51
|
Materazzi A, Bottai D, Campobasso C, Klatt AB, Cesta N, De Masi M, Trampuz A, Tavanti A, Di Luca M. Phage-Based Control of Methicillin Resistant Staphylococcus aureus in a Galleria mellonella Model of Implant-Associated Infection. Int J Mol Sci 2022; 23:ijms232314514. [PMID: 36498843 PMCID: PMC9740198 DOI: 10.3390/ijms232314514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus implant-associated infections are difficult to treat because of the ability of bacteria to form biofilm on medical devices. Here, the efficacy of Sb-1 to control or prevent S. aureus colonization on medical foreign bodies was investigated in a Galleria mellonella larval infection model. For colonization control assays, sterile K-wires were implanted into larva prolegs. After 2 days, larvae were infected with methicillin-resistant S. aureus ATCC 43300 and incubated at 37 °C for a further 2 days, when treatments with either daptomycin (4 mg/kg), Sb-1 (107 PFUs) or a combination of them (3 x/day) were started. For biofilm prevention assays, larvae were pre-treated with either vancomycin (10 mg/kg) or Sb-1 (107 PFUs) before the S. aureus infection. In both experimental settings, K-wires were explanted for colony counting two days after treatment. In comparison to the untreated control, more than a 4 log10 CFU and 1 log10 CFU reduction was observed on K-wires recovered from larvae treated with the Sb-1/daptomycin combination and with their singular administration, respectively. Moreover, pre-infection treatment with Sb-1 was found to prevent K-wire colonization, similarly to vancomycin. Taken together, the obtained results demonstrated the strong potential of the Sb-1 antibiotic combinatory administration or the Sb-1 pretreatment to control or prevent S. aureus-associated implant infections.
Collapse
Affiliation(s)
| | - Daria Bottai
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Claudia Campobasso
- Department of Biology, University of Pisa, 56127 Pisa, Italy
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Ann-Brit Klatt
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Novella Cesta
- PhD Course in Microbiology, Immunology, Infectious Diseases and Transplants (MIMIT), University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Margherita De Masi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrej Trampuz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Arianna Tavanti
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | | |
Collapse
|
52
|
Negm NA, Altalhi AA, Saleh Mohamed NE, Kana MTHA, Mohamed EA. Growth Inhibition of Sulfate-Reducing Bacteria during Gas and Oil Production Using Novel Schiff Base Diquaternary Biocides: Synthesis, Antimicrobial, and Toxicological Assessment. ACS OMEGA 2022; 7:40098-40108. [PMID: 36385895 PMCID: PMC9647739 DOI: 10.1021/acsomega.2c04836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Upstream crude oil production equipment is always exposed to destruction damagingly which is caused by sulfate-reducing bacterium (SRB) activities that produce H2S gas, which leads to increased metal corrosion (bio-fouling) rates and inflicts effective infrastructure damage. Hence, oil and gas reservoirs must be injected with biocides and inhibitors which still offer the foremost protection against harmful microbial activity. However, because of the economic and environmental risks associated with biocides, the oil and gas sectors improve better methods for their usage. This work describes the synthesis and evaluation of the biological activities as the cytotoxicity and antimicrobial properties of a series of diquaternary cationic biocides that were studied during the inhibition of microbial biofilms. The prepared diquaternary compound was synthesized by coupling vanillin and 4-aminoantipyrene to achieve the corresponding Schiff base, followed by a quaternization reaction using 1,6-bromohexane, 1,8-bromooctane, and 1,12-bromododecane. The increase of their alkyl chain length from 6 to 12 methylene groups increased the obtained antimicrobial activity and cytotoxicity. Antimicrobial efficacies of Q1-3 against various biofilm-forming microorganisms, including bacteria and fungi, were examined utilizing the diameter of inhibition zone procedures. The results revealed that cytotoxic efficacies of Q1-3 were significantly associated mainly with maximum surface excess and interfacial characteristics. The cytotoxic efficiencies of Q1-3 biocides demonstrated promising results due to their comparatively higher efficacies against SRB. Q3 exhibited the highest cytotoxic biocide against the gram +ve, gram -ve, and SRB species according to the inhibition zone diameter test. The toxicity of the studied microorganisms depended on the nature and type of the target microorganism and the hydrophobicity of the biocide molecules. Cytotoxicity assessment and antimicrobial activity displayed increased activity by the increase in their alkyl chain length.
Collapse
Affiliation(s)
- Nabel A. Negm
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| | - Amal A. Altalhi
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Nermin E. Saleh Mohamed
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| | - Maram T. H. A. Kana
- National
Institute of LASER Enhanced Science, Cairo
University, Giza11776, Egypt
| | - Eslam A. Mohamed
- Egyptian
Petroleum Research Institute, Petrochemicals, 1 Ahmed Elzommer Street, Nasr City, CairoEG 11776, Egypt
| |
Collapse
|
53
|
Functionalized Self-Assembled Monolayers: Versatile Strategies to Combat Bacterial Biofilm Formation. Pharmaceutics 2022; 14:pharmaceutics14081613. [PMID: 36015238 PMCID: PMC9415113 DOI: 10.3390/pharmaceutics14081613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial infections due to biofilms account for up to 80% of bacterial infections in humans. With the increased use of antibiotic treatments, indwelling medical devices, disinfectants, and longer hospital stays, antibiotic resistant infections are sharply increasing. Annual deaths are predicted to outpace cancer and diabetes combined by 2050. In the past two decades, both chemical and physical strategies have arisen to combat biofilm formation on surfaces. One such promising chemical strategy is the formation of a self-assembled monolayer (SAM), due to its small layer thickness, strong covalent bonds, typically facile synthesis, and versatility. With the goal of combating biofilm formation, the SAM could be used to tether an antibacterial agent such as a small-molecule antibiotic, nanoparticle, peptide, or polymer to the surface, and limit the agent’s release into its environment. This review focuses on the use of SAMs to inhibit biofilm formation, both on their own and by covalent grafting of a biocidal agent, with the potential to be used in indwelling medical devices. We conclude with our perspectives on ongoing challenges and future directions for this field.
