51
|
Milhausen M, Gill PR, Parker G, Agabian N. Cloning of developmentally regulated flagellin genes from Caulobacter crescentus via immunoprecipitation of polyribosomes. Proc Natl Acad Sci U S A 1982; 79:6847-51. [PMID: 6294658 PMCID: PMC347230 DOI: 10.1073/pnas.79.22.6847] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Immunoprecipitation of Caulobacter crescentus polyribosomes with antiflagellin antibody provided RNA for the synthesis of cDNA probes that were used to identify three specific EcoRI restriction fragments (6.8, 10, and 22 kilobases) in genomic digests of Caulobacter DNA. The RNA was present only in polyribosomes isolated from a time interval in the Caulobacter cell cycle that was coincident with flagellin polypeptide synthesis. The structural gene for Mr 27,500 flagellin polypeptide was assigned to a region of the 10-kilobase EcoRI restriction fragment by DNA sequence analysis. Analysis of mutants defective in motility further established a correlation between the Mr 27,500 flagellin gene and the flaE gene locus [Johnson, R. C. & Ely, B. (1979) J. Bacteriol. 137, 627-634]. The other EcoRI fragments that hybridize with the immunoprecipitated polyribosome-derived cDNA probe are also temporally regulated and have features that suggest they encode other polypeptides associated with the flagellum. Modifications were required to adapt the procedure of immunoprecipitation of polyribosomes for use with Caulobacter and should be applicable to the production of specific structural gene probes from other prokaryotic systems.
Collapse
|
52
|
Lopez R, Garcia E, Garcia P, Ronda C, Tomasz A. Choline-containing bacteriophage receptors in Streptococcus pneumoniae. J Bacteriol 1982; 151:1581-90. [PMID: 7107560 PMCID: PMC220440 DOI: 10.1128/jb.151.3.1581-1590.1982] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Choline-containing teichoic acid seems to be essential for the adsorption of bacteriophage Dp-1 to pneumococci. This conclusion is based on the following observations: In contrast to pneumococci grown in choline-containing medium, cells grown in medium containing ethanolamine or other submethylated aminoalcohols instead of choline were found to be resistant to infection by Dp-1. Live choline-grown bacteria and heat- or UV-inactivated cells and purified cell walls prepared from these cells were capable of adsorbing phage Dp-1; ethanolamine-grown pneumococci or cell wall preparations were unable to do so. Adsorption of Dp-1 to choline-containing cell walls was competitively inhibited by phosphorylcholine and by several choline-containing soluble cell surface components, such as the Forssman antigen and the teichoic acid-glycan complexes formed by autolytic cell wall degradation. Cell walls prepared from pneumococci grown in ethanolamine or phosphorylethanolamine were inactive. Electron microscopic studies with pneumococci that had segments of choline-containing cell wall material amid ethanolamine-containing regions indicated that the Dp-1 phage particles adsorbed exclusively to the choline-containing surface areas. We suggest that the choline residues of the pneumococcal teichoic acid are essential components of the Dp-1 phage receptors in this bacterium.
Collapse
|
53
|
Anderson LM, Ruley HE, Bott KF. Isolation of an autonomously replicating DNA fragment from the region of defective bacteriophage PBSX of Bacillus subtilis. J Bacteriol 1982; 150:1280-6. [PMID: 6804442 PMCID: PMC216351 DOI: 10.1128/jb.150.3.1280-1286.1982] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have isolated a 5.4-kilobase fragment of Bacillus subtilis DNA that confers the ability to replicate upon a nonreplicative plasmid. The B. subtilis 168 EcoRI fragment was ligated into the chimeric plasmid pCs540, which contains a chloramphenicol resistance determinant from the Staphylococcus aureus plasmid pC194 and an HpaII fragment from the Escherichia coli plasmid, pSC101. A recE B. subtilis derivative, strain BD224, is capable of maintaining this DNA as an autonomously replicating plasmid. In rec+ recipients, chloramphenicol-resistant transformants do not contain free plasmid. The plasmid is integrated as demonstrated by alterations in the pattern of chromosomal restriction enzyme fragments to which the plasmid hybridizes. The site of plasmid integration was mapped by PBS1-mediated transduction to the metC-PBSX region. A strain was a deletion in the region of defective bacteriophage PBSX differs in the hybridization profile obtained by probing EcoRI digests with this cloned fragment. This same deletion mutant, though proficient in normal recombinational pathways, permits autonomous replication of the plasmid apparently owing to the lack of an homologous chromosomal region with which to recombine. We believe that, like E. coli. B. subtilis contains at least one DNA fragment capable of autonomous replication when liberated from its normally integrated chromosomal site and that this cloned DNA fragment comes from the region of defective bacteriophage PBSX.
Collapse
|
54
|
Huang LH, Farnet CM, Ehrlich KC, Ehrlich M. Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic Acids Res 1982; 10:1579-91. [PMID: 6280151 PMCID: PMC320551 DOI: 10.1093/nar/10.5.1579] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ability of thirty Type II restriction endonucleases to cleave five different types of highly modified DNA has been examined. The DNA substrates were derived from relatively large bacteriophage genomes which contain all or most of the cytosine or thymine residues substituted at the 5-position. These substituents were a proton (PBS1 DNA), a hydroxymethyl group (SP01 DNA), a methyl group (XP12 DNA), a glucosylated hydroxymethyl group (T4 DNA), or a phosphoglucuronated, glucosylated 4,5-dihydroxypentyl group (SP15 DNA). Although PBS1 DNA and SP01 DNA were digested by most of the enzymes, they were cleaved much more slowly than was normal DNA by many of them. 5-Methylcytosine-rich XP12 DNA and the multiply modified T4 and SP15 DNAs were resistant to most of these endonucleases. The only enzyme that cleaved all five of these DNAs was TaqI, which fragmented them extensively.
