FROM SHELL EGGS. J Food Saf 2008. [DOI: 10.1111/j.1745-4565.2008.00126.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008; 52:2870-81. [PMID: 18519726 DOI: 10.1128/aac.00203-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilms are slimy aggregates of microbes that are likely responsible for many chronic infections as well as for contamination of clinical and industrial environments. Pseudomonas aeruginosa is a prevalent hospital pathogen that is well known for its ability to form biofilms that are recalcitrant to many different antimicrobial treatments. We have devised a high-throughput method for testing combinations of antimicrobials for synergistic activity against biofilms, including those formed by P. aeruginosa. This approach was used to look for changes in biofilm susceptibility to various biocides when these agents were combined with metal ions. This process identified that Cu(2+) works synergistically with quaternary ammonium compounds (QACs; specifically benzalkonium chloride, cetalkonium chloride, cetylpyridinium chloride, myristalkonium chloride, and Polycide) to kill P. aeruginosa biofilms. In some cases, adding Cu(2+) to QACs resulted in a 128-fold decrease in the biofilm minimum bactericidal concentration compared to that for single-agent treatments. In combination, these agents retained broad-spectrum antimicrobial activity that also eradicated biofilms of Escherichia coli, Staphylococcus aureus, Salmonella enterica serovar Cholerasuis, and Pseudomonas fluorescens. To investigate the mechanism of action, isothermal titration calorimetry was used to show that Cu(2+) and QACs do not interact in aqueous solutions, suggesting that each agent exerts microbiological toxicity through independent biochemical routes. Additionally, Cu(2+) and QACs, both alone and in combination, reduced the activity of nitrate reductases, which are enzymes that are important for normal biofilm growth. Collectively, the results of this study indicate that Cu(2+) and QACs are effective combinations of antimicrobials that may be used to kill bacterial biofilms.
Collapse
|
64
|
Loncaric I, Donat C, Antlinger B, Oberlerchner J, Heissenberger B, Moosbeckhofer R. Strain-specific detection of two Aureobasidium pullulans strains, fungal biocontrol agents of fire blight by new, developed multiplex-PCR. J Appl Microbiol 2008; 104:1433-41. [DOI: 10.1111/j.1365-2672.2007.03668.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
65
|
Manti A, Boi P, Falcioni T, Canonico B, Ventura A, Sisti D, Pianetti A, Balsamo M, Papa S. Bacterial cell monitoring in wastewater treatment plants by flow cytometry. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2008; 80:346-354. [PMID: 18536486 DOI: 10.2175/106143007x221418] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The activated sludge process is performed by a variable and mixed community of microorganisms in an aerobic aquatic environment, in which bacteria constitute the majority and represent the main microorganisms responsible for the degradation process in a plant. In this work, we monitored bacterial charge in different wastewater treatment plants by flow cytometry, also evaluating chlorination effects on bacterial viability, both by flow cytometry and traditional plate counts. Maximum values of bacterial charge were registered in the aeration tank of all plants monitored. Cell viability did not show significant differences (p > 0.05) in samples collected in "before chlorination" and "wastewater effluent" treatment steps; this suggests that the chlorination was not able to decrease total viable bacterial charge. In this work, we discuss the need to improve microbiological analyses, both in terms of measuring other potential pathogens and of using new methodological approaches in the traditional evaluation of the microbiological quality of effluents.
Collapse
Affiliation(s)
- Anita Manti
- Center of Cytometry and Cytomorphology, University Carlo Bo, Urbino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Shimakita T, Yamamoto H, Naramura T, Fujimori A, Ide T, Tashiro Y, Saito M, Matsuoka H. Rapid count of microbial cells in dialysate. Ther Apher Dial 2007; 11:363-9. [PMID: 17845395 DOI: 10.1111/j.1744-9987.2007.00500.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An apparatus for the non-culture method (NCM) of microbial cell count was formerly developed and named a bioplorer. The bioplorer NCM is based on the double staining of cells with 4', 6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI) and the automatic analysis of their fluorescent microscopic images. Viable cells can be stained with DAPI, while dead cells can be stained with DAPI and PI. In this study, the bioplorer NCM has been applied to the dialysate. The viable and dead cells in dialysate could be counted within 20 min. The detection limit expressed by log(10)[cells/100 mL] was 2.0. When cell-spiked dialysate samples containing prescribed number of Bacillus subtilis cells were assayed, the numbers of cells determined by the bioplorer NCM (N(VIA)(NCM)) and a conventional culture method (CM) on R2A medium (N(VIA)(R2A-CM)) were similar in the range of 2.6-4.6 within the 95% confidence interval (NCM-CM equivalent range). When test solutions sampled from a practical facility in a hospital were assayed, N(VIA)(NCM) was greater than, but comparable to, N(VIA)(R2A-CM). The endotoxin (ET) in the test samples were assayed as well using a test kit for limulus amoebocyte lysate assay. The results of microbial cells and ET concentration indicated that the dialysate supplying line was clean and well maintained. The bioplorer NCM can determine if the microbial contamination of dialysate supplying facilities is greater than 2.6 (398 cells/100 mL).
