51
|
Cabrita P, Trigo MJ, Ferreira RB, Brito L. Is the exoproteome important for bacterial pathogenesis? Lessons learned from interstrain exoprotein diversity in Listeria monocytogenes grown at different temperatures. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:553-69. [PMID: 25127015 DOI: 10.1089/omi.2013.0151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial exoproteomes vary in composition and quantity among species and within each species, depending on the environmental conditions to which the cells are exposed. This article critically reviews the literature available on exoproteins synthesized by the foodborne pathogenic bacterium Listeria monocytogenes grown at different temperatures. The main challenges posed for exoproteome analyses and the strategies that are being used to overcome these constraints are discussed. Over thirty exoproteins from L. monocytogenes are considered, and the multifunctionality of some of them is discussed. Thus, at the host temperature of 37°C, good examples are provided by Lmo0443, a potential marker for low virulence, and by the virulence factors internalin C (InlC) and listeriolysin O (LLO). Based on the reported LLO-induced mucin exocytosis, a model is proposed for the involvement of extracellular LLO in optimizing the conditions for InlC intervention in the invasion of intestinal epithelial cells. At lower growth temperatures, exoproteins such as flagellin (FlaA) and oligopeptide permease (OppA) may explain the persistence of particular strains in the food industry environment, eventually allowing the development of new tools to eradicate L. monocytogenes, a major concern for public health.
Collapse
Affiliation(s)
- Paula Cabrita
- 1 CBAA/DRAT-Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon , Lisbon, Portugal
| | | | | | | |
Collapse
|
52
|
Chen M, Wu Q, Zhang J, Guo W, Wu S, Yang X. Prevalence and contamination patterns of Listeria monocytogenes in Flammulina velutipes plants. Foodborne Pathog Dis 2014; 11:620-7. [PMID: 24824447 DOI: 10.1089/fpd.2013.1727] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Four mushroom (Flammulina velutipes) production plants were sampled to investigate the prevalence and contamination source of Listeria monocytogenes. Among 295 samples, the prevalence of L. monocytogenes was 18.6%; the contamination appeared to originate from the mycelium-scraping machinery, contaminating both the product and upstream packaging equipment. Of 55 L. monocytogenes isolates, lineages I.1 (1/2a-3a) and II.2 (1/2b-3b-7) accounted for 65.5% and 34.5%, respectively. In addition, lineage I.1 formed significantly thicker biofilms than those within lineage II.2, as determined by crystal violet staining and scanning electron microscopy. Genotype analyses of L. monocytogenes isolates using enterobacteria repetitive intergenic consensus-polymerase chain reaction, and random amplified polymorphic DNA revealed that the surfaces of mycelium-scraping machinery may serve as the main source of L. monocytogenes contamination in three of the four plants. This study was the first report to explore the potential contamination sources of L. monocytogenes in the mushroom production chain, thereby providing baseline information for adopting prophylactic measures for critical control points during production in mushroom plants to avoid L. monocytogenes contamination.
Collapse
Affiliation(s)
- Moutong Chen
- 1 School of Bioscience and Bioengineering, South China University of Technology , Guangzhou, China
| | | | | | | | | | | |
Collapse
|
53
|
|
54
|
Genomics and Proteomics of Foodborne Microorganisms. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
55
|
|
56
|
Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. mBio 2014; 5:e00969-14. [PMID: 24667708 PMCID: PMC3977354 DOI: 10.1128/mbio.00969-14] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For nearly 3 decades, listeriologists and immunologists have used mainly three strains of the same serovar (1/2a) to analyze the virulence of the bacterial pathogen Listeria monocytogenes. The genomes of two of these strains, EGD-e and 10403S, were released in 2001 and 2008, respectively. Here we report the genome sequence of the third reference strain, EGD, and extensive genomic and phenotypic comparisons of the three strains. Strikingly, EGD-e is genetically highly distinct from EGD (29,016 single nucleotide polymorphisms [SNPs]) and 10403S (30,296 SNPs), and is more related to serovar 1/2c than 1/2a strains. We also found that while EGD and 10403S strains are genetically very close (317 SNPs), EGD has a point mutation in the transcriptional regulator PrfA (PrfA*), leading to constitutive expression of several major virulence genes. We generated an EGD-e PrfA* mutant and showed that EGD behaves like this strain in vitro, with slower growth in broth and higher invasiveness in human cells than those of EGD-e and 10403S. In contrast, bacterial counts in blood, liver, and spleen during infection in mice revealed that EGD and 10403S are less virulent than EGD-e, which is itself less virulent than EGD-e PrfA*. Thus, constitutive expression of PrfA-regulated virulence genes does not appear to provide a significant advantage to the EGD strain during infection in vivo, highlighting the fact that in vitro invasion assays are not sufficient for evaluating the pathogenic potential of L. monocytogenes strains. Together, our results pave the way for deciphering unexplained differences or discrepancies in experiments using different L. monocytogenes strains. Over the past 3 decades, Listeria has become a model organism for host-pathogen interactions, leading to critical discoveries in a broad range of fields, including bacterial gene regulation, cell biology, and bacterial pathophysiology. Scientists studying Listeria use primarily three pathogenic strains: EGD, EGD-e, and 10403S. Despite many studies on EGD, it is the only one of the three strains whose genome has not been sequenced. Here we report the sequence of its genome and a series of important genomic and phenotypic differences between the three strains, in particular, a critical mutation in EGD’s PrfA, the main regulator of Listeria virulence. Our results show that the three strains display differences which may play an important role in the virulence differences observed between the strains. Our findings will be of critical relevance to listeriologists and immunologists who have used or may use Listeria as a tool to study the pathophysiology of listeriosis and immune responses.
Collapse
|
57
|
Greco S, Tolli R, Bossù T, Rodas EMF, Di Giamberardino F, Di Sirio A, Vita S, De Angelis V, Bilei S, Sonnessa M, Gattuso A, Lanni L. Case of contamination by Listeria monocytogenes in mozzarella cheese. Ital J Food Saf 2014; 3:1708. [PMID: 27800317 PMCID: PMC5076667 DOI: 10.4081/ijfs.2014.1708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/24/2022] Open
Abstract
Following a Listeria monocytogenes detection in a mozzarella cheese sampled at a dairy plant in Lazio Region, further investigations have been conducted both by the competent Authority and the food business operatordairy factory (as a part of dairy factory HACCP control). In total, 90 dairy products, 7 brine and 64 environmental samples have been tested. The prevalence of Listeria monocytogenes was 24.4% in mozzarella cheese, and 9.4% in environmental samples, while brines were all negatives. Forty-seven strains of L. monocytogenes have been isolated, all belonging to 4b/4e serotype. In 12 of these, the macrorestriction profile has been determined by means of pulsed field gel electrophoresis. The profiles obtained with AscI enzyme showed a 100% similarity while those obtained with ApaI a 96.78% similarity. These characteristics of the isolated strains jointly with the production process of mozzarella cheese has allowed to hypothesise an environmental contamination.
