51
|
Nishiyama N, Mikami K, Ochiai T, Yamauchi K. The presence of chimeric DNA consisting of 5' regions of the hemoglobin and nucleosome assembly protein-1 genes in Paramecium caudatum macronuclear genomic DNA. Zoolog Sci 2009; 26:259-65. [PMID: 19798919 DOI: 10.2108/zsj.26.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We detected an unexpected small-sized DNA fragment during polymerase chain reaction (PCR) analysis of the heterogeneity of a macronuclear intergenic region of Paramecium caudatum. Southern blotting of total genomic DNA with the PCR product as a probe indicated that the small-sized DNA fragment constituted part of the macronuclear genome. Sequencing revealed that the PCR product was a chimeric DNA structure that may be generated by tail-to-tail fusion of the 5' region of the hemoglobin (hb) gene to most of the nucleosome assembly protein-1 (nap-1) gene. Short tandem repeats consisting of tetra- and tri-nucleotides exist at the putative cleavage sites in the hb and nap-1 genes, respectively. This feature differs from those found at the boundaries of TA-internal eliminated sequences in the P. aurelia complex and at transposable elements in other species. This suggests that the chimeric DNA is generated by a novel mechanism. Although the chimeric DNA contains the hb and nap-1 promoters, transcripts corresponding to the chimeric DNA were not detected by reverse transcription (RT)-PCR analysis during vegetative cell growth. Possible roles of chimeric DNA are discussed.
Collapse
Affiliation(s)
- Norihito Nishiyama
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | | | | | | |
Collapse
|
52
|
Duharcourt S, Lepère G, Meyer E. Developmental genome rearrangements in ciliates: a natural genomic subtraction mediated by non-coding transcripts. Trends Genet 2009; 25:344-50. [PMID: 19596481 DOI: 10.1016/j.tig.2009.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 11/24/2022]
Abstract
Several classes of non-protein-coding RNAs have recently been identified as epigenetic regulators of developmental genome rearrangements in ciliates, providing an interesting insight into the role of genome-wide transcription. In these unicellular eukaryotes, extensive rearrangements of the germline genome occur during the development of a new somatic macronucleus from the germline micronucleus. Rearrangement patterns are not dictated by the germline sequence, but reproduce the pre-existing rearrangements of the maternal somatic genome, implying a homology-dependent global comparison of germline and somatic genomes. We review recent evidence showing that this is achieved by a natural genomic subtraction, computed by pairing interactions between meiosis-specific, germline scnRNAs (small RNAs that resemble metazoan piRNAs) and longer non-coding transcripts from the somatic genome. We focus on current models for the RNA-based mechanisms enabling the cell to recognize the germline sequences to be eliminated from the somatic genome and to maintain an epigenetic memory of rearrangement patterns across sexual generations.
Collapse
Affiliation(s)
- Sandra Duharcourt
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, 75005 Paris, France.
| | | | | |
Collapse
|
53
|
Lepère G, Bétermier M, Meyer E, Duharcourt S. Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev 2008; 22:1501-12. [PMID: 18519642 PMCID: PMC2418586 DOI: 10.1101/gad.473008] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/28/2008] [Indexed: 12/22/2022]
Abstract
The germline genome of ciliates is extensively rearranged during the development of a new somatic macronucleus from the germline micronucleus, after sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) are precisely excised from coding sequences and intergenic regions. For a subset of IESs, introduction of the IES sequence into the maternal macronucleus specifically inhibits excision of the homologous IES in the developing zygotic macronucleus, suggesting that epigenetic regulation of excision involves a global comparison of germline and somatic genomes. ScanRNAs (scnRNAs) produced during micronuclear meiosis by a developmentally regulated RNAi pathway have been proposed to mediate this transnuclear cross-talk. In this study, microinjection experiments provide direct evidence that 25-nucleotide (nt) scnRNAs promote IES excision. We further show that noncoding RNAs are produced from the somatic maternal genome, both during vegetative growth and during sexual events. Maternal inhibition of IES excision is abolished when maternal somatic transcripts containing an IES are targeted for degradation by a distinct RNAi pathway involving 23-nt siRNAs. The results strongly support a scnRNA/macronuclear RNA scanning model in which a natural genomic subtraction, occurring during meiosis between deletion-inducing scnRNAs and antagonistic transcripts from the maternal macronucleus, regulates rearrangements of the zygotic genome.
