51
|
Degenerate primers as biomarker for gene-targeted metagenomics of the catechol 1, 2-dioxygenase-encoding gene in microbial populations of petroleum-contaminated environments. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1197-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
52
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
Dijkmans J, Demol J, Houthoofd K, Huang S, Pontikes Y, Sels B. Post-synthesis Snβ: An exploration of synthesis parameters and catalysis. J Catal 2015. [DOI: 10.1016/j.jcat.2015.06.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
54
|
Jin JN, Yao J, Zhang QY, Yu C, Chen P, Liu WJ, Peng DN, Choi MMF. An integrated approach of bioassay and molecular docking to study the dihydroxylation mechanism of pyrene by naphthalene dioxygenase in Rhodococcus sp. ustb-1. CHEMOSPHERE 2015; 128:307-13. [PMID: 25747183 DOI: 10.1016/j.chemosphere.2015.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 12/26/2014] [Accepted: 02/03/2015] [Indexed: 05/02/2023]
Abstract
Naphthalene dioxygenase (NDO) is the initial enzyme catalyzing the biodegradation of aromatic compounds, and it plays a key role in microbial remediation of polluting sites. In this study, Rhodococcus sp. ustb-1 derived from crude oil was selected to investigate the biodegradation characters and dihydroxylation mechanism of pyrene by an integrated approach of bioassay and molecular docking. The biodegradation experiment proved that the strain ustb-1 shows high effective biodegradability to pyrene with a 70.8% degradation on the 28th day and the metabolite pyrene cis-4,5-dihydrodiol was found. The results of molecular docking indicated that the regions surrounding pyrene are defined by hydrophobic amino acids which are favorable for the binding of dioxygen molecule at C4 and C5 positions of pyrene in a side-on mode. The binding positions of dioxygen are in agreement with the mass spectral analysis of the metabolite pyrene cis-4,5-dihydrodiol. In summary, this study provides a promising explanation for the possible binding behavior between pyrene and active site of NDO.
Collapse
Affiliation(s)
- Jing-Nan Jin
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Yao
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geoscience, Wuhan 430074, China.
| | - Qing-Ye Zhang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chan Yu
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Chen
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wen-Juan Liu
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dan-Ning Peng
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Martin M F Choi
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
55
|
Boyd DR, Sharma ND, Berberian MV, Cleij M, Hardacre C, Ljubez V, McConville G, Stevenson PJ, Kulakov LA, Allen CCR. Arenecis-Diol Dehydrogenase-Catalysed Regio- and Stereoselective Oxidation of Arene-, Cycloalkane- and Cycloalkene-cis-diols to Yield Catechols and Chiral α-Ketols. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
56
|
Wojcieszyńska D, Domaradzka D, Hupert-Kocurek K, Guzik U. Bacterial degradation of naproxen--undisclosed pollutant in the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 145:157-61. [PMID: 25026371 DOI: 10.1016/j.jenvman.2014.06.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 05/13/2023]
Abstract
The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is an emerging problem due to their potential influence on human health and biocenosis. This is the first report on the biotransformation of naproxen, a polycyclic NSAID, by a bacterial strain. Stenotrophomonas maltophilia KB2 transformed naproxen within 35 days with about 28% degradation efficiency. Under cometabolic conditions with glucose or phenol as a carbon source degradation efficiency was 78% and 40%, respectively. Moreover, in the presence of naproxen phenol monooxygenase, naphthalene dioxygenase, hydroxyquinol 1,2-dioxygenase and gentisate 1,2-dioxygenase were induced. This suggests that degradation of naproxen occurs by its hydroxylation to 5,7,8-trihydroxynaproxen, an intermediate that can be cleaved by hydroxyquinol 1,2-dioxygenase. The cleavage product is probably further oxidatively cleaved by gentisate 1,2-dioxygenase. The obtained results provide the basis for the use of cometabolic systems in the bioremediation of polycyclic NSAID-contaminated environments.
Collapse
Affiliation(s)
- Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Dorota Domaradzka
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
57
|
Kobayashi K, Katz A, Rajkovic A, Ishii R, Branson OE, Freitas MA, Ishitani R, Ibba M, Nureki O. The non-canonical hydroxylase structure of YfcM reveals a metal ion-coordination motif required for EF-P hydroxylation. Nucleic Acids Res 2014; 42:12295-305. [PMID: 25274739 PMCID: PMC4231759 DOI: 10.1093/nar/gku898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
EF-P is a bacterial tRNA-mimic protein, which accelerates the ribosome-catalyzed polymerization of poly-prolines. In Escherichia coli, EF-P is post-translationally modified on a conserved lysine residue. The post-translational modification is performed in a two-step reaction involving the addition of a β-lysine moiety and the subsequent hydroxylation, catalyzed by PoxA and YfcM, respectively. The β-lysine moiety was previously shown to enhance the rate of poly-proline synthesis, but the role of the hydroxylation is poorly understood. We solved the crystal structure of YfcM and performed functional analyses to determine the hydroxylation mechanism. In addition, YfcM appears to be structurally distinct from any other hydroxylase structures reported so far. The structure of YfcM is similar to that of the ribonuclease YbeY, even though they do not share sequence homology. Furthermore, YfcM has a metal ion-coordinating motif, similar to YbeY. The metal ion-coordinating motif of YfcM resembles a 2-His-1-carboxylate motif, which coordinates an Fe(II) ion and forms the catalytic site of non-heme iron enzymes. Our findings showed that the metal ion-coordinating motif of YfcM plays an essential role in the hydroxylation of the β-lysylated lysine residue of EF-P. Taken together, our results suggested the potential catalytic mechanism of hydroxylation by YfcM.
Collapse
Affiliation(s)
- Kan Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan Global Research Cluster, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Assaf Katz
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Andrei Rajkovic
- Molecular, Cell, and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
| | - Ryohei Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan Global Research Cluster, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Owen E Branson
- Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan Global Research Cluster, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan Global Research Cluster, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
58
|
Characterization of novel polycyclic aromatic hydrocarbon dioxygenases from the bacterial metagenomic DNA of a contaminated soil. Appl Environ Microbiol 2014; 80:6591-600. [PMID: 25128340 DOI: 10.1128/aem.01883-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ring-hydroxylating dioxygenases (RHDs) play a crucial role in the biodegradation of a range of aromatic hydrocarbons found on polluted sites, including polycyclic aromatic hydrocarbons (PAHs). Current knowledge on RHDs comes essentially from studies on culturable bacterial strains, while compelling evidence indicates that pollutant removal is mostly achieved by uncultured species. In this study, a combination of DNA-SIP labeling and metagenomic sequence analysis was implemented to investigate the metabolic potential of main PAH degraders on a polluted site. Following in situ labeling using [(13)C]phenanthrene, the labeled metagenomic DNA was isolated from soil and subjected to shotgun sequencing. Most annotated sequences were predicted to belong to Betaproteobacteria, especially Rhodocyclaceae and Burkholderiales, which is consistent with previous findings showing that main PAH degraders on this site were affiliated to these taxa. Based on metagenomic data, four RHD gene sets were amplified and cloned from soil DNA. For each set, PCR yielded multiple amplicons with sequences differing by up to 321 nucleotides (17%), reflecting the great genetic diversity prevailing in soil. RHDs were successfully overexpressed in Escherichia coli, but full activity required the coexpression of two electron carrier genes, also cloned from soil DNA. Remarkably, two RHDs exhibited much higher activity when associated with electron carriers from a sphingomonad. The four RHDs showed markedly different preferences for two- and three-ring PAHs but were poorly active on four-ring PAHs. Three RHDs preferentially hydroxylated phenanthrene on the C-1 and C-2 positions rather than on the C-3 and C-4 positions, suggesting that degradation occurred through an alternate pathway.