Collapse
|
55
|
Plasmid-directed expression of Staphylococcus aureus beta-lactamase by Bacillus subtilis in vitro. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68588-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
56
|
Ehrlich M, Ehrlich K. A novel, highly modified, bacteriophage DNA in which thymine is partly replaced by a phosphoglucuronate moiety covalently bound to 5-(4‘,5‘-dihydroxypentyl)uracil. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68724-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
57
|
Witmer H. Synthesis of deoxythymidylate and the unusual deoxynucleotide in mature DNA of Bacillus subtilis bacteriophage SP10 occurs by postreplicational modification of 5-hydroxymethyldeoxyuridylate. J Virol 1981; 39:536-47. [PMID: 6792371 PMCID: PMC171364 DOI: 10.1128/jvi.39.2.536-547.1981] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mature DNA of Bacillus subtilis W23 phage SP10 contains a hypermodified nucleotide (YdTMP) that replaces ca. 20% of the DTMP. SP10 DNA was pulse-labeled for 1 min at 20 degrees C with 32Pi. Among the oxopyrimidine nucleotides, virtually all of the radioactivity was recovered as 5-hydroxymethyldeoxyuridylate (HMdUMP). During the subsequent chase, radioactivity was lost from HMdUMP and recovered as YdTMP. At 37 degrees C, exogenous [6-3H]5-hydroxymethyldeoxyuridine (HMdUrd) was incorporated into SP10 DNA. Label administered as HMdUrd was phosphorylated to HMdUTP in the infected cells, but all radioactivity was recovered from SP10 DNA as YdTMP and dTMP. Two heat-sensitive mutants defective in hypermodification of SP10 DNA are described. In one mutant, HMdUMP replaces YdTMP in DNA. The other mutant generates a DNA containing a novel deoxynucleotide in place of YdTMP. The novel deoxynucleotide seems to consist of PPi esterified to the 5-hydroxymethyl function of HMdUMP (PP-HMdUMP). Both mutants make normal amounts of dTMP. The data are discussed in terms of the following conclusions. (i) Both oxopyrimidine nucleotides in mature SP10 DNA are derived by postreplicative modification of HMdUMP in nascent DNA. (ii) PP-HMdUMP is an intermediate that facilitate formation of a putative exocyclic methylene intermediate which receives the hypermodification. It is also argued that PP-HMdUMP and the same exocyclic methylene intermediate could serve as intermediates in reductive modification to dTMP. (iii) YdTMP is not an intermediate in the formation of dTMP, and reductive modification proceeds independently of hypermodification.
Collapse
|
58
|
Marrero R, Chiafari FA, Lovett PS. SP02 particles mediating transduction of a plasmid containing SP02 cohesive ends. J Bacteriol 1981; 147:1-8. [PMID: 6787022 PMCID: PMC216000 DOI: 10.1128/jb.147.1.1-8.1981] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
SP02 particles that mediate transduction of plasmid pPL1010, a 4.6-megadalton derivative of pUB110 containing an Eco RI endonuclease-generated fragment of SP02 deoxyribonucleic acid that spans the cohesive ends, exhibit three unusual features: the transducing particles have a lower buoyant density than infectious particles; the transduction of pPL1010 occurs at high efficiency; and the transducing activity of the particles is relatively resistant to ultraviolet irradiation when the recipient is recombination proficient. Evidence is presented which indicates that SP02(pPL1010) particles carry the plasmid predominantly as a linear multimer having a molecular mass comparable to that of infectious SP02 deoxyribonucleic acid (ca. 31 megadaltons). The plasmid monomers in the linear multimer appear oriented in the same polarity. The buoyant density difference between infectious and transducing particles appears to be due mainly to the buoyant density difference between pPL1010 (1.699 g/cm3) and SP02 deoxyribonucleic acid (1.702 gm/cm3).
Collapse
|
59
|
Williams DM, Duvall EJ, Lovett PS. Cloning restriction fragments that promote expression of a gene in Bacillus subtilis. J Bacteriol 1981; 146:1162-5. [PMID: 6787015 PMCID: PMC216974 DOI: 10.1128/jb.146.3.1162-1165.1981] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Plasmid pPL603 (3.1 megadaltons) specifies neomycin resistance in Bacillus subtilis and contains a structural gene for chloramphenicol acetyltransferase. Cells harboring the plasmid cannot grow on solid media containing 10 microgram of chloramphenicol per ml. Cloning EcoRI (or EcoRI)-generated fragments of deoxyribonucleic acid from several sources into the single EcoRI site in plasmid pPL603, with subsequent selection of transformants of media containing 10 micrograms of chloramphenicol per ml, permits the identification of restriction fragments that promote expression of the chloramphenicol acetyltransferase gene.
Collapse
|
60
|
Stewart CR, Franck M. Predominance of bacteriophage SP82 over bacteriophage SP01 in mixed infections of Bacillus subtilis. J Virol 1981; 38:1081-3. [PMID: 6787215 PMCID: PMC171248 DOI: 10.1128/jvi.38.3.1081-1083.1981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In mixed infections with Bacillus subtilis phages SP82 and SP01, the SP82 genotype is predominant among the progeny. This predominance is determined by a specific region of the genome, the pos region, which apparently is located near genes 29 to 32 (by the SP01 numbering system). Recombination between SP82 and SP01 yields phage which have both the SP82 pos region and an SP01 mutation. This mutation then behaves in mixed infection as if it were part of an SP82 genome.
