51
|
Zipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons. J Neurosci 2011; 31:5271-85. [PMID: 21471362 DOI: 10.1523/jneurosci.2387-10.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pattern of dendritic branching, together with the density of synapses and receptor composition, defines the electrical properties of a neuron. The development of the dendritic arbor and its additional stabilization are highly orchestrated at the molecular level and are guided by intrinsic mechanisms and extracellular information. Although protein translation is known to contribute to these processes, the role of its local component has not been fully explored. For local translation, mRNAs are transported to dendrites in their dormant form as ribonucleoparticles (RNPs). We hypothesized that disturbing spatial mRNA distribution via RNP targeting may result in severe underdevelopment of the dendritic arbor. Zipcode binding protein 1 (ZBP1) controls β-actin mRNA transport and translation in dendrites. We showed that proper cellular levels of ZBP1, its ability to engage in mRNA binding, and Src-dependent release of mRNA cargo from ZBP1 are vital for dendritic arbor development in cultured rat hippocampal neurons. Moreover, β-actin overexpression significantly alleviated the effects of ZBP1 knockdown. These results suggest that ZBP1-dependent dendritic mRNA transport contributes to proper dendritic branching.
Collapse
|
52
|
Forget A, Chartrand P. Cotranscriptional assembly of mRNP complexes that determine the cytoplasmic fate of mRNA. Transcription 2011; 2:86-90. [PMID: 21468235 PMCID: PMC3062400 DOI: 10.4161/trns.2.2.14857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 12/22/2022] Open
Abstract
Unlike prokaryotes, in which transcription and translation are coupled, eukaryotes physically separate transcription in the nucleus from mRNA translation and degradation in the cytoplasm. However, recent evidence has revealed that the full picture is more complex and that the nuclear transcription machinery plays specific roles in regulating the cytoplasmic fate of mRNA.
Collapse
Affiliation(s)
- Amélie Forget
- Département de Biochimie; Université de Montréal; Montréal QC Canada
| | | |
Collapse
|
53
|
Coady TH, Lorson CL. SMN in spinal muscular atrophy and snRNP biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:546-64. [PMID: 21957043 DOI: 10.1002/wrna.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribonucleoprotein (RNP) complexes function in nearly every facet of cellular activity. The spliceosome is an essential RNP that accurately identifies introns and catalytically removes the intervening sequences, providing exquisite control of spatial, temporal, and developmental gene expressions. U-snRNPs are the building blocks for the spliceosome. A significant amount of insight into the molecular assembly of these essential particles has recently come from a seemingly unexpected area of research: neurodegeneration. Survival motor neuron (SMN) performs an essential role in the maturation of snRNPs, while the homozygous loss of SMN1 results in the development of spinal muscular atrophy (SMA), a devastating neurodegenerative disease. In this review, the function of SMN is examined within the context of snRNP biogenesis and evidence is examined which suggests that the SMN functional defects in snRNP biogenesis may account for the motor neuron pathology observed in SMA.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
54
|
Liao G, Ma X, Liu G. An RNA-zipcode-independent mechanism that localizes Dia1 mRNA to the perinuclear ER through interactions between Dia1 nascent peptide and Rho-GTP. J Cell Sci 2011; 124:589-99. [PMID: 21266463 DOI: 10.1242/jcs.072421] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Signal-peptide-mediated ER localization of mRNAs encoding for membrane and secreted proteins, and RNA-zipcode-mediated intracellular targeting of mRNAs encoding for cytosolic proteins are two well-known mechanisms for mRNA localization. Here, we report a previously unidentified mechanism by which mRNA encoding for Dia1, a cytosolic protein without the signal peptide, is localized to the perinuclear ER in an RNA-zipcode-independent manner in fibroblasts. Dia1 mRNA localization is also independent of the actin and microtubule cytoskeleton but requires translation and the association of Dia1 nascent peptide with the ribosome-mRNA complex. Sequence mapping suggests that interactions of the GTPase binding domain of Dia1 peptide with active Rho are important for Dia1 mRNA localization. This mechanism can override the β-actin RNA zipcode and redirect β-actin mRNA to the perinuclear region, providing a new way to manipulate intracellular mRNA localization.