Collapse
Affiliation(s)
- Sara Greco
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Rita Tolli
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Teresa Bossù
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Eda Maria Flores Rodas
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Fabiola Di Giamberardino
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Alessandro Di Sirio
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Silvia Vita
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Veronica De Angelis
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Stefano Bilei
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Michele Sonnessa
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità , Roma, Italy
| | - Antonietta Gattuso
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità , Roma, Italy
| | - Luigi Lanni
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| |
Collapse
|
58
|
Laksanalamai P, Huang B, Sabo J, Burall LS, Zhao S, Bates J, Datta AR. Genomic characterization of novel Listeria monocytogenes serotype 4b variant strains. PLoS One 2014; 9:e89024. [PMID: 24586485 PMCID: PMC3929640 DOI: 10.1371/journal.pone.0089024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/13/2014] [Indexed: 11/30/2022] Open
Abstract
Over 90% of the human listeriosis cases are caused by Listeria monocytogenes serotypes 1/2a, 1/2b and 4b strains. As an alternative to antigen-antibody based serotyping, a PCR-based method for serogrouping has been developed and validated. In this communication, we report an in-depth analysis of five 4b variant strains, four clinical isolates from Australia and one environmental isolate from USA. Although these five strains were serotype 4b by classical serotyping method, the serogrouping PCR profiles of these strains show the presence of a 1/2a-3a specific amplicon in addition to the standard 4b-4d-4e specific amplicons. These strains were further analyzed by pulsed field gel electrophoresis, binary gene typing, multi-locus variable-number-tandem-repeat analysis and a high density pan-genomic Listeria microarray. Using these sub-typing results, the clinical isolates were grouped into two distinct genomic groups- one of which could be part of an unidentified outbreak. The microarray results when compared with our database of other 4b outbreak isolates indicated that the serotype 4b variant strains represent very different genotypic profiles than the known reported 4b outbreak strains representing major epidemic clones. The acquisition of serotype 1/2a gene clusters by the 4b variant strains appears to be independent in origin, spanning large areas of geographical and temporal space and may indicate predisposition of some 4b strains towards accepting DNA from related organisms.
Collapse
Affiliation(s)
- Pongpan Laksanalamai
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Bixing Huang
- Public Health Microbiology Laboratory, Queensland Health Forensic and Scientific Services, Queensland, Australia
| | - Jonathan Sabo
- Center for Veterinary Medicine, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Laurel S. Burall
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Shaohua Zhao
- Center for Veterinary Medicine, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - John Bates
- Public Health Microbiology Laboratory, Queensland Health Forensic and Scientific Services, Queensland, Australia
| | - Atin R. Datta
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
- * E-mail:
| |
Collapse
|
59
|
Mariscotti JF, Quereda JJ, García-Del Portillo F, Pucciarelli MG. The Listeria monocytogenes LPXTG surface protein Lmo1413 is an invasin with capacity to bind mucin. Int J Med Microbiol 2014; 304:393-404. [PMID: 24572033 DOI: 10.1016/j.ijmm.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023] Open
Abstract
Many Gram-positive bacterial pathogens use surface proteins covalently anchored to the peptidoglycan to cause disease. Bacteria of the genus Listeria have the largest number of surface proteins of this family. Every Listeria genome sequenced to date contains more than forty genes encoding surface proteins bearing anchoring-domains with an LPXTG motif that is recognized for covalent linkage to the peptidoglycan. About one-third of these proteins are present exclusively in pathogenic Listeria species, with some of them acting as adhesins or invasins that promote bacterial entry into eukaryotic cells. Here, we investigated two LPXTG surface proteins of the pathogen L. monocytogenes, Lmo1413 and Lmo2085, of unknown function and absent in non-pathogenic Listeria species. Lack of these two proteins does not affect bacterial adhesion or invasion of host cells using in vitro infection models. However, expression of Lmo1413 promotes entry of the non-invasive species L. innocua into non-phagocytic host cells, an effect not observed with Lmo2085. Moreover, overproduction of Lmo1413, but not Lmo2085, increases the invasion rate in non-phagocytic eukaryotic cells of an L. monocytogenes mutant deficient in the acting-binding protein ActA. Unexpectedly, production of full-length Lmo1413 and InlA exhibited opposite trends in a high percentage of L. monocytogenes isolates obtained from different sources. The idea of Lmo1413 playing a role as a new auxiliary invasin was also sustained by assays revealing that purified Lmo1413 binds to mucin via its MucBP domains. Taken together, these data indicate that Lmo1413, which we rename LmiA, for Listeria-mucin-binding invasin-A, may promote interaction of bacteria with adhesive host protective components and, in this manner, facilitate bacterial entry.
Collapse
Affiliation(s)
- Javier F Mariscotti
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Juan J Quereda
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Francisco García-Del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - M Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular 'Severo Ochoa'-Consejo Superior de Investigaciones Científicas (CBMSO-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
60
|
Osman KM, Zolnikov TR, Samir A, Orabi A. Prevalence, pathogenic capability, virulence genes, biofilm formation, and antibiotic resistance of Listeria in goat and sheep milk confirms need of hygienic milking conditions. Pathog Glob Health 2014; 108:21-9. [PMID: 24548157 PMCID: PMC4083164 DOI: 10.1179/2047773213y.0000000115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Goat and sheep milk is consumed by human populations throughout the world; as a result, it has been proposed as an alternative, nutrient-rich milk to feed infants allergic to cow's milk. Unfortunately, potentially harmful bacteria have not been thoroughly tested in goat or sheep milk. Listeria monocytogenes is a harmful bacterium that causes adverse health effects if ingested by humans. The purpose of this study was to estimate the prevalence and characterize the phenotype, genotype, virulence factors, biofilm formation, and antibiopotential of Listeria isolated from the milk of goat and sheep. Udder milk samples were collected from 107 goats and 102 sheep and screened for mastitis using the California mastitis test (CMT). Samples were then examined for the presence of pathogenic Listeria spp; if detected, the isolation of pathogenic Listeria (L. monocytogenes and Listeria ivanovii) was completed using isolation and identification techniques recommended by the International Organization for Standards (ISO 11290-1, 1996), in addition to serological, in vitro and in vivo pathogenicity tests. The isolates were subjected to PCR assay for virulence associated genes (hlyA, plcA, actA, and iap). Pathogenic Listeria spp. were isolated from 5·6% of goat and 3·9% sheep milk samples, with 33·3 and 25% of these selected samples respectively containing L. monocytogenes. The results of this study provide evidence of the low-likelihood of contamination leading to the presence of L. monocytogenes in raw goat and sheep milk; however, this study also confirmed a strong in vitro ability for biofilm formation and pathogenic capability of L. monocytogenes if discovered in the milk. L. monocytogenes may be present in goat and sheep milk and in order to reduce the exposure, hygienic milking conditions must be employed for the milk to be considered a safe alternative for human consumption.
Collapse
|
61
|
Abstract
Nucleotide sequence-based methods focusing on the single nucleotide polymorphisms (SNPs) of Listeria monocytogenes housekeeping genes facilitate the rapid and interlaboratory comparison on open accessible databases, such as the multilocus sequence typing (MLST) databases that are available. MLST has advantages over other methods as it can reconstruct ancestral and evolutionary linkage between L. monocytogenes isolates. MLST detects all genetic variations within the amplified housekeeping gene that accumulate slowly. This chapter describes how to undertake MLST.