Collapse
|
59
|
Biotechnological production of chiral organic sulfoxides: current state and perspectives. Appl Microbiol Biotechnol 2014; 98:7699-706. [PMID: 25073518 DOI: 10.1007/s00253-014-5932-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Chiral organic sulfoxides (COSs) are important compounds that act as chiral auxiliaries in numerous asymmetric reactions and as intermediates in chiral drug synthesis. In addition to their optical resolution, stereoselective oxidation of sulfides can be used for COS production. This reaction is facilitated by oxygenases and peroxidases from various microbial resources. To meet the current demand for esomeprazole, a proton pump inhibitor used in the treatment of gastric-acid-related disorders, and the (S)-isomer of an organic sulfoxide compound, omeprazole, a successful biotechnological production method using a Baeyer-Villiger monooxygenase (BVMO), was developed. In this review, we summarize the recent advancements in COS production using biocatalysts, including enzyme identification, protein engineering, and process development.
Collapse
|
60
|
Structural basis of the divergent oxygenation reactions catalyzed by the rieske nonheme iron oxygenase carbazole 1,9a-dioxygenase. Appl Environ Microbiol 2014; 80:2821-32. [PMID: 24584240 DOI: 10.1128/aem.04000-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Carbazole 1,9a-dioxygenase (CARDO), a Rieske nonheme iron oxygenase (RO), is a three-component system composed of a terminal oxygenase (Oxy), ferredoxin, and a ferredoxin reductase. Oxy has angular dioxygenation activity against carbazole. Previously, site-directed mutagenesis of the Oxy-encoding gene from Janthinobacterium sp. strain J3 generated the I262V, F275W, Q282N, and Q282Y Oxy derivatives, which showed oxygenation capabilities different from those of the wild-type enzyme. To understand the structural features resulting in the different oxidation reactions, we determined the crystal structures of the derivatives, both free and complexed with substrates. The I262V, F275W, and Q282Y derivatives catalyze the lateral dioxygenation of carbazole with higher yields than the wild type. A previous study determined the crystal structure of Oxy complexed with carbazole and revealed that the carbonyl oxygen of Gly178 hydrogen bonds with the imino nitrogen of carbazole. In these derivatives, the carbazole was rotated approximately 15, 25, and 25°, respectively, compared to the wild type, creating space for a water molecule, which hydrogen bonds with the carbonyl oxygen of Gly178 and the imino nitrogen of carbazole. In the crystal structure of the F275W derivative complexed with fluorene, C-9 of fluorene, which corresponds to the imino nitrogen of carbazole, was oriented close to the mutated residue Trp275, which is on the opposite side of the binding pocket from the carbonyl oxygen of Gly178. Our structural analyses demonstrate that the fine-tuning of hydrophobic residues on the surface of the substrate-binding pocket in ROs causes a slight shift in the substrate-binding position that, in turn, favors specific oxygenation reactions toward various substrates.
Collapse
|
61
|
The novel bacterial N-demethylase PdmAB is responsible for the initial step of N,N-dimethyl-substituted phenylurea herbicide degradation. Appl Environ Microbiol 2013; 79:7846-56. [PMID: 24123738 DOI: 10.1128/aem.02478-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The environmental fate of phenylurea herbicides has received considerable attention in recent decades. The microbial metabolism of N,N-dimethyl-substituted phenylurea herbicides can generally be initiated by mono-N-demethylation. In this study, the molecular basis for this process was revealed. The pdmAB genes in Sphingobium sp. strain YBL2 were shown to be responsible for the initial mono-N-demethylation of commonly used N,N-dimethyl-substituted phenylurea herbicides. PdmAB is the oxygenase component of a bacterial Rieske non-heme iron oxygenase (RO) system. The genes pdmAB, encoding the α subunit PdmA and the β subunit PdmB, are organized in a transposable element flanked by two direct repeats of an insertion element resembling ISRh1. Furthermore, this transposable element is highly conserved among phenylurea herbicide-degrading sphingomonads originating from different areas of the world. However, there was no evidence of a gene for an electron carrier (a ferredoxin or a reductase) located in the immediate vicinity of pdmAB. Without its cognate electron transport components, expression of PdmAB in Escherichia coli, Pseudomonas putida, and other sphingomonads resulted in a functional enzyme. Moreover, coexpression of a putative [3Fe-4S]-type ferredoxin from Sphingomonas sp. strain RW1 greatly enhanced the catalytic activity of PdmAB in E. coli. These data suggested that PdmAB has a low specificity for electron transport components and that its optimal ferredoxin may be the [3Fe-4S] type. PdmA exhibited low homology to the α subunits of previously characterized ROs (less than 37% identity) and did not cluster with the RO group involved in O- or N-demethylation reactions, indicating that PdmAB is a distinct bacterial RO N-demethylase.
Collapse
|
62
|
The ferredoxin ThnA3 negatively regulates tetralin biodegradation gene expression via ThnY, a ferredoxin reductase that functions as a regulator of the catabolic pathway. PLoS One 2013; 8:e73910. [PMID: 24069247 PMCID: PMC3771892 DOI: 10.1371/journal.pone.0073910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
The genes for tetralin (thn) utilization in Sphingomonasmacrogolitabida strain TFA are regulated at the transcriptional level by ThnR, ThnY and ThnA3. ThnR, a LysR-type transcriptional activator activates transcription specifically in response to tetralin, and ThnY is an iron-sulfur flavoprotein that may activate ThnR by protein-protein interaction. ThnA3, a Rieske-type ferredoxin that transfers electrons to the tetralin dioxygenase, prevents transcription of thn genes when the inducer molecule of the pathway is a poor substrate for the dioxygenase. The mechanism by which ThnA3 transduces this signal to the regulatory system is a major question concerning thn gene regulation. Here, we have confirmed the discriminatory function of ThnA3 and the negative role of its reduced form. We have generated ThnY variants with amino acid exchanges in the [2Fe-2S], FAD and NAD(P) H binding domains and their regulatory properties have been analyzed. Two variants, ThnY-C40S and ThnY-N201G,S206P have completely lost the discriminatory function of the regulatory system because they induced thn gene expression with different molecules such us cis-decalin, cyclohexane, trans-decalin, or benzene, which are not real inducers of the pathway. These results support a model in which ThnA3 exerts its negative modulation via the regulator ThnY.
Collapse
|
63
|
Amino acid substitutions in naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 result in regio- and stereo-specific hydroxylation of flavanone and isoflavanone. Appl Microbiol Biotechnol 2012; 97:693-704. [PMID: 22391970 DOI: 10.1007/s00253-012-3962-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Wild-type naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 transforms relatively planar flavone and isoflavone to cis-dihydrodiols. However, this enzyme cannot catalyze the transformation of flavanone and isoflavanone in which a phenyl group bonds to the stereogenic C2 or C3 of the C-ring. Protein modeling suggested that Phe224 in the substrate binding site of NDO may play a key role in substrate specificity toward flavanone and isoflavanone. Site-directed mutants of NDO with substitution of Phe224 with Tyr biotransformed only the (S)-stereoisomers of flavanone and isoflavanone, producing an 8-OH group on the A-ring. In contrast, the Phe224Cys and Phe224Gln substitutions, which used (2S)-flavanone as a substrate, and Phe224Lys, which transformed (2S)-flavanone and (3S)-isoflavanone, each showed lower activity than the Phe224Tyr substitution. The remainder of the tested mutants had no activity with flavanone and isoflavanone. Protein docking studies of flavanone and isoflavanone to the modeled mutant enzyme structures revealed that an expanded substrate binding site, due to mutation at 224, as well as appropriate hydrophobic interaction with the residue at 224, are critical for successful binding of the substrates. Results of this study also suggested that in addition to the previously known Phe352, the Phe224 site of NDO appears to be important site for expanding the substrate range of NDO and bringing regiospecific and stereospecific hydroxylation reactions to C8 of the flavanone and isoflavanone A-rings.