Collapse
Affiliation(s)
- Guoning Liao
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | | | | |
Collapse
|
55
|
Slobodin B, Gerst JE. RaPID: an aptamer-based mRNA affinity purification technique for the identification of RNA and protein factors present in ribonucleoprotein complexes. Methods Mol Biol 2011; 714:387-406. [PMID: 21431754 DOI: 10.1007/978-1-61779-005-8_24] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RNA metabolism involves regulatory processes, such as transcription, splicing, nuclear export, transport and localization, association with sites of RNA modification, silencing and decay, and necessitates a wide variety of diverse RNA-interacting proteins. These interactions can be direct via RNA-binding proteins (RBPs) or indirect via other proteins and RNAs that form ribonucleoprotein complexes that together control RNA fate. While pull-down methods for the isolation of known RBPs are commonly used, strategies have also been described for the direct isolation of messenger RNAs (mRNAs) and their associated factors. The latter techniques allow for the identification of interacting proteins and RNAs, but most suffer from problems of low sensitivity and high background. Here we describe a simple and highly effective method for RNA purification and identification (RaPID) that allows for the isolation of specific mRNAs of interest from yeast and mammalian cells, and subsequent analysis of the associated proteins and RNAs using mass spectrometry and reverse transcription-PCR, respectively. This method employs the MS2 coat RBP fused to both GFP and streptavidin-binding protein to precipitate MS2 aptamer-tagged RNAs using immobilized streptavidin.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
56
|
Abstract
Interest in the mechanisms of subcellular localization of mRNAs and the effects of localized translation has increased over the last decade. Polarized eukaryotic cells transport mRNA-protein complexes to subcellular sites, where translation of the mRNAs can be regulated by physiological stimuli. The long distances separating distal neuronal processes from their cell body have made neurons a useful model system for dissecting mechanisms of mRNA trafficking. Both the dendritic and axonal processes of neurons have been shown to have protein synthetic capacity and the diversity of mRNAs discovered in these processes continues to increase. Localized translation of mRNAs requires a co-ordinated effort by the cell body to target both mRNAs and necessary translational machinery into distal sites, as well as temporal control of individual mRNA translation. In addition to altering protein composition locally at the site of translation, some of the proteins generated in injured nerves retrogradely signal to the cell body, providing both temporal and spatial information on events occurring at distant subcellular sites.
Collapse
Affiliation(s)
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute, Rehovot, Israel
| | - Jeffery L. Twiss
- Department of Biological Science, University of Delaware, Newark, Delaware USA
- Department of Biology, Drexel University, Philadelphia, Pennsylvania USA
| |
Collapse
|
57
|
Slobodin B, Gerst JE. A novel mRNA affinity purification technique for the identification of interacting proteins and transcripts in ribonucleoprotein complexes. RNA (NEW YORK, N.Y.) 2010; 16:2277-90. [PMID: 20876833 PMCID: PMC2957065 DOI: 10.1261/rna.2091710] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intracellular mRNA targeting and localized translation are potential determinants for protein localization. To facilitate targeting, mRNAs possess specific cis-acting sequence motifs that are recognized by trans-acting RNA-binding proteins (RBPs). While many mRNAs are trafficked, our knowledge of the RBPs involved and presence of additional transcripts within these ribonucleoprotein (RNP) complexes is limited. To facilitate the identification of RBPs and transcripts that bind to specific mRNAs, we developed RNA-binding protein purification and identification (RaPID), a novel technique that allows for the affinity purification of MS2 aptamer-tagged mRNAs and subsequent detection of bound RBPs and transcripts using mass-spectometry and RT-PCR, respectively. RaPID effectively isolated specific mRNAs from both yeast and mammalian cells, and identified known mRNA-RBP interactions (e.g., ASH1-She2; β-Actin-IMP1). By isolating tagged OXA1 mRNA using RaPID, we could identify a yeast COPI subunit (i.e., Sec27) as a candidate interacting protein. This finding was strengthened by the observation that a portion of OXA1 mRNA was delocalized in a sec27-1 temperature-sensitive mutant at restrictive temperatures. Finally, RaPID could also be used to show biochemically the coexistence of different RNA species within the same RNP complex (e.g., coprecipitation of the yeast SRO7, WSC2, SEC3, and IST2 mRNAs with ASH1 mRNA) for the first time.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
58
|
Abstract
She2p is an RNA-binding protein that recognizes a zipcode on specific mRNAs necessary for the assembly of a protein complex that localizes them to the yeast bud tip. In this issue of Genes & Development, Shen and colleagues (pp. 1914-1926) demonstrate that She2p associates with RNAPII globally, but then recognizes the nascent chain only if it contains a zipcode. This demonstrates yet another case where the mRNA's cytoplasmic fate is determined by the RNAPII complex.
Collapse
Affiliation(s)
- Tatjana Trcek
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
59
|
Shen Z, St-Denis A, Chartrand P. Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud. Genes Dev 2010; 24:1914-26. [PMID: 20713510 PMCID: PMC2932973 DOI: 10.1101/gad.1937510] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/13/2010] [Indexed: 12/13/2022]
Abstract
Pre-mRNA processing is coupled with transcription. It is still unclear if the transcription machinery can also directly affect the cytoplasmic fate of a transcript, such as its intracellular localization. In yeast, the RNA-binding protein She2p binds several mRNAs and targets them for localization at the bud. Here we report that She2p is recruited cotranscriptionally to the nascent bud-localized ASH1, IST2, and EAR1 mRNA. She2p interacts in vivo with the elongating forms of RNA polymerase II (pol II) via the transcription elongation factor Spt4-Spt5. Mutations in either SPT4 or SPT5 reduce the cotranscriptional recruitment of She2p on the ASH1 gene, disrupt the proper localization of ASH1 mRNA at the bud tip, and affect Ash1p sorting to the daughter cell nucleus. We propose that She2p is recruited by the RNA pol II machinery prior to its transfer to nascent bud-localized mRNAs. Indeed, She2p is present with RNA pol II on genes coding for localized or nonlocalized transcripts, but is associated with nascent mRNA only on genes coding for bud-localized transcripts. Moreover, a She2p mutant defective in RNA binding still associates with RNA pol II transcribed genes. This study uncovers a novel mechanism for the cotranscriptional assembly of mRNP complexes primed for localization in the cytoplasm.
