51
|
Human chromosome fragility. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:3-16. [DOI: 10.1016/j.bbagrm.2007.10.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 11/21/2022]
|
52
|
Abstract
Chromosomal fragile sites are specific loci that preferentially exhibit gaps and breaks on metaphase chromosomes following partial inhibition of DNA synthesis. Their discovery has led to novel findings spanning a number of areas of genetics. Rare fragile sites are seen in a small proportion of individuals and are inherited in a Mendelian manner. Some, such as FRAXA in the FMR1 gene, are associated with human genetic disorders, and their study led to the identification of nucleotide-repeat expansion as a frequent mutational mechanism in humans. In contrast, common fragile sites are present in all individuals and represent the largest class of fragile sites. Long considered an intriguing component of chromosome structure, common fragile sites have taken on novel significance as regions of the genome that are particularly sensitive to replication stress and that are frequently rearranged in tumor cells. In recent years, much progress has been made toward understanding the genomic features of common fragile sites and the cellular processes that monitor and influence their stability. Their study has merged with that of cell cycle checkpoints and DNA repair, and common fragile sites have provided insight into understanding the consequences of replication stress on DNA damage and genome instability in cancer cells.
Collapse
Affiliation(s)
- Sandra G Durkin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA.
| | | |
Collapse
|
53
|
|
54
|
Fechter A, Buettel I, Kuehnel E, Schwab M, Savelyeva L. Cloning of genetically tagged chromosome break sequences reveals new fragile sites at 6p21 and 13q22. Int J Cancer 2007; 120:2359-67. [PMID: 17290399 DOI: 10.1002/ijc.22564] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fragile sites are specific genomic loci that are especially prone to chromosome breakage. For the human genome there are 31 rare fragile sites and 88 common fragile sites listed in the National Center for Biotechnology Information database; however, the exact number remains unknown. In this study, unstable DNA sequences, which have been previously tagged with a marker gene, were cloned and provided starting points for the characterization of two aphidicolin inducible common fragile sites. Mapping of these unstable regions with six-color fluorescence in situ hybridization revealed two new fragile sites at 6p21 and 13q22, which encompass genomic regions of 9.3 and 3.1 Mb, respectively. According to the fragile site nomenclature they were consequently entitled as FRA6H and FRA13E. Both identified regions are known to be associated with recurrent aberrations in malignant and nonmalignant disorders. It is conceivable that these fragile sites result in genetic damage that might contribute to cancer phenotypes such as osteosarcoma, breast and prostate cancer.
Collapse
Affiliation(s)
- Anne Fechter
- Division of Tumour Genetics, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
55
|
Torres-Rosell J, De Piccoli G, Cordon-Preciado V, Farmer S, Jarmuz A, Machin F, Pasero P, Lisby M, Haber JE, Aragón L. Anaphase onset before complete DNA replication with intact checkpoint responses. Science 2007; 315:1411-5. [PMID: 17347440 DOI: 10.1126/science.1134025] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most significantly at natural replication-impeding loci like the ribosomal DNA gene cluster. In the absence of Smc5-Smc6, chromosome nondisjunction occurs as a consequence of mitotic entry with unfinished replication despite intact checkpoint responses. Eliminating processes that obstruct replication fork progression restores the temporal uncoupling between replication and segregation in smc5-smc6 mutants. We propose that the completion of replication is not under the surveillance of known checkpoints.
Collapse
MESH Headings
- Anaphase
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Checkpoint Kinase 2
- Chromosome Segregation
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/metabolism
- DNA Breaks, Double-Stranded
- DNA Damage
- DNA Replication
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Genes, Fungal
- Genes, rRNA
- Metaphase
- Mitosis
- Models, Genetic
- Mutation
- Nondisjunction, Genetic
- Protein Serine-Threonine Kinases/metabolism
- S Phase
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Jordi Torres-Rosell
- Cell Cycle Group, Medical Research Council (MRC) Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Koren A. The role of the DNA damage checkpoint in regulation of translesion DNA synthesis. Mutagenesis 2007; 22:155-60. [PMID: 17290049 DOI: 10.1093/mutage/gem003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The DNA damage checkpoint is a signal transduction pathway that integrates DNA repair with cell cycle arrest and other cellular responses. The checkpoint response is also directly associated with mutagenic translesion DNA synthesis (TLS). For example, checkpoint activation requires complexes with roles in TLS regulation, and leads to elevated mutation levels. A role in TLS regulation implies that the checkpoint contributes to the generation of mutations, rather than their prevention. It can also explain several currently obscure aspects of this response.
Collapse
Affiliation(s)
- Amnon Koren
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
57
|
Diaz-Perez SV, Ferguson DO, Wang C, Csankovszki G, Wang C, Tsai SC, Dutta D, Perez V, Kim S, Eller CD, Salstrom J, Ouyang Y, Teitell MA, Kaltenboeck B, Chess A, Huang S, Marahrens Y. A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes. Genetics 2006; 174:1115-33. [PMID: 16980402 PMCID: PMC1667074 DOI: 10.1534/genetics.105.051375] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The inactive X chromosome of female mammals displays several properties of heterochromatin including late replication, histone H4 hypoacetylation, histone H3 hypomethylation at lysine-4, and methylated CpG islands. We show that cre-Lox-mediated excision of 21 kb from both Xist alleles in female mouse fibroblasts led to the appearance of two histone modifications throughout the inactive X chromosome usually associated with euchromatin: histone H4 acetylation and histone H3 lysine-4 methylation. Despite these euchromatic properties, the inactive X chromosome was replicated even later in S phase than in wild-type female cells. Homozygosity for the deletion also caused regions of the active X chromosome that are associated with very high concentrations of LINE-1 elements to be replicated very late in S phase. Extreme late replication is a property of fragile sites and the 21-kb deletions destabilized the DNA of both X chromosomes, leading to deletions and translocations. This was accompanied by the phosphorylation of p53 at serine-15, an event that occurs in response to DNA damage, and the accumulation of gamma-H2AX, a histone involved in DNA repair, on the X chromosome. The Xist locus therefore maintains the DNA stability of both X chromosomes.
