51
|
McKelvie JC, Richards MI, Harmer JE, Milne TS, Roach PL, Oyston PCF. Inhibition of Yersinia pestis DNA adenine methyltransferase in vitro by a stibonic acid compound: identification of a potential novel class of antimicrobial agents. Br J Pharmacol 2013; 168:172-88. [PMID: 22889062 PMCID: PMC3570013 DOI: 10.1111/j.1476-5381.2012.02134.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 07/04/2012] [Accepted: 07/14/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Multiple antibiotic resistant strains of plague are emerging, driving a need for the development of novel antibiotics effective against Yersinia pestis. DNA adenine methylation regulates numerous fundamental processes in bacteria and alteration of DNA adenine methlytransferase (Dam) expression is attenuating for several pathogens, including Y. pestis. The lack of a functionally similar enzyme in humans makes Dam a suitable target for development of novel therapeutics for plague. EXPERIMENTAL APPROACH Compounds were evaluated for their ability to inhibit Dam activity in a high-throughput screening assay. DNA was isolated from Yersinia grown in the presence of lead compounds and restricted to determine the effect of inhibitors on DNA methylation. Transcriptional analysis was undertaken to determine the effect of an active inhibitor on virulence-associated phenotypes. KEY RESULTS We have identified a series of aryl stibonic acids which inhibit Dam in vitro. The most active, 4-stibonobenzenesulfonic acid, exhibited a competitive mode of inhibition with respect to DNA and a K(i) of 6.46 nM. One compound was found to inhibit DNA methylation in cultured Y. pestis. The effects of this inhibition on the physiology of the cell were widespread, and included altered expression of known virulence traits, including iron acquisition and Type III secretion. CONCLUSIONS AND IMPLICATIONS We have identified a novel class of potent Dam inhibitors. Treatment of bacterial cell cultures with these inhibitors resulted in a decrease in DNA methylation. Expression of virulence factors was affected, suggesting these inhibitors may attenuate bacterial infectivity and function as antibiotics.
Collapse
Affiliation(s)
- J C McKelvie
- School of Chemistry, University of Southampton, UK
| | | | | | | | | | | |
Collapse
|
52
|
Sun F, Gao H, Zhang Y, Wang L, Fang N, Tan Y, Guo Z, Xia P, Zhou D, Yang R. Fur is a repressor of biofilm formation in Yersinia pestis. PLoS One 2012; 7:e52392. [PMID: 23285021 PMCID: PMC3528687 DOI: 10.1371/journal.pone.0052392] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/13/2012] [Indexed: 11/29/2022] Open
Abstract
Background Yersinia pestis synthesizes the attached biofilms in the flea proventriculus, which is important for the transmission of this pathogen by fleas. The hmsHFRS operons is responsible for the synthesis of exopolysaccharide (the major component of biofilm matrix), which is activated by the signaling molecule 3′, 5′-cyclic diguanylic acid (c-di-GMP) synthesized by the only two diguanylate cyclases HmsT, and YPO0449 (located in a putative operonYPO0450-0448). Methodology/Principal Findings The phenotypic assays indicated that the transcriptional regulator Fur inhibited the Y. pestis biofilm production in vitro and on nematode. Two distinct Fur box-like sequences were predicted within the promoter-proximal region of hmsT, suggesting that hmsT might be a direct Fur target. The subsequent primer extension, LacZ fusion, electrophoretic mobility shift, and DNase I footprinting assays disclosed that Fur specifically bound to the hmsT promoter-proximal region for repressing the hmsT transcription. In contrast, Fur had no regulatory effect on hmsHFRS and YPO0450-0448 at the transcriptional level. The detection of intracellular c-di-GMP levels revealed that Fur inhibited the c-di-GMP production. Conclusions/Significance Y. pestis Fur inhibits the c-di-GMP production through directly repressing the transcription of hmsT, and thus it acts as a repressor of biofilm formation. Since the relevant genetic contents for fur, hmsT, hmsHFRS, and YPO0450-0448 are extremely conserved between Y. pestis and typical Y. pseudotuberculosis, the above regulatory mechanisms can be applied to Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Fengjun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - He Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nan Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing, China
- * E-mail: (PX); (DZ); (RY)
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (PX); (DZ); (RY)
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (PX); (DZ); (RY)
| |
Collapse
|
53
|
Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y. Omics strategies for revealing Yersinia pestis virulence. Front Cell Infect Microbiol 2012; 2:157. [PMID: 23248778 PMCID: PMC3521224 DOI: 10.3389/fcimb.2012.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
54
|
Rakin A, Schneider L, Podladchikova O. Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia. Front Cell Infect Microbiol 2012; 2:151. [PMID: 23226687 PMCID: PMC3510459 DOI: 10.3389/fcimb.2012.00151] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/13/2012] [Indexed: 11/16/2022] Open
Abstract
Low molecular weight siderophores are used by many living organisms to scavenge scarcely available ferric iron. Presence of at least a single siderophore-based iron acquisition system is usually acknowledged as a virulence-associated trait and a pre-requisite to become an efficient and successful pathogen. Currently, it is assumed that yersiniabactin (Ybt) is the solely functional endogenous siderophore iron uptake system in highly virulent Yersinia (Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica biotype 1B). Genes responsible for biosynthesis, transport, and regulation of the yersiniabactin (ybt) production are clustered on a mobile genetic element, the High-Pathogenicity Island (HPI) that is responsible for broad dissemination of the ybt genes in Enterobacteriaceae. However, the ybt gene cluster is absent from nearly half of Y. pseudotuberculosis O3 isolates and epidemic Y. pseudotuberculosis O1 isolates responsible for the Far East Scarlet-like Fever. Several potential siderophore-mediated iron uptake gene clusters are documented in Yersinia genomes, however, neither of them have been proven to be functional. It has been suggested that at least two siderophores alternative to Ybt may operate in the highly virulent Yersinia pestis/Y. pseudotuberculosis group, and are referred to as pseudochelin (Pch) and yersiniachelin (Ych). Furthermore, most sporadic Y. pseudotuberculosis O1 strains possess gene clusters encoding all three iron scavenging systems. Thus, the Ybt system appears not to be the sole endogenous siderophore iron uptake system in the highly virulent yersiniae and may be efficiently substituted and/or supplemented by alternative iron siderophore scavenging systems.
