51
|
Neidle E, Hartnett C, Ornston LN, Bairoch A, Rekik M, Harayama S. cis-diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:113-20. [PMID: 1740120 DOI: 10.1111/j.1432-1033.1992.tb16612.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the aerobic degradation of benzoate by bacteria, benzoate is first dihydroxylated by a ring-hydroxylating dioxygenase to form a cis-diol (1,2-dihydroxycyclohexa-3,4-diene carboxylate) which is subsequently transformed to a catechol by an NAD(+)-dependent cis-diol dehydrogenase. The structural gene for this dehydrogenase, encoded on TOL plasmid pWW0 of Pseudomonas putida (xylL) and that encoded on the chromosome of Acinetobacter calcoaceticus (benD), were sequenced. They encode polypeptides of about 28 kDa in size. These proteins are similar to each other, exhibiting 58% sequence identity. They are also similar to other proteins of at least 20 different functions, which are members of the short-chain alcohol dehydrogenase family. The alignment of these proteins suggest two amino acids, lysine and tyrosine, as catalytically important residues.
Collapse
Affiliation(s)
- E Neidle
- Department of Biology, Yale University, New Haven
| | | | | | | | | | | |
Collapse
|
52
|
Imai R, Nagata Y, Fukuda M, Takagi M, Yano K. Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from gamma-hexachlorocyclohexane. J Bacteriol 1991; 173:6811-9. [PMID: 1718942 PMCID: PMC209032 DOI: 10.1128/jb.173.21.6811-6819.1991] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas paucimobilis UT26 is capable of growing on gamma-hexachlorocyclohexane (gamma-HCH). A genomic library of P. paucimobilis UT26 was constructed in Pseudomonas putida by using the broad-host-range cosmid vector pKS13. After 2,300 clones were screened by gas chromatography, 3 clones showing gamma-HCH degradation were detected. A 5-kb fragment from one of the cosmid clones was subcloned into pUC118, and subsequent deletion and gas chromatography-mass spectrometry analyses revealed that a fragment of ca. 500 bp was responsible for the conversion of gamma-HCH to 1,2,4-trichlorobenzene via gamma-pentachlorocyclohexene. Nucleotide sequence analysis revealed an open reading frame (linA) of 465 bp within the fragment. The nucleotide sequence of the linA gene and the deduced amino acid sequence showed no similarity to any known sequences. The product of the linA gene was 16.5 kDa according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- R Imai
- Department of Agricultural Chemistry, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
53
|
The human gene for 11 beta-hydroxysteroid dehydrogenase. Structure, tissue distribution, and chromosomal localization. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55351-5] [Citation(s) in RCA: 314] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
54
|
Persson B, Krook M, Jörnvall H. Characteristics of short-chain alcohol dehydrogenases and related enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:537-43. [PMID: 1889416 DOI: 10.1111/j.1432-1033.1991.tb16215.x] [Citation(s) in RCA: 350] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Different short-chain dehydrogenases are distantly related, constituting a protein family now known from at least 20 separate enzymes characterized, but with extensive differences, especially in the C-terminal third of their sequences. Many of the first known members were prokaryotic, but recent additions include mammalian enzymes from placenta, liver and other tissues, including 15-hydroxyprostaglandin, 17 beta-hydroxysteroid and 11 beta-hydroxysteroid dehydrogenases. In addition, species variants, isozyme-like multiplicities and mutants have been reported for several of the structures. Alignments of the different enzymes reveal large homologous parts, with clustered similarities indicating regions of special functional/structural importance. Several of these derive from relationships within a common type of coenzyme-binding domain, but central-chain patterns of similarity go beyond this domain. Total residue identities between enzyme pairs are typically around 25%, but single forms deviate more or less (14-58%). Only six of the 250-odd residues are strictly conserved and seven more are conserved in all but single cases. Over one third of the conserved residues are glycine, showing the importance of conformational and spatial restrictions. Secondary structure predictions, residue distributions and hydrophilicity profiles outline a common, N-terminal coenzyme-binding domain similar to that of other dehydrogenases, and a C-terminal domain with unique segments and presumably individual functions in each case. Strictly conserved residues of possible functional interest are limited, essentially only three polar residues. Asp64, Tyr152 and Lys156 (in the numbering of Drosophila alcohol dehydrogenase), but no histidine or cysteine residue like in the completely different, classical medium-chain alcohol dehydrogenase family. Asp64 is in the suggested coenzyme-binding domain, whereas Tyr152 and Lys156 are close to the center of the protein chain, at a putative inter-domain, active-site segment. Consequently, the overall comparisons suggest the possibility of related mechanisms and domain properties for different members of the short-chain family.