Collapse
Affiliation(s)
- Beatrix Stessl
- Department of Veterinary Public Health and Food Science, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria,
| | | | | |
Collapse
|
62
|
Vivant AL, Garmyn D, Piveteau P. Listeria monocytogenes, a down-to-earth pathogen. Front Cell Infect Microbiol 2013; 3:87. [PMID: 24350062 PMCID: PMC3842520 DOI: 10.3389/fcimb.2013.00087] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/08/2013] [Indexed: 11/23/2022] Open
Abstract
Listeria monocytogenes is the causative agent of the food-borne life threatening disease listeriosis. This pathogenic bacterium received much attention in the endeavor of deciphering the cellular mechanisms that underlie the onset of infection and its ability to adapt to the food processing environment. Although information is available on the presence of L. monocytogenes in many environmental niches including soil, water, plants, foodstuff and animals, understanding the ecology of L. monocytogenes in outdoor environments has received less attention. Soil is an environmental niche of pivotal importance in the transmission of this bacterium to plants and animals. Soil composition, microbial communities and macrofauna are extrinsic edaphic factors that direct the fate of L. monocytogenes in the soil environment. Moreover, farming practices may further affect its incidence. The genome of L. monocytogenes presents an extensive repertoire of genes encoding transport proteins and regulators, a characteristic of the genome of ubiquitous bacteria. Postgenomic analyses bring new insights in the process of soil adaptation. In the present paper focussing on soil, we review these extrinsic and intrinsic factors that drive environmental adaptation of L. monocytogenes.
Collapse
Affiliation(s)
- Anne-Laure Vivant
- UMR1347 Agroécologie, Université de BourgogneDijon, France
- UMR1347 Agroécologie, INRADijon, France
| | - Dominique Garmyn
- UMR1347 Agroécologie, Université de BourgogneDijon, France
- UMR1347 Agroécologie, INRADijon, France
| | - Pascal Piveteau
- UMR1347 Agroécologie, Université de BourgogneDijon, France
- UMR1347 Agroécologie, INRADijon, France
| |
Collapse
|
63
|
Holton TA, Vijayakumar V, Khaldi N. Bioinformatics: Current perspectives and future directions for food and nutritional research facilitated by a Food-Wiki database. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
64
|
Lianou A, Koutsoumanis KP. Strain variability of the behavior of foodborne bacterial pathogens: A review. Int J Food Microbiol 2013; 167:310-21. [DOI: 10.1016/j.ijfoodmicro.2013.09.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
65
|
Liu D. Molecular approaches to the identification of pathogenic and nonpathogenic listeriae. Microbiol Insights 2013; 6:59-69. [PMID: 24826075 PMCID: PMC3987759 DOI: 10.4137/mbi.s10880] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genus Listeria consists of a closely related group of Gram-positive bacteria that commonly occur in the environment and demonstrate varied pathogenic potential. Of the 10 species identified to date, L. monocytogenes is a facultative intracellular pathogen of both humans and animals, L. ivanovii mainly infects ungulates (eg., sheep and cattle), while other species (L. innocua, L. seeligeri, L. welshimeri, L. grayi, L. marthii, L. rocourtiae, L. fleischmannii and L. weihenstephanensis) are essentially saprophytes. Within the species of L. monocytogenes, several serovars (e.g., 4b, 1/2a, 1/2b and 1/2c) are highly pathogenic and account for a majority of clinical isolations. Due to their close morphological, biological, biochemical and genetic similarities, laboratory identification of pathogenic and nonpathogenic Listeria organisms is technically challenging. With the development and application of various molecular approaches, accurate and rapid discrimination of pathogenic and nonpathogenic Listeria organisms, as well as pathogenic and nonpathogenic L. monocytogenes strains, has become possible.
Collapse
Affiliation(s)
- Dongyou Liu
- Royal College of Pathologists of Australasia Biosecurity Quality Assurance Programs, NSW, Australia
| |
Collapse
|
66
|
den Bakker HC, Desjardins CA, Griggs AD, Peters JE, Zeng Q, Young SK, Kodira CD, Yandava C, Hepburn TA, Haas BJ, Birren BW, Wiedmann M. Evolutionary dynamics of the accessory genome of Listeria monocytogenes. PLoS One 2013; 8:e67511. [PMID: 23825666 PMCID: PMC3692452 DOI: 10.1371/journal.pone.0067511] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 05/23/2013] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes, a foodborne bacterial pathogen, is comprised of four phylogenetic lineages that vary with regard to their serotypes and distribution among sources. In order to characterize lineage-specific genomic diversity within L. monocytogenes, we sequenced the genomes of eight strains from several lineages and serotypes, and characterized the accessory genome, which was hypothesized to contribute to phenotypic differences across lineages. The eight L. monocytogenes genomes sequenced range in size from 2.85-3.14 Mb, encode 2,822-3,187 genes, and include the first publicly available sequenced representatives of serotypes 1/2c, 3a and 4c. Mapping of the distribution of accessory genes revealed two distinct regions of the L. monocytogenes chromosome: an accessory-rich region in the first 65° adjacent to the origin of replication and a more stable region in the remaining 295°. This pattern of genome organization is distinct from that of related bacteria Staphylococcus aureus and Bacillus cereus. The accessory genome of all lineages is enriched for cell surface-related genes and phosphotransferase systems, and transcriptional regulators, highlighting the selective pressures faced by contemporary strains from their hosts, other microbes, and their environment. Phylogenetic analysis of O-antigen genes and gene clusters predicts that serotype 4 was ancestral in L. monocytogenes and serotype 1/2 associated gene clusters were putatively introduced through horizontal gene transfer in the ancestral population of L. monocytogenes lineage I and II.
Collapse
Affiliation(s)
- Henk C den Bakker
- Department of Food Science, Cornell University, Ithaca, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Quereda JJ, Pucciarelli MG, Botello-Morte L, Calvo E, Carvalho F, Bouchier C, Vieira A, Mariscotti JF, Chakraborty T, Cossart P, Hain T, Cabanes D, García-Del Portillo F. Occurrence of mutations impairing sigma factor B (SigB) function upon inactivation of Listeria monocytogenes genes encoding surface proteins. MICROBIOLOGY-SGM 2013; 159:1328-1339. [PMID: 23657685 DOI: 10.1099/mic.0.067744-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria of the genus Listeria contain the largest family of LPXTG surface proteins covalently anchored to the peptidoglycan. The extent to which these proteins may function or be regulated cooperatively is at present unknown. Because of their unique cellular location, we reasoned that distinct LPXTG proteins could act as elements contributing to cell wall homeostasis or influencing the stability of other surface proteins bound to peptidoglycan. To test this hypothesis, we used proteomics to analyse mutants of the intracellular pathogen Listeria monocytogenes lacking distinct LPXTG proteins implicated in pathogen-host interactions, such as InlA, InlF, InlG, InlH, InlJ, LapB and Vip. Changes in the cell wall proteome were found in inlG and vip mutants, which exhibited reduced levels of the LPXTG proteins InlH, Lmo0610, Lmo0880 and Lmo2085, all regulated by the stress-related sigma factor SigB. The ultimate basis of this alteration was uncovered by genome sequencing, which revealed that these inlG and vip mutants carried loss-of-function mutations in the rsbS, rsbU and rsbV genes encoding regulatory proteins that control SigB activity. Attempts to recapitulate this negative selection of SigB in a large series of new inlG or vip mutants constructed for this purpose were, however, unsuccessful. These results indicate that inadvertent secondary mutations affecting SigB functionality can randomly arise in L. monocytogenes when using common genetic procedures or during subculturing. Testing of SigB activity could be therefore valuable when manipulating genetically L. monocytogenes prior to any subsequent phenotypic analysis. This test may be even more justified when generating deletions affecting cell envelope components.