Collapse
Affiliation(s)
- Alexander Rakin
- Phylogenomics of the Enteropathogenic Yersinia, Max von Pettenkofer-Institute, LMU Munich, Germany.
| | | | | |
Collapse
|
55
|
Effect of the amino acid substitution in the DNA-binding domain of the Fur regulator on production of pyoverdine. Folia Microbiol (Praha) 2012. [PMID: 23180123 DOI: 10.1007/s12223-012-0210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ferric uptake regulator gene (fur), its promoter region and Fur box of pvdS gene involved in siderophore-mediated iron uptake system were sequenced in the parent strain Pseudomonas aeruginosa PAO1 and in the fur mutant FPA121 derived from the strain PAO1. We identified the gene fur 179 bearing a novel, single-point mutation that changed the amino acid residue Gln60Pro in the DNA-binding domain of the Fur protein. The synthesis of pyoverdine was studied in cultures of the strains PAO1 and FPA121 grown in iron-deplete and iron-replete (60 μmol/L FeIII) medium. The amino acid replacement in the regulatory Fur protein is responsible for the overproduction of pyoverdine in iron-deplete and iron-replete medium. No mutation was identified in the Fur box of the gene pvdS.
Collapse
|
56
|
Schiano CA, Lathem WW. Post-transcriptional regulation of gene expression in Yersinia species. Front Cell Infect Microbiol 2012; 2:129. [PMID: 23162797 PMCID: PMC3493969 DOI: 10.3389/fcimb.2012.00129] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/03/2012] [Indexed: 11/13/2022] Open
Abstract
Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.
Collapse
Affiliation(s)
- Chelsea A Schiano
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | | |
Collapse
|
57
|
The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague. Infect Immun 2012; 80:3880-91. [PMID: 22927049 DOI: 10.1128/iai.00086-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in strains capable of producing the siderophore yersiniabactin (Ybt) and the putative ferrous transporter FetMP. Both fetP and a downstream locus (flp for fet linked phenotype) were required for growth of a yfe feo ybt mutant under static, iron-limiting conditions. An feoB mutation alone had no effect on the virulence of Y. pestis in either bubonic or pneumonic plague models. An feo yfe double mutant was still fully virulent in a pneumonic plague model but had an ∼90-fold increase in the 50% lethal dose (LD(50)) relative to the Yfe(+) Feo(+) parent strain in a bubonic plague model. Thus, Yfe and Feo, in addition to Ybt, play an important role in the progression of bubonic plague. Finally, we examined the factors affecting the expression of the feo operon in Y. pestis. Under static growth conditions, the Y. pestis feo::lacZ fusion was repressed by iron in a Fur-dependent manner but not in cells grown aerobically. Mutations in feoC, fnr, arcA, oxyR, or rstAB had no significant effect on transcription of the Y. pestis feo promoter. Thus, the factor(s) that prevents repression by Fur under aerobic growth conditions remains to be identified.
Collapse
|
58
|
Abstract
The ferric uptake regulator (Fur) protein has been shown to function as a repressor of transcription in a number of diverse microorganisms. However, recent studies have established that Fur can function at a global level as both an activator and a repressor of transcription through both direct and indirect mechanisms. Fur-mediated indirect activation occurs via the repression of additional repressor proteins, or small regulatory RNAs, thereby activating transcription of a previously silent gene. Fur mediates direct activation through binding of Fur to the promoter regions of genes. Whereas the repressive mechanism of Fur has been thoroughly investigated, emerging studies on direct and indirect Fur-mediated activation mechanisms have revealed novel global regulatory circuits.
Collapse
|
59
|
Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol 2012; 53:303-17. [PMID: 22733623 DOI: 10.1002/jobm.201100552] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
Iron is one of the major limiting factors and essential nutrients of microbial life. Since in nature it is not readily available in the preferred form, microorganisms produce small high affinity chelating molecules called siderophores for its acquisition. Microorganisms produce a wide variety of siderophores controlled at the molecular level by different genes to accumulate, mobilize and transport iron for metabolism. Siderophores also play a critical role in the expression of virulence and development of biofilms by different microbes. Apart from maintaining microbial life, siderophores can be harnessed for the sustainability of human, animals and plants. With the advent of modern molecular tools, a major breakthrough is taking place in the understanding of the multifaceted role of siderophores in nature. This mini review is intended to provide a general overview on siderophore along with its role and applications.