Collapse
Affiliation(s)
- Silvia V Diaz-Perez
- Department of Human Genetics, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Arlt MF, Durkin SG, Ragland RL, Glover TW. Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst) 2006; 5:1126-35. [PMID: 16807141 DOI: 10.1016/j.dnarep.2006.05.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Common fragile sites are large chromosomal regions that preferentially exhibit gaps or breaks after DNA synthesis is partially perturbed. Fragile site instability in cultured cells is well documented and includes gaps and breaks on metaphase chromosomes, translocation and deletions breakpoints, and sister chromosome exchanges. In recent years, much has been learned about the genomic structure at fragile sites and the cellular mechanisms that monitor their stability. The study of fragile sites has merged with that of cell cycle checkpoints and DNA repair, with multiple proteins from these pathways implicated in fragile site stability, including ATR, BRCA1, CHK1, and RAD51. Since their discovery, fragile sites have been implicated in constitutional and cancer chromosome rearrangements in vivo and recent studies suggest that common fragile sites may serve as markers of chromosome damage caused by replication stress during early tumorigenesis. Here we review the relationship of fragile sites to chromosome rearrangements, particularly in tumor cells, and discuss the mechanisms that may be involved.
Collapse
Affiliation(s)
- Martin F Arlt
- Department of Human, Genetics University of Michigan, 4909 Buhl Box 0618, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
59
|
Focarelli ML, Montagna C, Colombo R, Ried T, Vezzoni P, Musio A. SMC1 inhibition results in FRA3B expression but has no effect on its delayed replication. Mutat Res 2006; 595:23-8. [PMID: 16242161 DOI: 10.1016/j.mrfmmm.2005.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/25/2005] [Accepted: 09/14/2005] [Indexed: 01/24/2023]
Abstract
Cellular processes involved in fragile site expression have been investigated by studying the effect on the replication pattern of the commonest fragile site FRA3B of RNA interference (RNAi)-mediated sister maintenance chromosome 1 (SMC1) inhibition in normal human fibroblasts. Replication timing of FRA3B in G2 was studied by bromodeoxyuridine (BrdU) labeling for the final 2h of cell culture whereas in the S phase was investigated by a fluorescence in situ hybridization (FISH)-based approach through the analysis of clones spanning the FRA3B region. Results showed that FRA3B is normally late replicated even though it is not expressed in untreated cells. On the other hand, SMC1 inhibition leads to FRA3B expression even if the percent of late replicated cells is comparable to control cells. These results obtained by analysing the commonest fragile site suggest that SMC1 plays a role in protecting late replicating regions from stresses occurring in the final steps of genome replication and that delayed replication is necessary but not sufficient for inducing fragile site expression.
Collapse
Affiliation(s)
- Maria Luisa Focarelli
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Dipartimento Genoma Umano, Via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | | | | | | | | | | |
Collapse
|
60
|
Hormozian F, Schmitt JG, Sagulenko E, Schwab M, Savelyeva L. FRA1E common fragile site breaks map within a 370kilobase pair region and disrupt the dihydropyrimidine dehydrogenase gene (DPYD). Cancer Lett 2006; 246:82-91. [PMID: 16556484 DOI: 10.1016/j.canlet.2006.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 12/15/2005] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
Common fragile sites represent components of normal chromosome structure that are particularly prone to breakage under replication stress. Although the cytogenetic locations of 88 common fragile sites are listed in the Genome database, the DNA at only 14 of them has been defined and characterized at the molecular level. Here, we identify the precise genomic position of the common fragile site FRA1E, mapped to the chromosomal band 1p21.2, and characterize the genetic complexity of the fragile DNA sequence. We show that FRA1E extends over 370kb within the dihydropyrimidine dehydrogenase (DPYD) gene, which genomically spans approximately 840kb. The 185kb region of the highest fragility, which accounts for 86% of all observed breaks at FRA1E, encompasses the central part of DPYD including exons 13-16. DPYD encodes dihydropyrimidine dehydrogenase (DPD), which is the first and rate-limiting enzyme in a three-step metabolic pathway involved in degradation of the pyrimidine bases uracil and thymine. Deficiency in human DPD is associated with autosomal recessive disease, thymine-uraciluria, and with severe 5-fluorouracil toxicity in cancer patients. To which extent the disruption of the DPYD gene by the fragile site break is only transient, followed by DNA repair to restore the original structure, or occasionally may result in genomic damage associated with human disease remains to be determined.
Collapse
Affiliation(s)
- Fabiola Hormozian
- Division of Tumour Genetics, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
61
|
Bester AC, Schwartz M, Schmidt M, Garrigue A, Hacein-Bey-Abina S, Cavazzana-Calvo M, Ben-Porat N, Von Kalle C, Fischer A, Kerem B. Fragile sites are preferential targets for integrations of MLV vectors in gene therapy. Gene Ther 2006; 13:1057-9. [PMID: 16511518 DOI: 10.1038/sj.gt.3302752] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Following gene therapy of SCID-X1 using murine leukemia virus (MLV) derived vector, two patients developed leukemia owing to an activating vector integration near the LMO2 gene. We found that these integrations reside within FRA11E, a common fragile site known to correlate with chromosomal breakpoints in tumors. Further analysis showed that fragile sites attract a nonrandom number of MLV integrations, shedding light on its integration mechanism and risk-to-benefit ratio in gene therapy.
Collapse
Affiliation(s)
- A C Bester
- Department of Genetics, Silberman Life Sciences Institute, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Ouyang Y, Kwon YT, An JY, Eller D, Tsai SC, Diaz-Perez S, Troke JJ, Teitell MA, Marahrens Y. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair. Mutat Res 2006; 596:64-75. [PMID: 16488448 DOI: 10.1016/j.mrfmmm.2005.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/05/2005] [Accepted: 12/21/2005] [Indexed: 01/08/2023]
Abstract
The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2-/- male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2-/- embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2-/- fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2-/- cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2-/- cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2-/- cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2-/- cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair.
Collapse
Affiliation(s)
- Yan Ouyang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Schwartz M, Zlotorynski E, Kerem B. The molecular basis of common and rare fragile sites. Cancer Lett 2006; 232:13-26. [PMID: 16236432 DOI: 10.1016/j.canlet.2005.07.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Accepted: 07/30/2005] [Indexed: 11/30/2022]
Abstract
Fragile sites are specific loci that form gaps and constrictions on chromosomes exposed to partial replication stress. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. These loci are known to be involved in chromosomal rearrangements in tumors and are associated with human diseases. Therefore, the understanding of the molecular basis of fragile sites is of high significance. Here we discuss the works performed in recent years that investigated the characteristics of fragile sites which underlie their inherent instability.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
64
|
Savelyeva L, Sagulenko E, Schmitt JG, Schwab M. Low-frequency common fragile sites: Link to neuropsychiatric disorders? Cancer Lett 2006; 232:58-69. [PMID: 16298041 DOI: 10.1016/j.canlet.2005.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 08/30/2005] [Indexed: 11/15/2022]
Abstract
Common fragile sites are unstable chromosomal regions that predispose chromosomes to breakage and rearrangements. Recombinogenic DNA sequences encompassing these sites may contribute to both germinal and somatic genomic mutations, and the genomic instability at these regions might cause severe inherited disorders or predispose to cancer. In this review, we discuss the characterization of common fragile site FRA13A within the neurobeachin gene, which is involved in development and function of the central nervous system. We raise the possibility of an implication of common fragile sites in neuropsychiatric disorders and overview previous and recent reports concerning individual variability of expression of common fragile sites in human populations.