Collapse
|
61
|
Duckworth DH, Glenn J, McCorquodale DJ. Inhibition of bacteriophage replication by extrachromosomal genetic elements. Microbiol Rev 1981; 45:52-71. [PMID: 6452572 PMCID: PMC281498 DOI: 10.1128/mr.45.1.52-71.1981] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
62
|
Lopez P, Espinosa M, Piechowska M, Shugar D, Warren RA. Phi W-14 DNA inhibits transfection of Bacillus subtilis by SPP1 DNA. J Virol 1981; 37:559-63. [PMID: 6783767 PMCID: PMC171042 DOI: 10.1128/jvi.37.2.559-563.1981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The DNA of bacteriophage phi W-14 is unusual in that half of the thymine residues are replaced with the hypermodified pyrimidine alpha-putrescinylthymine (Kropinski et al., Biochemistry 12:151-157, 1973). Bacteriophage phi W-14 DNA and Bacillus subtilis DNA exhibited comparable competing abilities for the uptake of transfecting bacteriophage SPP1 DNA by competent cells of B. subtilis. B. subtilis DNA decreased transfection and uptake to the same extent, indicating that it merely competed with SPP1 DNA for uptake. Phi W-14 DNA, however, decreased transfection up to 30 times more effectively than it inhibited uptake. Phi W-14 DNA did not alter the kinetics of transfection. The degree of inhibition of transfection was dependent upon the time of addition of Phi W-14 DNA relative to the time of addition of SPP1 DNA. If failed to inhibit when added 30 min after SPP1 DNA. It had a fourfold-greater effect when added 10 min before, rather than simultaneously with, SPP1, but this enhancement was abolished by high concentrations of SPP1 DNA. The nature of the transfection process was not altered in those cells escaping inhibition by Phi W-14 DNA: two molecules of transfecting SPP1 DNA were required to form a transfectant with or without Phi W-14 DNA. Free putrescine did not affect transfection by SPP1 DNA. It was concluded that the putrescine groups covalently attached to phi W-14 DNA allowed this DNA to interfere with the transfection process at the intracellular level.
Collapse
|
63
|
Witmer H, Franks M. Restriction and modification of bacteriophage SP10 DNA by Bacillus subtilis Marburg 168: stabilization of SP10 DNA in restricting hosts preinfected with a heterologous phage, SP18. J Virol 1981; 37:148-55. [PMID: 6260969 PMCID: PMC170991 DOI: 10.1128/jvi.37.1.148-155.1981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SP10 phage cannot propagate in Bacillus subtilis Marburg 168 containing the wild-type allele of either gene nonA or gene nonB. The latter gene codes for the intrinsic cellular restriction activity. SP10 DNA was degraded in nonB+ derivatives of Marburg 168. The degree of degradation depended upon the previous host in which SP10 was propagated. In the case of SP10 grown in B. subtilis W23 (a nonrestricting, nonmodifying bacterium), 90% of the phage DNA was hydrolyzed to acid solubles, and the residual acid-precipitable material was recovered as 0.5- to 1-megadalton fragments. In contrast, if SP10 was propagated in B. subtilis PS9W7 (a nonA nonB derivative of Marburg 168 that retains modifying activity), 40 to 50% of the input DNA was degraded to acid solubles, and most of the remainder was recovered as 15- to 20-megadalton fragments. In nonA+ nonB cells, SP10 DNA was conserved as unit-length molecules (ca. 80 megadalton). Prior infection of nonB+ cells with SP18 protected superinfecting SP10 DNA, even when rifampin or chloramphenicol was added before the primary infection. The data are discussed in terms of the following conclusions. (i) The nonB gene product of B. subtilis Marburg 168 is required for restriction of SP10 DNA. (ii) Some sites on SP10 DNA are sensitive to both the restricting and modifying activities, whereas other sites are nonmodifiable even though they are sensitive to the restriction enzyme. (iii) In some manner, SP18 antagonizes the action of the nonB gene product.
Collapse
|
64
|
|
65
|
Steele RE, Rae PM. Ordered distribution of modified bases in the DNA of a dinoflagellate. Nucleic Acids Res 1980; 8:4709-25. [PMID: 6255430 PMCID: PMC324381 DOI: 10.1093/nar/8.20.4709] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In DNA of the dinoflagellate Crypthecodinium cohnii, 38% of the thymine is replaced by the modified base 5-hydroxymethyluracil, and approximately 3% of the cytosine is replaced by 5-methylcytosine. Both of the modified bases are non-randomly distributed in the DNA. Determinations of 3' nearest neighbors show that HOMeU is preferentially located in the dinucleotides HOMeUpA and HOMeUpC. Pyrimidine tract analysis shows that HOMeU is also greatly enriched in the trinucleotide purine-HOMeU-purine. As in other eukaryotes, methylcytosine in C. cohnii DNA occurs predominantly in the dinucleotide MeCpG. By analysis of restriction endonuclease digestion patterns of C. cohnii total DNA and ribosomal DNA, we have found that the central CpG dinucleotides in the sites for the enzymes Hpa II (CCGG) and Hha I (GCGC) are extensively methylated in both total DNA and ribosomal DNA. Results of digestion with Ava I, however, indicated that not all CpG dinucleotides in the sequence CCTCGGAG are methylated in C. cohnii DNA.
Collapse
|
66
|
Makino O, Saito H, Ando T. Bacillus subtilis-phage phi 1 overcomes host-controlled restriction by producing BamNx inhibitor protein. MOLECULAR & GENERAL GENETICS : MGG 1980; 179:463-8. [PMID: 6255284 DOI: 10.1007/bf00271735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bacillus amyloliquefaciens N produces two restriction enzymes, BamNI and BamNx. Subtilis-phage phi 1 is strongly restricted by BamNx. We isolated phi 1 rH, a mutant of phage phi 1, which overcame the BamNx-restriction by producing inhibitor. This inhibitor inactivated BamNx specifically and reversibly. The inhibitor directly interacted with BamNx and the inactivation might be the result of formation of a binary complex. The inhibitory activity was sensitive to treatment with trypsin. The molecular weight of the inhibitor protein was estimated to be approximately 20,000 daltons by gel filtration.