Collapse
Affiliation(s)
- Ratul Saha
- Department of Microbiology and Molecular Biology, NSF International, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
60
|
Two sRNA RyhB homologs from Yersinia pestis biovar microtus expressed in vivo have differential Hfq-dependent stability. Res Microbiol 2012; 163:413-8. [PMID: 22659336 DOI: 10.1016/j.resmic.2012.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/16/2012] [Indexed: 11/20/2022]
Abstract
Small non-coding RNAs (sRNAs) have been shown to modulate gene expression at the post-transcriptional level. RyhB, an iron-responsive sRNA, is conserved in Escherichia coli and other Enterobacteriae, indicating the downregulation of numerous genes during iron depletion. This sRNA is tightly regulated by the ferric uptake regulator (Fur) and interacts with the RNA binding protein Hfq. Hfq is generally purported to be essential for stabilizing sRNAs and promoting sRNA-mRNA duplex formation. Maintenance of iron homeostasis is an essential step in the lifecycle of Yersinia pestis. Y. pestis encodes two RyhB homologs, RyhB1 and RyhB2. In this study, we found that as in the case of E. coli, both RyhB homologs in Y. pestis are negatively regulated by Fur and have a half-life of >30 min. In the absence of Hfq, RyhB1 is rapidly degraded, while RyhB2 retains its stability. RyhB1 stabilization is mediated by Hfq, but RyhB2 does not require Hfq for stability. Additionally, both RyhBs are upregulated in lungs infected with Y. pestis, while the ryhB mutant shows no visible effects on virulence in mice upon either subcutaneous or intranasal inoculation. Collectively, our results indicate that the two RyhB homologs have common regulatory features in Y. pestis-infected lungs and in vitro, but that stability of RyhB1 and RyhB2 is differentially dependent on Hfq.
Collapse
|
61
|
Pich OQ, Carpenter BM, Gilbreath JJ, Merrell DS. Detailed analysis of Helicobacter pylori Fur-regulated promoters reveals a Fur box core sequence and novel Fur-regulated genes. Mol Microbiol 2012; 84:921-41. [PMID: 22507395 DOI: 10.1111/j.1365-2958.2012.08066.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Helicobacter pylori, iron balance is controlled by the Ferric uptake regulator (Fur), an iron-sensing repressor protein that typically regulates expression of genes implicated in iron transport and storage. Herein, we carried out extensive analysis of Fur-regulated promoters and identified a 7-1-7 motif with dyad symmetry (5'-TAATAATnATTATTA-3'), which functions as the Fur box core sequence of H. pylori. Addition of this sequence to the promoter region of a typically non-Fur regulated gene was sufficient to impose Fur-dependent regulation in vivo. Moreover, mutation of this sequence within Fur-controlled promoters negated regulation. Analysis of the H. pylori chromosome for the occurrence of the Fur box established the existence of well-conserved Fur boxes in the promoters of numerous known Fur-regulated genes, and revealed novel putative Fur targets. Transcriptional analysis of the new candidate genes demonstrated Fur-dependent repression of HPG27_51, HPG27_52, HPG27_199, HPG27_445, HPG27_825 and HPG27_1063, as well as Fur-mediated activation of the cytotoxin associated gene A, cagA (HPG27_507). Furthermore, electrophoretic mobility shift assays confirmed specific binding of Fur to the promoters of each of these genes. Future experiments will determine whether loss of Fur regulation of any of these particular genes contributes to the defects in colonization exhibited by the H. pylori fur mutant.
Collapse
Affiliation(s)
- Oscar Q Pich
- Department of Microbiology and Immunology, Uniformed Services University of the Heath Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
62
|
Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae. J Bacteriol 2012; 194:1730-42. [PMID: 22287521 DOI: 10.1128/jb.06176-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms.
Collapse
|
63
|
A proteome reference map and virulence factors analysis of Yersinia pestis 91001. J Proteomics 2012; 75:894-907. [DOI: 10.1016/j.jprot.2011.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/27/2011] [Accepted: 10/08/2011] [Indexed: 01/06/2023]
|
64
|
Byvalov AA, Ovodov IS. [Immunobiological properties of Yersinia pestis antigens]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:452-63. [PMID: 22096987 DOI: 10.1134/s1068162011040042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present review contains information concerning immunobiological properties of plague microbe antigens. All of the identified antigens are evaluated in relation to pathogenicity of Yersinia pestis namely a resistance to phagocytosis, toxicity, adhesiveness etc. as well as persistence ability and adaptation to variable environment. In addition, the role of antigens in immunogenicity of living plague microbe for experimental animals is considered. The data concerning mechanisms of antigenic contribution to the development of adaptive immunity are presented.