Collapse
Affiliation(s)
- Zhifa Shen
- Département de Biochimie, Université de Montréal Montréal, Quebec H3C 3J7 Canada
| | - Anik St-Denis
- Département de Biochimie, Université de Montréal Montréal, Quebec H3C 3J7 Canada
| | - Pascal Chartrand
- Département de Biochimie, Université de Montréal Montréal, Quebec H3C 3J7 Canada
| |
Collapse
|
60
|
Todd AG, Morse R, Shaw DJ, McGinley S, Stebbings H, Young PJ. SMN, Gemin2 and Gemin3 associate with beta-actin mRNA in the cytoplasm of neuronal cells in vitro. J Mol Biol 2010; 401:681-9. [PMID: 20620147 DOI: 10.1016/j.jmb.2010.06.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/09/2010] [Accepted: 06/25/2010] [Indexed: 11/24/2022]
Abstract
Childhood spinal muscular atrophy is caused by a reduced expression of the survival motor neuron (SMN) protein. SMN has been implicated in the axonal transport of beta-actin mRNA in both primary and transformed neuronal cell lines, and loss of this function could account, at least in part, for spinal muscular atrophy onset and pathological specificity. Here we have utilised a targeted screen to identify mRNA associated with SMN, Gemin2 and Gemin3 in the cytoplasm of a human neuroblastoma cell line, SHSY5Y. Importantly, we have provided the first direct evidence that beta-actin mRNA is present in SMN cytoplasmic complexes in SHSY5Y cells.
Collapse
Affiliation(s)
- Adrian G Todd
- Clinical Neurobiology, Institute of Biomedical and Clinical Science, Peninsula Medical School, St. Luke's Campus, Heavitree Road, Exeter EX1 2LU, UK
| | | | | | | | | | | |
Collapse
|
61
|
Todd AG, Morse R, Shaw DJ, Stebbings H, Young PJ. Analysis of SMN-neurite granules: Core Cajal body components are absent from SMN-cytoplasmic complexes. Biochem Biophys Res Commun 2010; 397:479-85. [PMID: 20515655 DOI: 10.1016/j.bbrc.2010.05.139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Childhood spinal muscular atrophy (SMA) is caused by a reduction in survival motor neuron (SMN) protein. SMN is a ubiquitously expressed house keeping protein that is involved in RNA production and processing. However, although SMN is expressed in every cell type, only the lower motor neurons of the spinal cord are degraded in SMA. It remains unclear why this is the case. Recently, SMN has been linked to the axonal transport of beta-actin mRNA from the cell body down to the growth cones. beta-Actin is transported actively in neurite granules (NGs). However, it remains unclear which known SMN-binding partners are present in these SMN-NGs. To address this we have analysed SMN-NGs in a human neuronal cell line, SH-SY5Y, using antibodies against the majority of reported SMN-binding partners, including: Gemin2, Gemin3, Gemin4, Gemin5, Gemin6, Gemin7, Sm core proteins, fibrillarin, EWS, PFNII, Unrip and ZPR1. The obtained results highlight the metamorphic nature of the SMN complex, suggesting that not all the "core" SMN-binding proteins are transported in SMN-NGs.