Collapse
Affiliation(s)
- Larissa Savelyeva
- Division of Tumor Genetics, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
65
|
Abstract
Common fragile sites are regions showing site-specific gaps and breaks on metaphase chromosomes after partial inhibition of DNA synthesis. Common fragile sites are normally stable in somatic cells. However, following treatment of cultured cells with replication inhibitors, fragile sites display gaps, breaks, rearrangements and other features of unstable DNA. Studies showing that fragile sites and associated genes are frequently deleted or rearranged in many cancer cells have clearly demonstrated their importance in genome instability in cancer. Until recently, little was known about the molecular nature and mechanisms involved in fragile site instability. From studies conducted in many laboratories, it is now known that fragile sites extend over large regions, are associated with genes, exhibit delayed replication, and contain regions of high DNA flexibility. Recent findings from our laboratory showing that the key cell cycle checkpoint genes are important for genome stability at fragile sties have shed new light on these mechanisms and on the significance of these sites in cancer and normal chromosome structure. Since their discovery over two decades ago, much has been learned regarding their significance in chromosome structure and instability in cancer, but a number of key questions remain, including why these sites are 'fragile' and the impact of this instability on associated genes in cancer cells. These and other questions have been addressed by participants of this meeting, which highlighted instability at common fragile sites. This brief review is intended to provide background on common fragile sites that has led up to many of the studies presented in the accompanying reports in this volume and not to summarize the findings presented therein. Some aspects of this review were taken from Glover et al. (T.W. Glover, M.F. Arlt, A.M. Casper, S.G. Durkin, Mechanisms of common fragile site instability, Hum. Molec. Genet. 14 (in press). [1]).
Collapse
Affiliation(s)
- Thomas W Glover
- Department of Human Genetics, 4909 Buhl, Box 0618, 1241 E. Catherine Street, University of Michigan, Ann Arbor, MI 48109-0618, USA.
| |
Collapse
|
66
|
El Achkar E, Gerbault-Seureau M, Muleris M, Dutrillaux B, Debatisse M. Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites. Proc Natl Acad Sci U S A 2005; 102:18069-74. [PMID: 16330769 PMCID: PMC1312387 DOI: 10.1073/pnas.0506497102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Various studies suggest a tight relationship between chromosome rearrangements driving tumor progression and breaks at loci called common fragile sites. Most of these sites are induced after perturbation of the replication dynamics, notably by aphidicolin treatment. We have mapped the majority of these sites to the interface of R and G bands, which calls into question the previous assignment of aphidicolin-sensitive sites to R bands. This observation suggests that most of them correspond to loci that ensure the transition between early and late replicating domains. We show that calyculin A, which triggers chromosome condensation at any phase of the cell cycle but does not markedly impair replication, induces damage in the chromosomes of human lymphocytes treated in G(2) but not in G(1) phase. We demonstrate that these lesions colocalize with those induced by aphidicolin treatment. Hence, common fragile site stability is compromised, whether aphidicolin delays replication or calyculin A advances condensation. We also show that, in cells that go through an unperturbed S phase, completion of their replication and/or replication-associated chromatin reorganization occur all along the G(2) phase, which may explain their inability to condense properly after calyculin A treatment during this phase of the cell cycle.
Collapse
Affiliation(s)
- Eliane El Achkar
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie, Unité Mixte de Recherche 7147, Paris, France
| | | | | | | | | |
Collapse
|
67
|
Schwartz M, Zlotorynski E, Goldberg M, Ozeri E, Rahat A, le Sage C, Chen BPC, Chen DJ, Agami R, Kerem B. Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev 2005; 19:2715-26. [PMID: 16291645 PMCID: PMC1283964 DOI: 10.1101/gad.340905] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 09/12/2005] [Indexed: 12/12/2022]
Abstract
Common fragile sites are specific loci that form gaps and constrictions on metaphase chromosomes exposed to replication stress, which slows DNA replication. These sites have a role in chromosomal rearrangements in tumors; however, the molecular mechanism of their expression is unclear. Here we show that replication stress leads to focus formation of Rad51 and phosphorylated DNA-PKcs, key components of the homologous recombination (HR) and nonhomologous end-joining (NHEJ), double-strand break (DSB) repair pathways, respectively. Down-regulation of Rad51, DNA-PKcs, or Ligase IV, an additional component of the NHEJ repair pathway, leads to a significant increase in fragile site expression under replication stress. Replication stress also results in focus formation of the DSB markers, MDC1 and gammaH2AX. These foci colocalized with those of Rad51 and phospho-DNA-PKcs. Furthermore, gammaH2AX and phospho-DNA-PKcs foci were localized at expressed fragile sites on metaphase chromosomes. These findings suggest that DSBs are formed at common fragile sites as a result of replication perturbation. The repair of these breaks by both HR and NHEJ pathways is essential for chromosomal stability at these sites.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Thavathiru E, Ludes-Meyers JH, MacLeod MC, Aldaz CM. Expression of common chromosomal fragile site genes, WWOX/FRA16D and FHIT/FRA3B is downregulated by exposure to environmental carcinogens, UV, and BPDE but not by IR. Mol Carcinog 2005; 44:174-82. [PMID: 16187332 PMCID: PMC4166602 DOI: 10.1002/mc.20122] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Common chromosomal fragile sites are unstable genomic loci susceptible to breakage, rearrangement, and are highly recombinogenic. Frequent alterations at these loci in tumor cells led to the hypothesis that they may contribute to cancer development. The two most common chromosomal fragile sites FRA16D and FRA3B which harbor WWOX and FHIT genes, respectively, are frequently altered in human cancers. Here we report that environmental carcinogens, ultraviolet (UV) light, and Benzo[a]pyrene diol epoxide (BPDE), significantly downregulate expression of both genes. On the other hand, we observe that ionizing radiation (IR) does not affect expression of these genes, suggesting that the effect of repression exerted by UV and BPDE is not just a consequence of DNA damage but may be a result of different signaling pathways triggered by specific DNA lesions. Such downregulation correlates with an induction of an S-phase delay in the cell cycle. Treatment of UV-irradiated cells with caffeine abrogates the S-phase delay while concomitantly overcoming the repression phenomenon. This suggests the involvement of unique cell cycle checkpoint mechanisms in the observed repression. Therefore, it is hypothesized that protracted downregulation of the putative tumor suppressor genes WWOX and FHIT by environmental carcinogens may constitute an additional mechanism of relevance in the initiation of tumorigenesis.