Collapse
|
65
|
Mu W, Guan L, Yan Y, Liu Q, Zhang Y. A novel in vivo inducible expression system in Edwardsiella tarda for potential application in bacterial polyvalence vaccine. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1097-1105. [PMID: 21964456 DOI: 10.1016/j.fsi.2011.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/20/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Abstract
Recombinant bacterial vector vaccine is an attractive vaccination strategy to induce the immune response to a carried protective antigen, and the main concern of bacterial vector vaccine is to establish a stable antigen expression system in vector bacteria. Edwardsiella tarda is an important facultative intracellular pathogen of both animals and humans, and its attenuated derivates are excellent bacterial vectors for use in recombinant vaccine design. In this study, we design an in vivo inducible expression system in E. tarda and establish potential recombinant E. tarda vector vaccines. With wild type strain E. tarda EIB202 as a vector, 53 different bacteria-originated promoters were examined for iron-responsive transcription in vitro, and the promoters P(dps) and P(yncE) showed high transcription activity. The transcription profiles in vivo of two promoters were further assayed, and P(dps) revealed an enhanced in vivo inducible transcription in macrophage, larvae and adult zebra fish. The gapA34 gene, encoding the protective antigen GAPDH from the fish pathogen Aeromonas hydrophila LSA34, was introduced into the P(dps)-based protein expression system, and transformed into attenuated E. tarda strains. The resultant recombinant vector vaccine WED/pUTDgap was evaluated in turbot (Scophtalmus maximus). Over 60% of the vaccinated fish survived under the challenge with A. hydrophila LSA34 and E. tarda EIB202, suggesting that the P(dps)-based antigen delivery system had great potential in bacterial vector vaccine application.
Collapse
Affiliation(s)
- Wei Mu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | |
Collapse
|
66
|
The Neisseria meningitidis ZnuD zinc receptor contributes to interactions with epithelial cells and supports heme utilization when expressed in Escherichia coli. Infect Immun 2011; 80:657-67. [PMID: 22083713 DOI: 10.1128/iai.05208-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis employs redundant heme acquisition mechanisms, including TonB receptor-dependent and receptor-independent uptakes. The TonB-dependent zinc receptor ZnuD shares significant sequence similarity to HumA, a heme receptor of Moraxella catarrhalis, and contains conserved motifs found in many heme utilization proteins. We present data showing that, when expressed in Escherichia coli, ZnuD allowed heme capture on the cell surface and supported the heme-dependent growth of an E. coli hemA strain. Heme agarose captured ZnuD in enriched outer membrane fractions, and this binding was inhibited by excess free heme, supporting ZnuD's specific interaction with heme. However, no heme utilization defect was detected in the meningococcal znuD mutant, likely due to unknown redundant TonB-independent heme uptake mechanisms. Meningococcal replication within epithelial cells requires a functional TonB, and we found that both the znuD and tonB mutants were defective not only in survival within epithelial cells but also in adherence to and invasion of epithelial cells. Ectopic complementation rescued these phenotypes. Interestingly, while znuD expression was repressed by Zur with zinc as a cofactor, it also was induced by iron in a Zur-independent manner. A specific interaction of meningococcal Fur protein with the znuD promoter was demonstrated by electrophoretic mobility shift assay (EMSA). Thus, the meningococcal ZnuD receptor likely participates in both zinc and heme acquisition, is regulated by both Zur and Fur, and is important for meningococcal interaction with epithelial cells.
Collapse
|
67
|
Chakraborty S, Sivaraman J, Leung KY, Mok YK. Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda. J Biol Chem 2011; 286:39417-30. [PMID: 21953460 DOI: 10.1074/jbc.m111.295188] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inorganic phosphate (P(i)) and iron are essential nutrients that are depleted by vertebrates as a protective mechanism against bacterial infection. This depletion, however, is sensed by some pathogens as a signal to turn on the expression of virulence genes. Here, we show that the PhoB-PhoR two-component system senses changes in P(i) concentration, whereas the ferric uptake regulator (Fur) senses changes in iron concentration in Edwardsiella tarda PPD130/91 to regulate the expression of type III and VI secretion systems (T3SS and T6SS) through an E. tarda secretion regulator, EsrC. In sensing low P(i) concentration, PhoB-PhoR autoregulates and activates the phosphate-specific transport operon, pstSCAB-phoU, by binding directly to the Pho box in the promoters of phoB and pstS. PhoB also binds with EsrC simultaneously on the promoter of an E. tarda virulence protein, evpA, to regulate directly the transcription of genes from T6SS. In addition, PhoB requires and interacts with PhoU to activate esrC and suppress fur indirectly through unidentified regulators. Fur, on the other hand, senses high iron concentration and binds directly to the Fur box in the promoter of evpP to inhibit EsrC binding to the same region. In addition, Fur suppresses transcription of phoB, pstSCAB-phoU, and esrC indirectly via unidentified regulators, suggesting negative cross-talk with the Pho regulon. Physical interactions exist between Fur and PhoU and between Fur and EsrC. Our findings suggest that T3SS and T6SS may carry out distinct roles in the pathogenicity of E. tarda by responding to different environmental factors.
Collapse
Affiliation(s)
- Smarajit Chakraborty
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
68
|
Zhang Y, Gao H, Wang L, Xiao X, Tan Y, Guo Z, Zhou D, Yang R. Molecular characterization of transcriptional regulation of rovA by PhoP and RovA in Yersinia pestis. PLoS One 2011; 6:e25484. [PMID: 21966533 PMCID: PMC3180457 DOI: 10.1371/journal.pone.0025484] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 09/06/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Yersinia pestis is the causative agent of plague. The two transcriptional regulators, PhoP and RovA, are required for the virulence of Y. pestis through the regulation of various virulence-associated loci. They are the global regulators controlling two distinct large complexes of cellular pathways. METHODOLOGY/PRINCIPAL FINDINGS Based on the LacZ fusion, primer extension, gel mobility shift, and DNase I footprinting assays, RovA is shown to recognize both of the two promoters of its gene in Y. pestis. The autoregulation of RovA appears to be a conserved mechanism shared by Y. pestis and its closely related progenitor, Y. pseudotuberculosis. In Y. pestis, the PhoP regulator responds to low magnesium signals and then negatively controls only one of the two promoters of rovA through PhoP-promoter DNA association. CONCLUSIONS/SIGNIFICANCE RovA is a direct transcriptional activator for its own gene in Y. pestis, while PhoP recognizes the promoter region of rovA to repress its transcription. The direct regulatory association between PhoP and RovA bridges the PhoP and RovA regulons in Y. pestis.