Collapse
|
64
|
Boyd DR, Sharma ND, McMurray B, Haughey SA, Allen CCR, Hamilton JTG, McRoberts WC, More O'Ferrall RA, Nikodinovic-Runic J, Coulombel LA, O'Connor KE. Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes. Org Biomol Chem 2012; 10:782-90. [DOI: 10.1039/c1ob06678a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
65
|
Abstract
Bacteria that assimilate synthetic nitroarene compounds represent unique evolutionary models, as their metabolic pathways are in the process of adaptation and optimization for the consumption of these toxic chemicals. We used Acidovorax sp. strain JS42, which is capable of growth on nitrobenzene and 2-nitrotoluene, in experiments to examine how a nitroarene degradation pathway evolves when its host strain is challenged with direct selective pressure to assimilate non-native substrates. Although the same enzyme that initiates the degradation of nitrobenzene and 2-nitrotoluene also oxidizes 4-nitrotoluene to 4-methylcatechol, which is a growth substrate for JS42, the strain is incapable of growth on 4-nitrotoluene. Using long-term laboratory evolution experiments, we obtained JS42 mutants that gained the ability to grow on 4-nitrotoluene via a new degradation pathway. The underlying basis for this new activity resulted from the accumulation of specific mutations in the gene encoding the dioxygenase that catalyses the initial oxidation of nitroarene substrates, but at positions distal to the active site and previously unknown to affect activity in this or related enzymes. We constructed additional mutant dioxygenases to identify the order of mutations that led to the improved enzymes. Biochemical analyses revealed a defined, step-wise pathway for the evolution of the improved dioxygenases.
Collapse
|
66
|
Mohammadi M, Viger JF, Kumar P, Barriault D, Bolin JT, Sylvestre M. Retuning Rieske-type oxygenases to expand substrate range. J Biol Chem 2011; 286:27612-21. [PMID: 21653696 DOI: 10.1074/jbc.m111.255174] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rieske-type oxygenases are promising biocatalysts for the destruction of persistent pollutants or for the synthesis of fine chemicals. In this work, we explored pathways through which Rieske-type oxygenases evolve to expand their substrate range. BphAE(p4), a variant biphenyl dioxygenase generated from Burkholderia xenovorans LB400 BphAE(LB400) by the double substitution T335A/F336M, and BphAE(RR41), obtained by changing Asn(338), Ile(341), and Leu(409) of BphAE(p4) to Gln(338), Val(341), and Phe(409), metabolize dibenzofuran two and three times faster than BphAE(LB400), respectively. Steady-state kinetic measurements of single- and multiple-substitution mutants of BphAE(LB400) showed that the single T335A and the double N338Q/L409F substitutions contribute significantly to enhanced catalytic activity toward dibenzofuran. Analysis of crystal structures showed that the T335A substitution relieves constraints on a segment lining the catalytic cavity, allowing a significant displacement in response to dibenzofuran binding. The combined N338Q/L409F substitutions alter substrate-induced conformational changes of protein groups involved in subunit assembly and in the chemical steps of the reaction. This suggests a responsive induced fit mechanism that retunes the alignment of protein atoms involved in the chemical steps of the reaction. These enzymes can thus expand their substrate range through mutations that alter the constraints or plasticity of the catalytic cavity to accommodate new substrates or that alter the induced fit mechanism required to achieve proper alignment of reaction-critical atoms or groups.
Collapse
Affiliation(s)
- Mahmood Mohammadi
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada
| | | | | | | | | | | |
Collapse
|
67
|
García-Urdiales E, Alfonso I, Gotor V. Update 1 of: Enantioselective Enzymatic Desymmetrizations in Organic Synthesis. Chem Rev 2011; 111:PR110-80. [DOI: 10.1021/cr100330u] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eduardo García-Urdiales
- Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad
de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
and
| | - Ignacio Alfonso
- Departamento de Química Biológica
y Modelización Molecular, Instituto de Química Avanzada
de Cataluña (IQAC, CSIC), Jordi Girona, 18-26, 08034, Barcelona,
Spain
| | - Vicente Gotor
- Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad
de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
and
| |
Collapse
|
68
|
Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3. Biodegradation 2011; 22:1119-33. [DOI: 10.1007/s10532-011-9468-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|
69
|
Federici E, Giubilei MA, Cajthaml T, Petruccioli M, D'Annibale A. Lentinus (Panus) tigrinus augmentation of a historically contaminated soil: matrix decontamination and structure and function of the resident bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1263-1270. [PMID: 21177025 DOI: 10.1016/j.jhazmat.2010.11.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
The ability of Lentinus tigrinus to grow and to degrade persistent aromatic hydrocarbons in aged contaminated soil was assessed in this study. L. tigrinus extensively colonized the soil; its degradation activity after 60 d incubation at 28°C, however, was mostly limited to dichloroaniline isomers, polychlorinated benzenes and diphenyl ether while the fungus was unable to deplete 9,10-anthracenedione and 7-H-benz[DE]anthracene-7-one which were the major soil contaminants. Although clean-up levels were limited, both density of cultivable heterotrophic bacteria and richness of the resident bacterial community in L. tigrinus microcosms (LtM) increased over time to a significantly larger extent than the respective amended incubation controls (1.9×10(9) CFU g(-1) vs. 1.0×10(9) CFU g(-1) and 37 vs. 16, respectively). Naphthalene- and catechol 2,3-dioxygenase gene copy numbers, however, decreased over time at a higher rate in LtM than in incubation controls likely due to a higher stimulation on heterotrophs than xenobiotics-degrading community members.
Collapse
Affiliation(s)
- E Federici
- Dipartimento di Biologia Cellulare e Ambientale, University of Perugia, Via del Giochetto 06100 Perugia, Italy
| | | | | | | | | |
Collapse
|
70
|
Kumar P, Mohammadi M, Viger JF, Barriault D, Gomez-Gil L, Eltis LD, Bolin JT, Sylvestre M. Structural insight into the expanded PCB-degrading abilities of a biphenyl dioxygenase obtained by directed evolution. J Mol Biol 2011; 405:531-47. [PMID: 21073881 PMCID: PMC3102011 DOI: 10.1016/j.jmb.2010.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
Abstract
The biphenyl dioxygenase of Burkholderia xenovorans LB400 is a multicomponent Rieske-type oxygenase that catalyzes the dihydroxylation of biphenyl and many polychlorinated biphenyls (PCBs). The structural bases for the substrate specificity of the enzyme's oxygenase component (BphAE(LB400)) are largely unknown. BphAE(p4), a variant previously obtained through directed evolution, transforms several chlorobiphenyls, including 2,6-dichlorobiphenyl, more efficiently than BphAE(LB400), yet differs from the parent oxygenase at only two positions: T335A/F336M. Here, we compare the structures of BphAE(LB400) and BphAE(p4) and examine the biochemical properties of two BphAE(LB400) variants with single substitutions, T335A or F336M. Our data show that residue 336 contacts the biphenyl and influences the regiospecificity of the reaction, but does not enhance the enzyme's reactivity toward 2,6-dichlorobiphenyl. By contrast, residue 335 does not contact biphenyl but contributes significantly to expansion of the enzyme's substrate range. Crystal structures indicate that Thr335 imposes constraints through hydrogen bonds and nonbonded contacts to the segment from Val320 to Gln322. These contacts are lost when Thr is replaced by Ala, relieving intramolecular constraints and allowing for significant movement of this segment during binding of 2,6-dichlorobiphenyl, which increases the space available to accommodate the doubly ortho-chlorinated congener 2,6-dichlorobiphenyl. This study provides important insight about how Rieske-type oxygenases can expand substrate range through mutations that increase the plasticity and/or mobility of protein segments lining the catalytic cavity.
Collapse
Affiliation(s)
- Pravindra Kumar
- Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN., 47907, USA
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, India
| | - Mahmood Mohammadi
- Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, H7V 1B7, Canada
| | - Jean-François Viger
- Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, H7V 1B7, Canada
| | - Diane Barriault
- Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, H7V 1B7, Canada
| | - Leticia Gomez-Gil
- Departments of Microbiology and Biochemistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lindsay D. Eltis
- Departments of Microbiology and Biochemistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jeffrey T. Bolin
- Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN., 47907, USA
| | - Michel Sylvestre
- Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, H7V 1B7, Canada
| |
Collapse
|
71
|
Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. mBio 2010; 1. [PMID: 20714442 PMCID: PMC2921158 DOI: 10.1128/mbio.00135-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/05/2010] [Indexed: 11/20/2022] Open
Abstract
The Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1 have been implicated in the initial oxidation of high-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs), forming cis-dihydrodiols. To clarify how these two RHOs are functionally different with respect to the degradation of HMW PAHs, we investigated their substrate specificities to 13 representative aromatic substrates (toluene, m-xylene, phthalate, biphenyl, naphthalene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benzo[a]pyrene, carbazole, and dibenzothiophene) by enzyme reconstitution studies of Escherichia coli. Both Nid systems were identified to be compatible with type V electron transport chain (ETC) components, consisting of a [3Fe-4S]-type ferredoxin and a glutathione reductase (GR)-type reductase. Metabolite profiles indicated that the Nid systems oxidize a wide range of aromatic hydrocarbon compounds, producing various isomeric dihydrodiol and phenolic compounds. NidAB and NidA3B3 showed the highest conversion rates for pyrene and fluoranthene, respectively, with high product regiospecificity, whereas other aromatic substrates were converted at relatively low regiospecificity. Structural characteristics of the active sites of the Nid systems were investigated and compared to those of other RHOs. The NidAB and NidA3B3 systems showed the largest substrate-binding pockets in the active sites, which satisfies spatial requirements for accepting HMW PAHs. Spatially conserved aromatic amino acids, Phe-Phe-Phe, in the substrate-binding pockets of the Nid systems appeared to play an important role in keeping aromatic substrates within the reactive distance from the iron atom, which allows each oxygen to attack the neighboring carbons.