Collapse
|
54
|
Negut I, Ristoscu C, Tozar T, Dinu M, Parau AC, Grumezescu V, Hapenciuc C, Popa M, Stan MS, Marutescu L, Mihailescu IN, Chifiriuc MC. Implant Surfaces Containing Bioglasses and Ciprofloxacin as Platforms for Bone Repair and Improved Resistance to Microbial Colonization. Pharmaceutics 2022; 14:pharmaceutics14061175. [PMID: 35745748 PMCID: PMC9227520 DOI: 10.3390/pharmaceutics14061175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Coatings are an attractive and challenging selection for improving the bioperformance of metallic devices. Composite materials based on bioglass/antibiotic/polymer are herein proposed as multifunctional thin films for hard tissue implants. We deposited a thin layer of the polymeric material by matrix-assisted pulsed laser evaporation—MAPLE onto Ti substrates. A second layer consisting of bioglass + antibiotic was applied by MAPLE onto the initial thin film. The antimicrobial activity of MAPLE-deposited thin films was evaluated on Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa standard strains. The biocompatibility of obtained thin films was assessed on mouse osteoblast-like cells. The results of our study revealed that the laser-deposited coatings are biocompatible and resistant to microbial colonization and biofilm formation. Accordingly, they can be considered viable candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
| | - Carmen Ristoscu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
- Correspondence:
| | - Tatiana Tozar
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
- Extreme Light Infrastructure-Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Mihaela Dinu
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125 Magurele, Romania; (M.D.); (A.C.P.)
| | - Anca Constantina Parau
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125 Magurele, Romania; (M.D.); (A.C.P.)
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
| | - Claudiu Hapenciuc
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
| | - Marcela Popa
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania; (M.P.); (L.M.)
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (M.S.S.); (M.C.C.)
| | - Luminita Marutescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania; (M.P.); (L.M.)
| | - Ion N. Mihailescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
| | - Mariana Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (M.S.S.); (M.C.C.)
- Department of Microbiology, Faculty of Biology, University of Bucharest, Aleea Portocalelor Str. 1-3, District 5, 060101 Bucharest, Romania
- Romanian Academy of Scientists, 3 Ilfov Str., District 5, 050044 Bucharest, Romania
- The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
| |
Collapse
|
55
|
Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections. Polymers (Basel) 2022; 14:polym14081611. [PMID: 35458361 PMCID: PMC9024559 DOI: 10.3390/polym14081611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Many infections are associated with the use of implantable medical devices. The excessive utilization of antibiotic treatment has resulted in the development of antimicrobial resistance. Consequently, scientists have recently focused on conceiving new ways for treating infections with a longer duration of action and minimum environmental toxicity. One approach in infection control is based on the development of antimicrobial coatings based on polymers and antimicrobial peptides, also termed as “natural antibiotics”.
Collapse
|
56
|
Secchi E, Savorana G, Vitale A, Eberl L, Stocker R, Rusconi R. The structural role of bacterial eDNA in the formation of biofilm streamers. Proc Natl Acad Sci U S A 2022; 119:e2113723119. [PMID: 35290120 PMCID: PMC8944759 DOI: 10.1073/pnas.2113723119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/01/2022] [Indexed: 12/23/2022] Open
Abstract
Across diverse habitats, bacteria are mainly found as biofilms, surface-attached communities embedded in a self-secreted matrix of extracellular polymeric substances (EPS), which enhance bacterial recalcitrance to antimicrobial treatment and mechanical stresses. In the presence of flow and geometric constraints such as corners or constrictions, biofilms can take the form of long, suspended filaments (streamers), which bear important consequences in industrial and clinical settings by causing clogging and fouling. The formation of streamers is thought to be driven by the viscoelastic nature of the biofilm matrix. Yet, little is known about the structural composition of streamers and how it affects their mechanical properties. Here, using a microfluidic platform that allows growing and precisely examining biofilm streamers, we show that extracellular DNA (eDNA) constitutes the backbone and is essential for the mechanical stability of Pseudomonas aeruginosa streamers. This finding is supported by the observations that DNA-degrading enzymes prevent the formation of streamers and clear already formed ones and that the antibiotic ciprofloxacin promotes their formation by increasing the release of eDNA. Furthermore, using mutants for the production of the exopolysaccharide Pel, an important component of P. aeruginosa EPS, we reveal an concurring role of Pel in tuning the mechanical properties of the streamers. Taken together, these results highlight the importance of eDNA and of its interplay with Pel in determining the mechanical properties of P. aeruginosa streamers and suggest that targeting the composition of streamers can be an effective approach to control the formation of these biofilm structures.
Collapse
Affiliation(s)
- Eleonora Secchi
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Giovanni Savorana
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Alessandra Vitale
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| |
Collapse
|