Collapse
Affiliation(s)
- Elangovan Thavathiru
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | | | |
Collapse
|
69
|
Savelyeva L, Sagulenko E, Schmitt JG, Schwab M. The neurobeachin gene spans the common fragile site FRA13A. Hum Genet 2005; 118:551-8. [PMID: 16244873 DOI: 10.1007/s00439-005-0083-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Common fragile sites are normal constituents of chromosomal structure prone to chromosomal breakage. In humans, the cytogenetic locations of more than 80 common fragile sites are known. The DNA at 11 of them has been defined and characterized at the molecular level. According to the Genome Database, the common fragile site FRA13A maps to chromosome band 13q13.2. Here, we identify the precise genomic position of FRA13A, and characterize the genetic complexity of the fragile DNA sequence. We show that FRA13A breaks are limited to a 650 kb region within the neurobeachin (NBEA) gene, which genomically spans approximately 730 kb. NBEA encodes a neuron-specific multidomain protein implicated in membrane trafficking that is predominantly expressed in the brain and during development.
Collapse
Affiliation(s)
- Larissa Savelyeva
- Division of Tumor Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
70
|
O'Keefe LV, Richards RI. Common chromosomal fragile sites and cancer: focus on FRA16D. Cancer Lett 2005; 232:37-47. [PMID: 16242840 DOI: 10.1016/j.canlet.2005.07.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Accepted: 07/30/2005] [Indexed: 11/19/2022]
Abstract
A growing body of experimental evidence supports the view that certain human chromosomal fragile sites have roles to play in cancer. The principle lines of evidence are at the level of mutation mechanism and gene function. Most research in this area has previously focussed on the FRA3B common fragile site and the FHIT gene that spans this site. Here we review recent progress in characterising the second most readily observed common fragile site, FRA16D, and the WWOX gene that spans it. Comparative analyses of FRA3B/FHIT and FRA16D/WWOX reveal some striking similarities suggesting that these sites and their associated genes may play a part in a normal protective response of cells to environmental stress.
Collapse
Affiliation(s)
- Louise V O'Keefe
- ARC Special Research Centre for the Molecular Genetics of Development, ARC-NHMRC Research Network in Genes and Environment in Development, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide S.A. 5005, Australia
| | | |
Collapse
|
71
|
Glover TW, Arlt MF, Casper AM, Durkin SG. Mechanisms of common fragile site instability. Hum Mol Genet 2005; 14 Spec No. 2:R197-205. [PMID: 16244318 DOI: 10.1093/hmg/ddi265] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study of common fragile sites has its roots in the early cytogenetic investigations of the fragile X syndrome. Long considered an interesting component of chromosome structure, common fragile sites have taken on novel significance as regions of the genome that are particularly sensitive to certain forms of replication stress, which are frequently rearranged in cancer cells. In recent years, much has been learned about the genomic structure at fragile sites and the cellular checkpoint functions that monitor their stability. Recent findings suggest that common fragile sites may serve as markers of chromosome damage caused by replication stress during early stages of tumorigenesis. Thus, the study of common fragile sites can provide insight not only into the nature of fragile sites, but also into the broader consequences of replication stress on DNA damage and cancer. However, despite recent advances, many questions remain regarding the normal functional significance of these conserved regions and the basis of their fragility.
Collapse
Affiliation(s)
- Thomas W Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
72
|
Herrick J, Conti C, Teissier S, Thierry F, Couturier J, Sastre-Garau X, Favre M, Orth G, Bensimon A. Genomic Organization of AmplifiedMYCGenes Suggests Distinct Mechanisms of Amplification in Tumorigenesis. Cancer Res 2005; 65:1174-9. [PMID: 15735000 DOI: 10.1158/0008-5472.can-04-2802] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integration of the human papillomavirus (HPV) genome into the host genome is associated with the disruption of the HPV E2 gene and with amplification and rearrangement of the viral and flanking cellular sequences. Molecular characterization of the genomic structures of coamplified HPV sequences and oncogenes provides essential information concerning the mechanisms of amplification and their roles in carcinogenesis. Using fluorescent hybridization on stretched DNA molecules in two cervical cancer-derived cell lines, we have elucidated the genomic structures of amplified regions containing HPV/myc genes over several hundreds of kilobases. Direct visualization of hybridization signals on individual DNA molecules suggests that overreplication and breakage-fusion-bridge-type mechanisms are involved in the genomic instability associated with HPV cervical cancers. Further analysis from two other genital cancer-derived cell lines reveals a recurrent motif of amplification, probably generated by a common mechanism involving overreplication upon viral integration. Interestingly, different amplification patterns seem to be correlated with the disease outcome, thus providing new insights into HPV-related cancer development and tumor progression.
Collapse
Affiliation(s)
- John Herrick
- Unité Stabilité des Génomes, Département de Structure et Dynamique des Génomes, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Musio A, Montagna C, Mariani T, Tilenni M, Focarelli ML, Brait L, Indino E, Benedetti PA, Chessa L, Albertini A, Ried T, Vezzoni P. SMC1 involvement in fragile site expression. Hum Mol Genet 2005; 14:525-33. [PMID: 15640246 DOI: 10.1093/hmg/ddi049] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Common fragile sites have been involved in neoplastic transformation, although their molecular basis is still poorly understood. Here, we demonstrate that inhibition of the SMC1 by RNAi is sufficient to induce fragile site expression. By investigating normal, ATM- and ATR-deficient cell lines, we provide evidence that the contribution of SMC1 in preventing the collapse of stalled replication fork is an Atr-dependent pathway. Using a fluorescent antibody specific for gamma-H2AX, we show that very rare discrete nuclear foci appear 1 and 2 h after exposure to aphidicolin and/or RNAi-SMC1, but became more numerous and distinct after longer treatment times. In this context, fragile sites might be viewed as an in vitro phenomenon originating from double-strand breaks formed because of a stalled DNA replication that lasted too long to be managed by physiological rescue acting through the Atr/Smc1 axis. We propose that in vivo, following an extreme replication block, rare cells could escape checkpoint mechanisms and enter mitosis with a defect in genome assembly, eventually leading to neoplastic transformation.