Collapse
|
72
|
Baig MS, Manickam N. Homology modeling and docking studies of Comamonas testosteroni B-356 biphenyl-2,3-dioxygenase involved in degradation of polychlorinated biphenyls. Int J Biol Macromol 2009; 46:47-53. [PMID: 19879892 DOI: 10.1016/j.ijbiomac.2009.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
Biphenyl dioxygenase is a microbial enzyme which catalyzes the stereospecific dioxygenation of aromatic rings of biphenyl congeners leading to their degradation. Hence, it has attracted the attention of researchers due to its ability to oxidize chlorinated biphenyls, which are one of the serious environmental contaminants. In the present study, the three-dimensional model of alpha-subunit of biphenyl dioxygenase (BphA) from Comamonas testosteroni B-356 has been constructed. The resulting model was further validated and used for docking studies with a class of chlorinated biphenyls such as biphenyl,3,3'-dichlorobiphenyl and 4,4'-dichlorobiphenyl. The kinetic parameters of these biphenyl compounds were well matched with the docking results in terms of conformational and distance constraints. The binding properties of these biphenyl compounds along with identification of critical active site residues could be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds.
Collapse
Affiliation(s)
- M S Baig
- Environmental Biotechnology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226001, India
| | | |
Collapse
|
73
|
Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME JOURNAL 2009; 4:279-85. [PMID: 19776767 PMCID: PMC2808446 DOI: 10.1038/ismej.2009.104] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the relationship between gene diversity and function for important environmental processes are major ecological research goals. We applied gene-targeted-metagenomics and pyrosequencing to aromatic dioxygenase genes to obtain greater sequence depth than possible by other methods. A PCR primer set designed to target a 524 bp region that confers substrate specificity of biphenyl dioxygenases yielded 2000 and 604 sequences from 5′ and 3′ ends of the PCR products, respectively, that passed our validity criteria. Sequence alignment showed three known conserved residues as well as another seven conserved residues not previously reported. Ninety-five and 41% of the valid sequences were assigned to 22 and 3 novel clusters in that they did not include any previously reported sequences at 0.6 distance by Complete Linkage Clustering for the sequenced regions. The greater diversity revealed by this gene-targeted approach provides deeper insights into genes potentially important in environmental processes to better understand their ecology, functional differences and evolutionary origins. We also provide criteria for primer design for this approach as well as guidance for data processing of diverse functional genes since gene databases for most genes of environmental relevance are limited.
Collapse
|
74
|
D'Ordine RL, Rydel TJ, Storek MJ, Sturman EJ, Moshiri F, Bartlett RK, Brown GR, Eilers RJ, Dart C, Qi Y, Flasinski S, Franklin SJ. Dicamba monooxygenase: structural insights into a dynamic Rieske oxygenase that catalyzes an exocyclic monooxygenation. J Mol Biol 2009; 392:481-97. [PMID: 19616009 DOI: 10.1016/j.jmb.2009.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 11/29/2022]
Abstract
Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O(2) into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer (alpha(3)) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While the Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co(2+), which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 A, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.
Collapse
|
75
|
Biosynthesis of Indigo Dye by Newly Isolated Naphthalene-Degrading Strain Pseudomonas sp. HOB1 and its Application in Dyeing Cotton Fabric. Appl Biochem Biotechnol 2009; 160:1616-26. [DOI: 10.1007/s12010-009-8638-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/05/2009] [Indexed: 10/20/2022]
|
76
|
Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl Microbiol Biotechnol 2009; 83:465-75. [PMID: 19172265 DOI: 10.1007/s00253-009-1858-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 01/03/2009] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
Sphingomonas sp. strain LH128 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated soil using phenanthrene as the sole source of carbon and energy. A dioxygenase complex, phnA1fA2f, encoding the alpha and beta subunit of a terminal dioxygenase responsible for the initial attack on PAHs, was identified and isolated from this strain. PhnA1f showed 98%, 78%, and 78% identity to the alpha subunit of PAH dioxygenase from Novosphingobium aromaticivorans strain F199, Sphingomonas sp. strain CHY-1, and Sphingobium yanoikuyae strain B1, respectively. When overexpressed in Escherichia coli, PhnA1fA2f was able to oxidize low-molecular-weight PAHs, chlorinated biphenyls, dibenzo-p-dioxin, and the high-molecular-weight PAHs benz[a]anthracene, chrysene, and pyrene. The action of PhnA1fA2f on benz[a]anthracene produced two benz[a]anthracene dihydrodiols.
Collapse
|
77
|
Iwai S, Kurisu F, Urakawa H, Yagi O, Kasuga I, Furumai H. Development of an oligonucleotide microarray to detect di- and monooxygenase genes for benzene degradation in soil. FEMS Microbiol Lett 2008; 285:111-21. [PMID: 18547327 DOI: 10.1111/j.1574-6968.2008.01223.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Diverse environmental genes have been identified recently. To characterize their functions, it is necessary to understand which genes and what combinations of those genes are responsible for the biodegradation of soil contaminants. In this article, a 60-mer oligonucleotide microarray was constructed to simultaneously detect di- and monooxygenase genes for benzene and related compounds. In total, 148 probes were designed and validated by pure-culture hybridizations using the following criteria to discriminate between highly homologous genes: < or =53-bp identities and < or =25-bp continuous stretch to nontarget sequences. Microarray hybridizations were performed using PCR products amplified from five benzene-amended soils and two oil-contaminated soils. Six of the probes gave a positive signal for more than six soils; thus, they may represent key sequences for benzene degradation in the environment. The microarray developed in this study will be a powerful tool for the screening of key genes involved in benzene degradation and for the rapid profiling of benzene oxygenase gene diversity in contaminated soils.
Collapse
Affiliation(s)
- Shoko Iwai
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
78
|
Chauhan A, Fazlurrahman, Oakeshott JG, Jain RK. Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol 2008; 48:95-113. [PMID: 23100704 DOI: 10.1007/s12088-008-0010-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/21/2008] [Accepted: 02/04/2008] [Indexed: 10/22/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are compounds of intense public concern due to their persistence in the environment and potentially deleterious effects on human, environmental and ecological health. The clean up of such contaminants using invasive technologies has proven to be expensive and more importantly often damaging to the natural resource properties of the soil, sediment or aquifer. Bioremediation, which exploits the metabolic potential of microbes for the clean-up of recalcitrant xenobiotic compounds, has come up as a promising alternative. Several approaches such as improvement in PAH solubilization and entry into the cell, pathway and enzyme engineering and control of enzyme expression etc. are in development but far from complete. Successful application of the microorganisms for the bioremediation of PAH-contaminated sites therefore requires a deeper understanding of the physiology, biochemistry and molecular genetics of potential catabolic pathways. In this review, we briefly summarize important strategies adopted for PAH bioremediation and discuss the potential for their improvement.
