51
|
Teter K, Jobling MG, Sentz D, Holmes RK. The cholera toxin A1(3) subdomain is essential for interaction with ADP-ribosylation factor 6 and full toxic activity but is not required for translocation from the endoplasmic reticulum to the cytosol. Infect Immun 2006; 74:2259-67. [PMID: 16552056 PMCID: PMC1418936 DOI: 10.1128/iai.74.4.2259-2267.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT) moves from the plasma membrane to the endoplasmic reticulum (ER) by retrograde vesicular traffic. In the ER, the catalytic CTA1 polypeptide dissociates from the rest of the toxin and enters the cytosol by a process that involves the quality control mechanism of ER-associated degradation (ERAD). The cytosolic CTA1 then ADP ribosylates Gsalpha, resulting in adenylate cyclase activation and intoxication of the target cell. It is hypothesized that the C-terminal A1(3) subdomain of CTA1 plays two crucial roles in the intoxication process: (i) it contains a hydrophobic domain that triggers the ERAD mechanism and (ii) it facilitates interaction with the cytosolic ADP-ribosylation factors (ARFs) that serve as allosteric activators of CTA1. In this study, we examined the role(s) of the CTA1(3) subdomain in CT intoxication. Full-length CTA1 constructs and truncated CTA1 constructs lacking the A1(3) subdomain were generated and used to conduct two-hybrid studies of interactions with ARF6, in vitro enzyme assays, in vivo toxicity assays, and in vivo processing/degradation assays. Direct, plasmid-mediated expression of CTA1 constructs in the ER or cytosol of transfected CHO cells was used to perform the in vivo assays. With these methods, we found that the A1(3) subdomain of CTA1 is important both for interaction with ARF6 and for full expression of enzyme activity in vivo. Surprisingly, however, the A1(3) subdomain was not required for ERAD-mediated passage of CTA1 from the ER to the cytosol. A possible alternative trigger for CTA1 to activate the ERAD mechanism is discussed.
Collapse
Affiliation(s)
- Ken Teter
- Department of Microbiology, Mail Stop 8333, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
52
|
Lord JM, Roberts LM, Lencer WI. Entry of protein toxins into mammalian cells by crossing the endoplasmic reticulum membrane: co-opting basic mechanisms of endoplasmic reticulum-associated degradation. Curr Top Microbiol Immunol 2006; 300:149-68. [PMID: 16573240 DOI: 10.1007/3-540-28007-3_7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The catalytic polypeptides of certain bacterial and plant protein toxins reach their substrates in the cytosol of mammalian cells by retro-translocation from the endoplasmic reticulum (ER). Emerging evidence indicates that these proteins subvert the ER-associated protein degradation (ERAD) pathway that normally removes misfolded or unassembled proteins from the ER, to achieve retrotranslocation. Upon entering the ER lumen, the toxins are unfolded to be perceived as ERAD substrates. Toxins that retro-translocate from the ER have an unusually low lysine content to avoid ubiquitin-mediated proteasomal degradation. This allows the exported toxins to refold into the proteasome-resistant, biologically active conformation, and leads to cellular intoxication.
Collapse
Affiliation(s)
- J M Lord
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|
53
|
Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM. Retrograde transport pathways utilised by viruses and protein toxins. Virol J 2006; 3:26. [PMID: 16603059 PMCID: PMC1524934 DOI: 10.1186/1743-422x-3-26] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/07/2006] [Indexed: 11/15/2022] Open
Abstract
A model has been presented for retrograde transport of certain toxins and viruses from the cell surface to the ER that suggests an obligatory interaction with a glycolipid receptor at the cell surface. Here we review studies on the ER trafficking cholera toxin, Shiga and Shiga-like toxins, Pseudomonas exotoxin A and ricin, and compare the retrograde routes followed by these protein toxins to those of the ER trafficking SV40 and polyoma viruses. We conclude that there is in fact no obligatory requirement for a glycolipid receptor, nor even with a protein receptor in a lipid-rich environment. Emerging data suggests instead that there is no common pathway utilised for retrograde transport by all of these pathogens, the choice of route being determined by the particular receptor utilised.