Collapse
Affiliation(s)
- Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - He Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Li Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- * E-mail: (DZ); (RY)
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- * E-mail: (DZ); (RY)
| |
Collapse
|
69
|
Perry RD, Fetherston JD. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect 2011; 13:808-17. [PMID: 21609780 PMCID: PMC3148425 DOI: 10.1016/j.micinf.2011.04.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/26/2011] [Indexed: 12/31/2022]
Abstract
Yersiniabactin (Ybt) is a siderophore-dependent iron uptake system encoded on a pathogenicity island that is widespread among pathogenic bacteria including the Yersiniae. While biosynthesis of the siderophore has been elucidated, the secretion mechanism and a few components of the uptake/utilization pathway are unidentified. ybt genes are transcriptionally repressed by Fur but activated by YbtA, likely in combination with the siderophore itself. The Ybt system is essential for the ability of Yersinia pestis to cause bubonic plague and important in pneumonic plague as well. However, the ability to cause fatal septicemic plague is independent of Ybt.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, MS415 Medical Center, University of Kentucky, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
70
|
Expression during host infection and localization of Yersinia pestis autotransporter proteins. J Bacteriol 2011; 193:5936-49. [PMID: 21873491 DOI: 10.1128/jb.05877-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yersinia pestis CO92 has 12 open reading frames encoding putative conventional autotransporters (yaps), nine of which appear to produce functional proteins. Here, we demonstrate the ability of the Yap proteins to localize to the cell surface of both Escherichia coli and Yersinia pestis and show that a subset of these proteins undergoes processing by bacterial surface omptins to be released into the supernatant. Numerous autotransporters have been implicated in pathogenesis, suggesting a role for the Yaps as virulence factors in Y. pestis. Using the C57BL/6 mouse models of bubonic and pneumonic plague, we determined that all of these genes are transcribed in the lymph nodes during bubonic infection and in the lungs during pneumonic infection, suggesting a role for the Yaps during mammalian infection. In vitro transcription studies did not identify a particular environmental stimulus responsible for transcriptional induction. The primary sequences of the Yaps reveal little similarity to any characterized autotransporters; however, two of the genes are present in operons, suggesting that the proteins encoded in these operons may function together. Further work aims to elucidate the specific functions of the Yaps and clarify the contributions of these proteins to Y. pestis pathogenesis.
Collapse
|
71
|
Mapping the regulon of Vibrio cholerae ferric uptake regulator expands its known network of gene regulation. Proc Natl Acad Sci U S A 2011; 108:12467-72. [PMID: 21750152 DOI: 10.1073/pnas.1107894108] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ChIP coupled with next-generation sequencing (ChIP-seq) has revolutionized whole-genome mapping of DNA-binding protein sites. Although ChIP-seq rapidly gained support in eukaryotic systems, it remains underused in the mapping of bacterial transcriptional regulator-binding sites. Using the virulence-required iron-responsive ferric uptake regulator (Fur), we report a simple, broadly applicable ChIP-seq method in the pathogen Vibrio cholerae. Combining our ChIP-seq results with available microarray data, we clarify direct and indirect Fur regulation of known iron-responsive genes. We validate a subset of Fur-binding sites in vivo and show a common motif present in all Fur ChIP-seq peaks that has enhanced binding affinity for purified V. cholerae Fur. Further analysis shows that V. cholerae Fur directly regulates several additional genes associated with Fur-binding sites, expanding the role of this transcription factor into the regulation of ribosome formation, additional transport functions, and unique sRNAs.
Collapse
|
72
|
Fantappiè L, Scarlato V, Delany I. Identification of the in vitro target of an iron-responsive AraC-like protein from Neisseria meningitidis that is in a regulatory cascade with Fur. MICROBIOLOGY-SGM 2011; 157:2235-2247. [PMID: 21602219 DOI: 10.1099/mic.0.048033-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study we characterized a genetic locus that is predicted to encode one of the three AraC-like regulators of Neisseria meningitidis, a homologue of MpeR of Neisseria gonorrhoeae which is specific to the pathogenic Neisseria species. Previous microarray studies have suggested that this gene is a member of the Fur regulon. In strain MC58, it is a pseudogene (annotated as two ORFs, NMB1879 and NMB1878) containing a frameshift mutation which we show is common to all strains tested belonging to the ST-32 hypervirulent clonal complex. Using primer extension and S1 nuclease protection assays, we mapped two promoters in the upstream intergenic region: the mpeR promoter and the NMB1880 promoter. The latter promoter drives transcription of the divergent upstream locus, which is predicted to encode a high-affinity iron uptake system. We demonstrated that both promoters are induced during iron limitation and that this regulation is also mediated by the Fur regulator. DNA-binding studies with the purified MpeR protein revealed that it binds to a region directly upstream of the NMB1880 divergent promoter, suggesting a role in its regulation. Mutants of N. meningitidis strains lacking MpeR or overexpressing MpeR showed no significant differences in expression of the P(NMB1880) promoter, nor did global transcriptional profiling of an MpeR knockout identify any deregulated genes, suggesting that the MpeR protein is inactive under the conditions used in these experiments. The presence of MpeR in a regulatory cascade downstream of the Fur master iron regulator implicates it as being expressed in the iron-limiting environment of the host, where it may in turn regulate a group of genes, including the divergent iron transport locus, in response to signals important for infection.