Collapse
Affiliation(s)
- Gersende Lepère
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Mireille Bétermier
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Eric Meyer
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Sandra Duharcourt
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| |
Collapse
|
54
|
Gratias A, Lepère G, Garnier O, Rosa S, Duharcourt S, Malinsky S, Meyer E, Bétermier M. Developmentally programmed DNA splicing in Paramecium reveals short-distance crosstalk between DNA cleavage sites. Nucleic Acids Res 2008; 36:3244-51. [PMID: 18420657 PMCID: PMC2425466 DOI: 10.1093/nar/gkn154] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Somatic genome assembly in the ciliate Paramecium involves the precise excision of thousands of short internal eliminated sequences (IESs) that are scattered throughout the germline genome and often interrupt open reading frames. Excision is initiated by double-strand breaks centered on the TA dinucleotides that are conserved at each IES boundary, but the factors that drive cleavage site recognition remain unknown. A degenerate consensus was identified previously at IES ends and genetic analyses confirmed the participation of their nucleotide sequence in efficient excision. Even for wild-type IESs, however, variant excision patterns (excised or nonexcised) may be inherited maternally through sexual events, in a homology-dependent manner. We show here that this maternal epigenetic control interferes with the targeting of DNA breaks at IES ends. Furthermore, we demonstrate that a mutation in the TA at one end of an IES impairs DNA cleavage not only at the mutant end but also at the wild-type end. We conclude that crosstalk between both ends takes place prior to their cleavage and propose that the ability of an IES to adopt an excision-prone conformation depends on the combination of its nucleotide sequence and of additional determinants.
Collapse
Affiliation(s)
- Ariane Gratias
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Duret L, Cohen J, Jubin C, Dessen P, Goût JF, Mousset S, Aury JM, Jaillon O, Noël B, Arnaiz O, Bétermier M, Wincker P, Meyer E, Sperling L. Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: a somatic view of the germline. Genome Res 2008; 18:585-96. [PMID: 18256234 DOI: 10.1101/gr.074534.107] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ciliates are the only unicellular eukaryotes known to separate germinal and somatic functions. Diploid but silent micronuclei transmit the genetic information to the next sexual generation. Polyploid macronuclei express the genetic information from a streamlined version of the genome but are replaced at each sexual generation. The macronuclear genome of Paramecium tetraurelia was recently sequenced by a shotgun approach, providing access to the gene repertoire. The 72-Mb assembly represents a consensus sequence for the somatic DNA, which is produced after sexual events by reproducible rearrangements of the zygotic genome involving elimination of repeated sequences, precise excision of unique-copy internal eliminated sequences (IES), and amplification of the cellular genes to high copy number. We report use of the shotgun sequencing data (>10(6) reads representing 13 x coverage of a completely homozygous clone) to evaluate variability in the somatic DNA produced by these developmental genome rearrangements. Although DNA amplification appears uniform, both of the DNA elimination processes produce sequence heterogeneity. The variability that arises from IES excision allowed identification of hundreds of putative new IESs, compared to 42 that were previously known, and revealed cases of erroneous excision of segments of coding sequences. We demonstrate that IESs in coding regions are under selective pressure to introduce premature termination of translation in case of excision failure.
Collapse
Affiliation(s)
- Laurent Duret
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne F-69622, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Miranda I, Rocha R, Santos MC, Mateus DD, Moura GR, Carreto L, Santos MAS. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans. PLoS One 2007; 2:e996. [PMID: 17912373 PMCID: PMC1991585 DOI: 10.1371/journal.pone.0000996] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 09/18/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG)(Ser)). We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.