Collapse
Affiliation(s)
- Adrian G Todd
- Clinical Neurobiology, Institute of Biomedical and Clinical Science, Peninsula Medical School, St. Luke's Campus, Exeter, United Kingdom
| | | | | | | | | |
Collapse
|
62
|
Bergeron SE, Zhu M, Thiem SM, Friderici KH, Rubenstein PA. Ion-dependent polymerization differences between mammalian beta- and gamma-nonmuscle actin isoforms. J Biol Chem 2010; 285:16087-95. [PMID: 20308063 DOI: 10.1074/jbc.m110.110130] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
beta- and gamma-nonmuscle actins differ by 4 amino acids at or near the N terminus and distant from polymerization interfaces. beta-Actin contains an Asp(1)-Asp(2)-Asp(3) and Val(10) whereas gamma-actin has a Glu(1)-Glu(2)-Glu(3) and Ile(10). Despite these small changes, conserved across mammals, fish, and birds, their differential localization in the same cell suggests they may play different roles reflecting differences in their biochemical properties. To test this hypothesis, we established a baculovirus-driven expression system for producing these actins in isoform-pure populations although contaminated with 20-25% insect actin. Surprisingly, Ca-gamma-actin exhibits a slower monomeric nucleotide exchange rate, a much longer nucleation phase, and a somewhat slower elongation rate than beta-actin. In the Mg-form, this difference between the two is much smaller. Ca-gamma-actin depolymerizes half as fast as does beta-actin. Mixing experiments with Ca-actins reveal the two will readily co-polymerize. In the Ca-form, phosphate release from polymerizing beta-actin occurs much more rapidly and extensively than polymerization, whereas phosphate release lags behind polymerization with gamma-actin. Phosphate release during treadmilling is twice as fast with beta- as with gamma-actin. With Mg-actin in the initial stages, phosphate release for both actins correlates much more closely with polymerization. Calcium bound in the high affinity binding site of gamma-actin may cause a selective energy barrier relative to beta-actin that retards the equilibration between G- and F-monomer conformations resulting in a slower polymerizing actin with greater filament stability. This difference may be particularly important in sites such as the gamma-actin-rich cochlear hair cell stereocilium where local mm calcium concentrations may exist.
Collapse
Affiliation(s)
- Sarah E Bergeron
- Department of Biochemistry, Roy A and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
63
|
SMN and the Gemin proteins form sub-complexes that localise to both stationary and dynamic neurite granules. Biochem Biophys Res Commun 2010; 394:211-6. [PMID: 20188701 DOI: 10.1016/j.bbrc.2010.02.158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 02/23/2010] [Indexed: 11/21/2022]
Abstract
Childhood spinal muscular atrophy (SMA) is caused by a reduction in survival motor neuron (SMN) protein. SMN is expressed in every cell type, but it is predominantly the lower motor neurones of the spinal cord that degenerate in SMA. SMN has been linked to the axonal transport of beta-actin mRNA, a breakdown in which could trigger disease onset. It is known that SMN is present in transport ribonucleoproteins (RNPs) granules that also contain Gemin2 and Gemin3. To further characterise these granules we have performed live cell imaging of GFP-tagged SMN, GFP-Gemin2, GFP-Gemin3, GFP-Gemin6 and GFP-Gemin7. In all, we have made two important observations: (1) SMN granules appear metamorphic; and (2) the SMN-Gemin complex(es) appears to localise to two distinct subsets of bodies in neurites; stationary bodies and smaller dynamic bodies. This study provides an insight into the neuronal function of the SMN complex.
Collapse
|
64
|
Willis DE, Twiss JL. Regulation of protein levels in subcellular domains through mRNA transport and localized translation. Mol Cell Proteomics 2010; 9:952-62. [PMID: 20167945 DOI: 10.1074/mcp.r900005-mcp200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Localized protein synthesis is increasingly recognized as a means for polarized cells to modulate protein levels in subcellular regions and the distal reaches of their cytoplasm. The axonal and dendritic processes of neurons represent functional domains of cytoplasm that can be separated from their cell body by vast distances. This separation provides a biological setting where the cell uses locally synthesized proteins to both autonomously respond to stimuli and to retrogradely signal the cell body of events occurring is this distal environment. Other cell types undoubtedly take advantage of this localized mechanism, but these have not proven as amenable for isolation of functional subcellular domains. Consequently, neurons have provided an appealing experimental platform for study of mRNA transport and localized protein synthesis. Molecular biology approaches have shown both the population of mRNAs that can localize into axons and dendrites and an unexpectedly complex regulation of their transport into these processes. Several lines of evidence point to similar complexities and specificity for regulation of mRNA translation at subcellular sites. Proteomics studies are beginning to provide a comprehensive view of the protein constituents of subcellular domains in neurons and other cell types. However, these have currently fallen short of dissecting temporal regulation of new protein synthesis in subcellular sites and mechanisms used to ferry mRNAs to these sites.
Collapse
Affiliation(s)
- Dianna E Willis
- Burke Medical Research Institute, White Plains, New York 10605, USA.
| | | |
Collapse
|
65
|
Tondeleir D, Vandamme D, Vandekerckhove J, Ampe C, Lambrechts A. Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models. ACTA ACUST UNITED AC 2009; 66:798-815. [PMID: 19296487 DOI: 10.1002/cm.20350] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dynamic actin cytoskeleton, consisting of six actin isoforms in mammals and a variety of actin binding proteins is essential for all developmental processes and for the viability of the adult organism. Actin isoform specific functions have been proposed for muscle contraction, cell migration, endo- and exocytosis and maintaining cell shape. However, these specific functions for each of the actin isoforms during development are not well understood. Based on transgenic mouse models, we will discuss the expression patterns of the six conventional actin isoforms in mammals during development and adult life. Ablation of actin genes usually leads to lethality and affects expression of other actin isoforms at the cell or tissue level. A good knowledge of their expression and functions will contribute to fully understand severe phenotypes or diseases caused by mutations in actin isoforms.