Collapse
Affiliation(s)
- B Persson
- Department of Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
55
|
Rat L, Veuille M, Lepesant JA. Drosophila fat body protein P6 and alcohol dehydrogenase are derived from a common ancestral protein. J Mol Evol 1991; 33:194-203. [PMID: 1920455 DOI: 10.1007/bf02193634] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Drosophila melanogaster alcohol dehydrogenase is an example of convergent evolution: it is not related to the ADHs of other organisms, but to short-chain dehydrogenases, which until now have been found only in bacteria and in mammalian steroid hormone metabolism. We present evidence that the Drosophila ADH is phylogenetically more closely related to P6, another highly expressed protein from the fat body of Drosophila, than it is to the short-chain dehydrogenases. The polypeptide sequence of P6 was inferred from DNA sequence analysis. Both ADH and P6 polypeptides have retained a high structural similarity with respect to the Chou-Fasman prediction of secondary structure and hydropathy. P6 is also homologous to the 25-kd protein from the fat body of Sarcophaga peregrina, whose sequence we have reexamined. The evolution of the P6-ADH family of proteins is characterized by a dramatic increase in the methionine content of P6. Methionine accounts for 20% of P6 amino acids. This is in contrast with the absence of this amino acid in mature ADH. There is evidence that P6 and the 25-kd protein have undergone a parallel and independent enrichment in methionine. When corrected for this, the rate of amino acid replacement shows that the P6-25-kd lineage diverged from insect ADH shortly before the divergence of the ADH gene (Adh) from its 3'-duplication (Adh-dup).
Collapse
Affiliation(s)
- L Rat
- Institut Jacques Monod, CNRS, Paris, France
| | | | | |
Collapse
|
56
|
Menn FM, Zylstra GJ, Gibson DT. Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1. Gene 1991; 104:91-4. [PMID: 1916282 DOI: 10.1016/0378-1119(91)90470-v] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gene (todF) encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1 was shown to be located upstream of the todC1C2BADE genes. The latter form part of the tod operon and encode the enzymes responsible for the initial reactions in toluene degradation. The nucleotide (nt) sequence of todF was determined and the deduced amino acid (aa) sequence revealed that the hydrolase contains 276 aa with a Mr of 30,753. The deduced aa sequence was 63.5% homologous to that reported for 2-hydroxymuconic semialdehyde hydrolase which is involved in phenol degradation by Pseudomonas CF600.
Collapse
Affiliation(s)
- F M Menn
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
57
|
Kuhm AE, Stolz A, Ngai KL, Knackmuss HJ. Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acids. J Bacteriol 1991; 173:3795-802. [PMID: 2050635 PMCID: PMC208010 DOI: 10.1128/jb.173.12.3795-3802.1991] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1,2-Dihydroxynaphthalene dioxygenase was purified to homogeneity from a bacterium that degrades naphthalenesulfonic acids (strain BN6). The enzyme requires Fe2+ for maximal activity and consists of eight identical subunits with a molecular weight of about 33,000. Analysis of the NH2-terminal amino acid sequence revealed a high degree of homology (22 of 29 amino acids) with the NH2-terminal amino acid sequence of 2,3-dihydroxybiphenyl dioxygenase from strain Pseudomonas paucimobilis Q1. 1,2-Dihydroxynaphthalene dioxygenase from strain BN6 shows a wide substrate specificity and also cleaves 5-, 6-, and 7-hydroxy-1,2-dihydroxynaphthalene, 2,3- and 3,4-dihydroxybiphenyl, catechol, and 3-methyl- and 4-methylcatechol. Similar activities against the hydroxy-1,2-dihydroxynaphthalenes were also found in cell extracts from naphthalene-degrading bacteria.