Collapse
Affiliation(s)
- Juan J Quereda
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - M Graciela Pucciarelli
- Departamento de Biología Molecular, Universidad Autónoma de Madrid. Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC), 28049 Madrid, Spain.,Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Laura Botello-Morte
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Enrique Calvo
- Unidad de Proteómica, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Filipe Carvalho
- Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Christiane Bouchier
- Institut Pasteur, Plate-forme PF1 Génomique, Département Génomes et Génétique, Paris, France
| | - Ana Vieira
- Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Javier F Mariscotti
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, D-35392, Germany
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut National de la Santé et de la Recherche Médicale (INSERM) U604, Institut Pasteur, and the Institut Scientifique de Recherche Agronomique (INRA) USC2020, Institut Pasteur, Paris F-75015, France
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, D-35392, Germany
| | - Didier Cabanes
- Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
68
|
Holch A, Webb K, Lukjancenko O, Ussery D, Rosenthal BM, Gram L. Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart. Appl Environ Microbiol 2013; 79:2944-51. [PMID: 23435887 PMCID: PMC3623136 DOI: 10.1128/aem.03715-12] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/16/2013] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a food-borne human-pathogenic bacterium that can cause infections with a high mortality rate. It has a remarkable ability to persist in food processing facilities. Here we report the genome sequences for two L. monocytogenes strains (N53-1 and La111) that were isolated 6 years apart from two different Danish fish processers. Both strains are of serotype 1/2a and belong to a highly persistent DNA subtype (random amplified polymorphic DNA [RAPD] type 9). We demonstrate using in silico analyses that both strains belong to the multilocus sequence typing (MLST) type ST121 that has been isolated as a persistent subtype in several European countries. The purpose of this study was to use genome analyses to identify genes or proteins that could contribute to persistence. In a genome comparison, the two persistent strains were extremely similar and collectively differed from the reference lineage II strain, EGD-e. Also, they differed markedly from a lineage I strain (F2365). On the proteome level, the two strains were almost identical, with a predicted protein homology of 99.94%, differing at only 2 proteins. No single-nucleotide polymorphism (SNP) differences were seen between the two strains; in contrast, N53-1 and La111 differed from the EGD-e reference strain by 3,942 and 3,471 SNPs, respectively. We included a persistent L. monocytogenes strain from the United States (F6854) in our comparisons. Compared to nonpersistent strains, all three persistent strains were distinguished by two genome deletions: one, of 2,472 bp, typically contains the gene for inlF, and the other, of 3,017 bp, includes three genes potentially related to bacteriocin production and transport (lmo2774, lmo2775, and the 3'-terminal part of lmo2776). Further studies of highly persistent strains are required to determine if the absence of these genes promotes persistence. While the genome comparison did not point to a clear physiological explanation of the persistent phenotype, the remarkable similarity between the two strains indicates that subtypes with specific traits are selected for in the food processing environment and that particular genetic and physiological factors are responsible for the persistent phenotype.
Collapse
Affiliation(s)
- Anne Holch
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kristen Webb
- Department of Biology, Allegheny College, Meadville, Pennsylvania, USA
| | - Oksana Lukjancenko
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - David Ussery
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Benjamin M. Rosenthal
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
69
|
Kuenne C, Billion A, Mraheil MA, Strittmatter A, Daniel R, Goesmann A, Barbuddhe S, Hain T, Chakraborty T. Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics 2013; 14:47. [PMID: 23339658 PMCID: PMC3556495 DOI: 10.1186/1471-2164-14-47] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/15/2012] [Indexed: 12/14/2022] Open
Abstract
Background Listeria monocytogenes is an important food-borne pathogen and model organism for host-pathogen interaction, thus representing an invaluable target considering research on the forces governing the evolution of such microbes. The diversity of this species has not been exhaustively explored yet, as previous efforts have focused on analyses of serotypes primarily implicated in human listeriosis. We conducted complete genome sequencing of 11 strains employing 454 GS FLX technology, thereby achieving full coverage of all serotypes including the first complete strains of serotypes 1/2b, 3c, 3b, 4c, 4d, and 4e. These were comparatively analyzed in conjunction with publicly available data and assessed for pathogenicity in the Galleria mellonella insect model. Results The species pan-genome of L. monocytogenes is highly stable but open, suggesting an ability to adapt to new niches by generating or including new genetic information. The majority of gene-scale differences represented by the accessory genome resulted from nine hyper variable hotspots, a similar number of different prophages, three transposons (Tn916, Tn554, IS3-like), and two mobilizable islands. Only a subset of strains showed CRISPR/Cas bacteriophage resistance systems of different subtypes, suggesting a supplementary function in maintenance of chromosomal stability. Multiple phylogenetic branches of the genus Listeria imply long common histories of strains of each lineage as revealed by a SNP-based core genome tree highlighting the impact of small mutations for the evolution of species L. monocytogenes. Frequent loss or truncation of genes described to be vital for virulence or pathogenicity was confirmed as a recurring pattern, especially for strains belonging to lineages III and II. New candidate genes implicated in virulence function were predicted based on functional domains and phylogenetic distribution. A comparative analysis of small regulatory RNA candidates supports observations of a differential distribution of trans-encoded RNA, hinting at a diverse range of adaptations and regulatory impact. Conclusions This study determined commonly occurring hyper variable hotspots and mobile elements as primary effectors of quantitative gene-scale evolution of species L. monocytogenes, while gene decay and SNPs seem to represent major factors influencing long-term evolution. The discovery of common and disparately distributed genes considering lineages, serogroups, serotypes and strains of species L. monocytogenes will assist in diagnostic, phylogenetic and functional research, supported by the comparative genomic GECO-LisDB analysis server (http://bioinfo.mikrobio.med.uni-giessen.de/geco2lisdb).
Collapse
Affiliation(s)
- Carsten Kuenne
- Institute of Medical Microbiology, German Centre for Infection Research, Justus-Liebig-University, D-35392, Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Datta AR, Laksanalamai P, Solomotis M. Recent developments in molecular sub-typing of Listeria monocytogenes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 30:1437-45. [PMID: 23061558 DOI: 10.1080/19440049.2012.728722] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As a vast majority of the human listeriosis cases are caused by serotypes 1/2a, 1/2b and 4b strains, it is imperative that strains from clinical as well as from food and environment are further characterised so that accurate and timely epidemiological determination of sources of the contamination can be established to minimise the disease burden. Recent developments in the field of genomics provide a great opportunity to use these tools towards the development of molecular sub-typing techniques with a greater degree of discrimination spanning the entire length of the genome. This brief review summarises a few of these DNA-based techniques with an emphasis on DNA microarray and other whole genome sequencing-based approaches and their usefulness in Listeria monocytogenes sub-typing and outbreak investigations.