Collapse
Affiliation(s)
- Isabel Miranda
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Rita Rocha
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Maria C. Santos
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Denisa D. Mateus
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Gabriela R. Moura
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Laura Carreto
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Manuel A. S. Santos
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
57
|
Juranek SA, Lipps HJ. New Insights into the Macronuclear Development in Ciliates. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:219-51. [PMID: 17631190 DOI: 10.1016/s0074-7696(07)62005-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During macronuclear differentiation in ciliated protozoa, most amazing "DNA gymnastics" takes place, which includes DNA excision, DNA elimination, DNA reorganization, and DNA-specific amplification. Although the morphological events occurring during macronuclear development are well described, a detailed knowledge of the molecular mechanisms and the regulation of this differentiation process is still missing. However, recently several models have been proposed for the molecular regulation of macronuclear differentiation, but these models have yet to be verified experimentally. The scope of this review is to summarize recent discoveries in different ciliate species and to compare and discuss the different models proposed. Results obtained in these studies are not only relevant for our understanding of nuclear differentiation in ciliates, but also for cellular differentiation in eukaryotic organisms in general as well as for other disciplines such as bioinformatics and computational biology.
Collapse
Affiliation(s)
- Stefan A Juranek
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
58
|
Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Ségurens B, Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc I, Bouhouche K, Câmara F, Duharcourt S, Guigo R, Gogendeau D, Katinka M, Keller AM, Kissmehl R, Klotz C, Koll F, Le Mouël A, Lepère G, Malinsky S, Nowacki M, Nowak JK, Plattner H, Poulain J, Ruiz F, Serrano V, Zagulski M, Dessen P, Bétermier M, Weissenbach J, Scarpelli C, Schächter V, Sperling L, Meyer E, Cohen J, Wincker P. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 2006; 444:171-8. [PMID: 17086204 DOI: 10.1038/nature05230] [Citation(s) in RCA: 614] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 08/31/2006] [Indexed: 02/03/2023]
Abstract
The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.
Collapse
Affiliation(s)
- Jean-Marc Aury
- Genoscope and CNRS UMR 8030, 2 rue Gaston Crémieux CP5706, 91057 Evry, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Matsuda A, Forney JD. The SUMO pathway is developmentally regulated and required for programmed DNA elimination in Paramecium tetraurelia. EUKARYOTIC CELL 2006; 5:806-15. [PMID: 16682458 PMCID: PMC1459683 DOI: 10.1128/ec.5.5.806-815.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extensive genome-wide remodeling occurs during the formation of the somatic macronuclei from the germ line micronuclei in ciliated protozoa. This process is limited to sexual reproduction and includes DNA amplification, chromosome fragmentation, and the elimination of internal segments of DNA. Our efforts to define the pathways regulating these events revealed a gene encoding a homologue of ubiquitin activating enzyme 2 (UBA2) that is upregulated at the onset of macronuclear development in Paramecium tetraurelia. Uba2 enzymes are known to activate the protein called small ubiquitin-related modifier (SUMO) that is covalently attached to target proteins. Consistent with this relationship, Northern analysis showed increased abundance of SUMO transcripts during sexual reproduction in Paramecium. RNA interference (RNAi) against UBA2 or SUMO during vegetative growth had little effect on cell survival or fission rates. In contrast, RNAi of mating cells resulted in failure to form a functional macronucleus. Despite normal amplification of the genome, excision of internal eliminated sequences was completely blocked. Additional experiments showed that the homologous UBA2 and SUMO genes in Tetrahymena thermophila are also upregulated during conjugation. These results provide evidence for the developmental regulation of the SUMO pathway in ciliates and suggest a key role for the pathway in controlling genome remodeling.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907-2063, USA