Collapse
Affiliation(s)
- Laura Fantappiè
- Novartis Vaccines, Microbial Molecular Biology, Via Fiorentina 1, 53100 Siena, Italy
| | - Vincenzo Scarlato
- Department of Biology, University of Bologna, Bologna, Italy.,Novartis Vaccines, Microbial Molecular Biology, Via Fiorentina 1, 53100 Siena, Italy
| | - Isabel Delany
- Novartis Vaccines, Microbial Molecular Biology, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
73
|
Teixidó L, Carrasco B, Alonso JC, Barbé J, Campoy S. Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro. PLoS One 2011; 6:e19711. [PMID: 21573071 PMCID: PMC3089636 DOI: 10.1371/journal.pone.0019711] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/04/2011] [Indexed: 11/18/2022] Open
Abstract
Previous studies have established that the expression of Salmonella enterica pathogenicity island 1 (SPI1), which is essential for epithelial invasion, is mainly regulated by the HilD protein. The ferric uptake regulator, Fur, in turn modulates the expression of the S. enterica hilD gene, albeit through an unknown mechanism. Here we report that S. enterica Fur, in its metal-bound form, specifically binds to an AT-rich region (BoxA), located upstream of the hilD promoter (PhilD), at position -191 to -163 relative to the hilD transcription start site. Furthermore, in a PhilD variant with mutations in BoxA, PhilD*, Fur·Mn2+ binding is impaired. In vivo experiments using S. enterica strains carrying wild-type PhilD or the mutant variant PhilD* showed that Fur activates hilD expression, while in vitro experiments revealed that the Fur·Mn2+ protein is sufficient to increase hilD transcription. Together, these results present the first evidence that Fur·Mn2+, by binding to the upstream BoxA sequence, directly stimulates the expression of hilD in S. enterica.
Collapse
Affiliation(s)
- Laura Teixidó
- Departament de Genètica i de Microbiologia, Facultat de Biociències. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Begoña Carrasco
- Area de Microbiología, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Juan C. Alonso
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Facultat de Biociències. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Facultat de Biociències. Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail:
| |
Collapse
|
74
|
González A, Bes MT, Peleato ML, Fillat MF. Unravelling the regulatory function of FurA in Anabaena sp. PCC 7120 through 2-D DIGE proteomic analysis. J Proteomics 2011; 74:660-71. [DOI: 10.1016/j.jprot.2011.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 01/25/2011] [Accepted: 02/02/2011] [Indexed: 01/19/2023]
|
75
|
González A, Bes MT, Barja F, Peleato ML, Fillat MF. Overexpression of FurA in Anabaena sp. PCC 7120 Reveals New Targets for This Regulator Involved in Photosynthesis, Iron Uptake and Cellular Morphology. ACTA ACUST UNITED AC 2010; 51:1900-14. [DOI: 10.1093/pcp/pcq148] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
76
|
Yang F, Ke Y, Tan Y, Bi Y, Shi Q, Yang H, Qiu J, Wang X, Guo Z, Ling H, Yang R, Du Z. Cell membrane is impaired, accompanied by enhanced type III secretion system expression in Yersinia pestis deficient in RovA regulator. PLoS One 2010; 5:e12840. [PMID: 20862262 PMCID: PMC2941471 DOI: 10.1371/journal.pone.0012840] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 08/21/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In the enteropathogenic Yersinia species, RovA regulates the expression of invasin, which is important for enteropathogenic pathogenesis but is inactivated in Yersinia pestis. Investigation of the RovA regulon in Y. pestis at 26 °C has revealed that RovA is a global regulator that contributes to virulence in part by the direct regulation of psaEFABC. However, the regulatory roles of RovA in Y. pestis at 37 °C, which allows most virulence factors in mammalian hosts to be expressed, are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS The transcriptional profile of an in-frame rovA mutant of Y. pestis biovar Microtus strain 201 was analyzed under type III secretion system (T3SS) induction conditions using microarray techniques, and it was revealed that many cell-envelope and transport/binding proteins were differentially expressed in the ΔrovA mutant. Most noticeably, many of the T3SS genes, including operons encoding the translocon, needle and Yop (Yersinia outer protein) effectors, were significantly up-regulated. Analysis of Yop proteins confirmed that YopE and YopJ were also expressed in greater amounts in the mutant. However, electrophoresis mobility shift assay results demonstrated that the His-RovA protein could not bind to the promoter sequences of the T3SS genes, suggesting that an indirect regulatory mechanism is involved. Transmission electron microscopy analysis indicated that there are small loose electron dense particle-like structures that surround the outer membrane of the mutant cells. The bacterial membrane permeability to CFSE (carboxyfluorescein diacetate succinimidyl ester) was significantly decreased in the ΔrovA mutant compared to the wild-type strain. Taken together, these results revealed the improper construction and dysfunction of the membrane in the ΔrovA mutant. CONCLUSIONS/SIGNIFICANCE We demonstrated that the RovA regulator plays critical roles in the construction and functioning of the bacterial membrane, which sheds considerable light on the regulatory functions of RovA in antibiotic resistance and environmental adaptation. The expression of T3SS was upregulated in the ΔrovA mutant through an indirect regulatory mechanism, which is possibly related to the altered membrane construction in the mutant.