Collapse
Affiliation(s)
- Archana Chauhan
- Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | | | | | | |
Collapse
|
79
|
Boyd DR, Sharma ND, Coen GP, Hempenstall F, Ljubez V, Malone JF, Allen CCR, Hamilton JTG. Regioselectivity and stereoselectivity of dioxygenase catalysed cis-dihydroxylation of mono- and tri-cyclic azaarene substrates. Org Biomol Chem 2008; 6:3957-66. [DOI: 10.1039/b810235j] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
80
|
Borodina E, Nichol T, Dumont MG, Smith TJ, Murrell JC. Mutagenesis of the "leucine gate" to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl Environ Microbiol 2007; 73:6460-7. [PMID: 17704278 PMCID: PMC2075044 DOI: 10.1128/aem.00823-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble methane monooxygenase (sMMO) from methane-oxidizing bacteria is a multicomponent nonheme oxygenase that naturally oxidizes methane to methanol and can also cooxidize a wide range of adventitious substrates, including mono- and diaromatic hydrocarbons. Leucine 110, at the mouth of the active site in the alpha subunit of the hydroxylase component of sMMO, has been suggested to act as a gate to control the access of substrates to the active site. Previous crystallography of the wild-type sMMO has indicated at least two conformations of the enzyme that have the "leucine gate" open to different extents, and mutagenesis of homologous enzymes has indicated a role for this residue in the control of substrate range and regioselectivity with aromatic substrates. By further refinement of the system for homologous expression of sMMO that we developed previously, we have been able to prepare a range of site-directed mutations at position 110 in the alpha subunit of sMMO. All the mutants (with Gly, Cys, Arg, and Tyr, respectively, at this position) showed relaxations of regioselectivity compared to the wild type with monoaromatic substrates and biphenyl, including the appearance of new products arising from hydroxylation at the 2- and 3- positions on the benzene ring. Mutants with the larger Arg and Trp residues at position 110 also showed shifts in regioselectivity during naphthalene hydroxylation from the 2- to the 1- position. No evidence that mutagenesis of Leu 110 could allow very large substrates to enter the active site was found, however, since the mutants (like the wild type) were inactive toward the triaromatic hydrocarbons anthracene and phenanthrene. Thus, our results indicate that the "leucine gate" in sMMO is more important in controlling the precision of regioselectivity than the sizes of substrates that can enter the active site.
Collapse
Affiliation(s)
- Elena Borodina
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | | | | | | | | |
Collapse
|
81
|
Ang EL, Obbard JP, Zhao H. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis. FEBS J 2007; 274:928-39. [PMID: 17269935 DOI: 10.1111/j.1742-4658.2007.05638.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aniline dioxygenase is a multicomponent Rieske nonheme-iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA. Saturation mutagenesis of the substrate-binding pocket residues, which were identified using a homology model of the alpha subunit of the terminal dioxygenase (AtdA3), was used to probe the molecular determinants of AtdA substrate specificity. The V205A mutation widened the substrate specificity of aniline dioxygenase to include 2-isopropylaniline, for which the wild-type enzyme has no activity. The V205A mutation also made 2-isopropylaniline a better substrate for the enzyme than 2,4-dimethylaniline, a native substrate of the wild-type enzyme. The I248L mutation improved the activity of aniline dioxygenase against aniline and 2,4-dimethylaniline approximately 1.7-fold and 2.1-fold, respectively. Thus, it is shown that the alpha subunit of the terminal dioxygenase indeed plays a part in the substrate specificity as well as the activity of aniline dioxygenase. Interestingly, the equivalent residues of V205 and I248 have not been previously reported to influence the substrate specificity of other Rieske dioxygenases. These results should facilitate future engineering of the enzyme for bioremediation and industrial applications.
Collapse
Affiliation(s)
- Ee L Ang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
82
|
Jakoncic J, Jouanneau Y, Meyer C, Stojanoff V. The crystal structure of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1. FEBS J 2007; 274:2470-81. [PMID: 17451434 DOI: 10.1111/j.1742-4658.2007.05783.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ring-hydroxylating dioxygenase (RHD) from Sphingomonas CHY-1 is remarkable due to its ability to initiate the oxidation of a wide range of polycyclic aromatic hydrocarbons (PAHs), including PAHs containing four- and five-fused rings, known pollutants for their toxic nature. Although the terminal oxygenase from CHY-1 exhibits limited sequence similarity with well characterized RHDs from the naphthalene dioxygenase family, the crystal structure determined to 1.85 A by molecular replacement revealed the enzyme to share the same global alpha(3)beta(3) structural pattern. The catalytic domain distinguishes itself from other bacterial non-heme Rieske iron oxygenases by a substantially larger hydrophobic substrate binding pocket, the largest ever reported for this type of enzyme. While residues in the proximal region close to the mononuclear iron atom are conserved, the central region of the catalytic pocket is shaped mainly by the side chains of three amino acids, Phe350, Phe404 and Leu356, which contribute to the rather uniform trapezoidal shape of the pocket. Two flexible loops, LI and LII, exposed to the solvent seem to control the substrate access to the catalytic pocket and control the pocket length. Compared with other naphthalene dioxygenases residues Leu223 and Leu226, on loop LI, are moved towards the solvent, thus elongating the catalytic pocket by at least 2 A. An 11 A long water channel extends from the interface between the alpha and beta subunits to the catalytic site. The comparison of these structures with other known oxygenases suggests that the broad substrate specificity presented by the CHY-1 oxygenase is primarily due to the large size and particular topology of its catalytic pocket and provided the basis for the study of its reaction mechanism.
Collapse
Affiliation(s)
- Jean Jakoncic
- Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY 11973, USA
| | | | | | | |
Collapse
|
83
|
Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1. BMC STRUCTURAL BIOLOGY 2007; 7:10. [PMID: 17349044 PMCID: PMC1847435 DOI: 10.1186/1472-6807-7-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 03/09/2007] [Indexed: 11/10/2022]
Abstract
Background The initial step involved in oxidative hydroxylation of monoaromatic and polyaromatic compounds by the microorganism Sphingobium yanoikuyae strain B1 (B1), previously known as Sphingomonas yanoikuyae strain B1 and Beijerinckia sp. strain B1, is performed by a set of multiple terminal Rieske non-heme iron oxygenases. These enzymes share a single electron donor system consisting of a reductase and a ferredoxin (BPDO-FB1). One of the terminal Rieske oxygenases, biphenyl 2,3-dioxygenase (BPDO-OB1), is responsible for B1's ability to dihydroxylate large aromatic compounds, such as chrysene and benzo[a]pyrene. Results In this study, crystal structures of BPDO-OB1 in both native and biphenyl bound forms are described. Sequence and structural comparisons to other Rieske oxygenases show this enzyme to be most similar, with 43.5 % sequence identity, to naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. While structurally similar to naphthalene 1,2-dioxygenase, the active site entrance is significantly larger than the entrance for naphthalene 1,2-dioxygenase. Differences in active site residues also allow the binding of large aromatic substrates. There are no major structural changes observed upon binding of the substrate. BPDO-FB1 has large sequence identity to other bacterial Rieske ferredoxins whose structures are known and demonstrates a high structural homology; however, differences in side chain composition and conformation around the Rieske cluster binding site are noted. Conclusion This is the first structure of a Rieske oxygenase that oxidizes substrates with five aromatic rings to be reported. This ability to catalyze the oxidation of larger substrates is a result of both a larger entrance to the active site as well as the ability of the active site to accommodate larger substrates. While the biphenyl ferredoxin is structurally similar to other Rieske ferredoxins, there are distinct changes in the amino acids near the iron-sulfur cluster. Because this ferredoxin is used by multiple oxygenases present in the B1 organism, this ferredoxin-oxygenase system provides the structural platform to dissect the balance between promiscuity and selectivity in protein-protein electron transport systems.
Collapse
|
84
|
Martínez-Pérez O, López-Sánchez A, Reyes-Ramírez F, Floriano B, Santero E. Integrated response to inducers by communication between a catabolic pathway and its regulatory system. J Bacteriol 2007; 189:3768-75. [PMID: 17351041 PMCID: PMC1913338 DOI: 10.1128/jb.00057-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient gene regulation of metabolic pathways implies that the profile of molecules inducing the pathway matches that of the molecules that are metabolized. Gratuitous induction, a well-known phenomenon in catabolic pathways, is the consequence of differences in the substrate and inducer profiles. This phenomenon is particularly evident in pathways for biodegradation of organic contaminants that can be induced by a variety of molecules similar to the real substrates. Analysis of the regulation of tetralin biodegradation genes in mutant strains with mutations that affect each component of the initial dioxygenase enzymatic complex indicated that the response of the regulatory system to potential inducers is altered differently depending on the mutated component. Based on the expression phenotypes of a number of single or double mutants, we propose a model that represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent efficient induction by a molecule that is not a real substrate. This communication allows a better fit of the substrate and inducer profiles, thus minimizing gratuitous induction, without a requirement for optimal coevolution to match the specificity of catabolic enzymes and their regulatory systems. Modulation of the regulatory system in this way not only provides a more appropriate response to potential inducers recognized by the regulatory system but also may properly adjust the levels of gene expression to the substrate availability.