Collapse
Affiliation(s)
- Robert A Spooner
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel C Smith
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew J Easton
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Lynne M Roberts
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - J Michael Lord
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
54
|
Donoso G, Herzog V, Schmitz A. Misfolded BiP is degraded by a proteasome-independent endoplasmic-reticulum-associated degradation pathway. Biochem J 2006; 387:897-903. [PMID: 15610068 PMCID: PMC1135023 DOI: 10.1042/bj20041312] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Misfolded proteins are removed from the ER (endoplasmic reticulum) by retrotranslocation to the cytosol and degradation by the ubiquitin-proteasome system in a process designated ERAD (ER-associated degradation). Analysing the turnover of a misfolded form of the ER-resident chaperone BiP (heavy-chain binding protein) (BiPDeltaA), we found that the degradation of BiPDeltaA did not follow this general ERAD pathway. In transfected cells, BiPDeltaA was degraded, although proteasome-dependent ERAD was inactivated either by proteasome inhibitors or by ATP depletion. In semi-permeabilized cells, which did not support the degradation of the proteasomal substrate alpha1-antitrypsin, the degradation of BiPDeltaA was still functional, excluding the Golgi apparatus or lysosomes as the degradative compartment. The degradation of BiPDeltaA was recapitulated in biosynthetically loaded brain microsomes and in an extract of luminal ER proteins. In contrast with proteasome-dependent ERAD, degradation fragments were detectable inside the microsomes and in the extract, and the degradation was prevented by a serine protease inhibitor. These results show that the degradation of BiPDeltaA was initiated in the ER lumen by a serine protease, and support the view that proteasome-independent ERAD pathways exist.
Collapse
Affiliation(s)
- Gerda Donoso
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany
| | - Volker Herzog
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany
| | - Anton Schmitz
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
55
|
Guerra L, Teter K, Lilley BN, Stenerlöw B, Holmes RK, Ploegh HL, Sandvig K, Thelestam M, Frisan T. Cellular internalization of cytolethal distending toxin: a new end to a known pathway. Cell Microbiol 2005; 7:921-34. [PMID: 15953025 DOI: 10.1111/j.1462-5822.2005.00520.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cytolethal distending toxins (CDTs) are unique in their ability to induce DNA damage, activate checkpoint responses and cause cell cycle arrest or apoptosis in intoxicated cells. However, little is known about their cellular internalization pathway. We demonstrate that binding of the Haemophilus ducreyi CDT (HdCDT) on the plasma membrane of sensitive cells was abolished by cholesterol extraction with methyl-beta-cyclodextrin. The toxin was internalized via the Golgi complex, and retrogradely transported to the endoplasmic reticulum (ER), as assessed by N-linked glycosylation. Further translocation from the ER did not require the ER-associated degradation (ERAD) pathway, and was Derlin-1 independent. The genotoxic activity of HdCDT was dependent on its internalization and its DNase activity, as induction of DNA double-stranded breaks was prevented in Brefeldin A-treated cells and in cells exposed to a catalytically inactive toxin. Our data contribute to a better understanding of the CDT mode of action and highlight two important aspects of the biology of this bacterial toxin family: (i) HdCDT translocation from the ER to the nucleus does not involve the classical pathways followed by other retrogradely transported toxins and (ii) toxin internalization is crucial for execution of its genotoxic activity.
Collapse
Affiliation(s)
- Lina Guerra
- Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Ricin is a potent, plant-derived, ribosome inactivating protein. To target ribosomes in the mammalian cytosol, ricin must firstly negotiate the endomembrane system of the cell to reach the endoplasmic reticulum. Here, the toxin is reduced and the catalytic A chain is recognised by ER components that facilitate its membrane translocation to the cytosol. To be toxic, ricin A chain must then avoid degradation, a conundrum made more tricky in that ubiquitination and proteasomal degradation are normally tightly coupled to the translocation process. This mini-review summarises current understanding of these events.