Collapse
|
67
|
Marrero R, Lovett PS. Transductional selection of cloned bacteriophage phi 105 and SP02 deoxyribonucleic acids in Bacillus subtilis. J Bacteriol 1980; 143:879-86. [PMID: 6782082 PMCID: PMC294385 DOI: 10.1128/jb.143.2.879-886.1980] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Bacillus subtilis temperate bacteriophages phi 105 and SP02 are incapable of transduction of the small, multicopy drug resistance plasmids pUB110 and pCM194. Cloning endonuclease-generated fragments of phi 105 or SP02 DNA into each of the plasmids renders the chimeric derivatives susceptible to transduction specifically by the phage whose deoxyribonucleic acid is present in the chimera. The majority of phage deoxyribonucleic acid fragments identified that render plasmids transducible by phi 105 or SP02 appear to be internal fragments, not fragments containing the cohesive ends. However, the highest overall transduction frequency was observed in SP02-mediated transduction of a derivative of pUB110 containing a 1.6-megadalton EcoRI fragment that likely contains the SP02 cohesive ends (plasmid pPL1010). The transducing activity present in a phi 105 transducing lysate had a buoyant density slightly greater than infectious particles, whereas the majority of transducing particles in an SP02(pPL1010) transducing lysate had a buoyant density slightly less than infectious particles. Although no detectable change in plasmid structure resulted from transduction by phi 105 or SP02, deoxyribonucleic acid isolated from a purified SP02(pPL1010) transducing lysate contained no detectable monomeric pPL1010, but did contain a form of pPL1010 of higher molecular weight than the monomer.
Collapse
|
68
|
Harding NE, Ito J. DNA replication of bacteriophage phi 29: characterization of the intermediates and location of the termini of replication. Virology 1980; 104:323-38. [PMID: 7395108 DOI: 10.1016/0042-6822(80)90337-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
69
|
Reeve JN, Amann E, Tailor R, Günthert U, Scholz K, Trautner TA. Unusual behaviour of SPO1 DNA with respect to restriction and modification enzymes recognizing the sequence 5'-G-G-C-C. MOLECULAR & GENERAL GENETICS : MGG 1980; 178:229-31. [PMID: 6247618 DOI: 10.1007/bf00267234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SPO1 DNA contains only 5 cleavage sites for restriction enzymes which recognize and cleave the sequence 5'-G-G-C-C (HaeIII or BsuR). Fragments of SPO1 DNA cloned in E. coli to substitute 5'-hydroxymethyluracil (HMU) by thymine (T) remain resistant to HaeIII indicating that this unexpectedly small number of cleavages by HaeIII is not correlated with the presence of HMU in the normal phage DNA. It was previously shown that SPO1 is neither subject to B. subtilis R restriction (Trautner et al., 1974) nor modification in vivo (Günthert et al., 1975). We now show that SPO1 DNA can however be restricted and modified in vitro.
Collapse
|
70
|
Davison B, Leighton T, Rabinowitz J. Purification of Bacillus subtilis RNA polymerase with heparin-agarose. In vitro transcription of phi 29 DNA. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(19)86833-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
71
|
|
72
|
Markewych O, Casella E, Dosmar M, Witmer H. Deoxythymidine nucleotide metabolism in Bacillus subtilis W23 infected with bacteriophage SP1Oc: preliminary evidence that dTMP in SP10c DNA is synthesized by a novel, bacteriophage-specific mechanism. J Virol 1979; 29:61-8. [PMID: 107324 PMCID: PMC353073 DOI: 10.1128/jvi.29.1.61-68.1979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the fact that mature SP10c DNA contains dTMP, the acid-soluble fraction of infected cells contained no dTTP during the interval of phage replication. However, infected cells contained normal cellular levels of dATP, dGTP, and dCTP. Upon infection of deoxythymidine-starved Bacillus subtilis M160 (a deoxythymidine-requiring mutant of B. subtilis W23), mature phage DNA with a normal dTMP content was made. SP10c codes for an enzyme that seems to catalyze the tetrahydrofolate-dependent transfer of 1-carbon fragments to the 5 position of dUMP. The transfer of 1-carbon fragments is not accompanied by oxidation of tetrahydrofolage to dihydrofolate, implying that the enzyme in question is not a dTMP synthetase. It is proposed that dTMP in mature SP10c DNA is derived by the postreplicational modification of some other nucleotide and not by the direct incorporation of dTTP into DNA.
Collapse
|
73
|
Canosi U, Ferrari E, Falaschi A, Mazza G. Effect of 6-(p-hydroxyphenylazo)-uracil on the homologous and heterologous transduction processes in Bacillus subtilis. J Bacteriol 1979; 137:124-8. [PMID: 104954 PMCID: PMC218425 DOI: 10.1128/jb.137.1.124-128.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have studied the effect of 6-(p-hydroxyphenylazo)-uracil on the recombination processes that operate in the homologous and heterologous transduction mediated by PBS1 and SP10 phages of Bacillus subtilis. The results obtained demonstrate that the process of heterologous genetic exchange is sensitive to this compound, whereas the homologous process is not. The present data, along with those of our previous work (U. Canosi, A. G. Siccardi, A. Falaschi, and G. Mazza, J. Bacteriol. 126:108--121, 1976), suggest that the DNA polymerase III is involved in the recombination process that operates in transformation and heterologous transduction, whereas homologous transduction follows a partially independent pathway not involving this protein.