Collapse
Affiliation(s)
- Antonio Musio
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Debatisse M, Malfoy B. Gene amplification mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:343-361. [PMID: 18727507 DOI: 10.1007/1-4020-3764-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Michelle Debatisse
- UMR 7147, Institut Curie, CNRS, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
75
|
Kost-Alimova M, Fedorova L, Yang Y, Klein G, Imreh S. Microcell-mediated chromosome transfer provides evidence that polysomy promotes structural instability in tumor cell chromosomes through asynchronous replication and breakage within late-replicating regions. Genes Chromosomes Cancer 2004; 40:316-24. [PMID: 15188454 DOI: 10.1002/gcc.20054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
It was reported earlier that normal chromosome 3 (chr3) transfer into tumor cells of different origin may suppress their ability to grow in SCID mice. Tumorigenicity may be restored by the loss of certain 3p regions. We transferred a normal cell-derived chr3 into cells of a human renal cell carcinoma line and followed the chromosomal changes during in vivo and in vitro growth. In cells cultivated for 6 weeks or more and in the tumors grown in SCID mice, supernumerary chrs3 were always rearranged, accompanied by 3p losses. Unexpectedly, we found that the rearrangements affected not only the transferred exogenous chr3, but also the endogenous chrs3. Other chromosomes that were polysomic in the recipient cells were affected as well, suggesting that polysomy may be associated with structural chromosome instability. The dominant chromosomal aberrations were unbalanced translocations with preferentially pericentromeric breakpoints. The breakpoint distribution on chr3 preferentially affected the pericentromeric 3p11 (8 breaks) and 3p12-13 (5 breaks) regions. The regions 3p14 and 3q26-27 occasionally were involved as well (one break in each case). These four regions were the latest replicating, as shown by BrdU incorporation-based replication banding. Using fluorescence in situ hybridization-based replication timing, we detected asynchronous and incomplete centromere replication in cells with 3 or 4 copies of chr3, but not in cells with 2. We concluded that in tumor cells, asynchronous and incomplete replication of polysomic chromosomal parts is associated with aberrations that have breakpoints within the late-replicating regions. This may explain the increased structural chromosome instability and preferential pericentromeric localization of breakpoints in hyperploid tumors.
Collapse
Affiliation(s)
- Maria Kost-Alimova
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
76
|
Abstract
Fragile sites are gaps and breaks in metaphase chromosomes generated by specific culture conditions. Fragile site FRA3B is the most unstable site and is directly involved in the breakpoints of deletion and translocation in a wide spectrum of cancers. To learn about the general characteristics of common fragile sites, we investigated the chromatin structure of the FRA3B site. Because FRA3B spans several hundred kilobases, we focused our study on two breakpoint clusters found in FRA3B. Using various nucleases, we demonstrated that these two regions contain phased nucleosomes, regardless of treatment with aphidicolin. Because these regions are located in intron 4 of the FHIT gene, it is very interesting to observe phased nucleosomes over these regions, which are several hundred kilobases downstream from the promoter. Further, by using nucleosome assembly assays, we demonstrate that these two regions do not contain strong nucleosome positioning elements. These results suggest that other factors appear to cooperate with the DNA sequence of these regions to impart nucleosome phasing. This study provides the first information on the chromatin structure of breakpoint regions in a common fragile site. The observation of phased nucleosomes over these breakpoint regions could offer a foundation to understand the expression of fragile sites.
Collapse
Affiliation(s)
- David J Mulvihill
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
77
|
Fleming K, Riser DK, Kumari D, Usdin K. Instability of the fragile X syndrome repeat in mice: the effect of age, diet and mutations in genes that affect DNA replication, recombination and repair proficiency. Cytogenet Genome Res 2004; 100:140-6. [PMID: 14526174 DOI: 10.1159/000072848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Accepted: 02/03/2003] [Indexed: 11/19/2022] Open
Abstract
Repeat expansion diseases such as fragile X syndrome (FXS) result from increases in the size of a specific tandem repeat array. In addition to large expansions, small changes in repeat number and deletions are frequently seen in FXS pedigrees. No mouse model accurately recapitulates all aspects of this instability, particularly the occurrence of large expansions. This may be due to differences between mice and humans in CIS and/or TRANS-acting factors that affect repeat stability. The identification of such factors may help reveal the expansion mechanism and allow the development of suitable animal models for these disorders. We have examined the effect of age, dietary folate, and mutations in the Werner's syndrome helicase (WRN) and TRP53 genes on FXS repeat instability in mice. WRN facilitates replication of the FXS repeat and enhances Okazaki fragment processing, thereby reducing the incidence of processes that have been suggested to lead to expansion. p53 is a protein involved in DNA damage surveillance and repair. We find two types of repeat instability in these mice, small changes in repeat number that are seen at frequencies approaching 100%, and large deletions which occur at a frequency of about 10%. The frequency of these events was independent of WRN, p53, parental age, or folate levels. The large deletions occur at the same frequency in mice homozygous and heterozygous for the repeat suggesting that they are not the result of an interallelic recombination event. In addition, no evidence of large expansions was seen. Our data thus show that the absence of repeat expansions in mice is not due to a more efficient WRN protein or p53-mediated error correction mechanism, and suggest that these proteins, or the pathways in which they are active, may not be involved in expansion in humans either. Moreover, the fact that contractions occur in the absence of expansions suggests that these processes occur by different mechanisms.
Collapse
Affiliation(s)
- K Fleming
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | |
Collapse
|
78
|
Arlt MF, Casper AM, Glover TW. Common fragile sites. Cytogenet Genome Res 2004; 100:92-100. [PMID: 14526169 DOI: 10.1159/000072843] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 01/17/2003] [Indexed: 11/19/2022] Open
Abstract
Aphidicolin-induced common fragile sites are site-specific gaps or breaks seen on metaphase chromosomes after partial inhibition of DNA synthesis. These fragile sites were first recognized during the early studies of the fragile X syndrome and are induced by the same conditions of folate or thymidylate stress used to induce the fragile X site. Common fragile sites are normally stable in cultured human cells. However, following induction with replication inhibitors, they display a number of characteristics of unstable and highly recombinogenic DNA. From the many studies that have cloned and characterized fragile sites, it is now known that these sites extend over large regions, are associated with genes, exhibit late or delayed replication, and contain regions of high flexibility but are otherwise unremarkable in sequence. Studies showing that fragile sites and their associated genes are frequently deleted or rearranged in cancer cells have clearly demonstrated their importance in genome instability in tumorigenesis. Yet until recently, very little was known about the molecular mechanisms involved in their stability. Recent findings showing that the key checkpoint genes ATR and BRCA1 are critical for genome stability at fragile sites have shed new light on these mechanisms and on the biological significance of common fragile sites.