Collapse
Affiliation(s)
- Davina Tondeleir
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Albert Baertsoenkaai 3, Ghent, Belgium
| | | | | | | | | |
Collapse
|
66
|
Abstract
Subcellular localization of messenger RNAs (mRNAs) can give precise control over where protein products are synthesized and operate. However, just 10 years ago many in the broader cell biology community would have considered this a specialized mechanism restricted to a very small fraction of transcripts. Since then, it has become clear that subcellular targeting of mRNAs is prevalent, and there is mounting evidence for central roles for this process in many cellular events. Here, we review current knowledge of the mechanisms and functions of mRNA localization in animal cells.
Collapse
Affiliation(s)
- Christine E. Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Simon L. Bullock
- Cell Biology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
67
|
Perales R, Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 2009; 36:178-91. [PMID: 19854129 DOI: 10.1016/j.molcel.2009.09.018] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/07/2009] [Accepted: 08/06/2009] [Indexed: 12/27/2022]
Abstract
Much of the complex process of RNP biogenesis takes place at the gene cotranscriptionally. The target for RNA binding and processing factors is, therefore, not a solitary RNA molecule but, rather, a transcription elongation complex (TEC) comprising the growing nascent RNA and RNA polymerase traversing a chromatin template with associated passenger proteins. RNA maturation factors are not the only nuclear machines whose work is organized cotranscriptionally around the TEC scaffold. Additionally, DNA repair, covalent chromatin modification, "gene gating" at the nuclear pore, Ig gene hypermutation, and sister chromosome cohesion have all been demonstrated or suggested to involve a cotranscriptional component. From this perspective, TECs can be viewed as potent "community organizers" within the nucleus.
Collapse
Affiliation(s)
- Roberto Perales
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC, MS8101, P.O. Box 6511, Aurora CO, 80045, USA
| | | |
Collapse
|
68
|
Vogelaar CF, Gervasi NM, Gumy LF, Story DJ, Raha-Chowdhury R, Leung KM, Holt CE, Fawcett JW. Axonal mRNAs: characterisation and role in the growth and regeneration of dorsal root ganglion axons and growth cones. Mol Cell Neurosci 2009; 42:102-115. [PMID: 19520167 PMCID: PMC4603359 DOI: 10.1016/j.mcn.2009.06.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/23/2009] [Accepted: 06/02/2009] [Indexed: 01/30/2023] Open
Abstract
We have developed a compartmentalised culture model for the purification of axonal mRNA from embryonic, neonatal and adult rat dorsal root ganglia. This mRNA was used un-amplified for RT-qPCR. We assayed for the presence of axonal mRNAs encoding molecules known to be involved in axon growth and guidance. mRNAs for beta-actin, beta-tubulin, and several molecules involved in the control of actin dynamics and signalling during axon growth were found, but mRNAs for microtubule-associated proteins, integrins and cell surface adhesion molecules were absent. Quantification of beta-actin mRNA by means of qPCR showed that the transcript is present at the same level in embryonic, newborn and adult axons. Using the photoconvertible reporter Kaede we showed that there is local translation of beta-actin in axons, the rate being increased by axotomy. Knock down of beta-actin mRNA by RNAi inhibited the regeneration of new axon growth cones after in vitro axotomy, indicating that local translation of actin-related molecules is important for successful axon regeneration.
Collapse
MESH Headings
- Actins/genetics
- Animals
- Animals, Newborn
- Axons/physiology
- Axotomy
- Cytoskeleton/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/physiology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiology
- Growth Cones/physiology
- Nerve Regeneration/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Receptors, Cell Surface/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Signal Transduction/genetics
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Christina F. Vogelaar
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Noreen M. Gervasi
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Laura F. Gumy
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - David J. Story
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Ruma Raha-Chowdhury
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | - Kin-Mei Leung
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christine E. Holt
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - James W. Fawcett
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| |
Collapse
|
69
|
Lee JH, Rangarajan ES, Yogesha S, Izard T. Raver1 interactions with vinculin and RNA suggest a feed-forward pathway in directing mRNA to focal adhesions. Structure 2009; 17:833-42. [PMID: 19523901 PMCID: PMC2811071 DOI: 10.1016/j.str.2009.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 10/20/2022]
Abstract
The translational machinery of the cell relocalizes to focal adhesions following the activation of integrin receptors. This response allows for rapid, local production of components needed for adhesion complex assembly and signaling. Vinculin links focal adhesions to the actin cytoskeleton following its activation by integrin signaling, which severs intramolecular interactions of vinculin's head and tail (Vt) domains. Our vinculin:raver1 crystal structures and binding studies show that activated Vt selectively interacts with one of the three RNA recognition motifs of raver1, that the vinculin:raver1 complex binds to F-actin, and that raver1 binds selectively to RNA, including a sequence found in vinculin mRNA. Further, mutation of residues that mediate interaction of raver1 with vinculin abolish their colocalization in cells. These findings suggest a feed-forward model where vinculin activation at focal adhesions provides a scaffold for recruitment of raver1 and its mRNA cargo to facilitate the production of components of adhesion complexes.