Collapse
Affiliation(s)
- Lynne M Roberts
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
57
|
Gorbea C, Goellner GM, Teter K, Holmes RK, Rechsteiner M. Characterization of mammalian Ecm29, a 26 S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 2004; 279:54849-61. [PMID: 15496406 DOI: 10.1074/jbc.m410444200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to its thirty or so core subunits, a number of accessory proteins associate with the 26 S proteasome presumably to assist in substrate degradation or to localize the enzyme within cells. Among these proteins is ecm29p, a 200-kDa yeast protein that contains numerous HEAT repeats as well as a putative VHS domain. Higher eukaryotes possess a well conserved homolog of yeast ecm29p, and we produced antibodies to three peptides in the human Ecm29 sequence. The antibodies show that Ecm29 is present exclusively on 26 S proteasomes in HeLa cells and that Ecm29 levels vary markedly among mouse organs. Confocal immunofluorescence microscopy localizes Ecm29 to the centrosome and a subset of secretory compartments including endosomes, the ER and the ERGIC. Ecm29 is up-regulated 2-3-fold in toxinresistant mutant CHO cells exhibiting increased rates of ER-associated degradation. Based on these results we propose that Ecm29 serves to couple the 26 S proteasome to secretory compartments engaged in quality control and to other sites of enhanced proteolysis.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
58
|
|
59
|
Sun J, Pohl EE, Krylova OO, Krause E, Agapov II, Tonevitsky AG, Pohl P. Membrane destabilization by ricin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 33:572-9. [PMID: 15045473 DOI: 10.1007/s00249-004-0400-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 02/24/2004] [Accepted: 02/26/2004] [Indexed: 10/26/2022]
Abstract
Ricin is a promising candidate for the treatment of cancer because it can be selectively targeted to tumor cells via linkage to monoclonal antibodies. Biochemical evidence suggests that escape of ricin or its ribosome-inactivating subunit from an intracellular compartment is mediated by retrograde transport to the endoplasmic reticulum and subsequent direction into the ER-associated degradation pathway. Alternatively, lipase activity of ricin may facilitate leakage from endocytic vesicles. We have observed ricin-mediated release of macromolecular dyes from lipid vesicles that mimic the composition of endosomal membranes. Release of small molecules occurs to the same extent, suggesting an all-or-none mechanism due to bilayer destabilization. The level of accompanying membrane fusion depends on vesicle composition. Since it takes 24 h of incubation before the first traces of lysolipids are detectable by matrix-assisted laser desorption/ionization mass spectrometry, membrane destabilization is not due to the lipase activity of ricin.
Collapse
Affiliation(s)
- Jan Sun
- Campus Berlin Buch, Forschungsinstitut für Molekulare Pharmakologie, Robert Roessle Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
60
|
McCracken AA, Brodsky JL. Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). Bioessays 2003; 25:868-77. [PMID: 12938176 DOI: 10.1002/bies.10320] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ER-associated degradation (ERAD) is a component of the protein quality control system, ensuring that aberrant polypeptides cannot transit through the secretory pathway. This is accomplished by a complex sequence of events in which unwanted proteins are selected in the ER and exported to the cytosol for degradation by the proteasome. Given that protein quality control can be essential for cell survival, it is not surprising that ERAD is linked to numerous disease states. Here we review the molecular mechanisms of ERAD, its role in metabolic regulation and biomedical implications, and the unanswered questions regarding this process.