Collapse
Affiliation(s)
- A E Kuhm
- Institut für Mikrobiologie der Universität Stuttgart, Germany
| | | | | | | |
Collapse
|
58
|
Furukawa K, Hayashida S, Taira K. Gene-specific transposon mutagenesis of the biphenyl/polychlorinated biphenyl-degradation-controlling bph operon in soil bacteria. Gene 1991; 98:21-8. [PMID: 1849495 DOI: 10.1016/0378-1119(91)90099-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A transposon, Tn5-B21, was gene-specifically inserted into the chromosomal biphenyl/polychlorinated biphenyl-catabolic operon (bph operon) of soil bacteria. The cloned bphA, bphB and bphC genes of Pseudomonas pseudoalcaligenes KF707, coding for conversion of biphenyl into a ring meta-cleavage product (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid), carried random insertions of Tn5-B21. The mutagenized bphABC DNA, carried by a suicide plasmid, was introduced back into the parent strain KF707, resulting in the appearance of gene-specific transposon mutants by double crossover homologous recombination: the bphA::Tn5-B21 mutant did not attack 4-chlorobiphenyl, the bphB::Tn5-B21 mutant accumulated dihydrodiol, and the bphC::Tn5-B21 mutant produced dihydroxy compound. Gene-specific transposon mutants of the bph operon were also obtained for some other biphenyl-utilizing strains which possess bph operons nearly identical to that of KF707.
Collapse
Affiliation(s)
- K Furukawa
- Department of Agricultural Chemistry, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
59
|
Kabisch M, Fortnagel P. Nucleotide sequence of the metapyrocatechase II (catechol 2,3-oxygenase II) gene mpcII from Alcaligenes eutrophus JMP 222. Nucleic Acids Res 1990; 18:5543. [PMID: 2216726 PMCID: PMC332235 DOI: 10.1093/nar/18.18.5543] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- M Kabisch
- Universität Hamburg, Abteilung für Mikrobiologie, FRG
| | | |
Collapse
|
60
|
Noda Y, Nishikawa S, Shiozuka K, Kadokura H, Nakajima H, Yoda K, Katayama Y, Morohoshi N, Haraguchi T, Yamasaki M. Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol 1990; 172:2704-9. [PMID: 2185230 PMCID: PMC208915 DOI: 10.1128/jb.172.5.2704-2709.1990] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We determined the nucleotide sequence of a 1.9-kilobase fragment of Pseudomonas paucimobilis SYK6 chromosomal DNA that included genes encoding protocatechuate 4,5-dioxygenase, the enzyme responsible for the aromatic ring fission of protocatechuate. Two open reading frames of 417 and 906 base pairs were found that had no homology with previously reported sequences, including those encoding protocatechuate 3,4-dioxygenase. Since both open reading frames were indispensable for the enzyme activity, they should encode the subunits of protocatechuate 4,5-dioxygenase. We named these genes ligA and ligB. Protocatechuate 4,5-dioxygenase was efficiently expressed in Escherichia coli with the aid of the lac promoter, and the polypeptides of the ligA and ligB gene products were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino acid sequencing.