Collapse
Affiliation(s)
- Fengkun Yang
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuehua Ke
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yafang Tan
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yujing Bi
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qinghai Shi
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Huiying Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Jinfu Qiu
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoyi Wang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhaobiao Guo
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hong Ling
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zongmin Du
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
77
|
Small molecule inhibitors of LcrF, a Yersinia pseudotuberculosis transcription factor, attenuate virulence and limit infection in a murine pneumonia model. Infect Immun 2010; 78:4683-90. [PMID: 20823209 DOI: 10.1128/iai.01305-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LcrF (VirF), a transcription factor in the multiple adaptational response (MAR) family, regulates expression of the Yersinia type III secretion system (T3SS). Yersinia pseudotuberculosis lcrF-null mutants showed attenuated virulence in tissue culture and animal models of infection. Targeting of LcrF offers a novel, antivirulence strategy for preventing Yersinia infection. A small molecule library was screened for inhibition of LcrF-DNA binding in an in vitro assay. All of the compounds lacked intrinsic antibacterial activity and did not demonstrate toxicity against mammalian cells. A subset of these compounds inhibited T3SS-dependent cytotoxicity of Y. pseudotuberculosis toward macrophages in vitro. In a murine model of Y. pseudotuberculosis pneumonia, two compounds significantly reduced the bacterial burden in the lungs and afforded a dramatic survival advantage. The MAR family of transcription factors is well conserved, with members playing central roles in pathogenesis across bacterial genera; thus, the inhibitors could have broad applicability.
Collapse
|
78
|
Molecular analysis of two bacterioferritin genes, bfralpha and bfrbeta, in the model rhizobacterium Pseudomonas putida KT2440. Appl Environ Microbiol 2010; 76:5335-43. [PMID: 20562273 DOI: 10.1128/aem.00215-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The model rhizobacterium Pseudomonas putida KT2440 and other fluorescent pseudomonads possess two bacterioferritins, Bfralpha and Bfrbeta. However, the regulatory systems controlling the expression of these genes and the roles of these proteins in iron homeostasis are ill defined. Our studies show that both bfralpha and bfrbeta were monocistronic: promoter motifs and transcriptional start sites were identified, and Fur boxes and sigma(S)-dependent regulatory motifs were absent. The expressions of bfralpha and bfrbeta were enhanced by iron exposure and were maximal in cells rapidly growing in a high-iron environment. Both bfralpha and bfrbeta were positively regulated by Fur, and both were expressed independently of adjoining, functionally related genes. The loss of Bfralpha or Bfrbeta individually resulted in a significant reduction (ca. 17%) in cellular iron levels, and the deletion of both bfralpha and bfrbeta reduced cellular iron levels by 38% relative to those of the wild type. The mutants varied in their abilities to grow in low-iron medium; while growths (rate and final cell density) of single mutants and the wild type were similar, that of the double mutant was reduced significantly. Mutants lacking Bfralpha and/or Bfrbeta showed no change relative to the wild type in sensitivity to reactive oxygen species toxicity. Collectively, the data show that while Bfralpha and Bfrbeta could function independently of each other, an interaction-dependent function cannot be ruled out. Furthermore, regardless of the mechanism, a primary benefit of the bacterioferritins to P. putida KT2440 appears to be the enhancement of its survival in the environment by strengthening its tolerance to iron starvation.
Collapse
|
79
|
Pedersen HL, Ahmad R, Riise EK, Leiros HKS, Hauglid S, Espelid S, Brandsdal BO, Leiros I, Willassen NP, Haugen P. Experimental and computational characterization of the ferric uptake regulator from Aliivibrio salmonicida (Vibrio salmonicida). J Microbiol 2010; 48:174-83. [DOI: 10.1007/s12275-010-9199-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/17/2009] [Indexed: 11/29/2022]
|
80
|
RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol 2010; 192:3144-58. [PMID: 20382770 DOI: 10.1128/jb.00031-10] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence analysis of the large virulence plasmid pLVPK in Klebsiella pneumoniae CG43 revealed the presence of another mucoid factor encoding gene rmpA besides rmpA2. Promoter activity measurement indicated that the deletion of rmpA reduced K2 capsular polysaccharide (CPS) biosynthesis, resulting in decreased colony mucoidy and virulence in mice. Introduction of a multicopy plasmid carrying rmpA restored CPS production in the rmpA or rmpA2 mutant but not in the rcsB mutant. Transformation of the rmpA deletion mutant with an rcsB-carrying plasmid also failed to enhance CPS production, suggesting that a cooperation of RmpA with RcsB is required for regulatory activity. This was further corroborated by the demonstration of in vivo interaction between RmpA and RcsB using two-hybrid analysis and coimmunoprecipitation analysis. A putative Fur binding box was only found at the 5' noncoding region of rmpA. The promoter activity analysis indicated that the deletion of fur increased the rmpA promoter activity. Using electrophoretic mobility shift assay, we further demonstrated that Fur exerts its regulatory activity by binding directly to the promoter. As a result, the fur deletion mutant exhibited an increase in colony mucoidy, CPS production, and virulence in mice. In summary, our results suggested that RmpA activates CPS biosynthesis in K. pneumoniae CG43 via an RcsB-dependent manner. The expression of rmpA is regulated by the availability of iron and is negatively controlled by Fur.