Collapse
|
61
|
Teter K, Jobling MG, Holmes RK. A class of mutant CHO cells resistant to cholera toxin rapidly degrades the catalytic polypeptide of cholera toxin and exhibits increased endoplasmic reticulum-associated degradation. Traffic 2003; 4:232-42. [PMID: 12694562 DOI: 10.1034/j.1600-0854.2003.00070.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
After binding to the eukaryotic cell surface, cholera toxin undergoes retrograde transport to the endoplasmic reticulum. The catalytic A1 polypeptide of cholera toxin (CTA1) then crosses the endoplasmic reticulum membrane and enters the cytosol in a process that may involve the quality control mechanism known as endoplasmic reticulum-associated degradation. Other toxins such as Pseudomonas exotoxin A and ricin are also thought to exploit endoplasmic reticulum-associated degradation for entry into the cytosol. To test this model, we mutagenized Chinese hamster ovary cells and selected clones that survived a prolonged coincubation with Pseudomonas exotoxin A and ricin. These lethal endoplasmic reticulum-translocating toxins bind different surface receptors and target different cytosolic substrates, so resistance to both would likely result from disruption of a shared trafficking or translocation event. Here we characterize two Pseudomonas exotoxin A/ricin-resistant clones that exhibited increased endoplasmic reticulum-associated degradation. Both clones acquired the following unselected traits: (i) resistance to cholera toxin; (ii) increased degradation of an endoplasmic reticulum-localized CTA1 construct; (iii) increased degradation of an established endoplasmic reticulum-associated degradation substrate, the Z variant of alpha1-antitrypsin (alpha1AT-Z); and (iv) reduced secretion of both alpha1AT-Z and the transport-competent protein alpha1AT-M. Proteosome inhibition partially rescued the alpha1AT-M secretion deficiencies. However, the mutant clones did not exhibit increased proteosomal activity against cytosolic proteins, including a second CTA1 construct that was expressed in the cytosol rather than in the endoplasmic reticulum. These results suggested that accelerated endoplasmic reticulum-associated degradation in the mutant clones produced a cholera toxin/Pseudomonas exotoxin A/ricin-resistant phenotype by increasing the coupling efficiency between toxin translocation and toxin degradation.
Collapse
Affiliation(s)
- Ken Teter
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver 80262, USA
| | | | | |
Collapse
|
62
|
Abstract
Ricin is a heterodimeric protein produced in the seeds of the castor oil plant (Ricinus communis). It is exquisitely potent to mammalian cells, being able to fatally disrupt protein synthesis by attacking the Achilles heel of the ribosome. For this enzyme to reach its substrate, it must not only negotiate the endomembrane system but it must also cross an internal membrane and avoid complete degradation without compromising its activity in any way. Cell entry by ricin involves a series of steps: (i) binding, via the ricin B chain (RTB), to a range of cell surface glycolipids or glycoproteins having beta-1,4-linked galactose residues; (ii) uptake into the cell by endocytosis; (iii) entry of the toxin into early endosomes; (iv) transfer, by vesicular transport, of ricin from early endosomes to the trans-Golgi network; (v) retrograde vesicular transport through the Golgi complex to reach the endoplasmic reticulum; (vi) reduction of the disulphide bond connecting the ricin A chain (RTA) and the RTB; (vii) partial unfolding of the RTA to render it translocationally-competent to cross the endoplasmic reticulum (ER) membrane via the Sec61p translocon in a manner similar to that followed by misfolded ER proteins that, once recognised, are targeted to the ER-associated protein degradation (ERAD) machinery; (viii) avoiding, at least in part, ubiquitination that would lead to rapid degradation by cytosolic proteasomes immediately after membrane translocation when it is still partially unfolded; (ix) refolding into its protease-resistant, biologically active conformation; and (x) interaction with the ribosome to catalyse the depurination reaction. It is clear that ricin can take advantage of many target cell molecules, pathways and processes. It has been reported that a single molecule of ricin reaching the cytosol can kill that cell as a consequence of protein synthesis inhibition. The ready availability of ricin, coupled to its extreme potency when administered intravenously or if inhaled, has identified this protein toxin as a potential biological warfare agent. Therapeutically, its cytotoxicity has encouraged the use of ricin in 'magic bullets' to specifically target and destroy cancer cells, and the unusual intracellular trafficking properties of ricin potentially permit its development as a vaccine vector. Combining our understanding of the ricin structure with ways to cripple its unwanted properties (its enzymatic activity and promotion of vascular leak whilst retaining protein stability and important immunodominant epitopes), will also be crucial in the development of a long awaited protective vaccine against this toxin.
Collapse
Affiliation(s)
- Michael J Lord
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | | | | | | | | | |
Collapse
|