Collapse
Affiliation(s)
- M F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | |
Collapse
|
79
|
Palakodeti A, Han Y, Jiang Y, Le Beau MM. The role of late/slow replication of the FRA16D in common fragile site induction. Genes Chromosomes Cancer 2004; 39:71-6. [PMID: 14603443 DOI: 10.1002/gcc.10290] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The FRA16D, at 16q23, spans the WWOX gene and is one of the most highly expressed common fragile sites observed when DNA replication is perturbed by aphidicolin. Several lines of evidence suggest that fragile sites are regions of DNA that are unusually sensitive to interference during replication. We have determined that the FRA16D alleles replicate in a synchronous fashion and that replication of these sequences occurs primarily in late S phase extending into G2 phase. Exposure to aphidicolin, an inhibitor of DNA polymerase alpha, results in a modest increase in cells with replication of FRA16D sequences in early S phase. This may represent initiation of replication in early S phase coupled with slow replication progression, or, alternatively, these cells may have passed through mitosis, entered the G1-S phase of the next cell cycle, and initiated replication/repair. Our results support a model in which common fragile sites are sequences that may initiate replication in early-mid S phase but are slow to complete replication, and the chromosomal breaks and gaps observed in metaphase cells result from unreplicated DNA.
Collapse
Affiliation(s)
- Aparna Palakodeti
- Section of Hematology/Oncology, and the Cancer Research Center, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
80
|
Zlotorynski E, Rahat A, Skaug J, Ben-Porat N, Ozeri E, Hershberg R, Levi A, Scherer SW, Margalit H, Kerem B. Molecular basis for expression of common and rare fragile sites. Mol Cell Biol 2003; 23:7143-51. [PMID: 14517285 PMCID: PMC230307 DOI: 10.1128/mcb.23.20.7143-7151.2003] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile sites are specific loci that form gaps, constrictions, and breaks on chromosomes exposed to partial replication stress and are rearranged in tumors. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. The molecular basis of rare fragile sites is associated with expanded repeats capable of adopting unusual non-B DNA structures that can perturb DNA replication. The molecular basis of common fragile sites was unknown. Fragile sites from R-bands are enriched in flexible sequences relative to nonfragile regions from the same chromosomal bands. Here we cloned FRA7E, a common fragile site mapped to a G-band, and revealed a significant difference between its flexibility and that of nonfragile regions mapped to G-bands, similar to the pattern found in R-bands. Thus, in the entire genome, flexible sequences might play a role in the mechanism of fragility. The flexible sequences are composed of interrupted runs of AT-dinucleotides, which have the potential to form secondary structures and hence can affect replication. These sequences show similarity to the AT-rich minisatellite repeats that underlie the fragility of the rare fragile sites FRA16B and FRA10B. We further demonstrate that the normal alleles of FRA16B and FRA10B span the same genomic regions as the common fragile sites FRA16C and FRA10E. Our results suggest that a shared molecular basis, conferred by sequences with a potential to form secondary structures that can perturb replication, may underlie the fragility of rare fragile sites harboring AT-rich minisatellite repeats and aphidicolin-induced common fragile sites.
Collapse
Affiliation(s)
- Eitan Zlotorynski
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel 91904
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Laronne A, Rotkopf S, Hellman A, Gruenbaum Y, Porter ACG, Brandeis M. Synchronization of interphase events depends neither on mitosis nor on cdk1. Mol Biol Cell 2003; 14:3730-40. [PMID: 12972560 PMCID: PMC196563 DOI: 10.1091/mbc.e02-12-0850] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human HT2-19 cells with a conditional cdk1 mutation stop dividing upon cdk1 inactivation and undergo multiple rounds of endoreplication. We show herein that major cell cycle events remain synchronized in these endoreplicating cells. DNA replication alternates with gap phases and cell cycle-specific cyclin E expression is maintained. Centrosomes duplicate in synchrony with chromosome replication, giving rise to polyploid cells with multiple centrosomes. Centrosome migration, a typical prophase event, also takes place in endoreplicating cells. The timing of these events is unaffected by cdk1 inactivation compared with normally dividing cells. Nuclear lamina breakdown, in contrast, previously shown to be dependent on cdk1, does not take place in endoreplicating HT2-19 cells. Moreover, breakdown of all other major components of the nuclear lamina, like the inner nuclear membrane proteins and nuclear pore complexes, seems also to depend on cdk1. Interestingly, the APC/C ubiquitin ligase is activated in these endoreplicating cells by fzr but not by fzy. The oscillations of interphase events are thus independent of cdk1 and of mitosis but may depend on APC/Cfzr activity.
Collapse
Affiliation(s)
- Ayelet Laronne
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
82
|
Kost-Alimova M, Kiss H, Fedorova L, Yang Y, Dumanski JP, Klein G, Imreh S. Coincidence of synteny breakpoints with malignancy-related deletions on human chromosome 3. Proc Natl Acad Sci U S A 2003; 100:6622-7. [PMID: 12738884 PMCID: PMC164497 DOI: 10.1073/pnas.0430971100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have found previously that during tumor growth intact human chromosome 3 transferred into tumor cells regularly looses certain 3p regions, among them the approximately 1.4-Mb common eliminated region 1 (CER1) at 3p21.3. Fluorescence in situ hybridization analysis of 12 mouse orthologous loci revealed that CER1 splits into two segments in mouse and therefore contains a murine/human conservation breakpoint region (CBR). Several breaks occurred in tumors within the region surrounding the CBR, and this sequence has features that characterize unstable chromosomal regions: deletions in yeast artificial chromosome clones, late replication, gene and segment duplications, and pseudogene insertions. Sequence analysis of the entire 3p12-22 revealed that other cancer-associated deletions (regions eliminated from monochromosomal hybrids carrying an intact chromosome 3 during tumor growth and homozygous deletions found in human tumors) colocalized nonrandomly with murine/human CBRs and were characterized by an increased number of local gene duplications and murine/human conservation mismatches (single genes that do not match into the conserved chromosomal segment). The CBR within CER1 contains a simple tandem TATAGA repeat capable of forming a 40-bp-long secondary hairpin-like structure. This repeat is nonrandomly localized within the other tumor-associated deletions and in the vicinity of 3p12-22 CBRs.