Collapse
Affiliation(s)
- Atin R Datta
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, USA.
| | | | | |
Collapse
|
71
|
García-Del Portillo F, Pucciarelli MG. Remodeling of the Listeria monocytogenes cell wall inside eukaryotic cells. Commun Integr Biol 2012; 5:160-2. [PMID: 22808321 PMCID: PMC3376052 DOI: 10.4161/cib.18678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Listeria monocytogenes is an intracellular Gram-positive bacterial pathogen that produces many types of surface proteins. To get insights into its intracellular lifestyle, we used high-resolution mass spectrometry to characterize the cell wall proteome of bacteria proliferating within the eukaryotic cell. The relative amount of a few surface proteins was found notoriously different in intracellular bacteria. Internalin A (InlA), which is covalently bound to the peptidoglycan and plays a central role in bacterial entry into non-phagocytic eukaryotic cells, was present in high amounts in the cell wall of intracellular bacteria. Our study also revealed that the actin assembly-inducing protein ActA co-purified with peptidoglycan isolated from intracellular bacteria. Growth of L. monocytogenes in minimal media reproduced the predominance of InlA in the cell wall and the association of ActA with peptidoglycan. Intriguingly, bacteria grown in this condition used ActA for efficient invasion of host cells. These findings suggest that the adaptation of L. monocytogenes to the intracellular lifestyle involves changes in the relative abundance of certain surface proteins and in their mode of association to the peptidoglycan. These alterations, probably promoted by yet-unknown changes in the cell wall architecture, may instruct these proteins to perform different functions outside and inside the host cell.
Collapse
|
72
|
Chen J, Cheng C, Lv Y, Fang W. Genetic diversity of internalin genes in theascB-dapElocus amongListeria monocytogeneslineages III and IV strains. J Basic Microbiol 2012; 53:778-84. [DOI: 10.1002/jobm.201200137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/20/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Jianshun Chen
- Zhejiang Fisheries Technical Extension Center, and Zhejiang Aquatic Disease Prevention and Quarantine Center; Hangzhou Zhejiang, P.R. China
| | - Changyong Cheng
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine; Hangzhou Zhejiang, P.R. China
| | - Yonghui Lv
- National Fisheries Technical Extension Center; Beijing P.R. China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine; Hangzhou Zhejiang, P.R. China
| |
Collapse
|
73
|
Milillo SR, Friedly EC, Saldivar JC, Muthaiyan A, O'bryan C, Crandall PG, Johnson MG, Ricke SC. A Review of the Ecology, Genomics, and Stress Response ofListeria innocuaandListeria monocytogenes. Crit Rev Food Sci Nutr 2012; 52:712-25. [DOI: 10.1080/10408398.2010.507909] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
74
|
Wieczorek K, Dmowska K, Osek J. Characterization and antimicrobial resistance of Listeria monocytogenes isolated from retail beef meat in Poland. Foodborne Pathog Dis 2012; 9:681-5. [PMID: 22827491 DOI: 10.1089/fpd.2012.1137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Four hundred seventeen retail beef meat samples purchased in the eastern part of Poland during October 2009 to January 2011 were tested for the presence of Listeria monocytogenes. It was found that 81 (19.4%) of them were positive for this microorganism as identified by the culture and polymerase chain reaction (PCR) methods. Molecular serotyping performed by PCR revealed that the majority of the isolates (50 strains; 61.7%) were of 1/2a serotype. Furthermore, 26 (32.1%) L. monocytogenes strains were classified as 1/2c serotype, and only five strains belonged to serotypes 1/2b or 4b (four and one isolates, respectively). All the isolates were positive for the inlA, inlC, inlJ, and lmo2672 sequences, whereas two L. monocytogenes (both of 4b serotype) had another virulence marker gene--llsX. The results of the antimicrobial resistance revealed that the strains were sensitive to most of the antimicrobials used in the study except oxacillin (62.7% resistant strains). Several isolates (17.3%) were also resistant to ceftriaxone. Our results indicate that L. monocytogenes identified in raw beef meat possessed virulence markers that make them potentially pathogenic for humans. Therefore, this kind of food may create a public health concern.
Collapse
Affiliation(s)
- Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | | | | |
Collapse
|
75
|
Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol Syst Biol 2012; 8:583. [PMID: 22617957 PMCID: PMC3377988 DOI: 10.1038/msb.2012.11] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/09/2012] [Indexed: 11/18/2022] Open
Abstract
Comparative RNA-seq analysis of two related pathogenic and non-pathogenic bacterial strains reveals a hidden layer of divergence in the non-coding genome as well as conserved, widespread regulatory structures called ‘Excludons', which mediate regulation through long non-coding antisense RNAs. ![]()
Comparative transcriptome sequencing of two closely related bacterial strains reveals a hidden layer of divergence in the non-coding genome. Pathogen-specific non-coding RNAs, which might contribute to virulence, are revealed. The Listeria genome contains a class of unusually long antisense RNAs (lasRNAs) which spans divergent genes and repress expression of the genes located opposite to them while activating the other. The genetic organization of these lasRNAs and operon was named an excludon. The exhaustive transcriptome information from this publication is provided as an open resource with a web-accessible transcriptome browser.
Listeria monocytogenes is a human, food-borne pathogen. Genomic comparisons between L. monocytogenes and Listeria innocua, a closely related non-pathogenic species, were pivotal in the identification of protein-coding genes essential for virulence. However, no comprehensive comparison has focused on the non-coding genome. We used strand-specific cDNA sequencing to produce genome-wide transcription start site maps for both organisms, and developed a publicly available integrative browser to visualize and analyze both transcriptomes in different growth conditions and genetic backgrounds. Our data revealed conservation across most transcripts, but significant divergence between the species in a subset of non-coding RNAs. In L. monocytogenes, we identified 113 small RNAs (33 novel) and 70 antisense RNAs (53 novel), significantly increasing the repertoire of ncRNAs in this species. Remarkably, we identified a class of long antisense transcripts (lasRNAs) that overlap one gene while also serving as the 5′ UTR of the adjacent divergent gene. Experimental evidence suggests that lasRNAs transcription inhibits expression of one operon while activating the expression of another. Such a lasRNA/operon structure, that we named ‘excludon', might represent a novel form of regulation in bacteria.
Collapse
|
76
|
Faith NG, Kim JW, Azizoglu R, Kathariou S, Czuprynski C. Purine Biosynthesis Mutants (purAandpurB) of Serotype 4bListeria monocytogenesAre Severely Attenuated for Systemic Infection in Intragastrically Inoculated A/J Mice. Foodborne Pathog Dis 2012; 9:480-6. [DOI: 10.1089/fpd.2011.1013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nancy G. Faith
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, Wisconsin
- Food Research Institute, University of Wisconsin—Madison, Madison, Wisconsin
| | - Jae-Won Kim
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Reha Azizoglu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Sophia Kathariou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Charles Czuprynski
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, Wisconsin
- Food Research Institute, University of Wisconsin—Madison, Madison, Wisconsin
| |
Collapse
|
77
|
Hain T, Ghai R, Billion A, Kuenne CT, Steinweg C, Izar B, Mohamed W, Mraheil MA, Domann E, Schaffrath S, Kärst U, Goesmann A, Oehm S, Pühler A, Merkl R, Vorwerk S, Glaser P, Garrido P, Rusniok C, Buchrieser C, Goebel W, Chakraborty T. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics 2012; 13:144. [PMID: 22530965 PMCID: PMC3464598 DOI: 10.1186/1471-2164-13-144] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 04/12/2012] [Indexed: 12/13/2022] Open
Abstract
Background Listeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99) and 4b (CLIP80459), and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans. Results The genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model. Conclusion Comparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence of attenuated lineages.