Collapse
Affiliation(s)
- Olga Martínez-Pérez
- Departamento de Biología Molecular e Ingeniería Bioquímica and Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Ctra. Utrera, Km. 1, 41013 Sevilla, Spain
| | | | | | | | | |
Collapse
|
85
|
Boyd DR, Sharma ND, Llamas NM, O'Dowd CR, Allen CCR. syn-Benzene dioxides: chemoenzymatic synthesis from 2,3-cis-dihydrodiol derivatives of monosubstituted benzenes and their application in the synthesis of regioisomeric 1,2- and 3,4-cis-dihydrodiols and 1,4-dioxocins. Org Biomol Chem 2007; 5:2267-73. [PMID: 17609758 DOI: 10.1039/b704584k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
cis-2,3-Dihydrodiol metabolites of monosubstituted halobenzenes and toluene have been used as synthetic precursors of the corresponding 3,4-cis-dihydrodiols. Enantiopure syn-benzene dioxide intermediates were reduced to the 3,4-cis-dihydrodiols and thermally racemised via the corresponding 1,4-dioxocins. The syn-benzene dioxide-1,4-dioxocin valence tautomeric equilibrium ratio was found to be dependent on the substituent position. The methodology has also been applied to the synthesis of both enantiomers of the 1,2-(ipso)- and 3,4-cis-dihydrodiols of toluene. This chemoenzymatic approach thus makes available, for the first time, all three possible cis-dihydrodiol regioisomers of a monosubstituted benzene.
Collapse
Affiliation(s)
- Derek R Boyd
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, UK BT9 5AG.
| | | | | | | | | |
Collapse
|
86
|
Jamshad M, Murrell JC, Fülöp V. Purification and crystallization of the hydroxylase component of the methanesulfonate monooxygenase from Methylosulfonomonas methylovora strain M2. Protein Expr Purif 2006; 52:472-7. [PMID: 17169571 DOI: 10.1016/j.pep.2006.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/01/2006] [Accepted: 11/01/2006] [Indexed: 11/16/2022]
Abstract
The aim of the work described in this paper was two-fold: (1) the purification of the hydroxylase component of the MSAMO to electrophoretic homogeneity using a four-step chromatographic strategy and (2) the crystallization of the two-component hydroxylase of the MSAMO in order to enhance our understanding of the precise three-dimensional structure of the MSAMO, thus yielding an insight into the nature of the active site of this enzyme. Optimised crystallization conditions were identified allowing growth of crystals of the hydroxylase component of the MSAMO within five days. Crystals exhibited a brown colour suggesting the presence on an intact Rieske-iron sulfur centre and diffracted to 7.0A when a few degrees of data were evaluated on a beam line X11.
Collapse
Affiliation(s)
- Mohammed Jamshad
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | |
Collapse
|
87
|
Ferraro DJ, Okerlund AL, Mowers JC, Ramaswamy S. Structural basis for regioselectivity and stereoselectivity of product formation by naphthalene 1,2-dioxygenase. J Bacteriol 2006; 188:6986-94. [PMID: 16980501 PMCID: PMC1595510 DOI: 10.1128/jb.00707-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 07/13/2006] [Indexed: 11/20/2022] Open
Abstract
Rieske oxygenase (RO) systems are two- and three-component enzyme systems that catalyze the formation of cis-dihydrodiols from aromatic substrates. Degradation of pollutants in contaminated soil and generation of chiral synthons have been the major foci of RO research. Substrate specificity and product regio- and stereoselectivity have been shown to vary between individual ROs. While directed evolution methods for altering RO function have been successful in the past, rational engineering of these enzymes still poses a challenge due to the lack of structural understanding. Here we examine the structural changes induced by mutation of Phe-352 in naphthalene 1,2-dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NDO-O(9816-4)). Structures of the Phe-352-Val mutant in native form and in complex with phenanthrene and anthracene, along with those of wild-type NDO-O(9816-4) in complex with phenanthrene, anthracene, and 3-nitrotoluene, are presented. Phenanthrene was shown to bind in a different orientation in the Phe-352-Val mutant active site from that in the wild type, while anthracene was found to bind in similar positions in both enzymes. Two orientations of 3-nitrotoluene were observed, i.e., a productive and a nonproductive orientation. These orientations help explain why NDO-O(9816-4) forms different products from 3-nitrotoluene than those made from nitrobenzene dioxygenase. Comparison of these structures among themselves and with other known ROs bound to substrates reveals that the orientation of substrate binding at the active site is the primary determinant of product regio- and stereoselectivity.
Collapse
Affiliation(s)
- Daniel J Ferraro
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Road, 4-403 BSB, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
88
|
Ní Chadhain SM, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ. Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol 2006; 72:4078-87. [PMID: 16751518 PMCID: PMC1489606 DOI: 10.1128/aem.02969-05] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria has been widely studied. While many pure cultures have been isolated and characterized for their ability to grow on PAHs, limited information is available on the diversity of microbes involved in PAH degradation in the environment. We have designed generic PCR primers targeting the gene fragment encoding the Rieske iron sulfur center common to all PAH dioxygenase enzymes. These Rieske primers were employed to track dioxygenase gene population shifts in soil enrichment cultures following exposure to naphthalene, phenanthrene, or pyrene. PAH degradation was monitored by gas chromatograph with flame ionization detection. DNA was extracted from the enrichment cultures following PAH degradation. 16S rRNA and Rieske gene fragments were PCR amplified from DNA extracted from each enrichment culture and an unamended treatment. The PCR products were cloned and sequenced. Molecular monitoring of the enrichment cultures before and after PAH degradation using denaturing gradient gel electrophoresis and 16S rRNA gene libraries suggests that specific phylotypes of bacteria were associated with the degradation of each PAH. Sequencing of the cloned Rieske gene fragments showed that different suites of genes were present in soil microbe populations under each enrichment culture condition. Many of the Rieske gene fragment sequences fell into clades which are distinct from the reference dioxygenase gene sequences used to design the PCR primers. The ability to profile not only the bacterial community but also the dioxygenases which they encode provides a powerful tool for both assessing bioremediation potential in the environment and for the discovery of novel dioxygenase genes.
Collapse
Affiliation(s)
- Sinéad M Ní Chadhain
- Biotechnology Center for Agriculture and the Environment, Rutgers University, 59 Dudley Rd., New Brunswick, NJ 08901-8520, USA
| | | | | | | | | |
Collapse
|
89
|
Keenan BG, Wood TK. Orthric Rieske dioxygenases for degrading mixtures of 2,4-dinitrotoluene/naphthalene and 2-amino-4,6-dinitrotoluene/4-amino-2,6-dinitrotoluene. Appl Microbiol Biotechnol 2006; 73:827-38. [PMID: 16933133 DOI: 10.1007/s00253-006-0538-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 11/28/2022]
Abstract
Pollutants are frequently found as mixtures yet it is difficult to engineer enzymes with broad substrate ranges on aromatics. Inspired by the archetypal nitroarene dioxygenase, which shares its electron transport with a salicylate monooxygenase, we have created an innovative and general approach to expand the substrate range of dioxygenase enzymes in a single cell. We have developed here a series of novel, hybrid dioxygenase enzymes that function with a single ferredoxin reductase and ferredoxin that are used to transport two electrons from nicotinamide adenine dinucleotide to the two independent terminal oxygenases. Each independent alpha-oxygenase may then be used simultaneously to create orthric enzymes that degrade mixtures of environmental pollutants. Specifically, we created a hybrid dioxygenase system consisting of naphthalene dioxygenase/dinitrotoluene dioxygenase to simultaneously degrade 2,4-dinitrotoluene and naphthalene (neither enzyme alone had significant activity on both compounds) and dinitrotoluene dioxygenase/nitrobenzene dioxygenase to simultaneously degrade the frequently encountered 2,4,6-trinitrotoluene reduction products 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene.