Collapse
|
81
|
Pieper R, Huang ST, Parmar PP, Clark DJ, Alami H, Fleischmann RD, Perry RD, Peterson SN. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation. BMC Microbiol 2010; 10:30. [PMID: 20113483 PMCID: PMC2835676 DOI: 10.1186/1471-2180-10-30] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/29/2010] [Indexed: 11/29/2022] Open
Abstract
Background The Gram-negative bacterium Yersinia pestis is the causative agent of the bubonic plague. Efficient iron acquisition systems are critical to the ability of Y. pestis to infect, spread and grow in mammalian hosts, because iron is sequestered and is considered part of the innate host immune defence against invading pathogens. We used a proteomic approach to determine expression changes of iron uptake systems and intracellular consequences of iron deficiency in the Y. pestis strain KIM6+ at two physiologically relevant temperatures (26°C and 37°C). Results Differential protein display was performed for three Y. pestis subcellular fractions. Five characterized Y. pestis iron/siderophore acquisition systems (Ybt, Yfe, Yfu, Yiu and Hmu) and a putative iron/chelate outer membrane receptor (Y0850) were increased in abundance in iron-starved cells. The iron-sulfur (Fe-S) cluster assembly system Suf, adapted to oxidative stress and iron starvation in E. coli, was also more abundant, suggesting functional activity of Suf in Y. pestis under iron-limiting conditions. Metabolic and reactive oxygen-deactivating enzymes dependent on Fe-S clusters or other iron cofactors were decreased in abundance in iron-depleted cells. This data was consistent with lower activities of aconitase and catalase in iron-starved vs. iron-rich cells. In contrast, pyruvate oxidase B which metabolizes pyruvate via electron transfer to ubiquinone-8 for direct utilization in the respiratory chain was strongly increased in abundance and activity in iron-depleted cells. Conclusions Many protein abundance differences were indicative of the important regulatory role of the ferric uptake regulator Fur. Iron deficiency seems to result in a coordinated shift from iron-utilizing to iron-independent biochemical pathways in the cytoplasm of Y. pestis. With growth temperature as an additional variable in proteomic comparisons of the Y. pestis fractions (26°C and 37°C), there was little evidence for temperature-specific adaptation processes to iron starvation.
Collapse
Affiliation(s)
- Rembert Pieper
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Yersinia ironomics: comparison of iron transporters among Yersinia pestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. Biometals 2010; 23:275-94. [DOI: 10.1007/s10534-009-9286-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/17/2009] [Indexed: 01/20/2023]
|
83
|
Absence of inflammation and pneumonia during infection with nonpigmented Yersinia pestis reveals a new role for the pgm locus in pathogenesis. Infect Immun 2009; 78:220-30. [PMID: 19841077 DOI: 10.1128/iai.00559-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis causes primary pneumonic plague in many mammalian species, including humans, mice, and rats. Virulent Y. pestis strains undergo frequent spontaneous deletion of a 102-kb chromosomal DNA fragment, known as the pigmentation (pgm) locus, when grown in laboratory media, yet this locus is present in every virulent isolate. The pgm locus encodes, within a high-pathogenicity island, siderophore biosynthesis genes that are required for growth in the mammalian host when inoculated by peripheral routes. Recently, higher challenge doses of nonpigmented Y. pestis were reported to cause fatal pneumonic plague in mice, suggesting a useful model for studies of virulence and immunity. In this work, we show that intranasal infection of BALB/c mice with nonpigmented Yersinia pestis does not result in pneumonic plague. Despite persistent bacterial colonization of the lungs and the eventual death of infected mice, pulmonary inflammation was generally absent, and there was no disease pathology characteristic of pneumonic plague. Iron given to mice at the time of challenge, previously shown to enhance the virulence of pgm-deficient strains, resulted in an accelerated disease course, with less time to bacteremia and lethality, but lung inflammation and pneumonia were still absent. We examined other rodent models and found differences in lung inflammatory responses, some of which led to clearance and survival even when high challenge doses were used. Together, the results suggest that the Y. pestis pgm locus encodes previously unappreciated virulence factors required for the induction of pneumonic plague that are independent of iron scavenging from the mammalian host.
Collapse
|
84
|
da Silva Neto JF, Braz VS, Italiani VCS, Marques MV. Fur controls iron homeostasis and oxidative stress defense in the oligotrophic alpha-proteobacterium Caulobacter crescentus. Nucleic Acids Res 2009; 37:4812-25. [PMID: 19520766 PMCID: PMC2724300 DOI: 10.1093/nar/gkp509] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/18/2009] [Accepted: 05/26/2009] [Indexed: 11/13/2022] Open
Abstract
In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H(2)O(2) and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.
Collapse
Affiliation(s)
| | | | | | - Marilis V. Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
85
|
Carpenter BM, Whitmire JM, Merrell DS. This is not your mother's repressor: the complex role of fur in pathogenesis. Infect Immun 2009; 77:2590-601. [PMID: 19364842 PMCID: PMC2708581 DOI: 10.1128/iai.00116-09] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Beth M Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Heath Sciences, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
86
|
|