Collapse
Affiliation(s)
- Y Noda
- Department of Agricultural Chemistry, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Baker ME. Sequence similarity between Pseudomonas dihydrodiol dehydrogenase, part of the gene cluster that metabolizes polychlorinated biphenyls, and dehydrogenases involved in metabolism of ribitol and glucitol and synthesis of antibiotics and 17 beta-oestradiol, testosterone and corticosterone. Biochem J 1990; 267:839-41. [PMID: 2111134 PMCID: PMC1131375 DOI: 10.1042/bj2670839] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M E Baker
- Department of Medicine, University of California, San Diego, La Jolla 92093
| |
Collapse
|
62
|
Hayase N, Taira K, Furukawa K. Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacteria. J Bacteriol 1990; 172:1160-4. [PMID: 2105297 PMCID: PMC208555 DOI: 10.1128/jb.172.2.1160-1164.1990] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We cloned the entire bphABCD genes encoding degradation of biphenyl and polychlorinated biphenyls to benzoate and chlorobenzoates from the chromosomal DNA of Pseudomonas putida KF715. The nucleotide sequence revealed two open reading frames corresponding to the bphC gene encoding 2,3-dihydroxybiphenyl dioxygenase and the bphD gene encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (ring-meta-cleavage compound) hydrolase.
Collapse
Affiliation(s)
- N Hayase
- Fermentation Research Institute, Agency of Industrial Science and Technology, Ibaraki, Japan
| | | | | |
Collapse
|
63
|
Furukawa K, Hayase N, Taira K, Tomizuka N. Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. J Bacteriol 1989; 171:5467-72. [PMID: 2507526 PMCID: PMC210385 DOI: 10.1128/jb.171.10.5467-5472.1989] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All the genes we examined that encoded biphenyl/polychlorinated biphenyl (PCB) degradation were chromosomal, unlike many other degradation-encoding genes, which are plasmid borne. The molecular relationship of genes coding for biphenyl/PCB catabolism in various biphenyl/PCB-degrading Pseudomonas, Achromobacter, Alcaligenes, Moraxella, and Arthrobacter strains was investigated. Among 15 strains tested, 5 Pseudomonas strains and one Alcaligenes strain possessed the bphABC gene cluster on the XhoI 7.2-kilobase fragment corresponding to that of Pseudomonas pseudoalcaligenes KF707. More importantly, the restriction profiles of these XhoI 7.2-kilobase fragments containing bphABC genes were very similar, if not identical, despite the dissimilarity of the flanking chromosomal regions. Three other strains also possessed bphABC genes homologous with those of KF707, and five other strains showed weak or no significant genetic homology with bphABC of KF707. The immunological cross-reactivity of 2,3-dihydroxybiphenyl dioxygenases from various strains corresponded well to the DNA homology. On the other hand, the bphC gene of another PCB-degrading strain, Pseudomonas paucimobilis Q1, lacked genetic as well as immunological homology with any of the other 15 biphenyl/PCB degraders tested. The existence of the nearly identical chromosomal genes among various strains may suggest that a segment containing the bphABC genes has a mechanism for transferring the gene from one strain to another.
Collapse
Affiliation(s)
- K Furukawa
- Fermentation Research Institute, Agency of Industrial Science and Technology, Ibaraki, Japan
| | | | | | | |
Collapse
|
64
|
|
65
|
|
66
|
Kimbara K, Hashimoto T, Fukuda M, Koana T, Takagi M, Oishi M, Yano K. Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102. J Bacteriol 1989; 171:2740-7. [PMID: 2540155 PMCID: PMC209959 DOI: 10.1128/jb.171.5.2740-2747.1989] [Citation(s) in RCA: 207] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two genes involved in the degradation of biphenyl were isolated from a gene library of a polychlorinated biphenyl-degrading soil bacterium, Pseudomonas sp. strain KKS102, by using a broad-host-range cosmid vector, pKS13. When a 3.2-kilobase (kb) PstI fragment of a 29-kb cosmid DNA insert was subcloned into pUC18 at the PstI site downstream of the lacZ promoter, Escherichia coli cells carrying this recombinant plasmid expressed 2,3-dihydroxybiphenyl dioxygenase activity. Nucleotide sequencing of the 3.2-kb PstI fragment revealed that there were two open reading frames (ORFI [882 base pairs] and ORFII [834 base pairs], in this gene order). Results of analysis of Tn5 insertion mutants and unidirectional deletion mutants suggested that the ORFI coded for 2,3-dihydroxybiphenyl dioxygenase. When the sequence of ORFI was compared with that of bphC of Pseudomonas pseudoalcaligenes KF707 (K. Furukawa, N. Arima, and T. Miyazaki, J. Bacteriol. 169:427-429, 1987), the homology was 68%, with both strains having the same Shine-Dalgarno sequence. The result of gas chromatography-mass spectrometry analysis of the metabolic product suggested that the ORFII had meta cleavage compound hydrolase activity to produce benzoic acid. DNA sequencing suggested that these two genes were contained in one operon.