Collapse
Affiliation(s)
- Jun Hyuck Lee
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Erumbi S. Rangarajan
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - S.D. Yogesha
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
70
|
Gu W, Pan F, Singer RH. Blocking beta-catenin binding to the ZBP1 promoter represses ZBP1 expression, leading to increased proliferation and migration of metastatic breast-cancer cells. J Cell Sci 2009; 122:1895-905. [PMID: 19461076 PMCID: PMC2684840 DOI: 10.1242/jcs.045278] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2009] [Indexed: 12/31/2022] Open
Abstract
ZBP1 (zipcode-binding protein 1, also known as IMP-1) is an mRNA regulator, functioning in mRNA localization, stability and translational control. ZBP1 is actively expressed during embryogenesis and tumorigenesis, but its expression is repressed in metastatic breast-cancer cell lines and tumors. In this article, we show that downregulation of ZBP1 expression results from its promoter methylation, an epigenetic process that remodels the chromatin structure and frequently represses gene activity. Demethylation of the ZBP1 promoter in metastatic cells reactivated ZBP1 expression, owing to restoration of the interaction of the ZBP1 promoter with beta-catenin. Loss of ZBP1 function not only increased growth ability of metastatic cells, but also promoted cell migration. We identified a number of mRNAs that were selectively associated with ZBP1 in breast-cancer cells. Many of these are involved in cell motility and in cell-cycle regulation, and displayed altered expression patterns in the absence of ZBP1. These data suggest that repression of ZBP1 deregulates its associated mRNAs, leading to the phenotypic changes of breast cancers.
Collapse
Affiliation(s)
- Wei Gu
- Department of Anatomy and Structural Biology, and Department of Cell Biology,
Albert Einstein College of Medicine 1300 Morris Park Avenue, Bronx, NY 10461,
USA
| | - Feng Pan
- Molecular Neurobiology Program, Skirball Institute, New York University
Medical Center, New York, NY 10012, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, and Department of Cell Biology,
Albert Einstein College of Medicine 1300 Morris Park Avenue, Bronx, NY 10461,
USA
| |
Collapse
|
71
|
Shen Z, Paquin N, Forget A, Chartrand P. Nuclear shuttling of She2p couples ASH1 mRNA localization to its translational repression by recruiting Loc1p and Puf6p. Mol Biol Cell 2009; 20:2265-75. [PMID: 19244342 PMCID: PMC2669033 DOI: 10.1091/mbc.e08-11-1151] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 12/16/2022] Open
Abstract
The transport and localization of mRNAs results in the asymmetric synthesis of specific proteins. In yeast, the nucleocytoplasmic shuttling protein She2 binds the ASH1 mRNA and targets it for localization at the bud tip by recruiting the She3p-Myo4p complex. Although the cytoplasmic role of She2p in mRNA localization is well characterized, its nuclear function is still unclear. Here, we show that She2p contains a nonclassical nuclear localization signal (NLS) that is essential for its nuclear import via the importin alpha Srp1p. Exclusion of She2p from the nucleus by mutagenesis of its NLS leads to defective ASH1 mRNA localization and Ash1p sorting. Interestingly, these phenotypes mimic knockouts of LOC1 and PUF6, which encode for nuclear RNA-binding proteins that bind the ASH1 mRNA and control its translation. We find that She2p interacts with both Loc1p and Puf6p and that excluding She2p from the nucleus decreases this interaction. Absence of nuclear She2p disrupts the binding of Loc1p and Puf6p to the ASH1 mRNA, suggesting that nuclear import of She2p is necessary to recruit both factors to the ASH1 transcript. This study reveals that a direct coupling between localization and translation regulation factors in the nucleus is required for proper cytoplasmic localization of mRNAs.
Collapse
Affiliation(s)
- Zhifa Shen
- Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7 Canada
| | - Nicolas Paquin
- Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7 Canada
| | - Amélie Forget
- Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7 Canada
| | - Pascal Chartrand
- Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7 Canada
| |
Collapse
|
72
|
Abstract
The localization of mRNAs to subcellular compartments provides a mechanism for regulating gene expression with exquisite temporal and spatial control. Recent studies suggest that a large fraction of mRNAs localize to distinct cytoplasmic domains. In this Review, we focus on cis-acting RNA localization elements, RNA-binding proteins, and the assembly of mRNAs into granules that are transported by molecular motors along cytoskeletal elements to their final destination in the cell.