Collapse
|
74
|
Mastromei G, Riva S. SPP1 DNA replicative forms: growth of phage SPP1 in Bacillus subtilis mutants temperature-sensitive in DNA synthesis. MOLECULAR & GENERAL GENETICS : MGG 1978; 167:157-64. [PMID: 104141 DOI: 10.1007/bf00266909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of bacteriophages SPP1 and phi 29 has been studied in several B. sutilis mutants defective in host DNA replication, under non permissive conditions. Several gene products, involved in the synthesis of host DNA, are required for phi 29 replication, while SPP1 seems to require only the host DNA polymerase III. In addition both phages are unable to grow in a dna A mutant (ribonucleotide reductase). Taking advantage of the fact that SPP1 DNA is actively replicated in several dna mutants at non-permissive temperature, we have studied the structure of the replicative intermediates of this phage in the absence of interfering host DNA synthesis. Fast sedimenting forms of SPP1 DNA can be isolated from phage infected cells and evidence of covalently joined concatemers has been obtained, suggesting the presence of terminally repeated sequences.
Collapse
|
75
|
Graham JB, Istock CA. Genetic exchange in Bacillus subtilis in soil. MOLECULAR & GENERAL GENETICS : MGG 1978; 166:287-90. [PMID: 105243 DOI: 10.1007/bf00267620] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically labelled strains of Bacillus subtilis have been shown to exchange blocks of linked genes while growing together in soil. After eight days of incubation, 79% of unselected colony-forming units exhibited a phenotype containing markers from both parents; the parental strains were not detected after the first day of incubation. High frequencies of transformation were also obtained by adding genetically labelled deoxyribonucleic acid to single-strain soil cultures. Observed linkage of genetic markers was greater in soil transformation than in standard laboratory procedures. The results indicate that transformation may play an important role in the adaptation of the Bacilli to their natural habitat.
Collapse
|
76
|
Burger KJ, Trautner TA. Specific labelling of replicating SPP1 DNA: analysis of viral DNA synthesis and identification of phage DNA-genes. MOLECULAR & GENERAL GENETICS : MGG 1978; 166:277-85. [PMID: 105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Specific labelling of replicating bacteriophage SPP1 DNA can be achieved by infection at nonpermissive temperature of a B. subtilis strain carrying the initation mutation dnaB ts134. Under these conditions host DNA synthesis is reduced by 90 to 95%. This technique was used to identify cistrons of SPP1 involved in phage DNA synthesis and to define intermediates in SPP1 replication.
Collapse
|
77
|
Lawrie JM, Downard JS, Whiteley HR. Bacillus subtilis bacteriophages SP82, SPO1, and phie: a comparison of DNAs and of peptides synthesized during infection. J Virol 1978; 27:725-37. [PMID: 100607 PMCID: PMC525860 DOI: 10.1128/jvi.27.3.725-737.1978] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genomes of Bacillus subtilis phages phie, SPO1, and SP82 were compared by DNA-DNA hybridization, analysis of DNA fragments produced by digestion with restriction endonucleases, comparison of the arrays of peptides synthesized during infection, and phage neutralization. DNA-DNA hybridization experiments indicated that about 78% of the SP82 DNA was homologous with SPO1 DNA, whereas 40% of the phie DNA was homologous to either SPO1 or SP82 DNA. Agarose gel electrophoresis was used to compare the molecular weights of DNA fragments produced by cleavage of SP82, SPO1, and phie DNAs with the restriction endonucleases Hae III, Sal I, Hpa II, and Hha I. Digestion of the DNAs with Hae III and Sal I produced only a few fragments, whereas digestion with Hpa II and Hha I yielded 29 to 40 fragments, depending on the DNA and the enzyme. Comparing the Hpa II fragments, 51% of the SP82 fragments had mobilities which matched those of SPO1 fragments, 32% of the SP82 fragments matched the phie fragments, and 34% of the SPO1 fragments matched the phie fragments. Comparing the Hha I digestion products, 62% of the SP82 fragments had mobilities matching the SPO1 fragments, 24% of the SP82 fragments matched the phie fragments, and 22% of the SPO1 fragments matched the phie fragments. Analysis of peptides by electrophoresis on one-dimensional sodium dodecyl sulfate-polyacrylamide slab gels showed that approximately 70 phage-specific peptides were synthesized in the first 24 min of each infection. With mobility and the intervals of synthesis as criteria, 66% of the different SP82 peptides matched the SPO1 peptides, 34% of the SP82 peptides matched the phie peptides, and 37% of the SPO1 peptides matched the phie peptides. Phage neutralization assays using antiserum to SP82 yielded K values of 510 for SP82, 240 for SPO1, and 120 for phie.
Collapse
|
78
|
Doskocil J, Forstová J, Stokrová J. Temperate and virulent forms of phage theta attacking Bacillus licheniformis. MOLECULAR & GENERAL GENETICS : MGG 1978; 160:311-7. [PMID: 672893 DOI: 10.1007/bf00332974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
79
|
Behnke D, Malke H. Bacteriophage interference in Streptococcus pyogenes. I. Characterization of prophage--host systems interfering with the virulent phage A25. Virology 1978; 85:118-28. [PMID: 347693 DOI: 10.1016/0042-6822(78)90416-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
80
|
Role of the 21,000 molecular weight polypeptide of Bacillus subtilis RNA polymerase in RNA synthesis. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(19)62318-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
81
|
Sarimo SS, Aaltonen L. DNA, RNA and protein synthesis in OLL55-infected Lactobacillus lactis. Arch Microbiol 1978; 116:191-5. [PMID: 637659 DOI: 10.1007/bf00406036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
82
|
Hoet P, Coene M, Cocito C. Synthesis of phage 2C-DNA in permeabilized B. subtilis. MOLECULAR & GENERAL GENETICS : MGG 1978; 158:297-303. [PMID: 415225 DOI: 10.1007/bf00267201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
83
|
|
84
|
Bramucci MG, Keggins KM, Lovett PS. Bacteriophage PMB12 conversion of the sporulation defect in RNA polymerase mutants of Bacillus subtilis. J Virol 1977; 24:194-200. [PMID: 409853 PMCID: PMC515922 DOI: 10.1128/jvi.24.1.194-200.1977] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pseudotemperate phage PMB12 was isolated from soil on the basis of its ability to enhance the rate of sporulation of Bacillus subtilis 168. PMB12 was subsequently shown to convert the sporulation defect in two genetically distinct classes of sporulation mutants. One class includes those rifampin-resistant mutants that are also spore-negative (mutated at the rif locus). The other class includes a strain carrying the sporulation mutation spoCM-1. The spoCM-1 mutation is linked to cysA15 by PBS1 transduction but is distinct from the rif locus. Several other sporulation mutants were not converted by PMB12. PMB12 is related to phage PBS1. However, PBS1 did not convert the above sporulation mutants. The replication of PBS2, a clear-plaquing derivative of PBS1, is rifampin insensitive, apparently due to a phage-induced rifampin-insensitive RNA polymerase. PMB12 replication is also rifampin insensitive.