| | | |
Collapse
|
60
|
Nowacki M, Zagorski-Ostoja W, Meyer E. Nowa1p and Nowa2p: novel putative RNA binding proteins involved in trans-nuclear crosstalk in Paramecium tetraurelia. Curr Biol 2006; 15:1616-28. [PMID: 16169483 DOI: 10.1016/j.cub.2005.07.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/03/2005] [Accepted: 07/14/2005] [Indexed: 11/28/2022]
Abstract
BACKGROUND The germline genome of ciliates is extensively rearranged during development of a new somatic macronucleus from the germline micronucleus, a process that follows sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) and multicopy transposons are eliminated, whereas cellular genes are amplified to approximately 800 n. For a subset of IESs, introduction of the IES sequence into the maternal (prezygotic) macronucleus specifically inhibits excision of the homologous IES in the developing zygotic macronucleus. This and other homology-dependent maternal effects have suggested that rearrangement patterns are epigenetically determined by an RNA-mediated, trans-nuclear comparison, involving the RNA interference pathway, of germline and somatic genomes. RESULTS We report the identification of novel developmentally regulated RNA binding proteins, Nowa1p and Nowa2p, which are required for the survival of sexual progeny. Green fluorescent protein (GFP) fusions show that Nowa1p accumulates into the maternal macronucleus shortly before meiosis of germline micronuclei and is later transported to developing macronuclei. Nowa1p/2p depletion impairs the elimination of transposons and of those IESs that are controlled by maternal effects, confirming the existence of distinct IES classes. CONCLUSIONS The results indicate that Nowa proteins are essential components of the trans-nuclear-crosstalk mechanism that is responsible for epigenetic programming of genome rearrangements. We discuss implications for the current models of genome scanning in ciliates, a process related to the formation of heterochromatin by RNA interference in other eukaryotes.
Collapse
Affiliation(s)
- Mariusz Nowacki
- Laboratoire de Génétique Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8541, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | |
Collapse
|
61
|
Juranek SA, Rupprecht S, Postberg J, Lipps HJ. snRNA and heterochromatin formation are involved in DNA excision during macronuclear development in stichotrichous ciliates. EUKARYOTIC CELL 2006; 4:1934-41. [PMID: 16278460 PMCID: PMC1287853 DOI: 10.1128/ec.4.11.1934-1941.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several models for specific excision of micronucleus-specific DNA sequences during macronuclear development in ciliates exist. While the template-guided recombination model suggests recombination events resulting in specific DNA excision and reordering of macronucleus-destined sequences (MDS) guided by a template, there is evidence that an RNA interference-related mechanism is involved in DNA elimination in holotrichous ciliates. We describe that in the stichotrichous ciliate Stylonychia, snRNAs homologous to micronucleus-specific sequences are synthesized during macronuclear differentiation. Western and in situ analyses demonstrate that histone H3 becomes methylated at K9 de novo during macronuclear differentiation, and chromatin immunoprecipitation revealed that micronucleus-specific sequences are associated with methylated H3. To link both observations, expression of a PIWI homolog, member of the RNA-induced silencing complex, was silenced. In these cells, the methylated micronucleus-specific histone H3 variant "X" is still present in macronuclear anlagen and no K9 methylation of histone H3 is observed. We suggest that snRNA recruits chromatin-modifying enzymes to sequences to be excised. Based on our and earlier observations, we believe that this mechanism is not sufficient for specific excision of sequences and reordering of MDS in the developing macronucleus and propose a model for internal eliminated sequence excision and MDS reordering in stichotrichous ciliates.