Collapse
Affiliation(s)
- Kelsey C Martin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095-1737, USA.
| | | |
Collapse
|
73
|
Rossoll W, Bassell GJ. Spinal muscular atrophy and a model for survival of motor neuron protein function in axonal ribonucleoprotein complexes. Results Probl Cell Differ 2009; 48:289-326. [PMID: 19343312 PMCID: PMC3718852 DOI: 10.1007/400_2009_4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease that results from loss of function of the SMN1 gene, encoding the ubiquitously expressed survival of motor neuron (SMN) protein, a protein best known for its housekeeping role in the SMN-Gemin multiprotein complex involved in spliceosomal small nuclear ribonucleoprotein (snRNP) assembly. However, numerous studies reveal that SMN has many interaction partners, including mRNA binding proteins and actin regulators, suggesting its diverse role as a molecular chaperone involved in mRNA metabolism. This review focuses on studies suggesting an important role of SMN in regulating the assembly, localization, or stability of axonal messenger ribonucleoprotein (mRNP) complexes. Various animal models for SMA are discussed, and phenotypes described that indicate a predominant function for SMN in neuronal development and synapse formation. These models have begun to be used to test different therapeutic strategies that have the potential to restore SMN function. Further work to elucidate SMN mechanisms within motor neurons and other cell types involved in neuromuscular circuitry hold promise for the potential treatment of SMA.
Collapse
Affiliation(s)
- Wilfried Rossoll
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
74
|
Vuppalanchi D, Willis DE, Twiss JL. Regulation of mRNA transport and translation in axons. Results Probl Cell Differ 2009; 48:193-224. [PMID: 19582411 DOI: 10.1007/400_2009_16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Movement of mRNAs into axons occurs by active transport by microtubules through the activity of molecular motor proteins. mRNAs are sequestered into granular-like particles, referred to as transport ribonucleoprotein particles (RNPs) that mediate transport into the axonal compartment. The interaction of mRNA binding proteins with targeted mRNA is a key event in regulating axonal mRNA localization and subsequent localized translation of mRNAs. Several growth-modulating stimuli have been shown to regulate axonal mRNA localization. These do so by activating specific intracellular signaling pathways that converge upon RNA binding proteins and other components of the transport RNP to regulate their activity specifically. Transport can be both positively and negatively regulated by individual stimuli with regard to individual mRNAs. Consequently, there is exquisite specificity for regulating the axon's composition of mRNAs and proteins that control expression in the axon. Finally, recent studies indicate that axotomy can also trigger changes in axonal mRNA composition by specifically shifting the populations of mRNAs that are transported into distal axons.
Collapse
|
75
|
Besse F, Ephrussi A. Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 2008; 9:971-80. [PMID: 19023284 DOI: 10.1038/nrm2548] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
76
|
Xu M, McCarrey JR, Hecht NB. A cytoplasmic variant of the KH-type splicing regulatory protein serves as a decay-promoting factor for phosphoglycerate kinase 2 mRNA in murine male germ cells. Nucleic Acids Res 2008; 36:7157-67. [PMID: 19015122 PMCID: PMC2602782 DOI: 10.1093/nar/gkn800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphoglycerate kinase 2 (PGK2) is a germ cell-specific protein whose mRNA is translationally regulated in the mammalian testis. Using RNA affinity chromatography with the 3'-untranslated region (UTR) of Pgk2 mRNA and adult testis extracts, several associated proteins including a novel isoform of the AU-rich element RNA-binding protein and KH-type splicing regulatory protein (KSRP) were identified. KSRP, a protein of approximately 75 kDa, is widely expressed in somatic and germ cells where it is primarily nuclear. In addition to the approximately 75-kDa KSRP, a approximately 52-kD KSRP, t-KSRP, is present in the cytoplasm of a subpopulation of germ cells. t-KSRP binds directly to a 93-nt sequence (designated the F1 region) of the 3'-UTR of the Pgk2 mRNA and destabilizes Pgk2 mRNA constructs in testis extracts and in transfected cells. We conclude that this testicular variant of the multifunctional nucleic acid-binding protein, KSRP, serves as a decay-promoting factor for Pgk2 mRNA in male germ cells.
Collapse
Affiliation(s)
- Mingang Xu
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, PA 6080, USA
| | | | | |
Collapse
|
77
|
García-Mayoral MF, Díaz-Moreno I, Hollingworth D, Ramos A. The sequence selectivity of KSRP explains its flexibility in the recognition of the RNA targets. Nucleic Acids Res 2008; 36:5290-6. [PMID: 18684992 PMCID: PMC2532734 DOI: 10.1093/nar/gkn509] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 11/17/2022] Open
Abstract
K-homology (KH) splicing regulator protein (KSRP) is a multi-domain RNA-binding protein that regulates different steps of mRNA metabolism, from mRNA splicing to mRNA decay, interacting with a broad range of RNA sequences. To understand how KSRP recognizes its different RNA targets it is necessary to define the general rules of KSRP-RNA interaction. We describe here a complete scaffold-independent analysis of the RNA-binding potential of the four KH domains of KSRP. The analysis shows that KH3 binds to the RNA with a significantly higher affinity than the other domains and recognizes specifically a G-rich target. It also demonstrates that the other KH domains of KSRP display different sequence preferences explaining the broad range of targets recognized by the protein. Further, KSRP shows a strong negative selectivity for sequences containing several adjacent Cytosines limiting the target choice of KSRP within single-stranded RNA regions. The in-depth analysis of the RNA-binding potential of the KH domains of KSRP provides us with an understanding of the role of low sequence specificity domains in RNA recognition by multi-domain RNA-binding proteins.