Collapse
|
85
|
Kawamura F, Ito J. Transcription of the genome of bacteriophage phi 29: isolation and mapping of the major early mRNA synthesized in vivo and in vitro. J Virol 1977; 23:562-77. [PMID: 408515 PMCID: PMC515867 DOI: 10.1128/jvi.23.3.562-577.1977] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The phi29 early mRNA's synthesized in infected Bacillus subtilis were studied by using sedimentation velocity analysis, polyacrylamide gel electrophoresis, and hybridization of phi29 DNA fragments generated by the restriction endonuclease Eco RI. Viral RNAs synthesized in vivo in the resence of chloramphenicol were found to hybridize to Eco RI-A, -C, and -D fragments, but not to Eco RI-B and -E fragments, of the viral genome. Major early mRNA sedimenting as 16S material in neutral sucrose gradients was examined in detail. Radioactive phi29 RNA, purified by sucrose gradient centrifugation, was hybridized to either the Eco RI-A or Eco RI-C DNA fragment. The RNA was eluted from the hybrids and then tested for complementary hybrid formation with Eco RI-A and -C fragments. RNA eluted from the Eco RI-A fragment annealed only to the Eco RI-A fragment and not to the Eco RI-C fragment. Similarly, RNA eluted from the Eco RI-C fragment hybridized to the Eco RI-C and -D fragments. Viral RNAs synthesized in vitro using B. subtilis RNA polymerase hybridized to both Eco RI-A and -C DNA fragments. Furthermore, RNA initiated with [gamma-(32)P]GTP also hybridized to both Eco RI-A and -C fragments. These results indicate that there are at least two efficient promotors for early transcription on the phi29 chromosome. In addition, a low-molecular-weight RNA initiated with [gamma-(32)P]ATP was found to hybridize exclusively with the Eco RI-A fragment. Kinetic studies of phi29 mRNA synthesis during the lytic cycle have shown that viral RNAs hybridizable to the Eco RI-A and -C fragments are synthesized immediately after phage infection. On the other hand, mRNA specific for the Eco RI-B fragment was not synthesized for several minutes after phage infection. Based on the results of the in vivo and in vitro transcription studies, a transcription map of the phi29 chromosome is proposed.
Collapse
|
86
|
Moir D, Paulus H. Properties and subunit structure of aspartokinase II from Bacillus subtilis VB217. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40210-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
87
|
Abstract
Facultatively and obligately thermophilic variants were isolated from 3 out of 12 tested mesophilic Bacillus megaterium strains. The variants occurred at a frequency of 10(-8)-10(-9). The ability to grow at elevated temperatures was cured by means of treatment with acridine orange. Stable revertants were isolated from facultatively and obligately thermophilic variants. An unknown type of megacin was produced by the facultative thermophiles. This megacin attacked mesophilic and obligately thermophilic strains. The thermophiles displayed a few divergent taxonomic characteristics but a close relationship between the strains was indicated by the megacin spectrum and sensitivity to phage. Arrhenius plots revealed that the strains could be considered as temperature range variants and that the temperature characteristic increased with growth at a higher temperature range. The case for a plasmid involvement in the phenomenon is discussed.
Collapse
|
88
|
Yasbin RE. DNA repair in Bacillus subtilis. II. Activation of the inducible system in competent bacteria. MOLECULAR & GENERAL GENETICS : MGG 1977; 153:219-25. [PMID: 407446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Competent B. subtilis are more UV sensitive than the non-competent population of the culture. This increased sensitivity is lose in mutants unable to induce the 'SOS system' (recA1,, recG13), in mutants defective in the induction of prophage PBSX (xin), and in late stage competent cells. Moreover, bacteriophage phi 105 produced from transfected cells are less restricted on strain YB880 than bacteriophage produced from infected cells. Therefore, competent cells (those capable of being transfected) have a DNA modification system, whereas the average log phase cell does not. These data support the hypothesis that the development of competence is correlated with the activation of derepression of the "SOS" system in B. subtilis.
Collapse
|
89
|
Yasbin RE. DNA repair in Bacillus subtilis. I. The presence of an inducible system. MOLECULAR & GENERAL GENETICS : MGG 1977; 153:211-8. [PMID: 407445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Following UV irradiation of Bacillus subtilis there is a coordinate induction of: 1) a new protein, 2) a W-reactivation system, 3) a DNA modification system, and 4) prophages. These functions are induced following UV irradiation of repair proficient bacteria and mutants deficient in excision repair (UVR-1) and DNA polymerase I activity (polA5). However, they are not induced, or are impaired in their ability to be induced in bacteria containing the recA1 and the recG13 mutations. This inducible system is compared to the SOS system observed in E. coli.