Collapse
Affiliation(s)
- Maria Kost-Alimova
- Microbiology and Tumor Biology Center, Karolinska Institute, Box 280, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
83
|
Bentley L, Nakabayashi K, Monk D, Beechey C, Peters J, Birjandi Z, Khayat FE, Patel M, Preece MA, Stanier P, Scherer SW, Moore GE. The imprinted region on human chromosome 7q32 extends to the carboxypeptidase A gene cluster: an imprinted candidate for Silver-Russell syndrome. J Med Genet 2003; 40:249-56. [PMID: 12676894 PMCID: PMC1735416 DOI: 10.1136/jmg.40.4.249] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Imprinted gene(s) on human chromosome 7q32-qter have been postulated to be involved in intrauterine growth restriction associated with Silver-Russell syndrome (SRS) as 7-10% of patients have mUPD(7). Three imprinted genes, MEST, MESTIT1, and COPG2IT1 on chromosome 7q32, are unlikely to cause SRS since epigenetic and sequence mutation analyses have not shown any changes. One hundred kilobases proximal to MEST lies a group of four carboxypeptidase A (CPA) genes. Since most imprinted genes are found in clusters, this study focuses on analysing these CPAs for imprinting effects based on their proximity to an established imprinted domain. Firstly, a replication timing study across 7q32 showed that an extensive genomic region including the CPAs, MEST, MESTIT1, and COPG2IT1 replicates asynchronously. Subsequently, SNP analysis by sequencing RT-PCR products of CPA1, CPA2, CPA4, and CPA5 indicated preferential expression of CPA4. Pyrosequencing was used as a quantitative approach, which confirmed predominantly preferential expression of the maternal allele and biallelic expression in brain. CPA5 expression levels were too low to allow reliable evaluation of allelic expression, while CPA1 and CPA2 both showed biallelic expression. CPA4 was the only gene from this family in which an imprinting effect was shown despite the location of this family of genes next to an imprinted cluster. As CPA4 has a potential role in cell proliferation and differentiation, two preferentially expressed copies in mUPD patients with SRS syndrome would result in excess expression and could alter the growth profiles of these subjects and give rise to intrauterine growth restriction.
Collapse
Affiliation(s)
- L Bentley
- Department of Fetal and Maternal Medicine, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
The organization and replication of DNA render fragile sites (FSs) prone to breakage, recombination as well as becoming preferential targets for mutagens-carcinogens and integration of oncogenic viruses. For many years, attempts to link FSs and cancer generated mostly circumstantial evidence. The discoveries that chromosome translocations, amplification of proto-oncogenes, deletion of tumor suppressor genes, and integration of oncogenic viruses all result from the specific breakage of genomic DNA at FSs, however, have provided compelling support for such a link, further suggesting a causative role for FSs in cancer.
Collapse
Affiliation(s)
- Nicholas C Popescu
- Molecular Cytogenetics Section, Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814-4958, USA.
| |
Collapse
|
85
|
Pekarsky Y, Zanesi N, Palamarchuk A, Huebner K, Croce CM. FHIT: from gene discovery to cancer treatment and prevention. Lancet Oncol 2002; 3:748-54. [PMID: 12473516 DOI: 10.1016/s1470-2045(02)00931-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chromosomal abnormalities, including homozygous deletions and loss of heterozygosity, are among the most common features of human tumours. The short arm of human chromosome 3, particularly the region 3p14.2, is a major site of such rearrangements. The 3p14.2 region spans the most active common fragile site of the human genome, encompassing a familial-kidney-cancer-associated breakpoint and a papilloma virus integration site. 6 years ago, the FHIT gene was identified in this region. Subsequent studies have shown that FHIT is commonly the target of chromosomal aberrations involving the long arm of human chromosome 3 and is thereby inactivated in most of the common human malignant diseases, including cancers of the lung, oesophagus, stomach, breast, and kidney. During the past 5 years, evidence has accumulated in support of a tumour-suppressor function for FHIT. In this review, we describe the recent findings in the molecular biology of FHIT with particular focus on the opportunities for treatment and prevention of cancer that have emerged.
Collapse
Affiliation(s)
- Yuri Pekarsky
- Kimmel Cancer Center, Thomas Jefferson University, PA 19107, USA
| | | | | | | | | |
Collapse
|
86
|
Abstract
Conditions that partially inhibit DNA replication induce expression of common fragile sites. These sites form gaps and breaks on metaphase chromosomes and are deleted and rearranged in many tumors. Yet, the mechanism of fragile site expression has been elusive. We demonstrate that the replication checkpoint kinase ATR, but not ATM, is critical for maintenance of fragile site stability. ATR deficiency results in fragile site expression with and without addition of replication inhibitors. Thus, we propose that fragile sites are unreplicated chromosomal regions resulting from stalled forks that escape the ATR replication checkpoint. These findings have important implications for understanding both the mechanism of fragile site instability and the consequences of stalled replication in mammalian cells.
Collapse
Affiliation(s)
- Anne M Casper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
87
|
Morelli C, Karayianni E, Magnanini C, Mungall AJ, Thorland E, Negrini M, Smith DI, Barbanti-Brodano G. Cloning and characterization of the common fragile site FRA6F harboring a replicative senescence gene and frequently deleted in human tumors. Oncogene 2002; 21:7266-76. [PMID: 12370818 DOI: 10.1038/sj.onc.1205573] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2001] [Revised: 03/29/2002] [Accepted: 04/15/2002] [Indexed: 11/08/2022]
Abstract
The common fragile site FRA6F, located at 6q21, is an extended region of about 1200 kb, with two hot spots of breakage each spanning about 200 kb. Transcription mapping of the FRA6F region identified 19 known genes, 10 within the FRA6F interval and nine in a proximal or distal position. The nucleotide sequence of FRA6F is rich in repetitive elements (LINE1 and LINE2, Alu, MIR, MER and endogenous retroviral sequences) as well as in matrix attachment regions (MARs), and shows several DNA segments with increased helix flexibility. We found that tight clusters of stem-loop structures were localized exclusively in the two regions with greater frequency of breakage. Chromosomal instability at FRA6F probably depends on a complex interaction of different factors, involving regions of greater DNA flexibility and MARs. We propose an additional mechanism of fragility at FRA6F, based on stem-loop structures which may cause delay or arrest in DNA replication. A senescence gene likely maps within FRA6F, as suggested by detection of deletion and translocation breakpoints involving this fragile site in immortal human-mouse cell hybrids and in SV40-immortalized human fibroblasts containing a human chromosome 6 deleted at q21. Deletion breakpoints within FRA6F are common in several types of human leukemias and solid tumors, suggesting the presence of a tumor suppressor gene in the region. Moreover, a gene associated to hereditary schizophrenia maps within FRA6F. Therefore, FRA6F may represent a landmark for the identification and cloning of genes involved in senescence, leukemia, cancer and schizophrenia.