Collapse
Affiliation(s)
- Stefan A Juranek
- Institute of Cell Biology, University Witten/Herdecke, Stockumer Str. 10, D-58453 Witten, Germany
| | | | | | | |
Collapse
|
62
|
Matsuda A, Mayer KM, Forney JD. Identification of single nucleotide mutations that prevent developmentally programmed DNA elimination in Paramecium tetraurelia. J Eukaryot Microbiol 2005; 51:664-9. [PMID: 15666724 DOI: 10.1111/j.1550-7408.2004.tb00606.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The excision of internal eliminated sequences (IESs) occurs during the differentiation of a new somatic macronuclear genome in ciliated protozoa. In Paramecium tetraurelia, IESs show few conserved features with the exception of an invariant 5'-TA-3' dinucleotide that is part of an 8-bp inverted terminal repeat consensus sequence with similarity to the ends of mariner/Tc1 transposons. We have isolated and analyzed two mutant cell lines that are defective in excision of individual IESs in the A-51 surface antigen gene. Each cell line contains a mutation in the flanking 5'-TA-3' dinucleotide of IES6435 and IES1835 creating a 5'-CA-3' flanking sequence that prevents excision. The results demonstrate that the first position of the 5'-TA-3' is required IES excision just as previous mutants have shown that the second position (the A residue) is required. Combining these results with other Paramecium IES mutants suggests that there are few positions essential for IES excision in Paramecium. Analysis of many IESs reveals that there is a strong bias against particular nucleotides at some positions near the IES termini. Some of these strongly biased positions correspond to known IES mutations, others correlate with unusual features of excision.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907-2063, USA
| | | | | |
Collapse
|
63
|
Amar L, Dubrana K. Epigenetic control of chromosome breakage at the 5' end of Paramecium tetraurelia gene A. EUKARYOTIC CELL 2005; 3:1136-46. [PMID: 15470241 PMCID: PMC522615 DOI: 10.1128/ec.3.5.1136-1146.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Macronuclei and micronuclei of ciliates have related genomes, with macronuclei developing from zygotic micronuclei through programmed DNA rearrangements. While Paramecium tetraurelia wild-type strain 51 and mutant strain d48 have the same micronuclear genome, qualitative differences between their macronuclear genomes have been described, demonstrating that programmed DNA rearrangements could be epigenetically controlled in ciliates. Macronuclear chromosomes end downstream of gene A (A51 Mac ends) and at the 5' end of gene A (Ad48 Mac ends) in strains 51 and d48, respectively. To gain further insight into the process of chromosome end formation, we performed an extensive analysis of locus A rearrangement in strains d48 and 51, in strain d12, which harbors a gene A deletion, and in interstrain cross progeny. We show that (i) allele Ad12 harbors a deletion of >16 kb, (ii) A51 Mac ends distribute over four rather than three DNA regions, (iii) strains d48 and 51 display only quantitative differences (rare Ad48 and A51 Mac ends do form in strains 51 and d48, respectively), (iv) the level of A51 Mac ends is severalfold enhanced in d12- and d48-derived progeny, and (v) this level inversely correlates with the level of Ad48 Mac ends in the d48 parent. Together, these data lead to a model in which the formation of Ad48 Mac ends is epigenetically controlled by a d48 factor(s). We propose that the d48 factor(s) may be derived from RNA molecules transcribed from the Ad48 Mac ends and encompassing the truncated A gene and telomeric repeats.
Collapse
Affiliation(s)
- Laurence Amar
- UMR 8080, IBAIC, Bat 444, 91405 Orsay Cedex, France.
| | | |
Collapse
|
64
|
Zagulski M, Nowak JK, Le Mouël A, Nowacki M, Migdalski A, Gromadka R, Noël B, Blanc I, Dessen P, Wincker P, Keller AM, Cohen J, Meyer E, Sperling L. High coding density on the largest Paramecium tetraurelia somatic chromosome. Curr Biol 2004; 14:1397-404. [PMID: 15296759 DOI: 10.1016/j.cub.2004.07.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 06/14/2004] [Accepted: 06/14/2004] [Indexed: 11/23/2022]
Abstract
Paramecium, like other ciliates, remodels its entire germline genome at each sexual generation to produce a somatic genome stripped of transposons and other multicopy elements. The germline chromosomes are fragmented by a DNA elimination process that targets heterochromatin to give a reproducible set of some 200 linear molecules 50 kb to 1 Mb in size. These chromosomes are maintained at a ploidy of 800n in the somatic macronucleus and assure all gene expression. We isolated and sequenced the largest megabase somatic chromosome in order to explore its organization and gene content. The AT-rich (72%) chromosome is compact, with very small introns (average size 25 nt), short intergenic regions (median size 202 nt), and a coding density of at least 74%, higher than that reported for budding yeast (70%) or any other free-living eukaryote. Similarity to known proteins could be detected for 57% of the 460 potential protein coding genes. Thirty-two of the proteins are shared with vertebrates but absent from yeast, consistent with the morphogenetic complexity of Paramecium, a long-standing model for differentiated functions shared with metazoans but often absent from simpler eukaryotes. Extrapolation to the whole genome suggests that Paramecium has at least 30,000 genes.