Collapse
Affiliation(s)
- K Kimbara
- Department of Agricultural Chemistry, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
67
|
Kok M, Oldenhuis R, van der Linden MPG, Meulenberg CHC, Kingma J, Witholt B. The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83565-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
68
|
Sangodkar UMX, Aldrich TL, Haugland RA, Johnson J, Rothmel RK, Chapman PJ, Chakrabarty AM. Molecular basis of biodegradation of chloroaromatic compounds. ACTA ACUST UNITED AC 1989. [DOI: 10.1002/abio.370090402] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
69
|
Gene manipulation of catabolic activities for production of intermediates of various biphenyl compounds. Appl Microbiol Biotechnol 1988. [DOI: 10.1007/bf00265820] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
70
|
Furukawa K, Arimura N. Purification and properties of 2,3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyl-degrading Pseudomonas pseudoalcaligenes and Pseudomonas aeruginosa carrying the cloned bphC gene. J Bacteriol 1987; 169:924-7. [PMID: 3100508 PMCID: PMC211873 DOI: 10.1128/jb.169.2.924-927.1987] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
2,3-Dihydroxybiphenyl dioxygenase, involved in biphenyl and polychlorinated biphenyl degradation, was purified from cell extracts of polychlorinated biphenyl-degrading Pseudomonas pseudoalcaligenes KF707 and Pseudomonas aeruginosa PAO1161 carrying the cloned bphC gene (encoding 2,3-dihydroxybiphenyl dioxygenase). The purified enzyme contained ferrous iron as a prosthetic group. The specific activities decreased with the loss of ferrous iron from the enzyme, and the activity was restored by incubation with ferrous iron in the presence of cysteine. Addition of ferric iron caused the complete inactivation of the enzyme. The molecular weight was estimated to be 250,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band with a molecular weight of 31,000, indicating that the enzyme consists of eight identical subunits. The enzyme was specific only for 2,3-dihydroxybiphenyl with a Km value of 87 microM. No significant activity was observed for 3,4-dihydroxybiphenyl, catechol, or 3-methyl- and 4-methylcatechol. The molecular weight, subunit structure, ferrous iron requirement, and NH2-terminal sequence (starting with serine up to 12 residues) were the same between the two enzymes obtained from KF707 and PAO1161 (bphC).
Collapse
|
71
|
Ghosal D, You IS, Gunsalus IC. Nucleotide sequence and expression of gene nahH of plasmid NAH7 and homology with gene xylE of TOL pWWO. Gene 1987; 55:19-28. [PMID: 3623105 DOI: 10.1016/0378-1119(87)90244-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The enzyme catechol 2,3-dioxygenase (C23O) encoded by the nahH gene of plasmid NAH7 converts catechol to alpha-hydroxymuconic epsilon-semialdehyde in Pseudomonas putida. We have cloned this structural gene into vectors pUC18 and pKT240, determined the nucleotide sequence and deduced the amino acid sequence. In comparison to the gene xylE of the TOL plasmid pWWO which encodes a similar C230 enzyme [Nakai et al. J. Biol. Chem. (1983b), 2923-2928], the respective G + C contents were 55% and 57%, the nucleotide sequences 81% homologous, and the amino acid homology 85%. The flanking sequences of the two C23O-coding genes also show homology. Clones of the nahH gene in Escherichia coli overproduce the protein product at least ten fold and the gene product was identified by polyacrylamide gel electrophoresis.
Collapse
|