Collapse
Affiliation(s)
- Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig-University, Schubertstrasse 81, Giessen, D-35392, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
High density microarray analysis reveals new insights into genetic footprints of Listeria monocytogenes strains involved in listeriosis outbreaks. PLoS One 2012; 7:e32896. [PMID: 22457724 PMCID: PMC3310058 DOI: 10.1371/journal.pone.0032896] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/07/2012] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes, a foodborne bacterial pathogen, causes invasive and febrile gastroenteritis forms of listeriosis in humans. Both invasive and febrile gastroenteritis listeriosis is caused mostly by serotypes 1/2a, 1/2b and 4b strains. The outbreak strains of serotype 1/2a and 4b could be further classified into several epidemic clones but the genetic bases for the diverse pathophysiology have been unsuccessful. DNA microarray provides an important tool to scan the entire genome for genetic signatures that may distinguish the L. monocytogenes strains belonging to different outbreaks. We have designed a pan-genomic microarray chip (Listeria GeneChip) containing sequences from 24 L. monocytogenes strains. The chip was designed to identify the presence/absence of genomic sequences, analyze transcription profiles and identify SNPs. Analysis of the genomic profiles of 38 outbreak strains representing 1/2a, 1/2b and 4b serotypes, revealed that the strains formed distinct genetic clusters adhering to their serotypes and epidemic clone types. Although serologically 1/2a and 1/b strains share common antigenic markers microarray analysis revealed that 1/2a strains are further apart from the closely related 1/2b and 4b strains. Within any given serotype and epidemic clone type the febrile gastroenteritis and invasive strains can be further distinguished based on several genetic markers including large numbers of phage genome, and intergenic sequences. Our results showed that the microarray-based data can be an important tool in characterization of L. monocytogenes strains involved in both invasive and gastroenteritis outbreaks. The results for the first time showed that the serotypes and epidemic clones are based on extensive pan-genomic variability and the 1/2b and 4bstrains are more closely related to each other than the 1/2a strains. The data also supported the hypothesis that the strains causing these two diverse outbreaks are genotypically different and this finding might be important in understanding the pathophysiology of this organism.
Collapse
|
79
|
Prevalence, characterization, and antimicrobial resistance of Listeria monocytogenes isolates from bovine hides and carcasses. Appl Environ Microbiol 2012; 78:2043-5. [PMID: 22247138 DOI: 10.1128/aem.07156-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes isolates from bovine hides and carcasses (n = 812) were mainly of serogroup 1/2a. All strains were positive for internalin genes. Several isolates were resistant to oxacillin (72.2%) or clindamycin (37.0%). These findings indicate that L. monocytogenes of beef origin can be considered a public health concern.
Collapse
|
80
|
Jadhav S, Bhave M, Palombo EA. Methods used for the detection and subtyping of Listeria monocytogenes. J Microbiol Methods 2012; 88:327-41. [PMID: 22261140 DOI: 10.1016/j.mimet.2012.01.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/30/2011] [Accepted: 01/03/2012] [Indexed: 11/16/2022]
Abstract
Listeria monocytogenes is an important foodborne pathogen responsible for non-invasive and invasive diseases in the elderly, pregnant women, neonates and immunocompromised populations. This bacterium has many similarities with other non-pathogenic Listeria species which makes its detection from food and environmental samples challenging. Subtyping of L. monocytogenes strains can prove to be crucial in epidemiological investigations, source tracking contamination from food processing plants and determining evolutionary relationships between different strains. In recent years there has been a shift towards the use of molecular subtyping. This has led to the development of new subtyping techniques such as multi-locus variable number tandem repeat analysis (MLVA) and multi-locus sequence based typing (MLST). This review focuses on the available methods for Listeria detection including immuno-based techniques and the more recently developed molecular methods and analytical techniques such as matrix-assisted laser desorption/ionisation time-of-flight based mass spectrometry (MALDI-TOF MS). It also includes a comparison and critical analysis of the available phenotypic and genotypic subtyping techniques that have been investigated for L. monocytogenes.
Collapse
Affiliation(s)
- Snehal Jadhav
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122, Victoria, Australia
| | | | | |
Collapse
|
81
|
Atypical Listeria monocytogenes serotype 4b strains harboring a lineage II-specific gene cassette. Appl Environ Microbiol 2011; 78:660-7. [PMID: 22138999 DOI: 10.1128/aem.06378-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a severe food-borne illness. The population of L. monocytogenes is divided into four lineages (I to IV), and serotype 4b in lineage I has been involved in numerous outbreaks. Several serotype 4b epidemic-associated clonal groups (ECI, -II, and -Ia) have been identified. In this study, we characterized a panel of strains of serotype 4b that produced atypical results with a serotype-specific multiplex PCR and possessed the lmo0734 to lmo0739 gene cassette that had been thought to be specific to lineage II. The cassette was harbored in a genomically syntenic locus in these isolates and in lineage II strains. Three distinct clonal groups (groups 1 to 3) were identified among these isolates based on single-nucleotide polymorphism-based multilocus genotyping (MLGT) and DNA hybridization data. Groups 1 and 2 had MLGT haplotypes previously encountered among clinical isolates and were composed of clinical isolates from multiple states in the United States. In contrast, group 3 consisted of clinical and environmental isolates solely from North Carolina and exhibited a novel haplotype. In addition, all group 3 isolates had DNA that was resistant to MboI, suggesting methylation of adenines at GATC sites. Sequence analysis of the lmo0734 to lmo0739 gene cassette from two strains (group 1 and group 3) revealed that the genes were highly conserved (>99% identity). The data suggest relatively recent horizontal gene transfer from lineage II L. monocytogenes into L. monocytogenes serotype 4b and subsequent dissemination among at least three distinct clonal groups of L. monocytogenes serotype 4b, one of which exhibits restrictions in regional distribution.
Collapse
|
82
|
Mishra KK, Mendonca M, Aroonnual A, Burkholder KM, Bhunia AK. Genetic organization and molecular characterization of secA2 locus in Listeria species. Gene 2011; 489:76-85. [DOI: 10.1016/j.gene.2011.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/13/2011] [Accepted: 08/25/2011] [Indexed: 12/01/2022]
|
83
|
Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci U S A 2011; 108:19484-91. [PMID: 22114192 DOI: 10.1073/pnas.1112371108] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes has, in 25 y, become a model in infection biology. Through the analysis of both its saprophytic life and infectious process, new concepts in microbiology, cell biology, and pathogenesis have been discovered. This review will update our knowledge on this intracellular pathogen and highlight the most recent breakthroughs. Promising areas of investigation such as the increasingly recognized relevance for the infectious process, of RNA-mediated regulations in the bacterium, and the role of bacterially controlled posttranslational and epigenetic modifications in the host will also be discussed.