Collapse
Affiliation(s)
- Brendan G Keenan
- Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843-3122, USA
| | | |
Collapse
|
90
|
Ma DY, Zheng QY, Wang DX, Wang MX. Dramatic Enhancement of Enantioselectivity of Biotransformations of β-Hydroxy Nitriles Using a Simple O-Benzyl Protection/Docking Group. Org Lett 2006; 8:3231-4. [PMID: 16836373 DOI: 10.1021/ol0610688] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[Structure: see text] Catalyzed by the Rhodococcus erythropolis AJ270 whole cell catalyst, the O-benzylated beta-hydroxy alkanenitriles underwent remarkably high enantioselective biotransformations, whereas the biotransformations of free beta-hydroxy alkanenitriles gave very low enantioselectivity. The easy manipulations of O-protection and O-deprotection, excellent chemical and enantiomeric yields of biotransformations, along with the scalability render this enzymatic transformation attractive and practical for the synthesis of highly enantiopure beta-hydroxy alkanoic acids and their amide derivatives.
Collapse
Affiliation(s)
- Da-You Ma
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
91
|
Zielinski M, Kahl S, Standfuss-Gabisch C, Cámara B, Seeger M, Hofer B. Generation of novel-substrate-accepting biphenyl dioxygenases through segmental random mutagenesis and identification of residues involved in enzyme specificity. Appl Environ Microbiol 2006; 72:2191-9. [PMID: 16517671 PMCID: PMC1393203 DOI: 10.1128/aem.72.3.2191-2199.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aryl-hydroxylating dioxygenases are of interest for the degradation of persistant aromatic pollutants, such as polychlorobiphenyls (PCBs), or as catalysts for the functionalization of aromatic scaffolds. In order to achieve dioxygenation of technical mixtures of PCBs, enzymes with broadened or altered substrate ranges are essential. To alter the substrate specificity of the biphenyl dioxygenase (BphA) of Burkholderia xenovorans LB400, we applied a directed evolution approach that used structure-function relationship data to target random mutageneses to specific segments of the enzyme. The limitation of random amino acid (AA) substitutions to regions that are critical for substrate binding and the exclusion of AA exchanges from positions that are essential for catalytic activity yielded enzyme variants of interest at comparatively high frequencies. After only a single mutagenic cycle, 10 beneficial variants were detected in a library of fewer than 1,000 active enzymes. Compared to the parental BphA, they showed between 5- and 200-fold increased turnover of chlorinated biphenyls, with substituent patterns that rendered them largely recalcitrant to attack by BphA-LB400. Determination of their sequences identified AAs that prevent the acceptance of specific PCBs by the wild-type enzyme, such as Pro334 and Phe384. The results suggest prime targets for subsequent cycles of BphA modification. Correlations with a three-dimensional model of the enzyme indicated that most of the exchanges with major influence on substrate turnover do not involve pocket-lining residues and had not been predictable through structural modeling.
Collapse
Affiliation(s)
- Marco Zielinski
- Division of Microbiology, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
92
|
Ju KS, Parales RE. Control of substrate specificity by active-site residues in nitrobenzene dioxygenase. Appl Environ Microbiol 2006; 72:1817-24. [PMID: 16517627 PMCID: PMC1393210 DOI: 10.1128/aem.72.3.1817-1824.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not understood. In this study, site-directed mutagenesis was used to modify the active site of nitrobenzene dioxygenase, and the contribution of specific residues in controlling substrate specificity and enzyme performance was evaluated. The activities of six mutant enzymes indicated that the residues at positions 258, 293, and 350 in the alpha subunit are important for determining regiospecificity with nitroarene substrates and enantiospecificity with naphthalene. The results provide an explanation for the characteristic specificity with nitroarene substrates. Based on the structure of nitrobenzene dioxygenase, substitution of valine for the asparagine at position 258 should eliminate a hydrogen bond between the substrate nitro group and the amino group of asparagine. Up to 99% of the mononitrotoluene oxidation products formed by the N258V mutant were nitrobenzyl alcohols rather than catechols, supporting the importance of this hydrogen bond in positioning substrates in the active site for ring oxidation. Similar results were obtained with an I350F mutant, where the formation of the hydrogen bond appeared to be prevented by steric interference. The specificity of enzymes with substitutions at position 293 varied depending on the residue present. Compared to the wild type, the F293Q mutant was 2.5 times faster at oxidizing 2,6-dinitrotoluene while retaining a similar Km for the substrate based on product formation rates and whole-cell kinetics.
Collapse
Affiliation(s)
- Kou-San Ju
- Section of Microbiology, 226 Briggs Hall, 1 Shields Ave., University of California, Davis, CA 95616, USA
| | | |
Collapse
|
93
|
Abstract
The range of available arene dihydroxylating dioxygenase enzymes, their structure and mechanism, and recent examples of the application of arene cis-dihydrodiol bioproducts as chiral precursors in the synthesis of natural and unnatural products and chiral ligands are discussed.
Collapse
Affiliation(s)
- Derek R Boyd
- School of Chemistry and Centre for Theory and Application of Catalysis, Queen's University of Belfast, Belfast, UKBT9 5AG
| | | |
Collapse
|
94
|
Tan CL, Yeo CC, Khoo HE, Poh CL. Replacement of tyrosine 181 by phenylalanine in gentisate 1,2-dioxygenase I from Pseudomonas alcaligenes NCIMB 9867 enhances catalytic activities. J Bacteriol 2005; 187:7543-5. [PMID: 16237038 PMCID: PMC1272980 DOI: 10.1128/jb.187.21.7543-7545.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
xlnE, encoding gentisate 1,2-dioxygenase (EC 1.13.11.4), from Pseudomonas alcaligenes (P25X) was mutagenized by site-directed mutagenesis. The mutant enzyme, Y181F, demonstrated 4-, 3-, 6-, and 16-fold increases in relative activity towards gentisate and 3-fluoro-, 4-methyl-, and 3-methylgentisate, respectively. The specific mutation conferred a 13-fold higher catalytic efficiency (k(cat)/Km) on Y181F towards 3-methylgentisate than that of the wild-type enzyme.
Collapse
Affiliation(s)
- Chew Ling Tan
- Programme in Environmental Microbiology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | | | | | | |
Collapse
|
95
|
Gakhar L, Malik ZA, Allen CCR, Lipscomb DA, Larkin MJ, Ramaswamy S. Structure and increased thermostability of Rhodococcus sp. naphthalene 1,2-dioxygenase. J Bacteriol 2005; 187:7222-31. [PMID: 16237006 PMCID: PMC1272967 DOI: 10.1128/jb.187.21.7222-7231.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rieske nonheme iron oxygenases form a large class of aromatic ring-hydroxylating dioxygenases found in microorganisms. These enzymes enable microorganisms to tolerate and even exclusively utilize aromatic compounds for growth, making them good candidates for use in synthesis of chiral intermediates and bioremediation. Studies of the chemical stability and thermostability of these enzymes thus become important. We report here the structure of free and substrate (indole)-bound forms of naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. The structure of the Rhodococcus enzyme reveals that, despite a approximately 30% sequence identity between these naphthalene dioxygenases, their overall structures superpose very well with a root mean square deviation of less than 1.6 A. The differences in the active site of the two enzymes are pronounced near the entrance; however, indole binds to the Rhodococcus enzyme in the same orientation as in the Pseudomonas enzyme. Circular dichroism spectroscopy experiments show that the Rhodococcus enzyme has higher thermostability than the naphthalene dioxygenase from Pseudomonas species. The Pseudomonas enzyme has an apparent melting temperature of 55 degrees C while the Rhodococcus enzyme does not completely unfold even at 95 degrees C. Both enzymes, however, show similar unfolding behavior in urea, and the Rhodococcus enzyme is only slightly more tolerant to unfolding by guanidine hydrochloride. Structure analysis suggests that the higher thermostability of the Rhodococcus enzyme may be attributed to a larger buried surface area and extra salt bridge networks between the alpha and beta subunits in the Rhodococcus enzyme.