Collapse
Affiliation(s)
| | | | | | - Andres Ramos
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
78
|
Russo A, Cirulli C, Amoresano A, Pucci P, Pietropaolo C, Russo G. cis-acting sequences and trans-acting factors in the localization of mRNA for mitochondrial ribosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:820-9. [PMID: 18790094 DOI: 10.1016/j.bbagrm.2008.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/30/2008] [Accepted: 08/15/2008] [Indexed: 12/25/2022]
Abstract
mRNA localization is a conserved post-transcriptional process crucial for a variety of systems. Although several mechanisms have been identified, emerging evidence suggests that most transcripts reach the protein functional site by moving along cytoskeleton elements. We demonstrated previously that mRNA for mitochondrial ribosomal proteins are asymmetrically distributed in the cytoplasm, and that localization in the proximity of mitochondria is mediated by the 3'-UTR. Here we show by biochemical analysis that these mRNA transcripts are associated with the cytoskeleton through the microtubule network. Cytoskeleton association is functional for their intracellular localization near the mitochondrion, and the 3'-UTR is involved in this cytoskeleton-dependent localization. To identify the minimal elements required for localization, we generated DNA constructs containing, downstream from the GFP gene, deletion mutants of mitochondrial ribosomal protein S12 3'-UTR, and expressed them in HeLa cells. RT-PCR analysis showed that the localization signals responsible for mRNA localization are located in the first 154 nucleotides. RNA pull-down assays, mass spectrometry, and RNP immunoprecipitation assay experiments, demonstrated that mitochondrial ribosomal protein S12 3'-UTR interacts specifically with TRAP1 (tumor necrosis factor receptor-associated protein1), hnRNPM4 (heterogeneous nuclear ribonucleoprotein M4), Hsp70 and Hsp60 (heat shock proteins 70 and 60), and alpha-tubulin in vitro and in vivo.
Collapse
Affiliation(s)
- Annapina Russo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Napoli 80131, Italy
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
A large share of mRNA processing and packaging events occurs cotranscriptionally. To explore the hypothesis that transcription defects may affect mRNA fate, we analyzed poly(A)(+) RNA distribution in Saccharomyces cerevisiae strains harboring mutations in Rpb1p, the largest subunit of RNA polymerase II. In certain rpb1 mutants, a poly(A)(+) RNA granule, distinct from any known structure, strongly accumulated in a confined space of the cytoplasm. RNA and protein expressed from Ty1 retrovirus-like elements colocalized with this new granule, which we have consequently named the T body. A visual screen revealed that the deletion of most genes with proposed functions in Ty1 biology unexpectedly does not alter T-body levels. In contrast, the deletion of genes encoding the Mediator transcription initiation factor subunits Srb2p and Srb5p as well as the Ty1 transcriptional regulator Spt21p greatly enhances T-body formation. Our data disclose a new cellular body putatively involved in the assembly of Ty1 particles and suggest that the cytoplasmic fate of mRNA can be affected by transcription initiation events.
Collapse
|
80
|
Feedback regulation between zipcode binding protein 1 and beta-catenin mRNAs in breast cancer cells. Mol Cell Biol 2008; 28:4963-74. [PMID: 18490442 DOI: 10.1128/mcb.00266-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ZBP1 (zipcode binding protein 1) is an RNA-binding protein involved in many posttranscriptional processes, such as RNA localization, RNA stability, and translational control. ZBP1 is abundantly expressed in embryonic development, but its expression is silenced in most adult tissues. Reactivation of the ZBP1 gene has been reported in various human tumors. In this study, we identified a detailed molecular mechanism of ZBP1 transactivation in breast cancer cells. We show that beta-catenin, a protein that functions in both cell adhesion and transcription, specifically binds to the ZBP1 promoter via a conserved beta-catenin/TCF4 response element and activates its gene expression. ZBP1 activation is also closely correlated with nuclear translocation of beta-catenin in human breast tumors. We further demonstrate feedback regulation by finding that ZBP1 physically associates with beta-catenin mRNA in vivo and increases its stability. These experiments suggest that in breast cancer cells, the expression of ZBP1 and the expression of beta-catenin are coordinately regulated. beta-Catenin mediates the transcription of the ZBP1 gene, while ZBP1 promotes the stability of beta-catenin mRNA.
Collapse
|