Collapse
Affiliation(s)
- Marek Zagulski
- Institute of Biochemistry and Biophysics, DNA Sequencing Laboratory, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Nakayama S, Endoh H. Preferential cleavage of Paramecium DNA mediated by the C. elegans Tc1 transposase in vitro. Genes Genet Syst 2004; 78:391-8. [PMID: 14973340 DOI: 10.1266/ggs.78.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the ciliate Paramecium aurelia complex, thousands of internal eliminated sequences (IESs) are excised from the germline micronuclear DNA during macronuclear differentiation. Based on the resemblance of Paramecium IES end sequences to Tc1 transposon termini, it has been proposed that Paramecium IESs might have degenerately evolved from Tc1 family transposons, and still be removed by an enzyme homologous to a Tc1 transposase. In this study, we found that transposase preferentially cleaved (or nicked) 58 sites near the IESs in Paramecium DNA, at sequences consisting of TT or TCTA. Since one excision junction of the P. primaurelia W2 IES was included in such sites, this suggests that a Tc1-like transposase is involved in the IES excision process, although it is probably not a sole factor responsible for the precise cleavage. In addition, unmethylated substrate DNA appeared to decrease the cleavage specificity, suggesting an involvement of DNA methylation in the cleavage. Although these results do not directly address the transposon origin of Paramecium IESs, it is likely that the enzymatic machinery responsible for the initial cleavage is derived from a Tc1-like transposase. The mechanism necessary for precise excision is discussed, in relation to recent knowledge of IES excision obtained in Tetrahymena and Paramecium.
Collapse
Affiliation(s)
- Sanae Nakayama
- Department of Biology, Faculty of Science, Kanazawa University, Japan.
| | | |
Collapse
|
66
|
Garnier O, Serrano V, Duharcourt S, Meyer E. RNA-mediated programming of developmental genome rearrangements in Paramecium tetraurelia. Mol Cell Biol 2004; 24:7370-9. [PMID: 15314149 PMCID: PMC506981 DOI: 10.1128/mcb.24.17.7370-7379.2004] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The germ line genome of ciliates is extensively rearranged during development of the somatic macronucleus. Numerous sequences are eliminated, while others are amplified to a high ploidy level. In the Paramecium aurelia group of species, transformation of the maternal macronucleus with transgenes at high copy numbers can induce the deletion of homologous genes in sexual progeny, when a new macronucleus develops from the wild-type germ line. We show that this trans-nuclear effect correlates with homology-dependent silencing of maternal genes before autogamy and with the accumulation of approximately 22- to 23-nucleotide (nt) RNA molecules. The same effects are induced by feeding cells before meiosis with bacteria containing double-stranded RNA, suggesting that small interfering RNA-like molecules can target deletions. Furthermore, experimentally induced macronuclear deletions are spontaneously reproduced in subsequent sexual generations, and reintroduction of the missing gene into the variant macronucleus restores developmental amplification in sexual progeny. We discuss the possible roles of the approximately 22- to 23-nt RNAs in the targeting of deletions and the implications for the RNA-mediated genome-scanning process that is thought to determine developmentally regulated rearrangements in ciliates.
Collapse
Affiliation(s)
- Olivier Garnier
- Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 46, rue d'Ulm, 75005 Paris, France
| | | | | | | |
Collapse
|
67
|
Bétermier M. Large-scale genome remodelling by the developmentally programmed elimination of germ line sequences in the ciliate Paramecium. Res Microbiol 2004; 155:399-408. [PMID: 15207872 DOI: 10.1016/j.resmic.2004.01.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 01/20/2004] [Indexed: 12/12/2022]
Abstract
In Paramecium, during the development of the somatic macronucleus, precise excision of thousands of single-copy non-coding sequences is initiated by specific DNA double-strand breaks, while imprecise elimination of germ-line-limited repeated sequences leads to internal deletions or chromosome fragmentation. Recent data point to a role of non-coding RNAs in the epigenetic programming of these rearrangements.
Collapse
Affiliation(s)
- Mireille Bétermier
- CNRS UMR 8541, Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|