Collapse
Affiliation(s)
- Lokesh Gakhar
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
96
|
Lee KS, Parales JV, Friemann R, Parales RE. Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42. J Ind Microbiol Biotechnol 2005; 32:465-73. [PMID: 16175409 DOI: 10.1007/s10295-005-0021-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 07/19/2005] [Indexed: 11/30/2022]
Abstract
Acidovorax (formerly Pseudomonas) sp. strain JS42 utilizes 2-nitrotoluene as sole carbon, nitrogen, and energy source. 2-Nitrotoluene 2,3-dioxygenase (2NTDO) catalyzes the initial step in 2-nitrotoluene degradation by converting 2-nitrotoluene to 3-methylcatechol. In this study, we identified specific amino acids at the active site that control specificity. The residue at position 350 was found to be critical in determining both the enantiospecificity of 2NTDO with naphthalene and the ability to oxidize the ring of mononitrotoluenes. Substitution of Ile350 by phenylalanine resulted in an enzyme that produced 97% (+)-(1R, 2S)-cis-naphthalene dihydrodiol, in contrast to the wild type, which produced 72% (+)-(1R, 2S)-cis-naphthalene dihydrodiol. This substitution also severely reduced the ability of the enzyme to produce methylcatechols from nitrotoluenes. Instead, the methyl group of each nitrotoluene isomer was preferentially oxidized to form the corresponding nitrobenzyl alcohol. Substitution of a valine at position 258 significantly changed the enantiospecificity of 2NTDO (54% (-)-(1S, 2R)-cis-naphthalene dihydrodiol formed from naphthalene) and the ability of the enzyme to oxidize the aromatic ring of nitrotoluenes. Based on active site modeling using the crystal structure of nitrobenzene 1,2 dioxygenase from Comamonas sp. JS765, Asn258 appears to contribute to substrate specificity through hydrogen bonding to the nitro group of nitrotoluenes.
Collapse
Affiliation(s)
- Kyung-Seon Lee
- Section of Microbiology, University of California, Davis, CA95616, USA
| | | | | | | |
Collapse
|
97
|
Ferraro DJ, Gakhar L, Ramaswamy S. Rieske business: structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 2005; 338:175-90. [PMID: 16168954 DOI: 10.1016/j.bbrc.2005.08.222] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Accepted: 08/30/2005] [Indexed: 11/20/2022]
Abstract
Rieske non-heme iron oxygenases (RO) catalyze stereo- and regiospecific reactions. Recently, an explosion of structural information on this class of enzymes has occurred in the literature. ROs are two/three component systems: a reductase component that obtains electrons from NAD(P)H, often a Rieske ferredoxin component that shuttles the electrons and an oxygenase component that performs catalysis. The oxygenase component structures have all shown to be of the alpha3 or alpha3beta3 types. The transfer of electrons happens from the Rieske center to the mononuclear iron of the neighboring subunit via a conserved aspartate, which is shown to be involved in gating electron transport. Molecular oxygen has been shown to bind side-on in naphthalene dioxygenase and a concerted mechanism of oxygen activation and hydroxylation of the ring has been proposed. The orientation of binding of the substrate to the enzyme is hypothesized to control the substrate selectivity and regio-specificity of product formation.
Collapse
Affiliation(s)
- Daniel J Ferraro
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 51 Newton Road, 4-403 BSB, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
98
|
Kim JY, Kim JK, Lee SO, Kim CK, Lee K. Multicomponent phenol hydroxylase-catalysed formation of hydroxyindoles and dyestuffs from indole and its derivatives. Lett Appl Microbiol 2005; 41:163-8. [PMID: 16033515 DOI: 10.1111/j.1472-765x.2005.01734.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To establish multicomponent phenol hydroxylases (mPHs) as novel biocatalysts for producing dyestuffs and hydroxyindoles such as 7-hydroxyindole (7-HI) from indole and its derivatives. METHODS AND RESULTS We have isolated Pseudomonas sp. KL33, which possesses a phenol degradation pathway similar to that found in Pseudomonas sp. CF600. Pseudomonas sp. KL28 is a strain that can grow on n-alkylphenols as a carbon and energy source. Escherichia coli strains expressing mPH from strain KL28 (mPH(KL28)) and strain KL33 (mPH(KL33)) catalysed the formation of indigo and 7-HI, respectively, from indole. In addition, both mPHs catalysed the production of dyestuffs and hydroxyindoles from indole derivatives. The mPH(KL28) has proved to be one of the most versatile biocatalysts that can accommodate a wide range of indole derivatives for catalysing the formation of dyestuffs. CONCLUSIONS The present work provides a new approach in producing various dyestuffs and hydroxyindoles from indole and its derivatives by mPHs. SIGNIFICANCE AND IMPACT OF THE STUDY These results indicate that mPHs may serve as potential agents for organic syntheses as well as bioremediation.
Collapse
Affiliation(s)
- J Y Kim
- Department of Microbiology, Changwon National University, Changwon, Kyongnam, Korea
| | | | | | | | | |
Collapse
|
99
|
Keenan BG, Leungsakul T, Smets BF, Mori MA, Henderson DE, Wood TK. Protein engineering of the archetypal nitroarene dioxygenase of Ralstonia sp. strain U2 for activity on aminonitrotoluenes and dinitrotoluenes through alpha-subunit residues leucine 225, phenylalanine 350, and glycine 407. J Bacteriol 2005; 187:3302-10. [PMID: 15866914 PMCID: PMC1112016 DOI: 10.1128/jb.187.10.3302-3310.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naphthalene dioxygenase (NDO) from Ralstonia sp. strain U2 has not been reported to oxidize nitroaromatic compounds. Here, saturation mutagenesis of NDO at position F350 of the alpha-subunit (NagAc) created variant F350T that produced 3-methyl-4-nitrocatechol from 2,6-dinitrotoluene (26DNT), that released nitrite from 23DNT sixfold faster than wild-type NDO, and that produced 3-amino-4-methyl-5-nitrocatechol and 2-amino-4,6-dinitrobenzyl alcohol from 2-amino-4,6-dinitrotoluene (2A46DNT) (wild-type NDO has no detectable activity on 26DNT and 2A46DNT). DNA shuffling identified the beneficial NagAc mutation G407S, which when combined with the F350T substitution, increased the rate of NDO oxidation of 26DNT, 23DNT, and 2A46DNT threefold relative to variant F350T. DNA shuffling of NDO nagAcAd also generated the NagAc variant G50S/L225R/A269T with an increased rate of 4-amino-2-nitrotoluene (4A2NT; reduction product of 2,4-dinitrotoluene) oxidation; from 4A2NT, this variant produced both the previously uncharacterized oxidation product 4-amino-2-nitrocresol (enhanced 11-fold relative to wild-type NDO) as well as 4-amino-2-nitrobenzyl alcohol (4A2NBA; wild-type NDO does not generate this product). G50S/L225R/A269T also had increased nitrite release from 23DNT (14-fold relative to wild-type NDO) and generated 2,3-dinitrobenzyl alcohol (23DNBA) fourfold relative to wild-type NDO. The importance of position L225 for catalysis was confirmed through saturation mutagenesis; relative to wild-type NDO, NDO variant L225R had 12-fold faster generation of 4-amino-2-nitrocresol and production of 4A2NBA from 4A2NT as well as 24-fold faster generation of nitrite and 15-fold faster generation of 23DNBA from 23DNT. Hence, random mutagenesis discovered two new residues, G407 and L225, that influence the regiospecificity of Rieske non-heme-iron dioxygenases.
Collapse
Affiliation(s)
- Brendan G Keenan
- Department of Chemical Engineering and Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3222, USA
| | | | | | | | | | | |
Collapse
|
100
|
Yildirim S, Franco T, Wohlgemuth R, Kohler HP, Witholt B, Schmid A. Recombinant Chlorobenzene Dioxygenase fromPseudomonas sp. P51: A Biocatalyst for Regioselective Oxidation of Aromatic Nitriles. Adv Synth Catal 2005. [DOI: 10.1002/adsc.200505075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|