Collapse
|
84
|
Zhao H, Chen J, Fang C, Xia Y, Cheng C, Jiang L, Fang W. Deciphering the biodiversity of Listeria monocytogenes lineage III strains by polyphasic approaches. J Microbiol 2011; 49:759-67. [PMID: 22068492 DOI: 10.1007/s12275-011-1006-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/19/2011] [Indexed: 11/25/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen of humans and animals. The majority of human listeriosis cases are caused by strains of lineages I and II, while lineage III strains are rare and seldom implicated in human listeriosis. We revealed by 16S rRNA sequencing the special evolutionary status of L. monocytogenes lineage III, which falls between lineages I and II strains of L. monocytogenes and the non-pathogenic species L. innocua and L. marthii in the dendrogram. Thirteen lineage III strains were then characterized by polyphasic approaches. Biochemical reactions demonstrated 8 biotypes, internalin profiling identified 10 internal-in types clustered in 4 groups, and multilocus sequence typing differentiated 12 sequence types. These typing schemes show that lineage III strains represent the most diverse population of L. monocytogenes, and comprise at least four subpopulations IIIA-1, IIIA-2, HIB, and IIIC. The in vitro and in vivo virulence assessments showed that two lineage IIIA-2 strains had reduced pathogenicity, while the other lineage III strains had comparable virulence to lineages I and II. The HIB strains are phylogenetically distinct from other sub-populations, providing additional evidence that this sublineage represents a novel lineage. The two biochemical reactions L-rhamnose and L-lactate alkalinization, and 10 internalins were identified as potential markers for lineage III subpopulations. This study provides new insights into the biodiversity and population structure of lineage III strains, which are important for understanding the evolution of the L. mono-cytogenes-L. innocua clade.
Collapse
Affiliation(s)
- Hanxin Zhao
- Zhejiang University Institute of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310029, P. R. China
| | | | | | | | | | | | | |
Collapse
|
85
|
Markkula A, Lindström M, Korkeala H. Listeria monocytogenes Serotypes 1/2c and 3c Possess inlH. Foodborne Pathog Dis 2011. [DOI: 10.1089/fpd.2010.0830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Annukka Markkula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
86
|
Proteomic expression profiles of virulent and avirulent strains of Listeria monocytogenes isolated from macrophages. J Proteomics 2011; 74:1906-17. [DOI: 10.1016/j.jprot.2011.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 11/20/2022]
|
87
|
García-del Portillo F, Calvo E, D'Orazio V, Pucciarelli MG. Association of ActA to peptidoglycan revealed by cell wall proteomics of intracellular Listeria monocytogenes. J Biol Chem 2011; 286:34675-89. [PMID: 21846725 DOI: 10.1074/jbc.m111.230441] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular bacterial pathogen that colonizes the cytosol of eukaryotic cells. Recent transcriptomic studies have revealed that intracellular L. monocytogenes alter expression of genes encoding envelope components. However, no comparative global analysis of this cell wall remodeling process is yet known at the protein level. Here, we used high resolution mass spectrometry to define the cell wall proteome of L. monocytogenes growing inside epithelial cells. When compared with extracellular bacteria growing in a nutrient-rich medium, a major difference found in the proteome was the presence of the actin assembly-inducing protein ActA in peptidoglycan purified from intracellular bacteria. ActA was also identified in the peptidoglycan of extracellular bacteria growing in a chemically defined minimal medium. In this condition, ActA maintains its membrane anchoring domain and promotes efficient bacterial entry into nonphagocytic host cells. Unexpectedly, Internalin-A, which mediates entry of extracellular L. monocytogenes into eukaryotic cells, was identified at late infection times (6 h) as an abundant protein in the cell wall of intracellular bacteria. Other surface proteins covalently bound to the peptidoglycan, as Lmo0514 and Lmo2085, were detected exclusively in intracellular and extracellular bacteria, respectively. Altogether, these data provide the first insights into the changes occurring at the protein level in the L. monocytogenes cell wall as the pathogen transits from the extracellular environment to an intracytosolic lifestyle inside eukaryotic cells. Some of these changes include alterations in the relative amount and the mode of association of certain surface proteins.
Collapse
Affiliation(s)
- Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
88
|
Molloy EM, Cotter PD, Hill C, Mitchell DA, Ross RP. Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 2011; 9:670-81. [PMID: 21822292 DOI: 10.1038/nrmicro2624] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Streptolysin S (SLS) is a potent cytolytic toxin and virulence factor that is produced by nearly all Streptococcus pyogenes strains. Despite a 100-year history of research on this toxin, it has only recently been established that SLS is just one of an extended family of post-translationally modified virulence factors (the SLS-like peptides) that are produced by some streptococci and other Gram-positive pathogens, such as Listeria monocytogenes and Clostridium botulinum. In this Review, we describe the identification, genetics, biochemistry and various functions of SLS. We also discuss the shared features of the virulence-associated SLS-like peptides, as well as their place within the rapidly expanding family of thiazole/oxazole-modified microcins (TOMMs).
Collapse
Affiliation(s)
- Evelyn M Molloy
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
89
|
Novel multiplex single nucleotide polymorphism-based method for identifying epidemic clones of Listeria monocytogenes. Appl Environ Microbiol 2011; 77:6290-4. [PMID: 21742911 DOI: 10.1128/aem.00429-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A novel primer extension-based, multiplex minisequencing assay targeting six highly informative single nucleotide polymorphisms (SNPs) in four virulence genes correctly identified and differentiated all four epidemic clones (ECs) of Listeria monocytogenes and 9 other strains initially misclassified as non-ECs. This assay allows rapid, accurate, and high-throughput screening for all known ECs of L. monocytogenes.
Collapse
|
90
|
Evidence of autoinduction heterogeneity via expression of the Agr system of Listeria monocytogenes at the single-cell level. Appl Environ Microbiol 2011; 77:6286-9. [PMID: 21724873 DOI: 10.1128/aem.02891-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To investigate if the primary function of the Agr system of Listeria monocytogenes is to monitor cell density, we followed Agr expression in batch cultures, in which the autoinducer concentration was uniform, and in biofilms. Expression was heterogeneous, suggesting that the primary function of Agr is not to monitor population density.
Collapse
|
91
|
Invasiveness of Listeria monocytogenes strains of Caco-2 cells in response to a period of extreme salt stress reflecting salt-curing and rehydration of cod (Gadus morhua L.). Food Control 2011. [DOI: 10.1016/j.foodcont.2010.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
92
|
Virulence regulator PrfA is essential for biofilm formation in Listeria monocytogenes but not in Listeria innocua. Curr Microbiol 2011; 63:186-92. [PMID: 21656247 DOI: 10.1007/s00284-011-9964-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
The ability of the foodborne pathogen Listeria monocytogenes to develop biofilm in food-processing environment is a major concern for the food safety, because biofilms allow bacteria to better resist environmental stresses. PrfA is a key transcriptional activator that positively regulates most of the known listerial virulence gene expression. In order to explore the role of PrfA on Listeria biofilm development, we compared the abilities of biofilm formation by L. monocytogenes wild type strains (EGD and EGDe) and their prfA deletion mutants (EGD∆prfA and EGDe∆prfA), nonpathogenic Listeria innocua, as well as the recombinant strains that express constitutively active mutant PrfA (PrfA*) in L. innocua (LI-pERL3-prfA*) and in EGDe∆prfA (EGDe∆prfA-pERL3-prfA*) at 37°C in brain heart infusion (BHI) medium using the polyvinyl chloride (PVC) microtiter plate assay and microscopic examination. Our results showed that the wild types of L. monocytogenes had strong abilities to develop biofilm with meshwork of bacterial aggregates, while biofilm with sparse small clumps were observed in L. innocua. The biofilm production of strains EGD∆prfA and EGDe∆prfA that lack funtional PrfA was reduced and could be recovered by the introduction of the PrfA*, however, the PrfA* had no impact on the biofilm forming ability of L. innocua. Our results suggest that PrfA plays a significant role in biofilm formation in L. monocytogenes but not in L. innocua, thus may reflect differences in the molecular mechanisms of biofilm formation by these two closely related species.