Collapse
Affiliation(s)
- Tomonori Shimakita
- Biosensing Business Project, Matsushita Ecology Systems Co. Ltd., Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Vílchez R, Pozo C, Gómez MA, Rodelas B, González-López J. Dominance of sphingomonads in a copper-exposed biofilm community for groundwater treatment. MICROBIOLOGY-SGM 2007; 153:325-337. [PMID: 17259604 DOI: 10.1099/mic.0.2006/002139-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The structure, biological activity and microbial biodiversity of a biofilm used for the removal of copper from groundwater were studied and compared with those of a biofilm grown under copper-free conditions. A laboratory-scale submerged fixed biofilter was fed with groundwater (2.3 l h(-1)) artificially polluted with Cu(II) (15 mg l(-1)) and amended with sucrose (150 mg l(-1)) as carbon source. Between 73 and 90 % of the Cu(II) was removed from water during long-term operation (over 200 days). The biofilm was a complex ecosystem, consisting of eukaryotic and prokaryotic micro-organisms. Scanning electron microscopy revealed marked structural changes in the biofilm induced by Cu(II), compared to the biofilm grown in absence of the heavy metal. Analysis of cell-bound extracellular polymeric substances (EPS) demonstrated a significant modification of the composition of cell envelopes in response to Cu(II). Transmission electron microscopy and energy-dispersive X-ray microanalysis (EDX) showed that copper bioaccumulated in the EPS matrix by becoming bound to phosphates and/or silicates, whereas copper accumulated only intracytoplasmically in cells of eukaryotic microbes. Cu(II) also decreased sucrose consumption, ATP content and alkaline phosphatase activity of the biofilm. A detailed study of the bacterial community composition was conducted by 16S rRNA-based temperature gradient gel electrophoresis (TGGE) profiling, which showed spatial and temporal stability of the species diversity of copper-exposed biofilms during biofilter operation. PCR reamplification and sequencing of 14 TGGE bands showed the prevalence of alphaproteobacteria, with most sequences (78 %) affiliated to the Sphingomonadaceae. The major cultivable colony type in plate counts of the copper-exposed biofilm was also identified as that of Sphingomonas sp. These data confirm a major role of these organisms in the composition of the Cu(II)-removing community.
Collapse
Affiliation(s)
- R Vílchez
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - C Pozo
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - M A Gómez
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Departamento de Ingeniería Civil, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - B Rodelas
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Departamento de Microbiología, Facultad de Farmacia, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - J González-López
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Departamento de Microbiología, Facultad de Farmacia, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
68
|
Gitaitis R, Walcott R. The epidemiology and management of seedborne bacterial diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:371-97. [PMID: 17474875 DOI: 10.1146/annurev.phyto.45.062806.094321] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although seed production has been moved to semiarid regions to escape seedborne pathogens, seedborne bacterial diseases continue to be problematic and cause significant economic losses worldwide. Infested seeds are responsible for the re-emergence of diseases of the past, movement of pathogens across international borders, or the introduction of diseases into new areas. Considerable attention has been paid to improving the sensitivity and selectivity of seed health assays by using techniques such as flow cytometry and the polymerase chain reaction. There has also been progress in understanding infection thresholds and how they influence seed sample size determination and ultimately the reliability of seed health testing. Disease development and dissemination of pathogens from contaminated seedlots can be predicted using formulas that take into account inoculum density and environmental pressures. In general, seeds infested with bacterial pathogens are distributed within a Poisson distribution. In a subset of contaminated seeds, bacteria are distributed in non-Gaussian distributions, e.g., a lognormal distribution.
Collapse
Affiliation(s)
- Ronald Gitaitis
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, Georgia 31793, USA.
| | | |
Collapse
|