Collapse
|
90
|
Bramucci MG, Keggins KM, Lovett PS. Bacteriophage conversion of spore-negative mutants to spore-positive in Bacillus pumilus. J Virol 1977; 22:194-202. [PMID: 857056 PMCID: PMC515700 DOI: 10.1128/jvi.22.1.194-202.1977] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A pseudolysogenic phage, PMB1, was isolated from soil on the basis of its ability to increase the sporulation frequency of the oligosporogenic Bacillus pumilus strain NRS 576 (sporulation frequency, less than 1%). Several spore-negative mutants (sporulation frequency, less than 10-8) derived from strain NRS 576, which were converted to spore positive by infection with PMB1, were subsequently identified. PMB1 repeatedly grown on a given spore-negative mutant (e.g., GW2) converted GW2 cells to spore positive. Each plaque-forming unit initiated the conversion of a spore-positive clone in semisolid agar overlays. GW2 cells remained spore positive as long as they maintained PMB1. Return of PMB1-converted cells to the orginal spore-negative phenotype correlated with loss of PMB1. In liquid media, PMB1 infection increased the sporulation frequency of mutant GW2 over 106-fold. More than half of the spore-negative mutants we isolated from strain NRS 576 were converted to spore positive by PMB1 infection. PMB1-induced spores of the spore-negative mutant GW2 were somewhat more heat sensitive than uninfected or PMB1-infected spores of the spore positive parent of GW2. PMB1-induced spores of GW2 do not differ from wild-type spores in morphology by phase-contrast microscopy, dipicolinic acid content, or rate of sedimentation through Renografin gradients.
Collapse
|
91
|
Dosmar M, Markewych O, Witmer H. Effect of antibiotics on certain aspects of bacteriophage SP-15 development in Bacillus subtilis W23. J Virol 1977; 21:924-31. [PMID: 403301 PMCID: PMC515630 DOI: 10.1128/jvi.21.3.924-931.1977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacillus subtilis W23 was infected with bacteriophage SP-15. Two waves of phage-specific RNA synthesis were observed. Wave I was prereplicative, and wave II was coincident with replication of the viral genome. To determine the temporal appearance of general classes of phage-coded messengers and proteins, we studied the dependence of lysozyme synthesis, phage production, and DNA synthesis on time of addition of transcriptional and translational inhibitors. Lysozyme synthesis started to become refractile to a variety of transcriptional inhibitors (rifampin, streptolydigin, and actinomycin D) between 20 and 22 min postinfection and was completely refractile by 30 min. Nevertheless, functional enzyme did not appear until 45 to 47 min postinfection; lysozyme was maximal by 65 min. Rna isolated from SP-15 phage-infected cells was used to program the cell-free synthesis of lysozyme. The messenger was synthesized exclusively between 20 and 30 min postinfection. Lysozyme messengers were stable. The data imply that lysozyme messengers were present 52 min prior to their translation. Progeny virus formation remained sensitive to transcriptional inhibitors until 40 to 50 min postinfection, and sensitivity to chloramphenicol lasted 65 min. The first progeny viruses appeared at 75 min. Again, an unusually long lag between completion of functional messengers and their translation was evident. The aforementioned data indicated that transcription of lysozyme messengers and, at least, some messengers, whose products are essential for phage production, are uniquely associated with waves I and II of RNA synthesis, respectively. However, messengers whose products are essential for normal amounts of DNA synthesis were apparently synthesized during both waves; transcription of these messengers was transiently repressed (using the term broadly) between 30 and 40 min postinfection. Judging from the dependence of DNA synthesis on time of chloramphenicol addition, proteins essential for normal amounts of DNA synthesis were also synthesized in two discrete waves, each yielding sufficient protein for half-maximal levels of DNA synthesis. An hiatus in the synthesis of the proteins in question was evident between 45 and 65 min postinfection; evidence cited in this paper indicates that this hiatus did not result from messenger depletion, which, in turn, implied some type of translational-level control. This latter conclusion is substantiated by the lysozyme synthesis that occurred during the same interval when synthesis of certain proteins for DNA replication was transiently repressed.
Collapse
|
92
|
Williams MT, Young FE. Temperate Bacillus subtilis bacteriophage phi 3T: chromosomal attachment site and comparison with temperate bacteriophages phi 105 and SPO2. J Virol 1977; 21:522-9. [PMID: 401899 PMCID: PMC353853 DOI: 10.1128/jvi.21.2.522-529.1977] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The temperate Bacillus subtilis bacteriophage phi 3T contains within its genome a locus, designated thyP3, that encodes for a protein with thymidylate synthetase activity. Bacteriophage phi 3T is different from the two previously characterized temperate phages, phi 105 and SPO2, in: heteroimmunity, response to bacteriophage antisera, endonuclease digestion pattern, induction in the presence of 6-(p-hydroxyphenylazo)-uracil, and effect on the lytic cycle of bacteriophage phi 1. The mean burst size of phi 3T is 56. The dose response curve with bacteriophage phi 3T DNA is linear for transfection and transformation to the Thy+ phenotype. The inserted prophage has been mapped by PBS1 transduction; it is between chromosomal markers ilvA8 and gltA in the terminus of the chromosome. Thus thyP3 maps at a site separate from, but between, the bacterial markers thyA and thyB when thyP3 is in the prophage state.