Collapse
|
93
|
Velge P, Roche SM. Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence? Future Microbiol 2011; 5:1799-821. [PMID: 21155663 DOI: 10.2217/fmb.10.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genus Listeria consists of eight species but only two are pathogenic. Human listeriosis due to Listeria monocytogenes is a foodborne disease. L. monocytogenes is widespread in the environment living as a saprophyte, but is also capable of making the transition into a pathogen following its ingestion by susceptible humans or animals. It is now known that many distinct strains of L. monocytogenes differ in their virulence and epidemic potential. Unfortunately, there is currently no standard definition of virulence levels and no complete comprehensive overview of the evolution of Listeria species and L. monocytogenes strains taking into account the presence of both epidemic and low-virulence strains. This article focuses on the methods and genes allowing us to determine the pathogenic potential of Listeria strains, and the evolution of Listeria virulence. The presence of variable levels of virulence within L. monocytogenes has important consequences on detection of Listeria strains and risk analysis but also on our comprehension of how certain pathogens will behave in a population over evolutionary time.
Collapse
Affiliation(s)
- Philippe Velge
- INRA de tours, UR1282, Infectiologie Animale et Santé Publique, 37380 Nouzilly, France.
| | | |
Collapse
|
94
|
Enrichment and proteome analysis of a hyperthermostable protein set of archaeon Thermococcus onnurineus NA1. Extremophiles 2011; 15:451-61. [DOI: 10.1007/s00792-011-0376-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
|
95
|
Leclercq A, Chenal-Francisque V, Dieye H, Cantinelli T, Drali R, Brisse S, Lecuit M. Characterization of the novel Listeria monocytogenes PCR serogrouping profile IVb-v1. Int J Food Microbiol 2011; 147:74-7. [PMID: 21470706 DOI: 10.1016/j.ijfoodmicro.2011.03.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/09/2011] [Accepted: 03/13/2011] [Indexed: 11/18/2022]
Abstract
The World Health Organization Collaborating Centre for Listeria (WHOCCL) has developed in 2004 a multiplex PCR assay that separates the 4 major Listeria monocytogenes serovars (1/2a, 1/2b, 1/2c, and 4b) into distinct PCR serogroups. A new PCR profile has been recently identified, constituted of amplified DNA fragments of prs, ORF2819, ORF2110 and lmo0737. Here we characterize 22 L. monocytogenes isolates of the WHOCCL collection with this PCR IVb variant 1 (IVb-v1) profile. The 22 isolates belong to the clinically predominant serovar 4b, exhibit 6 distinct pulsed-field gel electrophoresis ApaI/AscI combined profiles, and belong to 2 unrelated multilocus sequence types, indicating that the novel profile does not correspond to a recent clonal emergence. We have updated the WHOCCL serogroup-related PCR typing scheme to include this new profile.
Collapse
Affiliation(s)
- Alexandre Leclercq
- Institut Pasteur, WHO Collaborating Centre and French National Reference Centre for Listeria, Microbes and Host Barriers Group, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
96
|
EROL I, AYAZ N. SEROTYPE DISTRIBUTION OF LISTERIA MONOCYTOGENES ISOLATED FROM TURKEY MEAT BY MULTIPLEX PCR IN TURKEY. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2010.00278.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
97
|
Burall LS, Simpson AC, Datta AR. Evaluation of a serotyping scheme using a combination of an antibody-based serogrouping method and a multiplex PCR assay for identifying the major serotypes of Listeria monocytogenes. J Food Prot 2011; 74:403-9. [PMID: 21375876 DOI: 10.4315/0362-028x.jfp-10-355] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To evaluate a simplified serotyping scheme, we used a combination of an antibody-based serogrouping assay that identified only type 1 and type 4 strains and a multiplex PCR-based serogrouping assay to analyze 362 L. monocytogenes isolates collected over more than 20 years. The multiplex PCR assay also incorporated a set of primers specific for L. monocytogenes hlyA gene to verify the species identification of these isolates. A subset (n = 120) of these isolates were also serotyped with the Denka Seiken serotyping scheme, which is often considered the "gold standard" for serotyping of L. monocytogenes. The results indicate that the multiplex PCR-based assay, in combination with an antibody-based serogrouping assay, correctly identified serotypes of 96% of the previously serotyped isolates. Compared with the Denka Seiken method, the combination method also performed better in identifying serotypes of 120 previously unserotyped L. monocytogenes isolates. Thus, the combination scheme appears to be a simple and rapid way to identify serotypes 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, and 4b isolates, which are the predominant L. monocytogenes serotypes found in food, environmental, and clinical samples.
Collapse
Affiliation(s)
- Laurel S Burall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | | | | |
Collapse
|
98
|
Stavru F, Archambaud C, Cossart P. Cell biology and immunology of Listeria monocytogenes infections: novel insights. Immunol Rev 2011; 240:160-84. [DOI: 10.1111/j.1600-065x.2010.00993.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
99
|
Fox EM, Leonard N, Jordan K. Molecular diversity of Listeria monocytogenes isolated from Irish dairy farms. Foodborne Pathog Dis 2011; 8:635-41. [PMID: 21247298 DOI: 10.1089/fpd.2010.0806] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many foods originate on the farm where cross-contamination with pathogens can occur, with implications for human health. This study characterized a bank of 51 Listeria monocytogenes isolates originating from 12 farms located in Ireland by pulsed-field gel electrophoresis (PFGE) to establish the molecular diversity of the isolate collection, and examine transmission patterns of L. monocytogenes across the farm environment, and also determined resistances against five different antibiotics (ampicillin, ciprofloxacin, erythromycin, penicillin G, and tetracycline). Analysis using a combination of AscI and ApaI digestion showed the 51 isolates comprised a total of 40 individual PFGE types, compared to individual restriction enzyme analysis, which was less discriminatory (36 types with ApaI analysis and 38 types with AscI analysis). Four of the PFGE types were common to multiple farms, and five farms had isolates with indistinguishable PFGE types in multiple locations on the farm. Indistinguishable PFGE types were common to multiple farms in different geographical locations up to ~200 km apart, and were found in a variety of different sample types, indicating multiple niches for the organism in the dairy farm environment. The presence of L. monocytogenes in samples related to animals other than cattle indicated that there are multiple possible vectors of contamination. The farm environment harbors a diverse collection of L. monocytogenes isolates that must be considered as possible agents of food contamination.
Collapse
Affiliation(s)
- Edward M Fox
- Teagasc, Moorepark Food Research Centre, Fermoy, County Cork, Ireland
| | | | | |
Collapse
|
100
|
Stress survival islet 1 (SSI-1) survey in Listeria monocytogenes reveals an insert common to listeria innocua in sequence type 121 L. monocytogenes strains. Appl Environ Microbiol 2011; 77:2169-73. [PMID: 21239547 DOI: 10.1128/aem.02159-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes strains (n = 117) were screened for the presence of stress survival islet 1 (SSI-1). SSI-1(+) strains (32.5%) belonged mainly to serotypes 1/2c, 3b, and 3c. All sequence type 121 (ST-121) strains included (n = 7) possessed homologues to Listeria innocua genes lin0464 and lin0465 instead of SSI-1.
Collapse
|