Collapse
Affiliation(s)
- Cristina Morelli
- Department of Experimental and Diagnostic Medicine, Section of Microbiology and Center for Biotechnology, University of Ferrara, I-44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
Genomic instability is one of the major features of cancer cells. The clinical phenotypes associated with several human diseases have been linked to recurrent DNA rearrangements and dysfunction of DNA replication processes that involve unstable genomic regions. Analysis of these rearrangements, which are frequently submicroscopic and can lead to loss or gain of dosage-sensitive genes or gene disruption, requires the development of sensitive, high-resolution techniques. This will lead to a better understanding of the mechanisms underlying genome instability and a greater awareness of the role of chromosomal rearrangements in disease. A new technology that involves molecular combing, a method that permits straightening and aligning molecules of genomic DNA, should make possible a detailed analysis of genomic events at the level of single DNA molecules. Such a single molecule approach could help to elucidate important properties that are masked in bulk studies.
Collapse
Affiliation(s)
- Sandrine Caburet
- Unité de Stabilité des Génomes, Dépt de Structure et Dynamique des Génomes, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
89
|
Abstract
In general, transcriptionally active euchromatin replicates during the first half of S phase, whereas silent heterochromatin replicates during the second half. Moreover, changes in replication timing accompany key stages of development. Although there is not a strict correlation between replication timing and transcription per se, recent results reveal a strong relationship between heritably repressed chromatin and late replication that is conserved in all eukaryotes. A long-standing question is whether replication timing dictates the structure of chromatin or vice versa. Mounting evidence supports a model in which replication timing is both cause and consequence of chromatin structure by providing a means to inherit chromatin states that, in turn, regulate replication timing in the subsequent cell cycle. Moreover, new findings relating aberrations in replication timing to defects in centromere function, chromosome cohesion and genome instability suggest that the role of replication timing extends beyond its relationship to transcription. Novel systems in both yeasts and mammals are finally beginning to reveal some of the determinants that regulate replication timing, which should pave the way for a long-anticipated molecular dissection of this complex liaison.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
90
|
Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI, Trakhtenbrot L, Kerem B. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 2002; 1:89-97. [PMID: 12086891 DOI: 10.1016/s1535-6108(02)00017-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oncogene amplification is an important process in human tumorigenesis, but its underlying mechanism is currently unknown. Cytogenetic analysis indicates that amplification of drug-selected genes in rodent cells is driven by recurrent breaks within chromosomal common fragile sites (CFSs), via the breakage-fusion-bridge (BFB) mechanism. Here we show that BFB cycles drive the intrachromosomal amplification of the MET oncogene in a human gastric carcinoma. Our molecular evidence includes a "ladder-like" structure and inverted repeat organization of the MET amplicons. Furthermore, we show that the breakpoints, setting the centromeric amplicon boundaries, are within the CFS FRA7G region. Upon replication stress, this region showed perturbed chromatin organization, predisposing it to breakage. Thus, in vivo induction of CFSs can play an important role in human oncogenesis.
Collapse
Affiliation(s)
- Asaf Hellman
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
In 1979, the first chromosome alteration associated with familial cancer was reported. Five years later, a fragile site was observed in the same chromosome region. The product of the fragile histidine triad (FHIT) gene, which encompasses this fragile site, is partially or entirely lost in most human cancers, indicating that it has a tumour-suppressor function. Inactivation of only one FHIT allele compromises this suppressor function, indicating that a 'one-hit' mechanism of tumorigenesis is operative. Are genes disrupted at other fragile sites? And, are these genes also tumour suppressors?
Collapse
MESH Headings
- Acid Anhydride Hydrolases
- Adult
- Alleles
- Amino Acid Motifs
- Animals
- Apoptosis/genetics
- Cell Transformation, Neoplastic/genetics
- Chromosome Breakage
- Chromosome Fragile Sites
- Chromosome Fragility/genetics
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 3/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Conserved Sequence
- DNA Replication
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/prevention & control
- Forecasting
- Gastrointestinal Neoplasms/chemically induced
- Gastrointestinal Neoplasms/genetics
- Gene Deletion
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease
- Genetic Therapy
- Humans
- Kidney Neoplasms/genetics
- Mice
- Mice, Knockout
- Models, Genetic
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Recombination, Genetic
- Structure-Activity Relationship
- Translocation, Genetic
Collapse
Affiliation(s)
- K Huebner
- Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
92
|
Handt O, Baker E, Dayan S, Gartler SM, Woollatt E, Richards RI, Hansen RS. Analysis of replication timing at the FRA10B and FRA16B fragile site loci. Chromosome Res 2001; 8:677-88. [PMID: 11196131 DOI: 10.1023/a:1026737203447] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The molecular basis for the cytogenetic appearance of chromosomal fragile sites is not yet understood. Late replication and further delay of replication at fragile sites expressing alleles has been observed for FRAXA, FRAXE and FRA3B fragile site loci. We analysed the timing of replication at the FRA10B and FRA16B loci to determine whether late replication is a feature which is shared by all fragile sites and, therefore, is a necessary condition for chromosomal fragile site expression. The FRA10B locus was located in a transitional region between early and late zones of replication. Fragile and non-fragile alleles exhibit a similar replication pattern proximal to the repeat but fragile alleles are delayed relative to non-fragile ones on the distal side. Although fragility at FRA10B appears to be caused by expansion of an AT-rich repeat in the region, replication time near the repeat was similar in fragile and non-fragile alleles. The FRA16B locus was late replicating and appeared to replicate even later on fragile chromosomes. While these observations are compatible with the hypothesis that delayed replication may play a role in fragile site expression, they suggest that replication delay may not need to occur at the expanded repeat region itself in order to be permissive for fragility.
Collapse
Affiliation(s)
- O Handt
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, North Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
93
|
Toledo F, Coquelle A, Svetlova E, Debatisse M. Enhanced flexibility and aphidicolin-induced DNA breaks near mammalian replication origins: implications for replicon mapping and chromosome fragility. Nucleic Acids Res 2000; 28:4805-13. [PMID: 11095694 PMCID: PMC115181 DOI: 10.1093/nar/28.23.4805] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Common fragile sites are chromosomal loci prone to breakage and rearrangement that can be induced by aphidicolin, an inhibitor of DNA polymerases. Within these loci, sites of preferential DNA breaks were proposed to correlate with peaks of enhanced DNA flexibility, the function of which remains elusive. Here we show that mammalian DNA replication origins are enriched in peaks of enhanced flexibility. This finding suggests that the search for these features may help in the mapping of replication origins, and we present evidence supporting this hypothesis. The association of peaks of flexibility with replication origins also suggests that some origins may associate with minor levels of fragility. As shown here, an increased sensitivity to aphidicolin was found near two mammalian DNA replication origins.
Collapse
Affiliation(s)
- F Toledo
- Unité de Génétique Somatique (URA CNRS 1960), Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|