Collapse
|
93
|
|
94
|
|
95
|
Glassberg J, Slomiany RA, Stewart CR. Selective screening procedure for the isolation of heat- and cold-sensitive, DNA replication-deficient mutants of bacteriophage SPO1 and preliminary characterization of the mutants isolated. J Virol 1977; 21:54-60. [PMID: 401897 PMCID: PMC353790 DOI: 10.1128/jvi.21.1.54-60.1977] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A procedure is described for the selective isolation of temperature-sensitive replication-deficient mutants of Bacillus subtilis phage SPO1. A modification of the procedure permits the isolation of temperature-sensitive mutants in specific cistrons of interest. The applicability of these procedures to other viral systems is discussed. The mutations isolated were assigned to eight replication-deficient cistrons, with the cold-sensitive mutations showing a distribution strikingly different from that of the heat-sensitive mutations. As a preliminary to the identification of initiation-deficient mutants, the mutants were divided into three classes on the basis of their ability to synthesize DNA after a shift to nonpermissive temperature. We also report two incidental results: (i) the SPO1 dUMP hydroxymethylase, like the T4 dCMP hydroxymethylase, may be part of a multifunctional complex; and (ii) mutants were isolated that were replication positive but lysis deficient and failed to complement one of the replication-deficient mutants.
Collapse
|
96
|
|
97
|
Markewych O, Boghosian A, Dosmar M, Ende D, Witmer H. SP-10 bacteriophage-specific nucleic acid and enzyme synthesis in Bacillus subtilis W23. J Virol 1977; 21:84-95. [PMID: 137989 PMCID: PMC353793 DOI: 10.1128/jvi.21.1.84-95.1977] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis W23 was infected with a clear-plaque variant of SP-10 phage, namely, SP-10c. Exogenous thymidine was not incorporated into phage DNA (even in the presence of deoxyadenosine), nor was there any transfer of thymidine nucleotides from bacterial to viral DNA. The lytic program was unaffected by concentrations of 5-fluorodeoxyuridine sufficient to reduce bacterial DNA synthesis by greater than 95%. Although these data are consistent with the interpretation that thymidine nucleotides are excluded from phage DNA, formic acid digests of SP-10c DNA contained what appeared to be the four conventional bases; however, adenine and thymine were not recovered in equimolar yields. DNA-RNA hybridization and hybridization competition experiments were done. Synthesis of host RNA started to wane moments postinfection and stopped completely by 36 min. SP-10c coded for discrete classes of early and late RNA. The possibility of discrete subclasses of early RNA exists. Replication of the bacterial genome appeared to terminate 12 min postinfection. Degradation of the host DNA to acid-soluble material started at 36 min and, by the end of the latent period, greater than 90% of the host chromosome was hydrolyzed. Four apparent phage-coded enzymes have been identified. A di- and triphosphatase degraded dUTP, dUDP, dTTP, and dTDP (and, to a lesser extent, dCDP and d CTP) to the corresponding monophosphates; the enzyme had no apparent activity on dATP and dGTP. SP10c also coded for a DNA-dependent DNA polymerase, lysozyme, and a nuclease that degrades native bacterial DNA. Judging from the dependence of enzyme synthesis on the time of addition of rifampin (an inhibitor of the initiation of RNA synthesis), messengers for the di- and triphosphatase, as well as the nuclease, are transcribed from promoters that start to function 6 min postinfection. Promoters for polymerase and lysozyme did not become functional until 8 and 16 min postinfection, respectively.
Collapse
|
98
|
Buxton RS. Prophage mutation causing heat inducibility of defective Bacillus subtilis bacteriophage PBSX. J Virol 1976; 20:22-8. [PMID: 824461 PMCID: PMC354961 DOI: 10.1128/jvi.20.1.22-28.1976] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A mutant of Bacillus subtilis 168 has been isolated in which the defective phage PBSX was heat inducible, whereas another phage, phi105, was not so induced. A culture of the mutant grown at 30 degrees C, when shifted to 45 degrees C, began to lyse after 45 min; cell viability began to decrease after 10 min. Heat-induced lysis of the mutant was prevented by chloramphenicol. DNA, RNA, protein, and peptidoglycan synthesis were normal at the nonpermissive temperature up to the time of lysis. The site of xhi-1479 mutation causing this phenotype was linked (50%) in phage PBS1-mediated transduction to the host marker metC and to another PBSX marker xtl and was thus thought to map within the PBSX prophage. The order of markers was argC-thiB-metA-xhi-metC. The xhi mutation was thus distinct from another mutation, tsi-23, causing a similar heat inducibility of PBSX (Siegel and Marmur, 1969), which was unlinked to the metC marker. tsi-23 is therefore thought to be a host mutation, and the available evidence for a scattered phage genome being the cause of the defective nature of PBSX is thus less tenable. It was shown that the mutant, besides carrying the xhi mutation, also carried another closely linked mutation, xki-1479, which caused the PBSX produced to have no killing activity on the sensitive strain W23. The xki mutation was separated from xhi by recombination.
Collapse
|
99
|
Yasbin RE, Maino VC, Young FE. Bacteriophage resistance in Bacillus subtilis 168, W23, and interstrain transformants. J Bacteriol 1976; 125:1120-6. [PMID: 815237 PMCID: PMC236191 DOI: 10.1128/jb.125.3.1120-1126.1976] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Strains of Bacillus subtilis 168 deficient in glucosylated teichoic acid vary in their resistance to bacteriophage infection. Although glucosylated teichoic acid is important for bacteriophage attachment, the results demonstrate that alternate receptor sites exist. Non-glucosylated cell wall mutants could be assigned to specific classes (gtaA, gtaB, gtaC) by their pattern of resistance to three closely related bacteriophages (phi25, phie, SP82). In addition to glucosylation, the type of teichoic acid was also important for bacteriophage attachment. B. subtilis strains 168 and W23 have different teichoic acids in their cell walls and have varied susceptibilities to bacteriophage infection. Transfer of bacteriophage resistance from strain W23 into a derivative of strain 168 was accomplished. The resistant bacteria obtained were imparied in their ability to adsorb bacteriophage and in their capacity to be transfected by bacteriophage deoxyribonucleic acid.
Collapse
|